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The present work examines the turbulent flow in an enclosed rotor-stator system

subjected to heat transfer effects. Besides their fundamental importance as three-

dimensional prototype flows, such flows arise in many industrial applications but also

in many geophysical and astrophysical settings. Large eddy simulations (LES) are

here performed using a Spectral Vanishing Viscosity technique. The LES results have

already been favorably compared to velocity measurements in the isothermal case

[23] for a large range of Reynolds numbers 105 ≤ Re = Ωb2/ν ≤ 106, in an annular

cavity of large aspect ratio G = (b − a)/H = 5 and weak curvature parameter

Rm = (b − a)/(b + a) = 1.8 (a, b the inner and outer radii of the rotor and H the

interdisk spacing). The purpose of this paper is to extend these previous results in

the non-isothermal case using the Boussinesq approximation to take into account the

buoyancy effects. Thus, the effects of thermal convection have been examined for a

turbulent flow Re = 106 of air in the same rotor-stator system for Rayleigh numbers

up to Ra = 108. These LES results provide accurate, instantaneous quantities which

are of interest in understanding the physics of turbulent flows and heat transfers in

an interdisk cavity. Even at high Rayleigh numbers, the structure of the iso-values

of the instantaneous normal temperature gradient at the disk surfaces resembles

the one of the iso-values of the tangential velocity with large spiral arms along the

rotor and more thin structures along the stator. The averaged results show small

effects of density variation on the mean and turbulent fields. The turbulent Prandtl

number is a decreasing function of the distance to the wall with 1.4 close to the

disks and about 0.3 in the outer layers. The local Nusselt number is found to be

proportional to the local Reynolds number to the power 0.7. The evolution of the

averaged Bolgiano length scale < LB > with the Rayleigh number indicates that
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temperature fluctuations may have a large influence on the dynamics only at the

largest scales of the system for Ra ≥ 107, since < LB > remains lower than the

thermal boundary layer thicknesses.

Keywords: Large Eddy Simulation, rotor-stator, heat transfer, Boussinesq ap-

proximation.
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I. INTRODUCTION

The effects of convective heat transfers on the turbulent air flow in an enclosed rotor-

stator cavity are here investigated by large eddy simulation (LES) using the Boussinesq

approximation. The interdisk spacing is sufficiently large to ensure that the boundary layers

developed on each disk are separated. Thus, the present study is focused on flows belonging

to the regime IV (turbulent Batchelor flows with separated boundary layers) of Daily and

Nece [7]. The cavity is heated from below along the stator side, while the upper disk is

rotating and cooled. Thus, it is an unstable configuration, where the density gradient is

opposed to gravity acceleration.

These flows are important in a large number of industrial applications such as in disk

drives used for digital data storages in computers, in the ventilation of electrical air cycle

machines, in semi conductor manufacturing processes with rotating wafers and in a lot of

other rotating machineries like generator rotors or gas turbine engines. For example, in

high-speed rotating gas turbines, the cooling air flow is used to both cooling the disk and

preventing the ingestion of hot turbine passage gases into the cavity. A good knowledge of

heat transfers and fluid flows in such systems is crucial: an excessive amount of coolant is

often supplied to the cavity that imposes an unnecessary penalty on the engine cycle and

leads to a loss of efficiency.

At that time, most of the published works have dealt with the isothermal fluid flow aspects

in a rotor-stator system [7, 23] mainly because of the complexity and the cost of making

accurate heat transfer measurements. A large review of the fundamental investigations

relevant to heat and mass transfers in rotor-stator cavities carried out until 1989 has been

performed by Owen and Rogers [17]. In the regime IV [7], the dynamics of thermal convection

with a rotating top wall can be characterized essentially by three global physical parameters

in a closed cavity, which are the rotational Reynolds number Re, the Rayleigh number Ra

and the Prandtl number Pr defined by:

Re = Ωb2/ν Ra =
Ω2b∆TH3

νκTr

Pr =
ν

κ

where ν and κ are the kinematic viscosity and the thermal diffusivity of the fluid, respectively.

Ω is the rotation rate of the disk, b the disk radius, H the interdisk spacing, ∆T the

temperature difference between the disks and Tr is the temperature of reference equal to the
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mean of the wall temperatures. The total heat flux through the disks is usually expressed in

terms of the local Nusselt number Nu = hr/λ (h the convective heat transfer coefficient, r

the local radius and λ the conductivity of the fluid) or of the averaged Nusselt number Nuav.

Note that h, the convective heat transfer coefficient, is obtained by dividing the local rate

of wall heat transfer calculated from the nodal values of temperature, by ∆T the difference

between the stator and rotor uniform temperatures. Both depend in a complicated manner

on (Ra, Re, Pr) but also on the flow rate coefficient for open cavities. The influence of the

aspect ratio G = b/H of the cavity on the distribution of the local Nusselt number along

the disks is weak compared to the ones of rotation for example [17].

In the regime IV, Dorfman [10] proposes, from experiments, a correlation for the local

Nusselt number on the rotor for rotor-stator flows above isothermal disks:

Nu = 0.0197Pr0.6Re0.8
r (1)

with Rer the local Reynolds number based on the radial location r. Note that the aspect

ratio and the Rayleigh number do not appear in this correlation. Dorfman [10] proposes

other correlations depending on the temperature distributions imposed on the disks. This

author showed also that heat transfer on the rotating disk was not affected by the presence

of the stator for H/b ≥ 1.05Re−0.2, which is the case in the present study. That implies

that the correlation laws obtained in the single disk case [10, 17] can also be applicable here.

Daily and Nece [7] proposed a correlation for the mean Nusselt number on the rotor:

Nuav = 0.0173(
1

2G
)0.1Re0.8 (2)

Relatively few experimental data are available in the literature for heat transfer in rotat-

ing disk flows. Djaoui et al. [8, 9] examined the turbulent flow in a rotor-stator cavity of large

aspect ratio subjected to a superimposed radial inflow and heat transfer effects. Detailed

velocity and Reynolds stress tensor measurements as well as temperature and temperature-

velocity correlations have been carried out using a hot and cold wire anemometry tech-

nique. The temperature distribution was specified on the stator and heat transfer coefficient

controlled with the help of pellicular fluxmeters. They studied in particular the external

peripheral geometry effects and the critical importance of the inlet conditions on the mean

tangential fluid velocity. They focused also on the dependence of the flow structure and heat
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transfer effects on the Rossby and Reynolds numbers. Comparisons with an asymptotical

formulation based on the assumption of inviscid fluid were displayed and were shown to

be in good agreement with the experimental data. Elkins and Eaton [11] performed de-

tailed measurements of mean velocities and temperatures as well as measurements of all six

Reynolds stress tensor components, turbulent temperature fluctuations and three turbulent

heat fluxes in the case of a rotating single disk with an uniform heat flux surface. They

showed that for turbulent flows up to Re = 106 and temperature differences up to ∆T = 10.8

K, temperature may be considered as a passive scalar. The disk thermal boundary layer

exhibits some characteristics of three-dimensional turbulent boundary layer. Harmand et

al. [13] investigated both the flow structure by Particule Image Velocimetry (PIV) and the

heat transfers using a thermally rotor heated by infrared radiation in the case of turbulent

rotor-stator flows. The local heat flux distribution from the rotor was identified by solving

the Laplace equation by finite difference. The local Nusselt number Nu on the rotor was

found to be an increasing function of the Reynolds number and remains almost constant

along the radius contrary to the free disk case, where Nu increases from the axis to the

periphery of the cavity. Pellé and Harmand [18] studied experimentally the influence of the

dimensionless interdisk spacing G on the local Nusselt number. It remained almost constant

whatever the Reynolds number for G = 12.5. They identified four heat transfer regimes cor-

responding to the four flow regimes of Daily and Nece [7] and gave correlations for the local

and averaged Nusselt numbers depending on the aspect ratio and the Reynolds number. For

turbulent flows with separated boundary layers, the general laws for Nu and Nuav are:

Nu = 0.035(1− e−40/G)(1− e−4.2×105Re)Re0.746
r (3)

Nuav = 0.0325(1− e−40/G)(1− e−4.2×105Re)Re0.746 (4)

The fact that only few experimental works have been done has slowed down the devel-

opment of advanced heat transfer models. Abe et al. [1] developped a two-equation heat

transfer model, which incorporates essential features of second-order modeling. They intro-

duced the Kolmogorov velocity scale to take into account the low Reynolds number effects

in the near-wall region and also complex heat transfer fields with flow separation and reat-

tachement. But this model has not been yet implemented for rotating disk flows. A major
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numerical work is the one of Iacovides and Chew [14]. They have used four different models

of turbulence to study the convective heat transfer in three axisymmetric rotating disk cavi-

ties with throughflow. Three models were based on a zonal modeling approach and one was

based on a mixing-length hypothesis. Their numerical predictions were compared to exper-

imental data available in the literature but none of the four models was entirely successful.

Nevertheless, considering overall performance, the k − ε model with the one-equation near-

wall treatment was preferred. Schiestel et al. [21] have examined the turbulent flow in a

rotating cavity with a radial outward throughflow and heat transfer effects. They compared

a standard k−ε low-Reynolds number model and a zonal approach using second-order Alge-

braic Stress Model (ASM) in the core of the flow. They showed that second-order modeling

is necessary to obtain a detailed near-wall treatment. Roy et al. [20] performed numerical

simulations using the CFD code Fluent to provide an empirical correlation for Nu along the

rotor:

Nu = 0.0074Re0.89
r (5)

Recently, Poncet and Schiestel [19] compared a second order moment closure (Reynolds

Stress Model) sensitized to rotation effects to data available in the literature. They con-

sidered the temperature as a passive scalar (Ra = 0) and found a close agreement in the

case of an open cavity even for large temperature differences. They provided an empirical

correlation for the problem considered by Djaoui et al. [8, 9], which can be extended in the

case of a closed cavity to:

Nuav = 0.0094Re0.8Pr0.5 (6)

Finally, all workers concluded that further experimental but also numerical research is re-

quired before a mathematical model can be recommanded with any confidence.

As already mentioned, the difficulty and the cost of measurements under severe conditions

of rotation and temperature do not allow a full description of the mean and turbulent fields.

As a consequence, numerical modeling became a valuable tool for predicting flow structure

and heat transfer effects in industrial configurations. Previous works [19] have shown that

second-order modeling is a good way to predict the flow structure in a high-speed rotor-stator

cavity with throughflow and heat transfers for Re up to 4× 106 and ∆T = 75 K. Neverthe-
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less, turbulence modeling does not take into account three-dimensional effects due to highly

structured large-scale vortices, which have a large influence on the resultant heat transfer

coefficients at the disk surface. Bohn et al. [2] have indeed shown both experimentally and

numerically that co- and contra-rotating vortices induced by the gravitational buoyancy

force can appear in a rotating cavity with an axial throughflow of cooling air. These pair

of vortices are very similar to the ones observed by Czarny et al. [5] in a rotor-stator cavity

under isothermal conditions. Thus, accurate three-dimensional numerical simulations are

required to investigate non-isothermal rotating disk flows. Serre et al. [22] performed direct

numerical simulations (DNS) of non-isothermal transitional flows under the Boussinesq ap-

proximation at a moderate Reynolds number Re = 1.1 × 105. They showed in particular

that the effects of density variation remain small for Rayleigh numbers up to Ra = 2× 106.

The purpose of the present work is to propose, for the first time, three-dimensional ac-

curate calculations of turbulent rotor-stator flows under non-isothermal conditions in an

actual enclosed cavity. The objective is then to acquire precise knowledge of both the flow

structure and the temperature distribution on the disks in order to predict durability and

determine the disk dimensions for turbomachinery applications but also to assess the influ-

ence of rotation on convective flow for geophysical and astrophysical settings. The paper

is organized as follows: we first describe the geometrical configuration and the numerical

modeling. Then, flow structures are presented at a given Rayleigh number Ra = 107. The

influence of the Rayleigh number on the mean and turbulent fields is discussed afterwards

to show the effects of density variation on the averaged results. Finally some conclusions

and closing remarks are provided.

II. THE NUMERICAL MODELING

A spectral vanishing viscosity (SVV) method for LES has been recently developed for

simulating rotating disk flows [24] and validated in the case of turbulent rotor-stator flows

under isothermal conditions [23]. This approach has the property of preserving the spectral

accuracy of the approximation developed in DNS and of keeping the fast time integration of

the DNS because it is placed in pre-processing. The reader is referred to the work of Séverac

and Serre [24] for more details about the numerical modeling.
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A. Geometrical configuration

The cavity sketched in Figure 1 is composed of two smooth disks enclosed by an inner

rotating cylinder (the hub) and an outer stationary casing (the shroud). The lower disk is

stationary (the stator) and heated, while the upper disk is rotating and cooled. The rotor

and the central hub attached to it rotate at the same uniform angular velocity Ω. The

hydrodynamic flow is governed by three main control parameters: the aspect ratio of the

cavity G, the curvature parameter Rm and the rotational Reynolds number Re based on the

outer radius b of the rotating disk defined as follows:

G =
b− a

H
= 5 Rm =

b + a

b− a
= 1.8 Re =

Ωb2

ν
= 106

where ν is the kinematic viscosity of water, a = 40 mm and b = 140 mm the inner and outer

radii of the rotating disk and H = 20 mm the interdisk spacing. We define also the radial

r∗ = (r−a)/(b−a) and axial z∗ = z/H coordinates. Thus r∗ = 0 is obtained on the hub and

r∗ = 1 on the shroud. In the same way, z∗ = 0 on the stator disk and z∗ = 1 on the rotor

disk. The values of the geometrical parameters G and Rm have been chosen in order to be

relevant with industrial devices such as a real stage of turbopump, and to satisfy technical

constraints of the experimental device in the isothermal case as well as computational effort

to reach statistically converged stages [23]. The value of Re is also fixed to the highest value

reached in the hydrodynamical case Re = 106 [23] in order to highlight only the thermal

effects.

Conducting and insulating thermal boundary conditions have been considered on the

disks and the cylinders, respectively. The temperature is normalized by the temperature

difference applied between the stator and the rotor: T ∗ = 2(T − Tr)/∆T with ∆T = Thot −
Tcold and Tr = (Thot + Tcold)/2. The stator is thus maintained at the constant dimensionless

temperature T ∗ = 1, while the rotor is maintained at the constant dimensionless temperature

T ∗ = −1. The hub and the shroud are thermally insulated with zero heat flux. The Prandtl

number Pr and the Rayleigh number Ra based on the maximum radial acceleration have

also to be taken into account to study the flow dynamics. They are defined as follows:

Pr =
ν

κ
= 0.7 0 ≤ Ra =

Ω2b∆TH3

νκTr

≤ 108

where κ is the thermal diffusivity of the fluid. Note that the value of Pr chosen here

corresponds to the typical value for air at 293 K. For this value of Prandtl number, the
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thermal diffusivity is slightly dominant. In a classical Rayleigh-Bénard system without

rotation, there is no motion for Pr = 0.7 until the appearance of steady rolls at Ra = 5×103

[12]. All the parameters are then fixed except for the Rayleigh number Ra, whose influence

on the flow dynamics is here investigated. To have an idea of the physical temperature

difference between the disks, if the temperature of the rotor is fixed to the initial temperature

of air Tcold = 293 K, the maximum value of the Rayleigh number Ra = 108 corresponds to

a temperature difference of 15.82 K, which is 50% larger than the temperature difference

considered by Elkins and Eaton [11]. Thus, some thermal effects may be expected in the

present case.

B. Governing equations

The motion is governed by the incompressible three-dimensional Navier-Stokes equations

written below in cylindrical polar coordinates (r,θ,z) using a velocity-pressure formulation,

together with the continuity equation and appropriate boundary conditions. The velocity-

temperature coupling is dealt using the Boussinesq approximation. Then, we have:

∇V = 0 (7)

∂V

∂t
+ V.∇V = −∇P ∗ +

1

Re
∇2V + Ra T ∗ ez (8)

∂T ∗

∂t
+ V.∇T ∗ =

1

Pr
∇2T ∗ (9)

where V = (V ∗
r , V ∗

θ , V ∗
z ) is the velocity vector, P ∗ the pressure and T ∗ the temperature. The

velocity, space and time scalings correspond to Ωb, h and Ω−1 respectively.

C. Numerical method

The pseudospectral numerical method is based on a collocation-Chebyshev method in

the radial r and axial z non-homogeneous directions and a Galerkin-Fourier method in the

azimuthal periodic direction θ. Thus, each dependent variable f = (Vr, Vθ, Vz, P ) is expanded

into a truncated trigonometric series on Tn and Tm, a Chebyshev polynomial basis of degrees

n and m respectively. This approximation is applied at the Gauss-Lobatto collocation points,

where the differential equations are assumed to be satisfied exactly, defined as ri = cos( iπ
N

)
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for i ∈ [0, N ] and zj = cos( jπ
M

) for j ∈ [0, M ] in the radial and axial directions. In the

azimuthal direction, an uniform distribution is considered: θk = 2kπ/K for k ∈ [0, K[. N ,

M define the number of collocation points in the radial and axial directions respectively and

K is the cutoff in the tangential direction. In the meridional plane, the space variables (r, z)

∈ [a, b]× [0, h] have been normalized into the square [−1, 1]× [−1, 1], a prerequisite for the

use of Chebyshev polynomials.

The time scheme is semi-implicit and second order accurate. It is a combination of an

explicit treatment of the convective terms (Adams-Bashforth scheme) and of an implicit

treatment for the diffusive terms (second order backward Euler scheme). The solution

method is based on an efficient projection scheme to solve the coupling between velocity and

pressure. This algorithm ensures a divergence-free velocity field at each time step, maintains

the order of accuracy of the time scheme for each dependent variable and does not require

the use of staggered grids. Finally, for each Fourier mode, a full diagonalization technique

is used and yields simple matrix products for the solution of successive two-dimensional

uncoupled Helmholtz and Poisson equations at each time step.

The Spectral Vanishing Viscosity (SVV) is incorporated into the cylindrical Navier-Stokes

equations. A viscosity kernel operator, only active for high wave numbers of the numerical

approximation, is incorporated in the Helmholtz equations of velocity prediction [24]. Then,

the diffusion and SVV terms are combined in order to obtain a new diffusion operator that

can be easily written in 1D:

ν∆SV V vN = ν∆vN + εN∂x(QN .
∂vN

∂x
) (10)

where vN is the velocity vector approximation and QN is the kernel defined in the spectral

space as:

Q̂N(wn) =





0 for 0 ≤ wn ≤ wT

εN .e
−(

wN−wn
wT−wn

)2
for wT < wn ≤ wN

(11)

with εN the maximum of viscosity, wT the mode after which the spectral viscosity is applied

and wN the highest mode calculated. Thus, the viscosity kernel is zero on the lower frequen-

cies. There is no direct way to extend the one dimensional definition of the SVV operator to

the three-dimensional case. Then, Séverac and Serre [24] proposed the following definition

which has been used here:
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ν∆SV V vN = ν∆vN +∇.(εNQN(∇vN)) (12)

where ∇vN is the Jacobian of the vectorial function vN , εNQN ≡ εi
NiQ

i
Ni with i = 1, 2, 3

(corresponding to the r, θ, z directions respectively), and where εi
Ni, Qi

Ni are the maximum

of viscosity and the 1D viscosity operator acting in direction i, respectively.

D. Computational details

The initial condition corresponds to a fluid at rest. No-slip boundary conditions are ap-

plied to all walls. There, Vr = Vz = 0 on all walls, whereas Vθ is fixed at zero on the stator

and the shroud and at the local disk velocity Ωr on the rotor and the hub. At the junc-

tions rotor-stator, the tangential velocity component has been regularized using a boundary

function V ∗
θ = e(z∗−1)/µ, with µ = 0.006 an arbitrary shape parameter independent of the

grid size. This function provides a reasonable representation of experimental conditions [23],

while retaining spectral accuracy. The boundary conditions imposed on the four walls are

summed up below:





Vr = 0, Vθ = Ωr, Vz = 0, T = Tcold, rotor

Vr = 0, Vθ = 0, Vz = 0, T = Thot, stator

Vr = 0, Vθ = Ωa, Vz = 0, ∂T/∂r = 0, hub (r = a)

Vr = 0, Vθ = 0, Vz = 0, ∂T/∂r = 0, shroud (r = b)

(13)

As shown previously, the SVV operator is parametrized in each direction by (wT , εN).

According to previous results obtained by Séverac and Serre [24], good values of such pa-

rameters are wT ≈ O(
√

N) and εN ≈ O(1/N), where N is the degree of approximation

in each direction. These values have also provided a good compromise between stability

and accuracy in former numerical studies. Let’s notice that SVV operator affects at most

the two-third of the spectrum on the highest frequencies (wT = 0) and consequently, DNS

results are easily recovered for laminar flows, contrarily to some classical LES techniques.

The SVV parameters have been chosen in order to stabilize the calculation while dissipating

artificially the least possible: εN=1/N in the three directions and wT =2
√

N, 5
√

N, 4
√

N in

the (r,θ,z) directions respectively.

A (151, 241, 81) grid in the (r,θ,z) directions respectively (about 2.95 millions of mesh
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points) is sufficient to get grid independent solutions. It corresponds to a wall normal co-

ordinate, which remains below or around 1 along the radius. Thus, the viscous sublayer is

described by at least five collocation points. The computational domain has been restricted

to ([0, π]) in order to save time. This hypothesis only allows even azimuthal modes of bound-

ary layer instability, that does not change nor qualitatively nor quantitatively the features

of turbulent flow as a wide range of modes are known to be unstable [23]. Moreover, all

the previous investigations in isothermal configuration have shown the tendency of the flow

structures to become axisymmetric when increasing the Reynolds number. Finally, some

recent experiments (not published yet) have revealed that the three-dimensional structures,

which subsist at very high Reynolds numbers in the core of a cylindrical rotor-stator cav-

ity [4, 5], do not persist in the case of an annular cavity. Thus, there is no experimental

or numerical evidence that three-dimensional well organized structures could appear in the

present configuration.

The time step used in the present study is fixed to 10−5. All the data have been av-

eraged both in time and in the tangential direction. In the isothermal case, the average

is performed on 464 disk revolutions. Then, this solution is used as an initial solution for

the non-isothermal calculations. The data in the non-isothermal cases are averaged on 77

disk revolutions, which is sufficient as the averaging for the Nusselt number converges quite

rapidly, about 20 dimensionless time units in the similar system of Kunnen et al. [16].

Note that the LES results have been already favorably compared in the isothermal case

to velocity measurements performed at IRPHE using a two-component laser Doppler ve-

locimeter (see in Séverac et al. [23]).

III. FLOW STRUCTURES

The flow is here analysed at Ra = 107 in the case of a turbulent flow (Re = 106) of air

(Pr = 0.7). Instantaneous fields are first presented before quantifying the effect of Ra on

the statistical data in the following section.

Figure 2 shows the iso-values of the instantaneous tangential velocity component Vθ/(Ωb)

in both boundary layers and the corresponding instantaneous normal temperature gradient

∂T ∗/∂z∗ at the disk surfaces, which is proportional to the local heat transfer rate through the

surface. Although the grey scales do not correspond perfectly, it is clear that these heat-fluxes
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pictures reveal the same structures as seen in the views of instantaneous velocity direction.

Along the cooled rotor (Fig.2a), the structure of the iso-values of ∂T ∗/∂z∗ resembles the one

of the iso-values of Vθ/(Ωb) (Fig.2c) with large positive spiral arms (as they roll up in the

sense of rotation of the disk) appearing at intermediate radial positions. They are enclosed

by two turbulent flow regions (see in [23]). The first one is located at the junction between

the rotor and the hub. The hot fluid coming from the stator side flows along the hub and

impinges the rotor. It is then cooled by this disk. That is the reason why this turbulent flow

region is characterized by a temperature equal to zero (see Fig.3a). The second region of

high turbulence intensities appears at the periphery of the cavity where the highest values

of the local Reynolds number prevail. The spiral arms disappeared and more thin structures

are created. They are also characterized by a dimensionless temperature close to zero (see

Fig.3a). The cooled fluid coming from the rotor after impingement on the shroud and then

on the stator is heated by this lower disk. It creates a crown of fluid with a zero dimensionless

temperature at the periphery of the cavity (see Fig.3a). Afterwards, this fluid flows along

the stator from the periphery to the axis of the cavity. The fluid is progressively heated until

the axis and so higher temperature levels are obtained (Fig.3a). The heat-fluxes picture is

more chaotic in this boundary layer. It resembles to the one of the iso-values of Vθ/(Ωb)

with very thin structures (Fig.2d). To conclude, the pattern of heat transfer rate is strongly

affected by any organized structure in the flow pattern.

Figure 3a presents the isotherms at Ra = 107 in a (r, z) plane. This map confirms that

the fluid heated along the stator is carried along the hub (dark areas on Fig.3a) with a

positive axial velocity (Vz/(Ωb) > 0 corresponds to dark areas on Fig.3b) and then cooled

by the fluid flowing along the rotor (bright areas on Fig.3a). In the same way, the flow

cooled by the rotor impinges the shroud and then the stator to be heating along this wall.

The axial velocity of the fluid in the Stewartson layer along the external cylinder is then

negative (bright areas on Fig.3b). As a consequence, there are two regions along the walls of

quasi zero temperature: at the junction between the hub and the rotor and at the junction

between the shroud and the stator. The temperature in the core is also quasi equal to zero

in the whole cavity, which means that the secondary flow in the wall layers is responsible for

most of the heat transfer in the cavity. Nevertheless, it can be seen in Figure 3a that vertical

thermal plumes appear along the stator, essentially for inner radii. They are characterized

by a dimensionless temperature close to unity. The well defined vertical structure of these



14

plumes corresponds to regions of relatively high positive axial velocities (Fig.3b). At the

periphery of the cavity, where the highest turbulence intensities are obtained, there are no

thermal plumes due to the intense mixing between hot and cold fluids. Along the rotating

disk, some cooled fluid is moving down with a smaller vertical extension (Fig.3a). Thus, the

effect of the heated disk seems to dominate the heat transfer in the cavity.

IV. MEAN FLOW AND TURBULENCE STATISTICS

The aim of this section is to quantify the effect of the Rayleigh number Ra on the mean

and turbulent flow fields, on the temperature field and then, on the heat fluxes along the

disks for a turbulent air flow (Pr = 0.7, Re = 106). We recall that all the data have been

averaged both in time and in the tangential direction. The mean velocity components and

the normal components of the Reynolds stress tensor are respectively normalized as follows:

V ∗
i = Vi/(Ωr) and R∗

ij = v
′
iv
′
j/(Ωr)2 for i, j = (r, θ, z).

A. Flow field

To quantify the buoyancy effects on the flow field, we firstly define a convective Rossby

number Roc =
√

Ra/(PrTa), where Ta = (2ΩH2/ν)2 is the Taylor number equal to 1.67×
109 in the present case. It compares the buoyancy forces and the Coriolis forces. For Roc > 1,

buoyancy forces are larger than Coriolis forces.

Figure 4 shows axial profiles of the mean velocity components at four radial locations

in the range 0.3 ≤ r∗ ≤ 0.9. Four values of the Rayleigh number have been considered

and the results are compared to the isothermal case described in [23]. Whatever the value

of Ra considered, the Batchelor flow model best describes the flow structure with fluid

pumped radially outwards in the rotor boundary layer (V ∗
r > 0 close to z∗ = 1), called

the Ekman layer, moving axially across the stator in the Stewartson boundary layer over

the cylindrical outer shroud. Then, the fluid flows radially inward along the stator side

(V ∗
r < 0 close to z∗ = 0), in the Bödewadt layer, and impinges the rotating inner hub before

going along the rotor again. The rotor and stator boundary layers are separated by an

inviscid rotating core of fluid that rotates at around 38% of the rotating disk velocity, value

which slightly depends on the radial location [23]. The value of this swirl ratio β = 0.382 at
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r∗ = 0.9 in the isothermal case is in good agreement with the one provided by the correlation

β = 0.49− 0.57h/b = 0.409 given by Daily et al. [6] for fully turbulent flows. So, for this set

of parameters, the mean flow corresponds to the regime IV of Daily and Nece [7]: turbulent

flow with separated boundary layers (see also Fig.5).

The influence of Ra remains weak as the maximum value of the convective Rossby number

reached for Ra = 108 is equal to 0.293. It confirms the previous results of Serre et al. [22]

at lower Reynolds (Re = 110000) and Rayleigh (Ra = 2× 106) numbers. For example, the

value of the swirl ratio β = 0.382 at r∗ = 0.9 obtained in the isothermal case remains the

same within less than 1% at this radius even for the largest value of Ra. The maximum

difference on β reach 1.5% at r∗ = 0.5. The influence of Ra is more noticeable by looking

at the profiles of the mean radial and axial velocity components. Even though there are no

significant changes on the maximum of V ∗
r in the Ekman layer, there is a strong modification

of the inflow in the Bödewadt layer. At r∗ = 0.9, there is a decrease of 14% on the minimum

of V ∗
r between Ra = 106 and Ra = 108. This decrease reach 26% at mid-radius. For all

radial locations, the axial flow reflected in the V ∗
z -values remains very weak compared to the

main tangential flow, whatever the value of Ra. The reason is that for these parameters,

the convective Rossby number is small, whereas the Taylor number is large. Thus, the bulk

flow is in the thermal wind balance and so vertical motion is independent of the vertical

coordinate. As no-slip boundary conditions are imposed on the boundaries, the vertical

motion is very weak.

Turbulence is mainly confined in the boundary layers where the peak values of the normal

components of the Reynolds stress tensor are obtained (Fig.5). On the other side, the

central core remains almost laminar. The turbulence intensities are rather the same in both

boundary layers with values of R∗
rr and R∗

θθ much larger than the ones of R∗
zz. Note that the

values of the cross-components, not shown here, are rather weak in the whole cavity. The

influence of the Rayleigh number Ra on the turbulent field is quite weak for Ra up to 106.

Turbulence intensities slightly increase with Ra in the boundary layers for 0 ≤ Ra ≤ 106.

The maximum values of the normal stresses increase indeed at least of 7% compared to the

isothermal case. There are two exceptions: the maxima of R∗
rr and R∗

zz in the Bödewadt

layer at r∗ = 0.9, where peripheral effects may appear, are almost constant whatever the

Rayleigh number. For the highest value of the Rayleigh number Ra = 108 considered here,

there is a strong increase of R∗
zz especially for 0.3 ≤ r∗ ≤ 0.7. For these radial locations,
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some plumes similar to the ones shown in Figures 3,8 appear and enhance turbulence in

the axial direction. For r∗ = 0.9 where they are not obtained, the component R∗
zz remains

rather the same whatever the Rayleigh number.

B. Temperature field

Figure 6 exhibits the temperature profiles along the axial direction for four Rayleigh

numbers at four radial locations. Whatever the radial location r∗, the temperature is almost

constant and equal to zero in the core of the flow whatever Ra. Nevertheless, two cases have

to be distinguished: Ra = 0 for which temperature can be considered as a passive scalar

and Ra 6= 0, for which temperature has an influence on the hydrodynamic field. Thus, for

Ra = 0, the thermal boundary layers coincide with the Ekman and Bödewadt layers from

the hydrodynamic field. The structure of the thermal field is so a Batchelor-like structure.

For Ra 6= 0, the thermal boundary layers are thicker than the velocity boundary layers as

the Prandtl number Pr, which is the ratio of the velocity boundary layer thicknesses to the

thermal boundary layer thicknesses is lower than unity (Pr = 0.7).

From the axial profiles of T ∗ (Fig.6), we can deduce the values of the thermal boundary

layer thicknesses, denoted δRT
for the rotor side and δST

for the stator one. δRT
(respectively

δST
) is the height at which the mean temperature reaches −0.01 (resp. 0.01). δST

is found to

be larger than δRT
, which confirms the preponderant influence of the heated disk on thermal

convection. For a given Rayleigh number, Ra = 103 for example, both thermal boundary

layers strongly vary with the radial location. δRT
/H increases from 0.08 at r∗ = 0.3 to 0.15

at r∗ = 0.9. In the same time, δST
/H decreases from 0.17 to 0.06.

At a given radius, when Ra is increased, it means when the temperature difference is

increased, the axial extension of the core decreases as the thermal boundary layers thicken.

At r∗ = 0.3, δRT
/H (resp. δST

/H) increases from 0.08 (resp. 0.17) for Ra = 103 to 0.19

(resp. 0.53) for Ra = 108. In the similarity area 0.3 ≤ r∗ ≤ 0.7, the temperature of the

fluid at the edge of the stator boundary layer is increased with Ra due to the main influence

of the heated disk. On the other hand, at r∗ = 0.9 where the cold fluid coming from the

shroud is mixed with the hot fluid flowing along the stator, a small decrease appears in the

axial profiles of temperature.

The results of figure 6 are confirmed by the radial distributions of T ∗ shown in figure 7 for
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both boundary layers and the same values of Ra. T ∗ slightly increases with the radius along

the rotor apart from some peripheral effects. On the stator side, T ∗ is almost constant close

to the axis and strongly decreases towards the periphery. The radial extent of the region

of constant temperature decreases rapidly with the Rayleigh number. The magnitude of T ∗

is almost constant whatever Ra 6= 0 and then diminishes for Ra = 0. We recall that, in

that case, the temperature can be considered as a passive scalar. Note that T ∗ tends to 0

at the corner between the insulating hub (r∗ = 0) and the rotor, where an intense mixing is

obtained and tends to 1 at the corner between the insulating shroud (r∗ = 1) and the rotor.

In the same way, T ∗ tends to the stator temperature at the junction hub-stator (r∗ = 0)

and to 0 at the junction stator-shroud (r∗ = 1).

C. Heat fluxes along the disks

Figure 8 shows the iso-values of the turbulent heat fluxes as well as the ones of the

turbulent temperature fluctuations in a (r, z) plane for Ra = 107. All these quantities

are close to zero around mid-plane and increase in magnitude towards the disks with a

magnitude of order 10−3, which confirms the experimental results of Djaoui and Debuchy

[8] for the closed cavity. The highest values of these correlations are observed along the hub

and along the heated stationary disk. v′zt
′ is found to be different from zero along the disks

and in particular along the stator, which is a characteristic of three-dimensional turbulent

boundary layers [11]. Areas with positive values of v′rt
′ and especially of v′zt

′ and t′2 along

the stator correspond to the thermal plumes already observed from the isotherms in Figure

3a. The axial extension of these plumes increases towards the periphery of the cavity. There

is a close relationship between the axial heat flux and the temperature fluctuations, contrary

to the single disk case, where Elkins and Eaton [11] obtained a stronger relationship between

v′rt
′ and t′2. This difference may be attributed to the radial confinement in the present study,

which induces strong axial flows along the inner and outer cylinders. It is noteworthy that

v
′
θt
′ is almost equal to zero in the whole cavity, which confirms the vertical structure of the

plumes.

One interesting parameter for numerical modeling is the turbulent Prandtl number Prt,

defined here as the ratio of the eddy diffusivity for momentum to the eddy diffusivity for

heat:
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Prt =
−v

′
θv

′
z

∂T
∂z

v′zt
′ ∂Vθ

∂z

(14)

Even though is not a rigorous definition of Prt for a three-dimensional turbulent boundary

layer, where Prt should be a second-order tensor, this definition is the one used Elkins

and Eaton [11] and appears simpler to enable direct comparisons with the results of these

authors. Moreover, this definition deals with the vertical direction along which the thermal

plumes are aligned. Typical values of the turbulent Prandtl number are around unity. Prt

is strictly equal to 1 in accordance with the Reynolds analogy and equal to 0.9 in classical

RANS models.

The distributions of the turbulent Prandtl number in the disk boundary layers are shown

in Figure 9 for Ra = 107 and four radial locations. z/δR and z/δS represent the distances

from the rotor and the stator respectively, with δR and δS the boundary layer thicknesses

along the rotor and the stator deduced from the velocity profiles (Fig.4). The same evolution

is obtained along both disks. The influence of the radial location remains weak apart at

r∗ = 0.9, where Prt is lower close to the disks than at the other radii. The averaged value

of Prt for 0.3 ≤ r∗ ≤ 0.9 decreases from 1.4 very close to the disk to about 0.3 at the edge

of the boundary layer. The assumption of Prt ' 0.9 is consistent for z/δR or z/δS up to

0.25 but this level is too high over most of the outer layers. These results are consistent

with the measurements of Elkins and Eaton [11] for the turbulent flow over a rotating disk.

They obtained Prt ' 1.2 (uncertainty of about 17%) at the disk surface and Prt decreases

monotically to 0.5 in the outer layer. These values are slightly lower than the ones obtained

by Wroblewski [25] in a two-dimensional turbulent boundary layer, where Prt decreases to

0.8 at the edge of the boundary layer. The present results and the ones of Elkins and Eaton

[11] indicate so that the diffusivity for momentum is reduced more than the diffusivity

for heat. Nevertheless, according to Kays [15], the concepts of eddy viscosity and eddy

diffusivity are not valid in three-dimensional turbulence and consequently, the turbulent

Prandtl number has no meaning. Since the Ekman and Bödewadt boundary layers are

three-dimensional turbulent boundary layers, the conclusions on the distributions of Prt

must be considered tentative.

The effect of the Rayleigh number Ra on the local Nusselt number Nu along the two disks

is investigated in figure 10 for given Reynolds Re = 106 and Prandtl Pr = 0.7 numbers.



19

Apart from some peripheral effects for r∗ very close to 0 and 1, Nu is an increasing function of

the radial location. It can be explained for the rotor side by looking at the radial distribution

of the relative velocity V ∗
rel = [(1−V ∗

θ )2+V ∗2
r ]1/2 (Fig.11). In the region 0.2 ≤ r∗ ≤ 0.95, when

moving towards the periphery of the cavity, higher velocities are obtained which enhance

the heat transfer coefficient reflected in the Nu values. Moreover the relative velocity is

almost constant whatever the Rayleigh number, which may explain the weak influence of

Ra on the local Nusselt number distribution. A second explanation has been provided by

Dorfman [10], which showed that the local Nusselt number varies proportionally to the

square root of the local Reynolds number Rer = Ωr2/ν and so varies linearly with the radial

location. Along the rotor side, this linear dependence is obtained (see Fig.10) at Ra = 0 for

0.145 ≤ r∗ ≤ 0.68: Nu = 470r∗ + 160. The radial extension of this zone decreases when

the Rayleigh number increases. On the stator, the linear dependence is obtained at Ra = 0

for a much larger radial domain 0.02 ≤ r∗ ≤ 0.85: Nu = 440r∗ + 140. Two cases have to

be distinguished: Ra = 0 (T ∗ is a passive scalar) and Ra 6= 0. As soon as Ra 6= 0, there

is a strong decrease of Nu in the main part of the cavity. For 103 ≤ Ra ≤ 108, there is

no significant effect of the Rayleigh number on the radial distribution of Nu apart from

at the junction between the rotor and the hub and at the junction between the stator and

the shroud where an intense turbulent mixing between cold and hot fluids appears (see also

Fig.3a). In these zones, Nu increases with the Rayleigh number in agreement with previous

results described in Owen and Rogers [17].

In the present case, our numerical results can be correlated by:

Nu ∝ Re0.7
r (15)

Thus, the local Nusselt number depends to the local Reynolds number to the power γ = 0.7.

This exponent is close to the one γ = 0.746 given by Pellé and Harmand [18] (Eq.3) for

turbulent flows in an open rotor-stator cavity. It confirms that the Nusselt number is

generally lower in an enclosed domain than in an unbounded one [12]. The value of γ falls

between the classical values given by Owen and Rogers [17] in the single disk case for the

laminar regime γ = 0.5 and for the turbulent regime γ = 0.8, confirming the turbulent

nature of the flow in our case. The present calculations are also in good agreement with

the empirical correlation of Yu et al. [26] in the same configuration (turbulent flow enclosed

between a lower heated stationary disk and an upper cooled rotating disk for Re > 1.5×105)
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with the terms corresponding to the superimposed mass flow rate set to zero.

Figure 12 presents the dependence of the averaged Nusselt number Nuav on the Rayleigh

number for both disks. The inner and outer cylinders being insulated, the overall energy

balance implies that the averaged Nusselt numbers are the same along both disks. Here,

Nuav is the average value of Nu over the range 0.05 ≤ r∗ ≤ 0.95. Thus, one removes the

strong peripheral effects, which appear in the values of the local Nusselt number close to the

inner and outer cylinders (Fig.10). That is why Nuav appears slightly higher on the rotating

disk. Nevertheless, for both disks, the evolution remains the same: Nuav decreases with Ra

up to Ra = 105 and then increases. Thus, the results for the averaged Nusselt number on

the rotor and stator can respectively be scaled by:

Nuav = 3.7(ln(Ra))2 − 38ln(Ra) + 420 (16)

Nuav = 4.9(ln(Ra))2 − 47ln(Ra) + 400 (17)

The present value obtained for Ra = 0 along the stator is close to the one Nuav = 496.6

provided by the correlation given by Poncet and Schiestel [19] (Eq.6) also for Ra = 0 along

the stator. The weak difference may be attributed to the confinement effects and to the

insulating conditions imposed on the cylinders in the present case.

From these results, we can deduce the values of the Bolgiano length LB, which is the

typical length characterizing the forcing mechanism in a convective system defined as:

LB = (
ε5

(gα)6N3
)1/4 (18)

where ε is the turbulence kinetic energy dissipation rate, N the temperature variance dis-

sipation rate and α the thermal expansion coefficient of the fluid. Even though this length

scale is a local quantity, Chillá et al. [3] proposed an estimate of the averaged value valid

for Nu >> 1 (which is the case here):

< LB > /H = (
Nu

2

av

RaPr
)1/4 (19)

The turbulent dynamics below the Bolgiano length LB is unaffected by buoyancy effects,

while above it, it may be strongly influenced by the temperature fluctuations, because of

their active feedback on the velocity field (see Eq.7). From Equation 19, we can estimate
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the mean value of < LB > /H in the two boundary layers as a function of the Rayleigh

number (Fig.13a).

As the mean values of the Nusselt number Nuav are rather the same in the two boundary

layers, the evolution with the Rayleigh number of < LB > /H is rather the same too along

both disks. < LB > /H is almost equal to 3.5 for Ra = 103. It means that temperature

fluctuations can not have any influence in the system. The same remark can be done at

Ra = 105, where < LB > is still larger than the interdisk spacing H. To conclude if the

temperature fluctuations may have an influence in the system, it is required to compare

< LB > with the boundary layer thicknesses. The distributions of < LB > /H in both

boundary layers have been first averaged using the laws (16) to get only one trend curve as

these distributions are quite similar. This curve is plotted on Figure 13b. It is compared

to the extrema values of δRT
and δST

obtained in the similarity area 0.3 ≤ r∗ ≤ 0.9. From

Figure 13b, it can be seen that δRT
is lower than < LB > whatever the radial location for

Ra ≤ 107 and gets larger for Ra = 108 for the whole radial extent. For this value of Ra,

temperature fluctuations may have a large influence on the dynamics only at the largest

scales of the system. In the same time, δST
≥< LB > for Ra ≥ 106 whatever r∗. It confirms

that heat transfers are enhanced along the stator and that the thermal plumes appear to be

larger on this disk than on the rotor as shown in Figure 3a.

V. CONCLUSION

A numerical investigation of turbulent non-isothermal flows within a shrouded rotor-

stator cavity has been performed. The highly accurate computation of turbulent rotating

flows within finite cavity is of interest for both engineering applications and fundamental

research.

The results of a Large Eddy Simulation using a 3D spectral code stabilized with a Spectral

Vanishing Viscosity model already favorably compared to velocity measurements in the

isothermal case [23] have been here extended to the non-isothermal case. For Re = 106 and

G = 5, the base flow is turbulent and exhibits a Batchelor-like structure with two boundary

layers separated by an inviscid rotating core, belonging to the regime IV of Daily and Nece

[7]. Turbulence is mainly confined in the boundary layers, whereas the core remains laminar.

Buoyancy effects have been investigated under the Boussinesq approximation for Rayleigh



22

numbers up to Ra = 108 and a given Prandtl number Pr = 0.7. Some instantaneous views of

the velocity and temperature fields have been provided and reveal that the temperature field

is strongly affected by the hydrodynamic structures even at large Ra values. The averaged

results show small effects of density variation on the mean and turbulent hydrodynamic

fields. The main features of non-isothermal turbulent rotor-stator flows have been caught

by the LES and compared to previous results. The turbulent Prandtl number decreases

from 1.4 at the walls to 0.3 at the edge of the boundary layers. The local Nusselt number

is found to be proportional to the local Reynolds number to the power γ = 0.7. This

exponent is close to the one γ = 0.746 given by Pellé and Harmand [18] for turbulent

flows in an open rotor-stator cavity, which confirms that the Nusselt number is generally

lower in an enclosed domain than in an unbounded one. Correlations for the averaged

Nusselt number on both disks as a function of the Rayleigh number are also provided. The

evolution of the averaged Bolgiano length scale < LB > with the Rayleigh number indicates

that temperature fluctuations may have a large influence on the dynamics only at the largest

scales of the system for Ra ≥ 107, since < LB > remains lower than the thermal boundary

layer thicknesses.

Further computations are now required to extend these results for industrial flow regimes

(Re = 108, Ra = 1012) and to investigate the influence of rotation on turbulent Rayleigh-

Bénard convection for Roc close to 1. It implies that for Re = 106, the Rayleigh number

should be equal to Ra = 1.17× 109.
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• Fig.1: Scheme of the enclosed rotor-stator cavity with relevant notation. Example

of the mesh grid within the stator boundary layer (only one-fourth of the points are

shown).

• Fig.2: Iso-values at Ra = 107 of the instantaneous normal temperature gradient

∂T ∗/∂z∗ at the (a) rotor surface and at the (b) stator surface and of the instan-

taneous tangential velocity Vθ normalized by the maximum disk speed Ωb in (c) the

rotor boundary layer layer (z∗ = 0.97) and in (d) the stator boundary layer (z∗ = 0.03).

• Fig.3: Iso-values of (a) the instantaneous temperature T ∗ and (b) the instantaneous

axial velocity Vz normalized by Ωb at Ra = 107 in a (r, z) plane.

• Fig.4: Axial profiles of the three mean velocity components at four radial locations

in the range 0.3 ≤ r∗ ≤ 0.9 and for four values of the Rayleigh number: (solid lines)

Ra = 0, (dashed lines) Ra = 103, (dash-dot lines) Ra = 106, (dotted lines) Ra = 108.

Comparison with the (points) isothermal case.

• Fig.5: Axial profiles of the three normal Reynolds stress components at four radial

locations in the range 0.3 ≤ r∗ ≤ 0.9 and for four values of the Rayleigh number:

(solid lines) Ra = 0, (dashed lines) Ra = 103, (dash-dot lines) Ra = 106, (dotted

lines) Ra = 108. Comparison with the (points) isothermal case.

• Fig.6: Axial profiles of the mean temperature at four radial locations and for four

values of the Rayleigh number: (solid lines) Ra = 0, (dashed lines) Ra = 103, (dash-

dot lines) Ra = 106, (dotted lines) Ra = 108.

• Fig.7: Radial distributions of the mean temperature T ∗ along the rotor at z∗ = 0.99

and along the stator at z∗ = 0.01 for four values of the Rayleigh number.

• Fig.8: Iso-values of the turbulent heat fluxes (a) v′rt
′ , (b) v

′
θt
′ and (c) v′zt

′ normalized

by Ωb∆T and of (d) the turbulent temperature fluctuations t′2/(∆T )2 at Ra = 107 in

a (r, z) plane.

• Fig.9: Turbulent Prandtl number in the rotor and stator boundary layers for Ra = 107

and four radial locations.
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• Fig.10: Radial distributions of the local Nusselt number Nu along the rotor and the

stator for four values of the Rayleigh number Ra.

• Fig.11: Radial distribution of the relative velocity V ∗
rel along the rotor (z∗ = 0.99) for

four values of the Rayleigh number.

• Fig.12: Influence of the Rayleigh number Ra on the averaged Nusselt number Nuav

on both disks.

• Fig.13: (a) Influence of the Rayleigh number Ra on the mean Bolgiano scale < LB >

/H for both boundary layers; (b) Comparison with the thermal boundary layer thick-

nesses.
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Figure 1: Poncet & Serre, submitted to Int. J. Heat Fluid Flow.
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(a) (b)

(c) (d)

Figure 2: Poncet & Serre, submitted to Int. J. Heat Fluid Flow.
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(a)

(b)

Figure 3: Poncet & Serre, submitted to Int. J. Heat Fluid Flow.
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Figure 4: Poncet & Serre, submitted to Int. J. Heat Fluid Flow.
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Figure 5: Poncet & Serre, submitted to Int. J. Heat Fluid Flow.
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Figure 6: Poncet & Serre, submitted to Int. J. Heat Fluid Flow.
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Figure 7: Poncet & Serre, submitted to Int. J. Heat Fluid Flow.
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Figure 8: Poncet & Serre, submitted to Int. J. Heat Fluid Flow.



35

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

z/δ
S

stator

r*=0.3
r*=0.5
r*=0.7
r*=0.9

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

z/δ
R

Pr
t

rotor

Figure 9: Poncet & Serre, submitted to Int. J. Heat Fluid Flow.
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Figure 10: Poncet & Serre, submitted to Int. J. Heat Fluid Flow.
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Figure 11: Poncet & Serre, submitted to Int. J. Heat Fluid Flow.
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Figure 12: Poncet & Serre, submitted to Int. J. Heat Fluid Flow.
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Figure 13: Poncet & Serre, submitted to Int. J. Heat Fluid Flow.
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a radius of the hub, m

b outer radius of the rotating disk, m

H interdisk spacing, m

LB Bolgiano length scale, m

r, θ, z cylindrical coordinates, m

Rij Reynolds stress tensor with i, j = (r, θ, z), m2/s2

T mean temperature of the fluid, K

t
′

temperature fluctuation, K

Tr temperature of reference

Vr, Vθ, Vz radial, tangential and axial velocity components, m/s

v
′
r, v

′
θ, v

′
z fluctuations of the radial, tangential and axial velocity components, m/s

β swirl ratio

δR, δS the hydrodynamic boundary layer thicknesses along the rotor and the stator respectively, m

δRT
, δST

the thermal boundary layer thicknesses along the rotor and the stator respectively, m

κ thermal diffusivity of the fluid, m2/s

λ thermal conductivity of the fluid, W/m.K

ν kinematic viscosity of the fluid, m2/s

Ω rotation rate of the rotating disk, rad/s

G aspect ratio of the cavity

Nu local Nusselt number

Nuav averaged Nusselt number

Pr Prandtl number

Prt turbulent Prandtl number

Rm curvature parameter of the cavity

Ra Rayleigh number

Re rotational Reynolds number based on b

Rer local Reynolds number based on r

Roc convective Rossby number

Ta Taylor number

∗ normalized quantity


