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Asymptotic Finite-Time Ruin Probabilities for a Class of Path-Dependent Heavy-Tailed Claim Amounts Using Poisson Spacings

In the compound Poisson risk model, several strong hypotheses may be found too restrictive to describe accurately the evolution of the reserves of an insurance company. This is especially true for a company that faces natural disaster risks like earthquake or flooding. For such risks, claim amounts are often inter-dependent and they may also depend on the history of the natural phenomenon. The present paper is concerned with a situation of this kind where each claim amount depends on the previous interclaim arrival time, or on past interclaim arrival times in a more complex way. Our main purpose is to evaluate, for large initial reserves, the asymptotic finite-time ruin probabilities of the company when the claim sizes have a heavy-tailed distribution. The approach is based more particularly on the analysis of spacings in a conditioned Poisson process.

Introduction

The compound Poisson risk model is the central model proposed in insurance theory. An abundant literature has been devoted to its analysis and applications. The reader is referred e.g. to the comprehensive books by Rolski et al. (1999), Asmussen (2000) and Kaas et al. (2001). It is well recognized, however, that the simplifying hypotheses at the basis of the model may be too restrictive for certain insurance coverages, especially with rare but extreme risks like earthquake or flooding. The present paper is concerned with situations of that kind.

Framework and motivations

Let us begin by recalling the model in its standard version. The reserves of the company, {R(t), t ≥ 0}, are given by

R(t) = u + ct -S(t), t ≥ 0, (1.1)
where u ≥ 0 is the amount of initial reserves, c > 0 is the premium income rate and S(t) is the cumulated claim amount up to time t. {S(t), t ≥ 0} is a compound Poisson process, i.e.

S(t) = N(t) i=1 X i , t ≥ 0, (1.2)
where {N(t), t ≥ 0} is a Poisson process, with parameter λ, which counts the claim occurrences until time t, and {X i , i = 1, 2, . . .} are the successive claim amounts which are represented by non-negative independent identically distributed random variables.

Let {V i , i = 1, 2, . . .} be the interarrival times of successive claims. By construction, these random variables are independent with a common exponential distribution. Moreover, the inter-occurrence times are assumed to be independent of the claim amounts.

A statistics of great interest is the probability of (non-)ruin over any fixed horizon of finite length. Denote by ψ(u, t) the probability of ruin before time t, t ≥ 0, for initial reserves u : ψ(u, t) = P(∃ s ∈ [0, t], R(s) < 0 | R(0) = u), u, t ≥ 0.

(1.3) Different methods have been proposed to evaluate ψ(u, t) ; see, e.g., [START_REF] Lefèvre | On finite-time ruin probabilities for classical risk models[END_REF].

Recently, much research has been devoted to the evaluation of ruin probabilities, over finite or infinite horizon, when some independence and stationarity assumptions of the model are relaxed. A number of references will be mentioned later in the section (the list being non-exhaustive, of course).

In practice, the independence assumptions on, and between, the sequences {X i } and {V i } may be too unrealistic. Typically, this arises in the case of natural disasters like earthquake (or flooding). The occurrence of an earthquake often increases the probability of by-claims in a near future. If the last earthquake occurred a long time ago, the next earthquake is likely to be more severe. If two earthquakes occur in a short time span, the second one may cause unusual damages like flooding.

This question has already been raised and discussed in the literature. [START_REF] Albrecher | A ruin model with dependence between claim sizes and claim intervals[END_REF] consider that the time between two claim occurrences depends on the previous claim amount. Exact expressions for the Laplace transform of the (ultimate) survival probability are derived. In [START_REF] Albrecher | Exponential behavior in the presence of dependence in risk theory[END_REF], the interclaim time and the subsequent claim size are dependent through an arbitrary copula structure. Asymptotic results for both the finite and infinite-time ruin probabilities are then derived. [START_REF] Boudreault | On a risk model with dependence between interclaim arrivals and claim sizes[END_REF] consider a particular form of dependence among the interclaim time and the subsequent claim size : if the current interclaim time exceeds a certain threshold, the distribution of the next claim is modified. The defective renewal equation satisfied by the expected Gerber-Shiu discounted penalty function is then obtained. In [START_REF] Meng | On a risk model with dependence between claim sizes and claim intervals[END_REF], the time between two claim occurrences determine the distribution of the next claim. Some exact and approximation results are derived for the survival probability. [START_REF] Ambagaspitiya | Ultimate ruin probability in the sparre andersen model with dependent claim sizes and claim occurrence times[END_REF] determines the ruin probability for two forms of dependence between claim size and occurrence in the Sparre Andersen model. See also the references given in these papers.

The present paper discusses several scenarios of dependence between claim amounts and interclaim arrivals. Such scenarios are motivated by earthquake or flooding-type risks. Our purpose is to provide approximations to the finite-time ruin probabilities, for large initial reserves, when the claim amounts have heavy-tailed distributions. This work can also be seen as a sequel to a recent paper by [START_REF] Biard | Impact of correlation crises in risk theory : Asymptotics of finite-time ruin probabilities for heavy-tailed claim amounts when some independence and stationarity assumptions are relaxed[END_REF]. Here the claim amount distributions are allowed to depend, to some extent, on the history of the claim arrival process.

Basic assumptions and implications

As in the classical model, claims occur according to a Poisson process {N(t), t ≥ 0}. Let U i = i j=1 V j , i ≥ 1, be the claim arrival times. Let us turn to the claim amounts {X i , i ≥ 1}. Firstly, the X i is allowed to be one of two different types of random variables Y i or Z i depending on the behavior of past interarrival times V j , j ≤ i. Three different models that describe this dependence will be examined.

Secondly, all the severities Y i have the same distribution function (d.f.) F, and each vector Y (j) = (Y 1 , ..., Y j ), j ≥ 1, is of multivariate regular variation of index -α with α > 0, i.e. there exists a θ ∈ S j-1 , where S j-1 is the unit sphere with respect to a norm

| • |, such that P |Y (j) | > tx, Y (j) /|Y (j) | ∈ • P (|Y (j) | > x) v - → t -α P S j-1 (θ ∈ •),
where v -→ denotes vague convergence on S j-1 (see e.g. [START_REF] Resnick | The extremal dependence measure and asymptotic independence[END_REF] and [START_REF] Basrak | A characterization of multivariate regular variation[END_REF]). Analogously, the amounts Z i too have a common distribution function G, and each vector Z (j) = (Z 1 , ..., Z j ), j ≥ 1, is again of multivariate regularly varying but of index -β with β > 0. The sequences {Y i , i ≥ 1}, {Z i , i ≥ 1} and {V i , i ≥ 1} are independent of each other.

A key tool in the analysis will be the following well-known result (see e.g. [START_REF] Barbe | On the tail behavior of sums of dependent risks[END_REF]). If (Y 1 , ..., Y j ) is regularly varying of index -α with common marginal d.f. F, then the right tail of the partial sum S j = Y 1 + . . . + Y j can be approximated as

P(Y 1 + ... + Y j > x) ∼ q j,α F(x) for large x, (1.4)
where ∼ means that the ratio tends to 1 as x → ∞. The parameter q j,α in (1.4) depends on j, α and on the dependence structure inside the vector (Y 1 , ..., Y j ).

Table 1 provides examples of q j,α for some classical multivariate copulas (see [START_REF] Nelsen | An Introduction to Copulas[END_REF] for a nice introduction to copulas). The independent copula corresponds to the special case where the Y i , 1 ≤ i ≤ j, are independent. The Fréchet upper bound represents the case where the Y i 's are comonotonic. The non-degenerate Gaussian copula is the case where the dependence between the Y i 's is drawn from a multivariate Gaussian distribution with a correlation matrix with coefficients strictly than ±1 outside of the diagonal. A copula introduced in [START_REF] Biard | Impact of correlation crises in risk theory : Asymptotics of finite-time ruin probabilities for heavy-tailed claim amounts when some independence and stationarity assumptions are relaxed[END_REF], denoted BBL in the sequel, is built as follows :

Y i = I i W 0 + (1 -I i )W i , 1 ≤ i ≤ j, (1.5)
where W i , 0 ≤ i ≤ j, are i.i.d. random variables, and I i , 1 ≤ i ≤ j, are i.i.d. Bernoulli random variables with parameter p, these two sequences being mutually independent.

Special copulas q j,α Independent j Fréchet upper bound

j α Non-degenerate Gaussian j BLL j i=0 j i p i (1 -p) j-i j -i + i α T. 1 -Values of q j,α in (1.4) for different copulas.
Let us mention that the study of the sum of dependent random variables has received much attention in actuarial sciences. See e.g. W üthrich (2003), [START_REF] Alink | Diversification of aggregate dependent risks[END_REF], [START_REF] Alink | Analysis of the expected shortfall of aggregate dependent risks[END_REF], [START_REF] Barbe | On the tail behavior of sums of dependent risks[END_REF], Albrecher et al. (2006), [START_REF] Biard | Impact of correlation crises in risk theory : Asymptotics of finite-time ruin probabilities for heavy-tailed claim amounts when some independence and stationarity assumptions are relaxed[END_REF] and [START_REF] Kortschak | Asymptotic results for the sum of dependent non-identically distributed random variables[END_REF], among many others.

The paper is organized as follows. In Section 2, we obtain the asymptotic finite-time ruin probabilities for regularly varying claim sizes in the risk model introduced by [START_REF] Boudreault | On a risk model with dependence between interclaim arrivals and claim sizes[END_REF]. In Section 3, we derive such ruin probabilities in two other risk models, for earthquake or flooding-type risks, that take consecutive gauge-loading effects into account. The methods of proof will rely on the approximation (1.4) and the analysis of spacings in a conditioned Poisson process. Finally, some numerical illustrations are presented in Section 4.

Direct effects of each interclaim arrival

Our starting point is the model of [START_REF] Boudreault | On a risk model with dependence between interclaim arrivals and claim sizes[END_REF] where claim amounts are of two different types depending on the length of the previous interclaim arrival. Hereafter, we are going to assume that the claim amounts may be dependent and they have heavy tailed distributions.

Specifically, if an interarrival period V i is larger than a fixed threshold τ, then the next claim amount X i is given by a random variable Y i , and if not, X i corresponds to another random variable Z i . As stipulated before, each vector Y (j) = (Y 1 , ..., Y j ) is of multivariate regular variation of index -α and common d.f. F, while each vector Z (j) = (Z 1 , ..., Z j ) is of multivariate regularly varying of index -β and common d.f. G.

For instance, for earthquake-type risks, one would expect that α < β : the longer a period without any earthquake, more serious will be the next earthquake. For flooding risks, the inverse situation where α > β seems to be quite plausible.

Consider the random variable M(t, τ) that gives the number of spacings of the Poisson process {N(s), 0 ≤ s ≤ t} which are larger than τ. Conditioning by the number of events N(t), define the following.

Let M(n, t, τ) be the random variable that counts the number, during (0, t), of Poisson spacings which are larger than τ, given that N(t) = n (≥ 1) and 0 < τ < t.

Proposition 2.1 If α < β, for t > 0 and large u,

ψ(u, t) ∼        ∞ n=1 P[N(t) = n] min(n, t/τ ) j=1 P[M(n, t, τ) = j] q j,α        F(u + ct),
(2.1)

while if α > β, for t > 0 and large u,

ψ(u, t) ∼          ∞ n=1 P[N(t) = n] n j=max(1,n-t/τ ) P[M(n, t, τ) = n -j] q j,β          G(u + ct), (2.2) 
with, for 0 ≤ j ≤ n,

P[M(n, t, τ) = j] = n i=j (-1) i-j n j n -j i -j P(V * 1 > τ t , . . . , V * i > τ t ), (2.3) 
where

P(V * 1 > v, . . . , V * i > v) =          1, v ≤ 0, (1 -iv) n , 0 < v < 1/i, 0, 1/i ≤ v < 1.
(2.4)

Proof. Consider S(t), the aggregate claim amount (1.2). Following [START_REF] Biard | Impact of correlation crises in risk theory : Asymptotics of finite-time ruin probabilities for heavy-tailed claim amounts when some independence and stationarity assumptions are relaxed[END_REF], we know that if x → P[S(t) > x] is regularly varying, then for large u,

ψ(u, t) ∼ P[S(t) > u + ct].
(2.5)

To begin with, we find that

P[S(t) > x] = ∞ n=1 P[N(t) = n]P (X 1 + ... + X n > x) = ∞ n=1 P[N(t) = n] n j=1 P[M(t, τ) = j|N(t) = n] P[X 1 + ... + X n > x|N(t) = n, M(t, τ) = j],
and by the model assumptions,

P[S(t) > x] = ∞ n=1 P[N(t) = n] n j=1 P[M(n, t, τ) = j] P(Y 1 + ... + Y j + Z 1 + ... + Z n-j > x).
(2.6)

Note that P[M(n, t, τ) = j] = 0 for j > t/τ, so that the summation over j in (2.7) goes from 1 to min (n, t/τ ). Now, suppose that α < β, so that

G(x) = o(F(x)) for large x. Putting S k = Y 1 + ... + Y k and T k = Z 1 + ... + Z k , k ≥ 
1, and using Proposition 1.1 in [START_REF] Cai | On max-sum equivalence and convolution closure of heavytailed distributions and their applications[END_REF] and (1.4), we obtain

P(S j + T n-j > x) ∼ P(S j > x) + P(T n-j > x) ∼ P(S j > x) ∼ q j,α F(x), 1 ≤ j ≤ n.
(2.7)

Inserting (2.7) in (2.6) then yields

P[S(t) > x] ∼        ∞ n=1 P[N(t) = n] min(n, t/τ ) j=1 P[M(n, t, τ) = j] q j,α        F(x),
that is, the function P[S(t) > x] is regularly varying with parameter α. Therefore, (2.5) is applicable and gives the announced result (2.1). The approximation (2.2) is derived in a similar way. Now, it remains to evaluate the distribution of the variable M(n, t, τ). As {N(t), t ≥ 0} is a Poisson process, it is well-known that given N(t) = n, the claim instants U 1 , . . . , U n are distributed as the order statistics of n uniform random variables on [0, t], and the interclaim arrivals V 1 , . . . , V n (i.e. the associated spacings) are exchangeable random variables such that the p.d.f. of the vector (V * 1 , . . . , V * i ), where [START_REF] David | Order statistics[END_REF], Sec. 6.4. Consequently, whenever v 1 , . . . , v j ≥ 0 with v 1 + . . .

V * i = V i /t, 1 ≤ i ≤ n, is given by f (v 1 , . . . , v i ) = n! (n -i)! (1 -v 1 -. . . -v i ) n-i , for v 1 , . . . , v i ≥ 0, v 1 + . . . + v i ≤ 1; see e.g.
+ v i ≤ 1, P(V * 1 > v 1 , . . . , V * i > v i ) = (1 -v 1 -. . . -v i ) n .
(2.8)

In particular, choosing v i = τ/t = v for all i in (2.8), we find that P(V 1 > τ, . . . , V i > τ) is provided by the formula (2.4) above. Let us consider the event that exactly j interclaim arrivals are larger than τ, given that N(t) = n, with 1 ≤ j ≤ n. Following e.g. David and Nagaraja (2003) (p. 129-130), we then get

P[M(n, t, τ) = j] = 1 j! n-j l=0 (-1) l l! ( j + l)! i 1 <•••<i j+l P(V i 1 > τ, . . . , V i j+l > τ|N(t) = n) = 1 j! n-j l=0 (-1) l l! ( j + l)! n j + l P(V 1 > τ, . . . , V j+l > τ|N(t) = n) = n i=j (-1) i-j n! j!(i -j)!(n -i)! P(V * 1 > v, . . . , V * i > v), (2.9) 
with v = τ/t.

Consecutive gauge-loading effects

In this section, we want to incorporate in the risk model the observation that several consecutive claims with large, or small, interoccurrence times are more susceptible to be followed by severe damages. By comparison with the previous model, it will be necessary this time to take (part of) the history of the claim arrival process into account. So, a gauge will be used to register the large, or small, interclaim arrivals ; initially, the gauge is empty.

Earthquake-type phenomenon

Roughly speaking, for a risk of earthquake-type, the severity of a catastrophe is expected to be more important if the latest catastrophes occur a long time ago. In this sense, let us assume that if k consecutive interclaim arrivals are larger than τ, then a more dangerous catastrophe may arise. Moreover, just after, the gauge is put at level 0. Damages caused by standard earthquakes give multivariate regular varying vectors Z (j) of index -β, while the more severe form regular varying vectors Y (j) with index -α and common d.f. F.

Let M + (n, k, t, τ) be the random variable that counts the number of sequences, during (0, t), of k consecutive Poisson spacings which are larger than τ, given that N(t) = n (≥ 1). Proposition 3.1 If α < β, for t > 0 and large u :

ψ(u, t) ∼        ∞ n=1 P[N(t) = n] min( n/k , t/kτ ) j=1 P M + (n, k, t, τ) = j q j,α        F(u + ct), (3.1)
with, for 0 ≤ j ≤ min ( n/k , t/kτ ),

P M + (n, k, t, τ) = j = k-1 i=0 x 1 ,...,x k x 1 + • • • + x k + j x 1 , . . . , x k , j P[M(n, t, τ) = n -x 1 -• • • -x k ]/ n x 1 + • • • + x k , (3.2)
where the inner summation is over all nonnegative integers x 1 , . . . ,

x k such that x 1 + 2x 2 + • • • + kx k = n -i -k j and x 2 + 2x 3 + . . . + (k -1)x k ≤ t/τ -i -k j.
Proof. It suffices to substitute M + (n, k, t, τ) for M(n, t, τ) in the proof of Proposition 2.1. By adapting and combining (2.6) and (2.7), we then find that

P[S(t) > x] = ∞ n=1 P[N(t) = n] n j=1 P[M + (n, t, τ) = j] q j,α F(x),
which leads again to the desired approximation (3.1).

One has now to determine the p.m.f. of the random variable M + (n, k, t, τ). This is closely related to the evaluation of the so-called binomial distributions of order k (see e.g. the book by [START_REF] Balakrishnan | Runs and scans with applications[END_REF]). Remember that the p.m.f. of M(n, t, τ) is given in Proposition 2.2. Denote by S the event [a Poisson spacing until time t is larger than τ, given that N(t) = n], and let F be the complementary event. Following [START_REF] Philippou | Successes, runs and longest runs[END_REF], we observe that a typical element of the event [M + (n, k, t, τ) = j] consists in an arrangement of the form a 1 a 2 . . . a x 1 +...+x k +j SS . . . S i , with 0 ≤ i ≤ k -1, where x 1 of the a's are F, x 2 of the a's are SF, . . ., x k of the a's are SS . . . S k-1 F and j of the a's are SS . . . S k . Note that these x k are subject to the constraint

x 1 + 2x 2 + . . . + kx k + k j + i = n.
Moreover, by construction of the model, the number of S has to be smaller than t/τ , so that x 2 + 2x 3 + (k -1)x k + k j + i ≤ t/τ . Now, such arrangements are in number

x 1 + ... + x k + j x 1 , . . . , x k , j ,
and each of them has probability

P[M(n, t, τ) = n -x 1 -• • • -x k ]/ n x 1 + • • • + x k ,
hence the formula (3.2).

Flooding-type phenomenon

For a risk of flooding-type, a close succession of claims is expected to be followed by a more important catastrophe. So, we here assume that if k consecutive interclaim arrivals are smaller than τ, then the next claim may be more severe. Moreover, the gauge becomes empty once an interoccurrence time is larger than τ (it corresponds to a reconstruction time). In case of standard floods, damages form multivariate regular varying vectors Y (j) of index -α, while the more severe give regular varying vectors Z (j) with index -β and common d.f. G.

Let M -(n, k, t, τ) be the random variable that counts the number of sequences, during (0, t), of at least k consecutive Poisson spacings which are smaller than τ, given that N(t) = n (≥ 1). Proposition 3.2 If α > β, for t > 0 and large u :

ψ(u, t) ∼        ∞ n=1 P[N(t) = n] min( (n+1)/(k+1) , t/(τ-1) ) j=1 P M -(n, k, t, τ) = j q j,β        G(u + ct), (3.3) with, for 0 ≤ j ≤ min ( (n + 1)/(k + 1) , t/(τ -1) ), P[M -(n, k, t, τ) = j] = n i=0 x 1 ,...,x n x 1 + • • • + x n x 1 , . . . , x n P[M(n, t, τ) = x 1 + • • • + x n ]/ n x 1 + • • • + x n , (3.4) 
where the inner summation is over all nonnegative integers x 1 , . . . , x n such that x 1 + 2x 2 + • • • + nx n = n -i, x k+1 + . . . + x n + 1 {i≥k} = j and x 1 + . . . + x n ≤ t/τ .

Proof. Substituting this time M -(n, k, t, τ) for M(n, t, τ) in the proof of Proposition 2.1 allows us to derive similarly the desired approximation (3.3).

To determine the p.m.f. of the random variable M -(n, k, t, τ), one still may argue as for M + (n, k, t, τ). Let S be here the event [a Poisson spacing until time t is smaller than τ, given that N(t) = n], and let F be the complementary event. An element of the event

[M -(n, k, t, τ) = j] is an arrangement of the form a 1 a 2 . . . a x 1 +...+x n SS . . . S i , with 0 ≤ i ≤ n,
where x 1 of the a's are F, x 2 of the a's are SF, . . ., x n of the a's are SS . . . S n-1 F, with the constraints x 1 + 2x 2 + . . . + nx n + i = n and x k+1 + . . . + x n + 1 {i≥k} = j. In addition, as the number of spacings larger than τ is smaller than t/τ , one has x 1 + . . . + x n ≤ t/τ . Now, the number of such arrangements is x 1 + ... + x n x 1 , . . . , x n , each of them having probability

P[M(n, t, τ) = x 1 + ... + x n ]/ n x 1 + • • • + x n ,
so that the formula (3.4) then follows.

Numerical analysis

A central step of the numerical analysis is the computation of the p.m.f. of the random variables M(n, t, τ), M + (n, k, t, τ) and M - (n, k, t, τ). For that, one can use the exact formulas obtained before. Another possible way is to proceed by recursion. A recursive method is provided in the Appendix for the variables M + and M -(it is not simpler for M). Both methods have their own advantages and drawbacks.

-The exact formulas are easier to implement but the computation is longer.

-The recursive method works faster but implementation is fastidious.

Hereafter, we have chosen to work with the exact formulas because we aim to see the impact of various dependence parameters on the asymptotic ruin probabilities. Someone who wants to investigate larger time horizons for example, might prefer to follow the recursive method.

Impact of a dependence between claim amounts

In this first part, we consider asymptotic ruin probabilities ψ(u, t) for different values of q k,α (see Table 1). In order to have a spectrum of dependence, the parameter p (called "dependence parameter") in the BLL copula model is allowed to vary from 0 to 1 with step 0.01. When the dependence parameter equals 0 we have the independence case, and when it equals 1 we obtain the Fréchet upper bound case. The other parameters are : u c λ Distribution of the riskier claim amount 1, 000, 000 10 0.1 Pareto law with parameter α

For the model of Section 2, we examine the case where α < β. For t = 10 and for both α = 0.5 and α = 3, two cases are investigated, one with τ = 1 and the other with τ = 2. Each case is plotted first separately and then in a same graph. When α = 0.5 (Figure 1) the asymptotic ruin probability is a decreasing function of the dependence parameter p. It is the opposite when α = 3 (Figure 2).

For the model of Subsection 3.1, with k = 3, the same phenomenon is observed (see Figure 3 for α = 0.5 and Figure 4 for α = 3). F. 1 -Asymptotic ruin probability for the model of Section 2 as a function of the dependence parameter p in the BLL copula when α = 0.5 and t = 10.

Impact of a dependence between interclaim arrivals and claim amounts

In this second part, we examine the effect of two parameters on the asymptotic ruin probabilities : τ for the model of Section 2 and τ and k for the model of Subsection 3.2. Let us choose α = 3, for instance. For each case, we consider two dependence parameters p = 0.4 and p = 0.8 ; these are plotted separately and the relative difference is then plotted in a third graph.

For the model of Section 2 with t = 10, we obtain that as expected, the asymptotic ruin probability is a decreasing function of τ (see Figure 5).

For the model of Subsection 3.1 with t = 20, the asymptotic ruin probability is a decreasing function of both τ and k (see Figures 6 and7). 

Appendix

We present in this section a recursive method to compute the p.m.f. of M + (n, k, t, τ) and M -(n, k, t, τ). The method of proof is directly inspired from [START_REF] Makri | On binomial and circular binomial distributions of order k for l-overlapping success runs of length k[END_REF] (Theorem 4.1).

Proposition 5.1 (a) For n ≥ k + 1 and 1 ≤ j ≤ min( n/k , t/(kτ) ), (e) Obvious fact.

P M + (n, k, t, τ) = j = p n,n (t)δ j, n/k + 1 t p 0,n (t) B(1, n) τ 0 P M + (n -1, k, t -s, τ) = j 1 - s t n ds + 1 t k-1 l=1 p l,n (t) B(l + 1, n -l) t lτ s t l 1 - s t n-l-1 P M + (n -1 -l, k, t -s, τ) = j ds + 1 t n-1 l=k p l,n (t) B(l + 1, n -l) t lτ s t l 1 - s t n-l-1 P M + (n -1 -l, k, t -s, τ) = j -l/k ds, (b) for n ≥ k + 1, P [M + (n, k, t, τ) = 0] = 1 t
Proposition 5.2 (a) For n ≥ k + 1 and 1 ≤ j ≤ min( (n + 1)/(k + 1) , t/(τ -1) ), P M -(n, k, t, τ) = j = δ j,1 q n,n (t)

+ 1 t k-1 l=0
q l,n (t) B(l + 1, nl) 

F. 5 -

 5 Asymptotic ruin probability for the model of Section 2 as a function of τ when α = 3 and t = 10. F. 6 -Asymptotic ruin probability for the model of Subsection 3.1 as a function of τ when α = 3 and t = 20. F. 7 -Asymptotic ruin probability for the model of Subsection 3.1 as a function of k when α = 3 and t = 20.

P

  [M + (n -1, k, ts, τ) = 0] 1 -+ (n -1l, k, ts, τ) = 0] ds, (c) for n ≥ k + 1 and j > min( n/k , t/(kτ) ), P M + (n, k, t, τ) = j = 0, (d) for n = k, P [M + (n, k, t, τ) = 0] = 1p k,k(t),P [M + (n, k, t, τ) = 1] = p k,k (t), (e) for 0 ≤ n ≤ k -1, P [M + (n, k, t, τ) = 0] = 1, n (t) = 1p n,n (t),and for1 ≤ l ≤ n -1, p l,n (t) = + 1)τ ≤ t, 1 -lτ t nif lτ ≤ t < (l + 1)τ.

From 0 P

 0 [START_REF] David | Order statistics[END_REF] p. 134-135, we have, for l = 1, . . . , ., .) is the Beta function. So, we deduce part (a) of the proposition.(b) When j = 0 and n ≥ k, we observe that[M + (n, k, t, τ) = 0] = + (n, k, t, τ) = 0] ∩ A l } , so that P [M + (n, k, t, τ) = 0] = + (n, k, t, τ) = 0|A l ] .For l = 0,P [M + (n, k, t, τ) = 0|A 0 ] = τ [M + (n -1, k, ts, τ) = 0] f U 1 (s)ds. For 1 ≤ l ≤ k -1, P [M + (n, k, t, τ) = 0|A l ] = t lτ P [M + (n -1l, k, ts, τ) = 0] f U l+1 (s)ds. For l ≥ k, P [M + (n, k, t, τ) = 0|A l ] = 0.Thus, we get part (b) of the proposition.(c) Obvious fact.(d) For n = k,P [M + (n, k, t, τ) = 1] = P (V 1 > τ, V 2 > τ, . . . , V k > τ) = 1 -kτ t k ,andP [M + (n, k, t, τ) = 0] = 1 -P [M + (n, k, t, τ) = 1] .

  n (t) B(l + 1, nl) -(n -1l, k, ts, τ) = j -1 ds,
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Proof.

(a) Let n ≥ k + 1 and 1 ≤ j ≤ min( n/k , t/(kτ) ). Define, for l = 0, . . . , n -1, the event A l = [l interarrival times larger than τ precede the first interarrival time smaller than τ in the sequence of n interarrival times] and the event B = [there is no interarrival time smaller than τ in the sequence of n interarrival times]. Then, we can write that

so that we have

For l = 0,

From (2.4), we get, for 1 ≤ l ≤ n -1,

(c) for n ≥ k + 1 and j > min( (n + 1)/(k + 1) , t/(τ -1) ),

where hereabove,

and for 1 ≤ l ≤ n -1,

Proof. We will follow an analogous argument.

(a) Let n ≥ k -1 and 1 ≤ j ≤ min( (n + 1)/(k + 1) , t/(τ -1) ). Define this time, for l = 0, . . . , n -1, A l = [l interarrival times smaller than τ precede the first interarrival time larger than τ in the sequence of n interarrival times] and B = [there is no interarrival time larger than τ in the sequence of n interarrival times]. Then,

From [START_REF] David | Order statistics[END_REF] p. 126, 134-135, we have, for 1 ≤ l ≤ n -1,

Using again the expression of f U l (u), l = 1, . . . , n, we then obtain part (e) Obvious fact.