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We consider a Hamiltonian model for a quantum dot which is placed between two superconduct-
ing leads with a constant bias imposed between these leads. Using the non-equilibrium Keldysh
technique, we focus on the subgap current, where it is known that multiple Andreev reflections
(MAR) are responsible for charge transfer through the dot. Attention is put on the DC current and
on the first harmonics of the supercurrent. Varying the energy and width of the resonant level on
the dot, we first investigate a cross-over from a quantum dot regime to a quantum point contact
regime when there is zero coupling to the normal probe. We then study the effect on the supercur-
rent of the normal probe which is attached to the dot. This normal probe is understood to lead to
dephasing, or alternatively to induce reverse proximity effect. We describe the full crossover from
zero dephasing to the incoherent case. We also compute the Josephson current in the presence of
the normal lead, and find it in excellent agreement with the values of the non-equlibrium current
extrapolated at zero voltage.

I. INTRODUCTION

Non equilibrium transport between superconductors with a DC voltage bias gives rise to a subgap structure in the
current voltage characteristics which can be described in terms of Multiple Andreev Reflections (MAR)1,2. Indeed,
it has been understood since the sixties3 that when the bias potential between two superconductors is smaller than
the superconducting energy gap, electrons have to be transferred in bunches in order to satisfy energy requirements.
The calculation of the current in the presence of such MAR processes can proceed along several directions. Early
work1 considered a formulation of transport in terms of transmission probabilities rather than amplitudes. During
the last decade or so, MAR processes have been studied theoretically in the coherent regime for point contacts, using
either scattering theory4,5 or microscopic tight binding Hamiltonians6. The coherent current which flows between
the two superconductors is then time dependent: it contains all harmonics of the Josephson frequency. Of particular
interest in Ref. 5,6 was the fact that in addition to the DC current, the cosine and sine harmonics of the current were
computed. These harmonics also exhibit structures at the MAR onsets, and they allow for some additional diagnosis
at low voltages: the amplitude of the sine first harmonic (SFH) at zero voltage corresponds to the critical current in
the Josephson (zero bias) limit, while the cosine first harmonic (CFH) vanishes.

On the experimental side, in the context of mesoscopic physics, pioneering experiments where performed on atomic
point contacts for the current7 as well as for the noise8. At the same time, samples containing a diffusive normal
metal sandwiched between superconducting leads were studied9

Given the recent interest in nanophysics for studying systems with reduced size (such as quantum dots and
molecules), MAR through a quantum dot described as a resonant level without interactions has been addressed10,11.
It was found that the position of the resonance bears strong consequences on the DC current voltage characteristics.
So far however, little is known on the harmonics of the supercurrent. Experiments on non equilibrium supercurrent
through quantum dots have recently been performed, pointing out the effect of size quantization and in some cases
of resonances, attributed to Coulomb interactions12,13.

So far MAR transport calculations have been focused either on the incoherent or coherent cases. The crossover
regime was discussed for a chaotic dot junction where an external magnetic field serves as a dephasing factor14. In
mesoscopic physics, the current (and noise) which flows between a source and a drain can be modified if one inserts
a voltage probe between the two15,16. The probe voltage can be adjusted so that no net electrons flow through it,
electrons which enter this probe loose their phase coherence because they enter in contact with an electron reservoir.
In mesoscopic transport, such probes can be used as a way to mimic the effect of inelastic scattering/decoherence on
transport between the source and the drain. One can thus model the crossover between the two regimes by adjusting
the degree of decoherence by varying the coupling to such voltage probes. At the same time, experimentally one could
also construct actual nanostructures which contain a controlled connection to such voltage-like probes.

In this paper, we address key issues associated with MAR for a device consisting of two superconductor connected
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FIG. 1: Schematic picture of the setup. A single-level quantum dot is placed between two superconductors, which are biased
with voltages ±V/2. An additional normal metal lead plays the role of a voltage probe15. Its coupling to the dot is controllable
and its voltage is taken to satisfy a zero-current condition for the probe.

to a quantum dot/resonant level, in the absence and in the presence of a normal metal lead connected to the dot. To
achieve this, we will choose a Hamiltonian formulation and we will use a Keldysh Green’s function approach where
the leads are effectively integrated out. First, we will study the supercurrent harmonics of an isolated quantum dot.
We will first show under which conditions the regimes of a point contact and of a resonant level are recovered, and
then discuss the properties of the supercurrent harmonics for the case of the resonant level; we will show that these
properties differ strongly from those of a quantum point contact. Next, we will introduce a normal probe which is
directly connected to the dot, and we will monitor the full crossover from the coherent regime to the fully incoherent
regime. We will also compute the (equilibrium) Josephson current independently, and we will check whether its first
harmonic corresponds to the extrapolated amplitude of the SFH at zero bias. Note that the setup is similar to that
of Ref. 17, however, the attention there was put at the non-equilibrium Josephson effect under current injection from
the normal probe.

Note that the inclusion of a normal probe can be interpreted as a source of dephasing15,16, extended to the case
of a supercurrent. Yet it can also have an alternative interpretation. In the presence of superconducting leads,
superconducting correlations are induced on the dot because of the (usual) proximity effect. This, for instance is
illustrated in several recent works both in equilibrium18 and in voltage biased19 superconducting devices where an
effective action for the dot is derived. Now, the addition of a normal lead will induce a reverse proximity effect on
the dot which will compete with the existing one: superconducting correlations on the dot will be suppressed. It is
the ratio between the escape rates to the superconducting leads and to the normal leads which will determine the
coherent/incoherent character of transport.

The paper is organized as follows. In Sec. II, the general model is introduced. Sec. III reviews the non-equilibrium
formalism to study transport. Details on how the current harmonics are computed are presented in Sec. IV. The
DC current and harmonics are discussed in Sec. V for several limiting cases and in the presence of the normal lead,
and the comparison with the Josephson current calculation is performed in Sec. VI. We conclude in Sec. VII, while
details about the numerical implementation are given in Appendix A.

II. MODEL HAMILTONIAN

The system we study consists of a quantum dot attached to two superconducting leads. For simplicity, the coupling
between the two leads is assumed to be symmetric. In addition, a third lead in the normal metal regime is attached
to the dot (Fig. 1). This model is a generalization of the two terminal structure presented in Refs. 19. The tunnel
coupling from the dot to the normal lead will be a control parameter for adjusting dephasing effects. The dot contains
for simplicity a relevant single electronic level, but the analysis can be straightforwardly extended to treat a multilevel
dot. We label the applied bias voltage on the left (right) lead VL (VR), where Vj (j = L,R) is measured with respect
to the dot level (see the tunnel Hamiltonian below). The chemical potential of the normal lead is set at VN = 0.

We focus on the most interesting low temperature (T ) limit with moderate (but not low) transmission to the
superconducting electrodes, which allows in principle to neglect Coulomb charging effects. The resulting Hamiltonian
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of the system with the time-dependent tunnelling terms reads:

H = HD +
∑

j=L,R,N

Hj +HT (t) , (1)

where

HD = ǫ0
∑

σ=↑,↓

d†σdσ . (2)

The BCS Hamiltionian of the superconductors and normal metal is expressed in terms of Nambu spinors:

Hj =
∑

k

Ψ†
jk (ξk σz + ∆j σx) Ψjk , Ψjk =

(

ψjk,↑

ψ†

j(−k),↓

)

, ξk = k2/(2m) − µ , (3)

with σz , σx Pauli matrices in Nambu space. The gap is assumed to be the same for the two superconducting leads
(j = L,R) ∆j ≡ ∆, while for the normal lead (j = N) ∆N ≡ 0. With the Nambu notation, the tunnelling term
becomes:

HT (t) =
∑

jk

Ψ†
jk Tj(t) d+ h.c. , d =

(

d↑
d†↓

)

, (4)

with a tunneling amplitude Tj(t) = tjσz e
iσzχj(t)/2, where the presence of the bias voltage induces a time dependence

of the extracted phases of the superconducting order parameters: χj(t) = σj tVj/2, σj = ±1 for j = L/R. We often
set h̄ = e = 1 and restore them when convenient in final expressions. With these notations, the current operator
between lead j and the dot reads:

Ij(t) = i
∑

k

Ψ†
jkσzTj(t)d(t) + h.c. (5)

III. KELDYSH FORMALISM

We use the Keldysh Green’s function formalism in order to compute the current. The details of such calculations
have appeared elsewhere19, so here we only summarize the techniques. The Coulomb interaction is neglected here.
First, a Keldysh partition function is introduced [H0 = HD +

∑

j=L,R,N Hj ]:

Z = Tr
{

e−βH0S(∞, η)
}

, (6)

where

S(∞, η) = Tc exp

{

−i
∫ +∞

−∞

dtHT (t, η)

}

, (7)

and

HT (t, η) =
∑

jk

Ψ̂†
jkTj(t)τ̂ze

iτ̂zσzηj(t)/2d̂(t) + h.c., (8)

τz is a Pauli Matrix in Keldysh space, and we have introduced a counting field ηj for each lead-dot coupling, which
allows to compute the current by deriving the partition with respect to it:

〈Ij(t)〉 = iZ−1
0

δZ[η(t)]

δηj(t)

∣

∣

∣

∣

η=0

. (9)

The action possesses a quadratic dependence on the lead fermion spinors, so the latter can be integrated out19. One
is left with an action which depends on the dot spinors only, for which the effect of the leads appears via self energies
in Keldysh Nambu space:

Σ̂j(t1, t2) = Γj

∫ ∞

−∞

dω

2π
e−iω(t1−t2)e−iσzVjt1 [ω · 1− ∆j · σx] eiσzVj t2

×



−Θ(∆j − |ω|)
√

∆2
j − ω2

τ̂z + i sign(ω)
Θ(|ω| − ∆j)
√

ω2 − ∆2
j

(

2fω − 1 − 2fω

+2f−ω 2fω − 1

)



 , (10)
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where we define the escape rates from the dot as

Γj = πνj(0) |tj |2 , (11)

with νj(0) the (constant) density of states of lead j in the normal state. Fermi filling factors are given by fω =
1/(eβω + 1). With this definition, the formula for the partial average current reduces to19:

〈Ij(t)〉 =
1

2
Tr

{

τ̂zσz

∫ +∞

−∞

dt′
(

Ĝ(t, t′)Σ̂j(t
′, t) − Σ̂j(t, t

′)Ĝ(t′, t)
)

}

= −2Re tr

{

σz

(

Σ̂j ◦ Ĝ
)+−

(t, t)

}

, (12)

where the trace “tr” operates only in Nambu space and the symbol ◦ denotes convolution in time. Here the Green’s
function of the dot (which is dressed by the leads) is defined as:

Gss′

αβ(t, t′) = −i
〈

Tc

{

S(∞)ds
α(t)d†s

′

β (t′)
}〉

0
. (13)

This constitutes an extension of the Meir-Wingreen20 formula for a dot connected to one or several superconducting
or normal metal leads. Provided that the Green’s function is computed exactly it applies also for situations where
there are interactions (electron-electron or electron-phonon) on the dot.

IV. CALCULATION OF THE MAR CURRENT

We are interested in the calculation of the electrical current through a quantum dot with a single level ǫ0, which
is placed near two superconducting leads with applied voltages VL = V/2 and VR = −V/2. The reference position
for the zero of energy is chosen halfway between the two chemical potentials of the superconductors. In principle, the
position of the dot level should depend on the geometry (escape rates) and on the applied bias, and it could be derived
in a self-consistent way. Here, we ignore such dependence and assume that the dot level position can be changed using
a metallic gate located close to the dot. Nevertheless, an important part of our study will deal with ǫ0 ≡ 0. In order
to avoid the proliferation of parameters, we choose to specify a symmetric device, where the transparencies of the left
and right superconducting leads are the same, while no assumption is made about the normal lead. With this choice,
at ǫ0 = 0 the requirement that no net current flows in the normal leads imposes that VN = 0 invoking electron/hole
symmetry. In what follows, all energy/frequency scales are expressed in units of the superconducting gap ∆.

When a bias is applied to superconductor, the current is not stationary as it contains all harmonics at the Josephson
frequency ωJ = 2eV/h̄. It is then convenient to introduce a double Fourier transform with summations over discrete
domains in frequency:

G(t, t′) =

+∞
∑

n,m=−∞

∫

F

dω

2π
e−iωnt+iωmt′Gnm(ω) , (14)

Σ(t, t′) =
+∞
∑

n,m=−∞

∫

F

dω

2π
e−iωnt+iωmt′Σnm(ω) , (15)

where ωn = ω + nV , and the frequency integration is performed over a finite domain F ≡ [−V/2, V/2], where V is
the voltage on the leads. With these definitions, the Fourier transform of the current becomes:

Ij(ω
′) =

∑

n,l

2πδ
(

ω′ − (n− l)V
)1

2

∫

F

dω

2π
Tr

{

σzτ̂z
∑

m

[

Ĝnm(ω)Σ̂j,ml(ω) − Σ̂j,nm(ω)Ĝml(ω)
]

}

, (16)

where the matrices Ĝnm(ω) and Σ̂j,nm(ω) have a 4× 4 block structure for every pair of energy domain indexes n and
m.

In the double Fourier representation, the lead self-energy is given by19:

Σ̂j,nm(ωn) = Γj

[

δn,mX̂j(ωn − Vj) δn−2Vj/V,mŶj(ωn − Vj)

δn+2Vj/V,mŶj(ωn + Vj) δn,mX̂j(ωn + Vj)

]

, (17)
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where

X̂j(ω) =



−Θ(∆j − |ω|)ω
√

∆2
j − ω2

τ̂z + i
Θ(|ω| − ∆j)|ω|

√

ω2 − ∆2
j

(

2fω − 1 − 2fω

+2f−ω 2fω − 1

)



 , (18)

and Ŷj(ω) = −∆jX̂j(ω)/ω.
The dressed Green’s function for the dot appears from the Dyson equation of the form:

Ĝnm(ω) =
[

Ĝ−1
0,nm(ω) − Σ̂T,nm(ω)

]−1

, (19)

where Ĝ−1
0,nm(ω) = δnm(ωn − ǫ0σz)τ̂z and Σ̂T =

∑

j

Σ̂j .

The dressed Green’s function is obtained numerically: in practice, it requires the inversion of a “large” matrix
(Eq. (19)). This finite matrix is obtained by limiting the discrete Fourier transforms (Eqs. (14) and (15)) to a cut-off
energy Ec, which has to be large compared to all the relevant energies of the problem. This energy Ec defines a finite
number of frequency domains nmax. As the width of each domain is ∼ V , one has nmax ∼ 1/V , which reflects the
fact that at small voltages, one needs to sum on a very large number of Andreev reflections. In practice, we have
chosen in most case Ec = 16∆, and we have computed the current for V > 0.1 only. See appendix A for more details
on the numerical implementation.

V. RESULTS FOR THE MAR CURRENT

We present here the results for the MAR currents in different regimes. First, in sections VA and VB, we consider
the case without coupling to a normal lead, respectively in the quantum point contact limit and the the resonant level
regime. This will allow us to compare with existing results, and also to provide new results for the resonant level case.
Then, in section VC, we consider the effect of the coupling to the normal lead on the MAR current. The current is
plotted in units of e∆/h and calculations are performed choosing a temperature θ = 0.01∆ in order to study the bias
dominated regime.

A. Quantum point contact limit

If the escape rate ΓS (Eq. (11)) is sufficiently large compared to the superconducting gap, the resulting open
quantum dot sandwiched between the superconducting electrodes should behave like a point contact. The case of a
point contact was studied both in the context of scattering theory4,5 and from a Hamiltonian approach6 a decade ago.
There, results were obtained both for the DC current as well as for the first harmonics Icos and Isin of the current.

I(t) = Idc + Icos cos(2eV t/h̄) + Isin sin(2eV t/h̄) + . . . (20)

Fig. 2 displays these quantities for the case of a open quantum dot, for several escape rates and for several level
positions of the dot. The challenge lies with the fact that in order to reproduce the case of the QPC at high
transmission (large coupling ΓS), one has to include a large number of Andreev reflections between the dot and the
superconducting leads, especially at low voltages. In practice, this means using a large cut-off energy Ec and thus
a very large matrix size ∼ nmax for small voltage. The existing results for the DC current as well as for the first
harmonics5,6 provide a reference for our results in the QPC limit.

In the top panel of Fig. 2, we plot the DC current for several values of ΓS > ∆, and several values of the dot level
position, which allow to describe the crossover from the high transmission to the low transmission regime. In the
normal state, the transmission probability between the source and drain electrodes as a function of energy ǫ is given
by a Lorentzian line shape:

T (ǫ) =
[

1 + 4(ǫ− ǫ0)
2/Γ2

S

]−1

, (21)

and this transmission is unity (resonant behavior) whenever ǫ − ǫ0 = 0. This resonant behavior in principle affects
the transmission of electrons and holes through the quantum dot. In our calculations to describe the QPC limit, ǫ0 is
shifted away from zero beyond the superconducting gap, because otherwise, regardless of the line width broadening
provided by ΓS , there are reminiscences of resonant MAR behavior (for a description of these resonant processes, see
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FIG. 2: Quantum Point Contact limit. DC (top panel), cosine first harmonic (lower left panel), and sine first harmonic (lower
right panel) of the MAR current for different escape rates and dot level position. The circles on the y axis for the sine harmonic
show the value of the first harmonics of the equilibrium Josephson current (computed independently). The inset in the sine
harmonics panel shows results for ΓS = 10, 20, 30, 40 (bottom to top) for V between 1.0 and 3.0.

Sec. VB). For ǫ0 = 2 and ΓS = 5∆ or ΓS = 10∆, no significant features of MAR are found in the DC current, in
accordance with Refs. 5,6. The DC current is linear for voltages larger than the quasiparticle onset V > 2∆, and it
vanishes abruptly close to V ∼ 0.1∆, where some MAR structure is noticeable for ΓS = 5 (lower transparency). Note
that we have used increased cut-off energies (Ec = 30 and 50) for the cases ΓS = 5 and 10 respectively; this limits the
data for ΓS = 10 to V > 0.2 . In order to further reduce the transparency and thus observe some structure, one can
either decrease the escape rate or drive ǫ0 further away from 0 . Cusps in the current derivative appear as expected
at the so-called MAR onsets defined as eV = 2∆/n, n integer, (ΓS = 2, ǫ0 = 4). As the transparency is reduced
(ΓS = 2, ǫ0 = 6 and 8) only the quasiparticle onset (n = 1) and the n = 2 onset are identifiable. By reproducing
the calculations of Ref. 5, we have compared quantitatively our results with those for a true QPC, and found that,
by using the transparency T of the QPC as a fitting parameter, we can get a near perfect agreement between the
two results (not shown). For example, the values of T corresponding to ΓS = 2, ǫ = 4, 6 and 8 are respectively
T = 0.55, 0.35 and 0.23.

In the bottom panels of Fig. 2, the first harmonics are displayed. We first discuss their general behavior. Both
the cosine and sine harmonics display structures at the MAR onsets, in the same manner as the DC current. These
structures are more pronounced for lower transparencies (but note that for ΓS = 5∆, ǫ0 = 2 some structure is found
for onsets corresponding to n > 3). For voltages beyond the single particle current (n = 1) onset, the cosine and sine
harmonics eventually decay. The cosine harmonic vanishes at low voltage, which is clear for all parameters displayed,
except for the one which corresponds to the highest transmission (ΓS = 10) because of our numerical limitation for
V → 0 (i.e. the vanishing of the cosine harmonics for ΓS = 10 should be visible for V < 0.2). The sine harmonics
saturates at a non zero, positive value, for V → 0. This is a signature of the fact that the Josephson effect operates
at zero voltage, and our non equilibrium calculation at V → 0 should in principle match with a calculation of the
(equilibrium) Josephson current. The value of the first harmonics of the Josephson current, computed independently
(see section VI), is shown by a circle on the y axis for the low transmission curves. One can see that there is an
excellent agreement between this value and the extrapolation of the non-equilibrium data for V → 0 (quantitatively,
the agreement is better than 1 %). As in the case of the DC current, we have compared these results with those
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obtained for a QPC in Ref. 5. Using the values of the QPC transmission obtained with the DC current fits, we
find a good qualitative agreement between the two results for the cos component, except at large voltage where the
results we obtained decrease (in absolute value) much faster. For the sin component, the shapes of the curves are
similar, but there is an overall downwards shift of the our results with respect to the QPC results. We attribute this
to the fact that although the dot level has been positioned away from the superconducting gap region, the energy
dependent transmission of the dot still plays a role in the MAR processes, and a perfect match with the QPC limit is
not attainable. Note that we also find a downwards shift of the first harmonics of the Josephson current with respect
to the first harmonics of the Josephson current of a real QPC5, using the transmission values found with the DC fits.
Finally, the fact that the sine harmonic is negative for large V (V > ∆) at very large ΓS (ΓS = 10 or 5, ǫ0 = 2)
remains a puzzle for us, but it seems to be related to this global downards shift. We have carefuly checked that this
is not due to any numerical imprecision or convergence problem (see Appendix A). The inset on the sine harmonics
plot shows the results at large V for larger values of ΓS (ΓS = 10, 20, 30, 40 from bottom to top). It shows that even
with larger ΓS the sine harmonics remains negative at large V , however it tends to decrease in absolute value as ΓS

is increased.

B. Narrow resonance limit

We now shift the discussion to the case where the line width of the dot is smaller than the superconducting
gap, setting for convenience the dot level position at ǫ0 = 0. The DC current was studied previously for similar
parameters10,11. Here one of our aims is to also include a discussion of the harmonics of the current which is absent
in the literature.

In the top panel of Fig. 3 we show that we are able to reproduce these results for the DC-current. One finds a
very good agreement with existing results: tunnel Hamiltonian approach to all orders, or , alternatively scattering
theory approach with the Lorentzian line shape of Eq. (21). For the DC current, the striking effect of the presence
of a resonance is the fact that it favors specific Andreev reflection processes. Indeed, some structure is found at the
odd n onsets (recall that the onsets are located at eV = 2∆/n). In the so called MAR ladder picture, an electron
which transits from one superconductor to the other gains an energy eV , and the same is valid for a hole which is
reflected back. Because of the presence of the resonance the trajectories of electrons and holes will have larger or
smaller weights in the DC current: a resonant trajectory corresponds to the situation where the electron or hole
energy crosses at one point the resonant level10,11. For the case of n odd, with the resonant level located in the middle
of the bias window, a resonant hole trajectory always occurs after (n − 1)/2 reflections. For instance, at n = 3 the
first and last electron trajectory are non resonant, while the hole trajectory is. We have also observed (not shown
here) that shifting the position of the resonant level leads to an overall shift of the MAR structure. Displacing the
resonance means that the electron trajectories around the (n ± 1)/2 reflection will have an enhanced transmission
while the hole resonance weakens.

In the top panel of Fig. 3, the DC current for several values of the resonance line width are presented. As expected,
nothing significant occurs for the DC current with decreasing ΓS : the MAR structure gets sharper, but on the
other hand the DC current is reduced. For voltages beyond the superconducting gap, and substantial line widths
ΓS = 0.5, 1., the behavior seems to be linear, while for ΓS = 0.1, 0.2 we see the beginning of a saturation for the
current at large voltages. Indeed, in the limit eV ≫ ∆ the current is only due to quasiparticle transfer and it behaves
like the current of a resonant level between two normal leads. The apparent lack of saturation for ΓS = 0.5, 1. only
reflects the fact that we are displaying a limited voltage range in order to focus on the MAR structure.

We turn now to the first harmonics of the current. Both harmonics decay at voltages beyond the superconducting
gap (quasiparticle dominated regime, as explained above). MAR onsets appear at the odd onsets found in the DC
current. However, the cosine harmonic (Fig. 3 lower left panel) shows a dip at the n = 2 onset. It vanishes at low
voltage, and displays large voltage oscillations in this range. While the cosine harmonic was strictly negative for the
QPC limit, here we see that its sign is reversed, except for the fact that it takes some negative values at relatively
high transparencies (Γ = 1.) near eV = ∆.

The sine harmonic (Fig. 3 lower right panel) also has a reversed sign with respect to the QPC situation for the
voltage range under study, except perhaps at high voltages (eV > 2∆) and high transparencies. As the voltage is
lowered, the sine harmonic decreases in amplitude and seems to saturate at some negative value when the voltage
approaches zero. One would expect that the SFH would approach the stationary Josephson current value when V = 0,
as it is in a point contact5,21. However, this would mean in the present case, that the junction is in the π-junction
regime, which is only possible either under strong Coulomb interaction22,23 or in spin active junctions24,25. In non-
interacting non-magnetic resonant contacts the Josephson current is always positive26,27. This phenomenon can be
explained with strong non-equilibrium population of the Andreev levels in the MAR regime, which changes their
contribution to the current compared to the equilibrium regime. At small bias voltage, the MAR can be understood
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FIG. 3: Resonant level regime. DC (top panel), cosine first harmonic (lower left panel), and sine first harmonic (lower right
panel) of the MAR current, with dot level position ǫ0 = 0 and different escape rates ΓS .

in terms of adiabatically moving Andreev levels and Landau-Zener transitions between the levels, and between the
levels and continuum states5,21. In point contacts, the Andreev level positions are strongly asymmetric with respect
to the chemical potential (except at the full transmission limit): one level lies below the chemical potential close to
the filled continuum state band, while another lies above the chemical potential close to the depleted band. At small
voltage the quasiparticles exchange between the levels is negligible, and the level population is determined by an
exchange with the corresponding continuum band, thus keeping level populations close to equilibrium. In resonant
contacts the situation is different: when ǫ0 = 0, the levels are symmetric with respect to the chemical potential, they
interact with the continuum bands identically, and therefore their populations are identical (neglecting weak effect
of inelastic relaxation). This eventually switches off the level contribution to the Josephon current, revealing current
of the continuum states, which is negative26. In equilibrium, the Josephson current is dominated by the Andreev
levels, and it is positive. The effect should gradually vanish when the resonant level shifts from the chemical potential,
because the Andreev level positions become asymmetric as in the point contacts. We note that similar discontinuity
of SFH at zero voltage exists also in fully transparent point contact.

The presence of the resonant level thus modifies drastically the MAR current. It changes the DC current voltage
characteristics by favoring some structure at odd MAR onsets. For the sine and cosine harmonics, the effect is more
dramatic as these harmonics change sign in (almost) the whole range of the subgap voltage.

C. MAR current in the presence of a normal lead

We now turn to the central point of this study: how does the gradual coupling to a normal lead affect the MAR
current? First, the dot level is set at ǫ0 = 0, and the chemical potential of the normal lead µN = 0, in order to insure
that no net current flows through this lead. We focus in this section only on the case of the resonant level regime
ΓS = 0.2 rather than the point contact regime ΓS > 2. A reason for this choice is first the fact that we expect the
dot level to be broadened by the presence of the additional lead, and in order to observe any broadening effect we
need to start with a rather sharp level. Second, we have seen in Sec. VB that the presence of a narrow resonance
gives rise to rather sharp features in the DC current and its harmonics, so it is natural to ask how these features are
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panel) of the MAR current for a resonant level at ΓS = 0.2, with different couplings to the normal lead ΓN , and with ǫ0 = 0.
Insets: comparison of the DC current and corresponding harmonics for ΓN = 0 (black) and ΓN = 0.02 (red).

modified by the presence of the normal lead.
In the top panel of Fig. 4 the DC current is plotted, for increasing values of the coupling ΓN to the normal lead.

One notices that a moderate amount (ΓN = 0.05) of coupling is sufficient to provoke an important deviation with
respect to the case in the absence of coupling: at ΓN = 0.05 the DC current displays a substantial peak close to
eV = .1∆, and we are not able to show the decay of this current for V → 0 because of numerical limitations. In the
insets of the panels of Fig. 4, we compare the case ΓN = 0 and ΓN = 0.02 to show that the strong departure from the
situation with no coupling is indeed gradual. Further increasing the coupling to ΓN = 0.2 reduces the peak amplitude,
and shifts both this peak and the overall MAR structure slightly to the right. Eventually, at ΓN = 0.5, 1., 2., the low
voltage peak and the MAR onset structure at eV = 2∆/3 are lost, the amplitude of the DC current is reduced, but the
quasiparticle onset is clearly identifiable. By extrapolation of our data at V → 0, we also observe (for ΓN = 0.2− 2.)
that to a very good accuracy the decay of the DC current at low voltage is linear. However it is known that in the
coherent regime, this decay at low voltages is exponential. This constitutes a signature that the gradual coupling of
the dot to the normal lead allows to describe a crossover from coherent to incoherent MAR. The enhancement of the
low voltage current for small ΓN ≤ ΓS remains a puzzle.

A similar anomaly occurs at low voltages for the cosine harmonic when ΓN is switched on. From the left panel of
Fig. 4 and its inset, we see a sharp negative value dip at small voltage and small ΓN , which becomes more shallow
and moves towards larger voltages when the coupling to the normal probe increases. For ΓN = 2, the amplitude
of the cosine harmonic is strongly suppressed compared to its value in the absence of normal lead coupling. For
ΓN = 0.2 − 2., the extrapolation to low voltage of our results show a linear behavior in voltage. The presence of the
normal lead seems to restore some of the features found for the QPC regime (negative sign) because the resonance is
broadened. However, this broadening also erases most of the information on the MAR onsets because phase coherence
is gradually destroyed. Also, note that some dip is formed at eV = ∆, although no noticeable structure was found in
the DC current.

For the sine harmonic, we saw in Sec. V B for the resonant case (with ΓN = 0) that the current seemed to saturate
at negative values for V → 0. In the presence of coupling to the normal lead however (Fig. 4, lower right panel), this
is no longer true: upon reduction of the voltage, this harmonic switches from negative to positive. The coupling to
the normal lead thus restore the equilibrium population of the Andreev level for small V . In Sect. VI, we will show
that the extrapolation of these curves at V = 0 truly corresponds to the Josephson current. In contrast to the cosine
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harmonic, significant MAR structures are observed up to ΓN = 0.5, but large ΓN eventually sets the sine harmonic
to zero.

In summary, the normal lead acts like a dephasing probe, or, equivalently it is subject to the reverse proximity effect
which destroys superconducting correlations on the dot. First, the coupling to the normal lead tends of course to
smoothen the current features, but also it brings a reduction of the supercurrent harmonics because of a lack of phase
coherence. The signatures of MAR are due to (many) round trips of electrons and holes between the superconducting
leads, but if such carriers are brought in contact with a reservoir, only the DC current survives, while the AC
current vanishes. For large coupling to the normal reservoir, the DC current resembles that of two normal metal-
superconductor junctions in series, and the linear voltage dependence of the DC current is an illustration of this fact.
Also, note that the current reduction in the presence of a dephasing lead for a single normal metal-superconductor
junction was discussed in Ref. 28. Any resonant feature associated with such a junction gets broadened by the
presence of the dephasing probe, and this leads to an effective reduction of the conductance but also of the Fano
factor. Our microscopic approach of the DC supercurrent and its first harmonics allows to describe the full crossover
from coherent transport to incoherent transport.

VI. JOSEPHSON CURRENT

In this section, we compute to Josephson current for the setup including the normal lead. This allow us to check
that the non equilibrium current extrapolated at V = 0 corresponds to the Josephson current. This check was so far
performed for a point contact only.5 Here we extend it to the case of a resonant level, in the presence of the normal
lead. Note that this geometry (Josephson junction with a normal lead connected to the central region) was studied
previously29 in the context of scattering theory, to probe how the Josephson current is affected by current injection
from the normal lead. Here we assume no current injection, the normal lead plays a passive role.

In order to compute the Josephson current, we use the imaginary-time (Matsubara) path-integral approach to
calculate the partition function Z and then the Josephson current. The Hamiltonian is the same as in Sec. II, except
that a constant phase difference is imposed between the superconductors. The lead degrees of freedom are integrated
out in the same manner as before. This yields the partition function (ω is a Matsubara fermionic frequency):

Z =

∫

Dd̄Dd e−S , S = β−1
∑

ω

d̄ωLωdω , (22)

with an effective (Euclidean) Lagrangian [matrix in Nambu space] of the dot

Lω = −iω (1 + αω) + ǫ0σz + αω∆cos
φ

2
σx − i signω ΓN , αω =

2ΓS√
ω2 + ∆2

, (23)

where ǫ0 is the dot level measured from the chemical potential of the superconducting leads, ΓS and ΓN are the tunnel
widths of the dot due to its coupling to the left/right superconducting lead and the normal electrode, respectively, φ
is the superconducting phase difference.

With these notations, the partition function reduces to a product of 2 × 2 determinants:

Z =
∏

ωn

detLωn
(24)

with ωn = (2n+ 1)π/β, and the Josephson current is obtained from its logarithmic derivative:

J(φ) = − 2

β

∂

∂φ
lnZ = −∆2

β

∑

ωn

α2
n

detLωn

sinφ . (25)

Note that this expression is similar to that found in Ref. 24, except that the escape rate ΓN now appears in the
determinant. The sum is computed numerically and the sine harmonic of J(φ) is extracted. At the same time, we
extrapolate the sine harmonic of the non-equilibrium current (Sec. V C) to zero voltage, and we compare the two.

Fig. 5 shows the comparison, for ΓS = 0.2 (as in section VC). The extrapolation of the out-of-equilibrium case has
been obtained by computing the sine harmonics at V = 0.1 and V = 0.05. We see that the agreement between the
sine harmonic of the Josephson current and the extrapolated MAR harmonics is very good (there is no adjustable
parameter), for values of ΓN between 0.1 and 2.0. Note that the precision of the extrapolation increases when ΓN

increases (as Isin becomes flatter near V = 0 when ΓN is larger, see Fig. 4), which explains that the agreement is
not totally perfect for the smaller values of ΓN . Going to values of ΓN smaller than 0.1(not shown) leads to some
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larger discrepancy between the two types of calculations because of the presence of resonant transmission at ǫ0 with
unit transmission. The inset of Fig. 5 shows the current phase relationship of the Josephson current. For large ΓN

the current phase relationship becomes essentially sinusoidal, as for a tunnel junction. The presence of the normal
lead randomizes the phase of electrons and holes, and it is equivalent to reducing the transmission probability: we
have computed the current phase relationship at ΓN = 0, while displacing the dot level ǫ0 ∈ [0., 4.] to reduce the
transparency of the junction (not shown), and found quantitative agreement between this situation and that where
the normal lead is present.

VII. CONCLUSION

We have considered non-equilibrium transport through a quantum dot sandwiched between superconducting leads
in the subgap regime. The DC and the first harmonics of the current at the Josephson frequency were computed,
both in the presence and in the absence of a normal lead connected to the dot.

When the dot level is shifted from the middle of the bias voltage window, and the tunneling rates to the supercon-
ducting leads are large compared to the gap, the current resembles closely that of a superconducting QPC. This is
explicit for the DC current, but some difference remain for the harmonics. Below the quasiparticle onset, the cosine
harmonic clearly identifies with the QPC case, but it deviates from the latter at higher voltages. The sine harmonic
shows qualitative agreement with the QPC situation, except that the overall signal is shifted downwards. This, for
instance, is responsible for a sign change in the sine harmonic at large voltage, while such change is not observed a for
a QPC. This is attributed to the fact that the resonance features of the junction cannot be avoided for the parameter
chosen, and they affect more the current harmonics than the DC current.

We have also reproduced the DC current of a resonant level in the absence of interactions, and the harmonics of the
current have been obtained for the first time. For this situation, we recover the known fact that only the odd MAR
processes survice the DC current. These onsets are also present for the harmonics, but the more dramatic effect is
that the sign of the current harmonics is reversed with respect to the QPC case.

In the presence a coupling to a normal lead, the Keldysh formalism can be extended by the addition of a self energy
in the dot Green’s function, with appropriate Fermi/tunneling phase factors requiring that no current flows in the
dot. So far most of the works on MAR have nevertheless focused on either on the coherent or the incoherent MAR,
and little has been said about the gradual change from one regime to the other (see although Ref. 14). This has
been one of the main focus of this study. The gradual coupling to the normal lead are at first not dramatic for the
DC current. The coupling to the lead first smoothes out the MAR features, but as it is increased a linear (rather
than exponential) dependence of the current is found at low voltages, and only the quasiparticle onset survives. This
DC current voltage characteristics corresponds to two normal metal-superconductor junctions in series with a total
lack of phase coherence between the two. The harmonics do display a rather dramatic behavior: upon increasing
the coupling to the normal lead from zero, the amplitude of both harmonics rises sharply, and it saturates when the
tunneling rate to the normal and the superconducting leads are comparable. The harmonics retain some structure at
the predicted onsets for larger coupling than the DC harmonics.

An important check of this work was to compare the first harmonic of the Josephson current with the extrapolated
value of the MAR sine harmonic at zero voltage. We found that in the presence of the normal lead, the agreement is



12

excellent, but in the absence of so called dephasing (ΓN = 0), the resonant features in the MAR process render the
comparison difficult.

This work could be extended in several directions, some in a straightforward manner: The Keldysh formulation
which was adopted here is quite flexible and can be adapted to treat multi-terminal devices, or alternatively multilevel
dots (which are likely to give rise to several resonances in the subgap region) or more complicated structures described
by tight binding Hamiltonians.

Other perspectives of this study concern the inclusion of interactions. Few work include so far electronic correlations
on the dot in the calculation of the DC current30,31. The approach chosen in Ref. 30 requires a minimal Coulomb
interaction parameter in order to trigger a departure from the non interacting regime. There, interactions are shown to
reduce drastically the DC-current, to shift and to damp out the structure found at the MAR onsets. The approach of
Ref.31 is complementary as it treats weak interactions in a systematic perturbation theory approach: there, interactions
are shown to lead to a small enhancement of the DC current.

At the same time, electron-phonon interactions have been included perturbatively19 in the calculation of the DC
MAR current. While inelastic scattering can provide a source of dephasing, the choice of the low temperature regime
and the weak electron-phonon coupling assumption resulted there in a current voltage characteristics which is only
weakly affected by the vibrations: no dissipation associated with these vibrations was noticed. At higher temperatures
and stronger phonon coupling, phonon scattering could provide a definite source of decoherence.

In some sense, the simple model presented here for the inclusion of decoherence could serve as a point of comparison
for a more complete study of a dot strongly coupled to phonons out of equilibrium.

APPENDIX A: NUMERICAL IMPLEMENTATION

The numerical implementation follows directly from equations (16) to (19). The matrix inversion giving the dressed
Green function (Eq. (19)) can be done once the sum

∑

n,m over the frequency domains has been truncated. We have

chosen a constant width Ec for each domain, defining a V -dependent nmax = Ec/eV . It is clear that the smallest
values of V are the most expensive to obtain numerically, which explains why our results are limited to eV/∆ > 0.1.
We have taken great care to check that our results do not suffer from convergence problem due to the truncation. In
practice, we have chosen Ec = 16∆, apart from some special cases in the QPC limit where larger Ec were needed
(see the discussion in the QPC section). Note that for most of the curves shown in the figures, convergence could be
obtained with a much lower value of Ec. Once the dressed Green function Gnm is computed, the current is obtained
by the numerical integration over the fundamental domain [−V/2, V/2] given in Eq. (16).

We have used the following Green function sum rules19,32 as independent checks of our method:

Tr {τyσzG(t, t)} = 0 , (A1)

Tr {−τyG(t, t)} = 2 , (A2)

where σz acts in Nambu space, τy acts in Keldysh space, and the trace is taken on both Nambu and Keldysh space.
We found that the first sum rule was always satisfied to large precision within our truncation scheme. The second

sum rule is only approximatively satisfied, and gives useful information on the quality of the truncation. Typically,
it has a value larger than 1.9 for most of the results shown, but can be somewhat lower when ΓS increases. However,
we have found that the computed current does not depend critically on the precise validation of this sum rule (e.g.
in the very large ΓS limit, correct value of the current can be obtained even with this sum rule giving values as low
as 1.6).
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