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In this paper we present a geometric interpretation of the periodic Degasperis-Procesi equation as the geodesic flow of a right invariant symmetric linear connection on the diffeomorphism group of the circle. We also show that for any evolution in the family of b-equations there is neither gain nor loss of the spatial regularity of solutions. This in turn allows us to view the Degasperis-Procesi and the Camassa-Holm equation as an ODE on the Fréchet space of all smooth functions on the circle.

Introduction

Due to the highly involved structure of the full governing equations for the classical water wave problem, it is intriguing to approximate them by mathematically easier models. In the shallow-water medium-amplitude regime, introduced to capture stronger nonlinear effects than in the smallamplitude regime (which leads to the famous Korteweg-de Vries equation), the Camassa-Holm (CH) equation [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] and the Degasperis-Procesi (DP) equation [START_REF] Degasperis | Asymptotic integrability, Symmetry and perturbation theory[END_REF] attracted a lot of attention due to their integrable structure as infinite bi-Hamiltonian systems [START_REF] Constantin | Inverse scattering transform for the Camassa-Holm equation[END_REF][START_REF] Degasperis | A new integrable equation with peakon solutions[END_REF] and to the fact that their solitary wave solutions are solitons. Moreover it is known that this medium-amplitude regime allows for breaking waves, cf. [START_REF] Constantin | The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations[END_REF][START_REF] Johnson | Camassa-Holm, Korteweg-de Vries and related models for water waves[END_REF][START_REF] Constantin | Wave breaking for nonlinear nonlocal shallow water equations[END_REF] Both of these equations are members of the so-called family of 'b-equations' [START_REF] Degasperis | A new integrable equation with peakon solutions[END_REF][START_REF] Hone | Prolongation algebras and Hamiltonian operators for peakon equations[END_REF] (1)

m t = -(m x u + bmu x )
where m = uu xx . For b = 2 it is the Camassa-Holm equation (CH) [START_REF] Arnold | Topological methods in hydrodynamics[END_REF] u tu txx + 3uu x -2u x u xxuu xxx = 0 and for b = 3 it is the Degasperis-Procesi equation (DP)

(3)

u t -u txx + 4uu x -3u x u xx -uu xxx = 0.
The hydrodynamic relevance of the b-equations is described e.g. in [START_REF]The classical problem of water waves: a reservoir of integrable and nearlyintegrable equations[END_REF][START_REF]Water waves and integrability[END_REF]. It is integrable only for b = 2 and b = 3 (see [START_REF] Hone | Prolongation algebras and Hamiltonian operators for peakon equations[END_REF][START_REF] Mikhailov | Perturbative symmetry approach[END_REF][START_REF] Ivanov | On the integrability of a class of nonlinear dispersive waves equations[END_REF]). The periodic Camassa-Holm equation is known to correspond to a geodesic flow on the diffeomorphism group of the circle, cf. [START_REF] Kouranbaeva | The Camassa-Holm equation as a geodesic flow on the diffeomorphism group[END_REF]. Local existence of the geodesics and properties of the Riemannian exponential map were studied in [START_REF] Constantin | On the geometric approach to the motion of inertial mechanical systems[END_REF][START_REF]Geodesic flow on the diffeomorphism group of the circle[END_REF].

The main objective of the present paper is to extend this work to the whole family of b-equations and in particular for (DP).

Analogous to the Camassa-Holm equation, see [START_REF]Well-posedness, global existence, and blowup phenomena for a periodic quasilinear hyperbolic equation[END_REF][START_REF] Rodríguez-Blanco | On the Cauchy problem for the Camassa-Holm equation[END_REF], the Cauchy problem for the b-equation is locally well-posed in the Sobolev space H s for any s > 3/2 and the solution depends continuously on the initial data, cf. [START_REF] Escher | Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation[END_REF][START_REF] Escher | Well-posedness, blow-up phenomena, and global solutions for the b-equation[END_REF]. The geometric approach of the present paper enables us to complete this picture by showing that the b-equation is well-posed in the smooth category C ∞ (J, C ∞ (S 1 )), where J is an open interval containing 0. The situation of analytic initial data and the question of analyticity of the corresponding solution will be addressed in a forthcoming paper.

We already mentioned several common properties of the (CH) and the (DP) equation. Besides the fact that the connection on Diff ∞ (S 1 ) in the geometric re-expression of the (DP) equation is non-metric, it is worth pointing out that the (DP) equation possesses bounded but discontinuous solitons, so-called shock peakons, cf. [START_REF] Escher | Wave breaking and shock waves for a periodic shallow water equation[END_REF]. Indeed, it is possible to verify that

u c (t, x) = sinh (x -[x] -1/2) t cosh (1/2) + c sinh (1/2) , x ∈ R/Z,
is for any c > 0 a weak solution to the (DP) equation. Note that the (CH) equation has no discontinuous weak solutions, due to the fact that the H 1 -norm of any weak solution is preserved. Another significant difference becomes clear by comparing the isospectral problem in the Lax pair for both equations. Letting again m = uu xx , we have the third order equation

ψ x -ψ xxx -λmψ = 0
as the isospectral problem for the (DP) equation (cf. [START_REF] Degasperis | A new integrable equation with peakon solutions[END_REF]), while in the case of the (CH) equation, the second order equation

ψ xx - 1 4 ψ -λmψ = 0
is the relevant spectral problem in the Lax pair, cf. [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF].

The paper is organized as follows. In Section 2, we introduce the notion of non-metric Euler equation. Some basic material about the diffeomorphism group Diff ∞ (S 1 ) is recalled in Section 3. In Section 4, we show that the bequation may be recast as the geodesic flow of a symmetric linear connection on Diff ∞ (S 1 ) and that the corresponding second order vector field is smooth. In Section 5, we show that there is neither gain nor loss of the spatial regularity of solutions and we establish short time existence and smooth dependence on the initial data for this geodesic flow in the smooth category. In Section 6, we show that the exponential map of this symmetric linear connection is a smooth local diffeomorphism. In the last Section 7, we discuss the non-periodic case.

Non-metric Euler equations

The idea of studying geodesic flows in order to analyze the motion of hydrodynamical systems is attributed to Arnold [START_REF] Arnold | Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits[END_REF] (despite the fact that a previous short paper from Moreau in 1959 already discussed the problem [START_REF] Moreau | Une méthode de "cinématique fonctionnelle" en hydrodynamique[END_REF]). He pointed out that the Euler equations of the motion of a rigid body and the Euler equations of hydrodynamics (with fixed boundary) could both be recast as the geodesic equations of a one-sided invariant Riemannian metric on a Lie group.

This structure is the prototype for the mathematical treatment of physical systems which underlying configuration space can be identified with a Lie group G. The general Euler equation was derived initially for the Levi-Civita connection of a one-sided invariant Riemannian metric on a Lie group G (see [START_REF] Arnold | Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits[END_REF] or [START_REF] Arnold | Topological methods in hydrodynamics[END_REF]) but the theory is valid in the more general setting of a one-sided invariant linear connection on G, as we shall explain now.

A linear connection

(covariant derivative) on a manifold M is a bilinear map Vect(M ) × Vect(M ) → Vect(M ), denoted by (X, Y ) → ∇ X Y , such that: ∇ f X Y = f ∇ X Y, and 
∇ X (f Y ) = (X • f )Y + f (∇ X Y ), for all X, Y ∈ Vect(M ) and f ∈ C ∞ (M ). The linear connection ∇ is symmetric if moreover ∇ X Y -∇ Y X = [X, Y ]
for all X, Y ∈ Vect(M ), where [X, Y ] is the usual bracket of vector fields. Given a local chart (x j ) (or more generally, any local frame), a linear connection ∇ is completely defined by the Christoffel symbols

Γ k ij = (∇ ∂ i (∂ j )) k .
A covariant derivative ∇ can be uniquely extended for smooth vector fields X(t) defined only along a smooth path x(t) on M (see [START_REF] Lang | Fundamentals of differential geometry[END_REF] for instance). This operator, denoted by D/Dt, is an extension of ∇ in the sense that if the vector field X(t) is the restriction to the curve x(t) of a globally defined vector field X, that is X(t) = X(x(t)) then we have

DX Dt (t) = (∇ ẋ X) (x(t)).
In a local chart (x j ), D/Dt is defined by

DX Dt k = Ẋk + Γ k ij ẋi X j . Definition 1. A geodesic for the linear connection ∇ is a smooth curve x(t) on M such that D ẋ Dt = 0.
Given a local chart (x j ) of M , the smooth curve x(t) is a geodesic iff it satisfies the following second order differential equation ẍk + Γ k ij ẋi ẋj = 0.

Remark 1. If two linear connections differ by a skew-symmetric tensor, they have the same geodesics.

Let ϕ be a diffeomorphism of M . We say that the linear connection ∇ is invariant under ϕ if ϕ * (∇ X Y ) = ∇ ϕ * X ϕ * Y where ϕ * X is the vector field defined by

(ϕ * X)(x) = T ϕ(x) ϕ -1 X(ϕ(x)).
Suppose now that M is a Lie group G. Then, we say that a linear connection on G is right invariant (resp. left invariant) if it is invariant under each right translation R g (resp. left translation L g ) of G. On any Lie group G, there is a canonical connection which is both right and left invariant (we say it is bi-invariant). It is defined by

∇ 0 ξu ξ v = 1 2 [ξ u , ξ v ],
where ξ u is the right invariant vector field on G generated by the vector u in the Lie algebra g of G.

Remark 2. This definition does not change if we use left invariant vector fields rather than right invariant vector fields in the preceding formula.

Given a right-invariant linear connection ∇ on G, then

B(X, Y ) = ∇ X Y -∇ 0 X Y is a right-invariant
tensor field on G and is therefore completely defined by its value at the unit element e of G, that is by a bilinear map g × g → g. Conversely, each bilinear operator B : g × g → g defines uniquely a right invariant linear connection on the Lie group G, which is given by ( 4)

∇ ξu ξ v = 1 2 [ξ u , ξ v ] + B(ξ u , ξ v ),
where we use the same notation for B and the right invariant tensor field it generates on G. Given a basis (e k ) 1≤k≤n of the Lie algebra g, let (ξ k ) be the global right invariant frame on G generated by the basis (e k ) of g and let (ω k ) be the dual co-frame of (ξ k ) (notice that each ω k is itself a right invariant 1-form on G).

Let g(t) be a smooth path in G. We define its Eulerian velocity by

u(t) = R g -1 (t) ġ(t)
which is a smooth path in the Lie algebra g of G. Let u k be the components of u in the basis (e k ). Then

u k = ω k e (u) = ω k g (R g u) = ω k g ( ġ)
are the components of the vector ġ in the frame (ξ k ). The linear operator D/Dt defined along g(t) is then given by

DX Dt k = Ẋk + 1 2 c k ij + b k ij u i X j
where c k ij are the structure constants of the Lie algebra g and b k ij are the components of the tensor B. In particular, a smooth curve g(t) in G is a geodesic if and only if uk + b k ij u i u j = 0 because c k ji = -c k ij for all i, j, k. Proposition 2. A smooth curve g(t) on a Lie group G is a geodesic for a right invariant linear connection ∇ defined by (4) iff its Eulerian velocity u = R g -1 ġ satisfies the first order equation ( 5)

u t = -B(u, u).
known as the Euler equation.

In particular, every quadratic operator in g corresponds to the geodesic flow of a right-invariant symmetric linear connection on G. Notice however that this connection is not necessarily Riemannian -there may not exist a Riemannian metric which is preserved by this connection. We will therefore call such an equation as a non-metric Euler equation. Remark 3. In the metric case, that is when ∇ is the Levi-Civita connection of a right invariant Riemannian metric on G, the bilinear operator B is related to the metric by the following formula

B(u, v) = 1 2 (ad u ) * (v) + (ad v ) * (u)
where u, v ∈ g and (ad u ) * is the adjoint (relatively to the given Riemannian metric) of the natural action of the Lie algebra on itself given by

ad u : v → [u, v].
3. The Fréchet Lie group Diff ∞ (S 1 )

In this paper, we are interested in a (non metric) Euler equation on the infinite dimensional Lie group Diff ∞ (S 1 ) of smooth, orientation preserving diffeomorphisms of the unit circle S 1 .

Since the tangent bundle

T S 1 ≃ S 1 × R is trivial, Vect ∞ (S 1
), the space of smooth vector fields on S 1 , can be identified with C ∞ (S 1 ), the space of real smooth functions on S 1 . Given a diffeomorphism ϕ ∈ Diff ∞ (S 1 ), we define ϕ x ∈ C ∞ (S 1 ) by the following construction. Let p : R → S 1 , x → exp(2iπx) be the universal cover of the circle. A lift of ϕ is a smooth map f : R → R such that

ϕ(exp(2iπx)) = exp(2iπf (x)).
Since ϕ preserves the orientation we have f (x + 1) = f (x) + 1. A lift is not unique but two lifts of ϕ differ by an integer. For any lift f of ϕ, its derivative f ′ is a smooth periodic map on S 1 and we define ϕ x as

ϕ x := f ′ ,
which is independent of the choice of a particular lift of ϕ.

The space C ∞ (S 1 ) is a Fréchet space 1 . A family of semi-norms which defines the topology of C ∞ (S 1 ) is just given by the C n -norms. A sequence u k converges to u in C ∞ (S 1 ) if and only if

u k -u C n (S 1 ) → 0 as k → ∞ for all n ≥ 0.
Remark 4. In a Fréchet space, only directional or Gâteaux derivative is defined

Df (x)u = lim ε→0 1 ε (f (x + εu) -f (x)). A map f : X → Y between Fréchet spaces X, Y is continuously differentiable (C 1 ) on U ⊂ X if the directional derivative Df (x)
u exists for all x in U and all u in X, and the map (x, u) → Df (x)u is continuous. Note that even in the case where X and Y are Banach spaces this definition of continuous differentiability is weaker than the usual one [START_REF] Hamilton | The inverse function theorem of Nash and Moser[END_REF]. Higher derivatives and C n classes in Fréchet spaces are defined inductively.

The group Diff ∞ (S 1 ) is naturally equipped with a Fréchet manifold 2 structure modeled over the Fréchet vector space C ∞ (S 1 ). A smooth atlas with only two charts may be constructed as follows (see [START_REF] Guieu | Algèbre de Virasoro: aspects géométriques et algébriques[END_REF]). Given ϕ ∈ Diff ∞ (S 1 ), it is always possible to find a lift f : R → R of ϕ such that either

(6) -1/2 < f (0) < 1/2, or (7) 0 < f (0) < 1,
these conditions being not exclusive. Let V 1 and V 2 be the subsets of ϕ ∈ Diff ∞ (S 1 ) for which there is a lift satisfying respectively (6) or [START_REF] Constantin | On the geometric approach to the motion of inertial mechanical systems[END_REF]. Notice that

V 1 and V 2 are open and that V 1 ∪ V 2 = Diff ∞ (S 1 ). For any lift f of ϕ ∈ Diff ∞ (S 1 ), the function u = f -id is 1-periodic and hence lies in C ∞ (S 1 ) and moreover u ′ (x) > -1. Let U 1 = u ∈ C ∞ (S 1 ) : -1/2 < u(0) < 1/2 and u ′ > -1 and U 2 = u ∈ C ∞ (S 1 ) : 0 < u(0) < 1 and u ′ > -1 .
For j = 1, 2, the maps

Φ j : U j → V j , u → f = id + u, j = 1, 2 define charts of Diff ∞ (S 1 ) with values in C ∞ (S 1
). The change of charts corresponds to a change of lift and is just a translation in C ∞ (S 1 ) by ±1.

1 A topological vector space E has a canonical uniform structure. When this structure is complete and when the topology of E may be given by a countable family of semi-norms, we say that E is a Fréchet vector space. A Fréchet space is a Banach space if and only if it is locally bounded, which is not the case of C ∞ (S 1 ). 2 Fréchet manifolds are defined as sets which can be covered by charts taking values in a given Fréchet space and such that the change of charts are smooth.

Since the composition and the inverse are smooth maps we say that Diff ∞ (S 1 ) is a Fréchet-Lie group [START_REF] Hamilton | The inverse function theorem of Nash and Moser[END_REF]. In particular, Diff ∞ (S 1 ) is itself parallelizable

T Diff ∞ (S 1 ) ≃ Diff ∞ (S 1 ) × C ∞ (S 1
). The tangent space at the unit element T id Diff ∞ (S 1 ) -the Lie algebra of Diff ∞ (S 1 ) -is defined as follows. Let t → ϕ(t) be a smooth path in Diff ∞ (S 1 ) with ϕ(0) = id. Then

ϕ t (0, x) ∈ T x S 1 , ∀x ∈ T x S 1
and therefore ϕ t (0, •) is a vector field on S 1 . In other words, the Lie algebra of Diff ∞ (S 1 ) corresponds to Vect ∞ (S 1 ). The Lie bracket on Vect

∞ (S 1 ) ≃ C ∞ (S 1 ) is given by 3 [u, v] = u x v -uv x .
Remark 5. For n ≥ 1, we define the group Diff n (S 1 ) of orientation-preserving diffeomorphisms of class C n . This group is equipped with a smooth Banach manifold structure modeled on the Banach vector space C n (S 1 ). However, Diff n (S 1 ) is only a topological group and not a Banach Lie group since the composition and the inverse are continuous but not differentiable [START_REF] Ebin | Groups of diffeomorphisms and the notion of an incompressible fluid[END_REF].

4. The b-equation as a non-metric Euler equation on Diff ∞ (S 1 )

We can recast equation ( 1) as ( 8)

u t = -A -1 [u(Au) x + b(Au)u x ] ,
where

A = I - d 2
dx 2 is an invertible, linear, differential operator on C ∞ (S 1 ). As a quadratic evolution equation on the Lie algebra Vect ∞ (S 1 ), each member of the bfamily corresponds to a the Euler equation of a right invariant symmetric linear connection on Diff ∞ (S 1 ).

On a Fréchet manifold, only covariant derivatives along curves are meaningful. In the present case, the covariant derivative of the vector field

ξ(t) = ϕ(t), w(t) along the curve ϕ(t) ∈ Diff ∞ (S 1 ) is defined as Dξ Dt (t) = ϕ(t), w t + 1 2 [u(t), w(t)] + B u(t), w(t)
where

u(t) = ϕ t • ϕ -1 and B(u, w) = 1 2 A -1 [u(Aw) x + w(Au) x + b(Au)w x + b(Aw)u x ] .
This connection is Riemannian only for b = 2 (see [START_REF] Kolev | Some geometric investigations on the degasperis-procesi shallow water equation[END_REF]), that is for (CH). In that case it corresponds to the Levi-Civita connection of the right invariant metric on Diff ∞ (S 1 ) generated by the H 1 inner product on C ∞ (S 1 )

< u, v > H 1 = S 1 (uv + u x v x ) dx = S 1
uA(v) dx 3 Notice that this bracket differs from the usual bracket of vector fields by a sign.

where u, v ∈ C ∞ (S 1 ) and the operator

B(u, u) = A -1 [(Au x )u + 2(Au)u x ]
is defined as the H 1 -adjoint of the natural action ad

u v = u x v -uv x . That is S 1 (u x v -uv x )A(w) dx = S 1 B(w, u)A(v),
where u, v, w ∈ C ∞ (S 1 ).

Euler equation ( 8) is not an ordinary differential equation (ODE) on C n (S 1 ) because of the term (Au) x which is not regularized by the operator A -1 of order -2 (the right hand side of [START_REF]Geodesic flow on the diffeomorphism group of the circle[END_REF] does not belong to C n (S 1 )). As we shall show now, the introduction of Lagrangian coordinates allows to rewrite equation ( 8) as a second order vector field on the Banach manifold Diff n (S 1 ) for n ≥ 2.

Let J be an open interval in R and u be a time dependent vector field on J × S 1 of class C n (n ≥ 1). Then, the flow ϕ of u is defined on J × S 1 and is of class C n as well as ϕ t = u • ϕ. Conversely, let (ϕ, v) be defined, of class C n on J × S 1 and such that ϕ(t) is a diffeomorphism for all t ∈ J. Then ϕ -1 is of class C n on J × S 1 and similarly for u = v • ϕ -1 . Proposition 3. The C 3 time dependent vector field u is a solution of (8) if and only if (ϕ, v) is solution of

(9) ϕ t = v, v t = -P ϕ (v),
where

P ϕ = R ϕ • P • R ϕ -1 and P (u) = A -1 [3u x u xx + b(Au)u x ]
Proof. Let u be a time dependent vector field on J × S 1 and ϕ its flow. Let v := ϕ t = u • ϕ, then v t = (u t + uu x ) • ϕ. Therefore, u is a solution of equation ( 8) if and only if

u t + uu x = -A -1 [u(Au) x -A(uu x ) + b(Au)u x ] = -A -1 [3u x u xx + b(Au)u x ] .
That is u is a solution of equation ( 8) if and only if (ϕ, v) is a solution of equation ( 9).

Since P is a pseudo-differential operator of order 0, the mapping

F (ϕ, v) = v, P ϕ (v) sends Diff n (S 1 ) × C n (S 1 ) into C n (S 1 ) × C n (S 1
). Notice however, that since the trivialization T Diff n (S 1 ) ≃ Diff n (S 1 )×C n (S 1 ) is only topological and not smooth, equation ( 9) is meaningful only locally (strictly speaking, ϕ should be replaced by its lift f in this expression). In any case, F is a well-defined second order vector field on the Banach manifold Diff n (S 1 ).

Remark 6. By its very definition, F is equivariant by the right action of Diff n (S 1 ) on Diff n (S 1 ) × C n (S 1 ). That is

(10) F (ϕ • ψ, v • ψ) = F (ϕ, v) • ψ for all (ϕ, v) ∈ Diff n (S 1 ) × C n (S 1
) and ψ ∈ Diff n (S 1 ).

Theorem 4. The vector field

F : Diff n (S 1 ) × C n (S 1 ) → C n (S 1 ) × C n (S 1 )
is smooth for all n ≥ 2.

We cannot conclude directly from the smoothness of P that F is smooth because neither the composition nor the inversion are smooth maps on Diff n (S 1 ). The Banach manifold Diff n (S 1 ) is only a topological group. The main argument in the proof of Theorem 4 is the following lemma.

Lemma 5. Let P be a polynomial differential operator of order r on C ∞ (S 1 ), with constant coefficients. Then

P ϕ = R ϕ • P • R ϕ -1
is a polynomial differential operator of order r whose coefficients are rational functions of ϕ x , . . . ϕ (r)

x . Proof. It suffices to prove the lemma for a monomial

P (u) = u p 0 (u ′ ) p 1 • • • (u (r) ) pr .
We have

P ϕ (u) = u p 0 (u • ϕ -1 ) ′ • ϕ p 1 • • • (u • ϕ -1 ) (r) • ϕ pr . Let a k = (u • ϕ -1 ) (k) • ϕ, k = 1, 2, . . . Since a 1 = u x ϕ x , and 
a k+1 = 1 ϕ x (a k ) ′
the proof is achieved by a recursive argument.

Proof of Theorem 4. To prove the smoothness of F , we will show that for each n ≥ 2, the operator

P (ϕ, v) = ϕ, R ϕ • P • R ϕ -1 (v)
is a smooth map from Diff n (S 1 ) × C n (S 1 ) to itself. To do so, we write P as the composition P = Ã-1 • Q, where

Ã(ϕ, v) = ϕ, R ϕ • A • R ϕ -1 (v) and Q(ϕ, v) = ϕ, R ϕ • Q • R ϕ -1 (v)
where Q is the quadratic differential operator defined by

Q(u) := 3u x u xx + b(Au)u x .
By virtue of Lemma 5, both à and Q are smooth maps from Diff n (S 1 ) × C n (S 1 ) to Diff n (S 1 )×C n-2 (S 1 ), since the spaces C k (S 1 ) are Banach algebras.

To show that Ã-1 :

Diff n (S 1 ) × C n-2 (S 1 ) → Diff n (S 1 ) × C n (S 1
) is smooth, we compute the derivative of à at an arbitrary point (ϕ, v), obtaining

D Ã(ϕ, v) = Id 0 * R ϕ • A • R ϕ -1
which is clearly a bounded linear operator from C n (S 1 )×C n (S 1 ) to C n (S 1 )× C n-2 (S 1 ) by virtue of Lemma 5. It is moreover a topological linear isomorphism since it is bijective (open mapping theorem). The application of the inverse mapping theorem [START_REF] Lang | Fundamentals of differential geometry[END_REF] in Banach spaces achieves the proof.

Short time existence of the geodesics on Diff

∞ (S 1 )
From the smoothness of F and the Cauchy-Lipschitz theorem in Banach spaces (see [START_REF] Lang | Fundamentals of differential geometry[END_REF] for instance) we deduce existence of integral curves for the vector field F on Diff n (S 1 ) × C n (S 1 ). Proposition 6. Let n ≥ 2. Then there exists a open interval J n centered at 0 and an open ball B n (0, δ n ) in C n (S 1 ) such that for each u 0 ∈ B(0, δ n ) there exists a unique solution (ϕ, v) ∈ C ∞ J n , Diff n (S 1 )×C n (S 1 ) of ( 9) such that ϕ(0) = id and v(0) = u 0 . Moreover, the flow (ϕ, v) depends smoothly on (t, u 0 ).

Classical results like the Cauchy-Lipschitz theorem or the local inverse theorem for Banach spaces are no longer valid in general for Fréchet spaces. To establish a short time existence result in the C ∞ category, it is useful to introduce the notion of Banach approximation of Fréchet spaces. Definition 7. A Banach approximation of a Fréchet space X is a sequence of Banach spaces (X n , • n ) n≥0 such that

X 0 ⊇ X 1 ⊇ X 2 ⊇ • • • ⊇ X and X = ∞ n=0 X n
where { • n } n≥0 is a sequence of norms inducing the topology on X and

x 0 ≤ x 1 ≤ x 2 ≤ • • • for any x in X.
For Fréchet spaces admitting Banach approximations one has the following lemma. Lemma 8. Let X and Y be Fréchet spaces with Banach approximations (X n ) n≥0 , and (Y n ) n≥0 respectively. Let Φ 0 : U 0 → V 0 be a smooth map between the open subsets U 0 ⊂ X 0 and V 0 ⊂ Y 0 . Let U = U 0 ∩X, V = V 0 ∩Y and for each n ≥ 0

U n = U 0 ∩ X n , V n = V 0 ∩ Y n .
Assume that, for each n ≥ 0, the following properties are satisfied:

(1

) Φ 0 (U n ) ⊂ Y n , (2) the restriction Φ n := Φ 0   Un : U n → Y n is a smooth map. Then one has Φ 0 (U ) ⊂ V and the map Φ := Φ 0   U : U → V is smooth.
Proof. By property (1) we have Φ 0 (U ) ⊂ V and Φ = Φ 0   U : U → V is clearly continuous. Property (2) ensures that the Gâteaux derivative of Φ is well-defined for every u ∈ U and for any direction w in X and that (u, w) → DΦ(u)w is continuous. Inductively, property [START_REF] Arnold | Topological methods in hydrodynamics[END_REF] shows that Φ is of class C n for all n, and therefore is a smooth map.

A remarkable property of equation ( 1) whose interpretation remains mysterious (unless for b = 2 where it corresponds to the conservation of the momentum for metric Euler equations) is the following conservation law. Proposition 9. Let u be a solution of (1) of class C 3 on [0, T ] × S 1 and ϕ the flow of the time-dependent vector field u. Then we have

(m(t) • ϕ(t))ϕ b x (t) = m(0) for all t ∈ [0, T ].
Proof. We have

d dt (m • ϕ)ϕ b x = ϕ b x m t ϕ + (m x • ϕ)(u • ϕ) + b(m • ϕ)(u x • ϕ) since ϕ t = u • ϕ and ϕ xt = (u x • ϕ)ϕ x . Hence d dt (m • ϕ)ϕ b x = 0 if m t = -(m x u + bmu x ).
Lemma 10. Let (ϕ(t), v(t)) be a solution of (9) in Diff 3 (S 1 )×C 3 (S 1 ) defined on [0, T ] with initial data (id, u 0 ). Then we have for all t ∈ [0, T ] (11)

ϕ xx (t) = ϕ x (t) t 0 v(s)ϕ x (s) ds -m 0 t 0 ϕ x (s) 1-b ds and (12) v xx (t) = v x (t) t 0 v(s)ϕ x (s) ds -m 0 t 0 ϕ x (s) 1-b ds + ϕ x (t) v(t)ϕ x (t) -m 0 ϕ x (t) 1-b .
Proof. We have d dt

ϕ xx ϕ x = (u xx • ϕ)ϕ x since ϕ xt = (u x • ϕ)ϕ x and ϕ xxt = (u xx • ϕ)ϕ 2 x + (u x • ϕ)ϕ xx . Using Proposition 9, we get u xx • ϕ = u • ϕ -m 0 ϕ -b x and hence d dt ϕ xx ϕ x = (u • ϕ)ϕ x -m 0 ϕ 1-b x .
Integrating this last relation on the interval [0, t] leads to equation [START_REF] Degasperis | Asymptotic integrability, Symmetry and perturbation theory[END_REF] and taking the time derivative of (11) leads to equation [START_REF] Djebali | Existence de géodésiques d'un groupe de difféomorphismes muni d'une métrique de Sobolev[END_REF].

The meaning of Lemma 10 is that there can be "neither loss, nor gain" in spatial regularity: the solution at time t > 0 has exactly the same regularity as it has at time t = 0. Corollary 11. Let n ≥ 3 and let (ϕ, v) be a solution of [START_REF] Constantin | The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations[END_REF] in Diff 3 (S 1 ) × C 3 (S 1 ) with initial data (id, u 0 ).

(

) If u 0 ∈ C n 1 ) then (ϕ(t), v(t)) ∈ Diff n (S 1 )×C n (S 1 ) for all t ∈ [0, T ]. (2) If there exists t ∈ (0, T ] such that ϕ(t) ∈ Diff n (S 1 ) or v(t) ∈ C n (S 1 ) then u 0 ∈ C n (S 1 ). Proof. 1) Let n ≥ 3. From Lemma 10 we get that if (ϕ(t), v(t)) ∈ Diff n (S 1 )× C n (S 1 ) for all t ∈ [0, T ] and u 0 ∈ C n+1 (S 1 ) then (ϕ(t), v(t)) ∈ Diff n+1 (S 1 ) × C n+1 (S 1 1 
) for all t ∈ [0, T ]. A recursive argument completes the proof of the first assertion of the corollary.

2) Let n ≥ 3 and suppose that u 0 ∈ C n (S 1 ). Then, as we just verified, (ϕ(t), v(t)) ∈ Diff n (S 1 ) × C n (S 1 ) for all t ∈ [0, T ]. If moreover there exists t ∈ (0, T ] such that ϕ(t) ∈ Diff n+1 (S 1 ) or v(t) ∈ C n+1 (S 1 ), then since ϕ x is strictly positive, we get from Lemma 10 that u 0 ∈ C n+1 (S 1 ). Again, a recursive argument completes the proof of the second assertion of the corollary. We are know able to state our main theorem.

Theorem 12.

There exists an open interval J centered at 0 and δ > 0 such that for each u 0 ∈ C ∞ (S 1 ) with u 0 C 3 (S 1 ) < δ, there exists a unique solution (ϕ, v) ∈ C ∞ J, Diff ∞ (S 1 ) × C ∞ (S 1 ) of (9) such that ϕ(0) = id and v(0) = u 0 . Moreover, the flow (ϕ, v) depends smoothly (in the smooth category) on (t, u 0 ) in J × C ∞ (S 1 ).

Proof. By application of Proposition 6 for n = 3, we obtain the existence of an open interval J centered at 0 and an open ball U 3 = B 3 (0, δ) in C 3 (S 1 ) such that for each u 0 ∈ U 3 there exists a unique solution (ϕ, v) ∈ C ∞ J, Diff 3 (S 1 ) × C 3 (S 1 ) of ( 9) with initial data (id, u 0 ) and such that the flow Φ 3 :

J × U 3 → Diff 3 (S 1 ) × C 3 (S 1 ) is smooth. Let U n = U 3 ∩ C n (S 1 ) and U ∞ = U 3 ∩ C ∞ (S 1 ).
By Corollary 11, we have

Φ 3 (J × U n ) ⊂ Diff n (S 1 ) × C n (S 1 ),
for each n ≥ 3 and by Cauchy-Lipschitz theorem, the map

Φ n := Φ 3   J×Un : J × U n → Diff n (S 1 ) × C n (S 1
) is smooth. Therefore, applying Lemma 8, we get first that

Φ 3 (J × U ∞ ) ⊂ Diff ∞ (S 1 ) × C ∞ (S 1 )
which shows the short time existence in the smooth category and then that the map

Φ ∞ := Φ 3   J×U∞ : J × U ∞ → Diff ∞ (S 1 ) × C ∞ (S 1 )
is smooth, which shows the smooth dependence upon initial condition in this category. This achieves the proof.

In the smooth category, the map

Diff ∞ (S 1 ) × C ∞ (S 1 ) → C ∞ (S 1 ), (ϕ, v) → v • ϕ -1
is smooth and we immediately get the following corollary.

Corollary 13.

There exists an open interval J centered at 0 and δ > 0 such that for each u 0 C ∞ (S 1 ) with u 0 C 3 (S 1 ) < δ, there exists a unique solution u ∈ C ∞ J, C ∞ (S 1 ) of (1) such that u(0) = u 0 . Moreover, the solution u depends smoothly (in the smooth category) on (t, u 0 ) in J × C ∞ (S 1 ).

The exponential map

The geodesic flow of a symmetric linear connection on a Banach manifold M (also called a spray in [START_REF] Lang | Fundamentals of differential geometry[END_REF]) satisfies the following remarkable property ϕ(t, x 0 , sv 0 ) = ϕ(st, x 0 , v 0 ), like in the Riemannian case. This is in fact a consequence of the quadratic nature of the geodesic equation. Therefore, the exponential map exp x 0 , defined as the time one of the flow is well defined in a neighbourhood of 0 in T x 0 M for each point x 0 . On a Banach manifold, it can be shown moreover (see [START_REF] Lang | Fundamentals of differential geometry[END_REF] for instance) that the differential of exp x 0 at 0 is equal to id and therefore that exp x 0 is a local diffeomorphism from a neighbourhood of 0 in T x 0 M to a neighbourhood of x 0 in M . This privileged chart, called the normal chart plays a very special role in classical differential geometry, especially to establish convexity results.

On a Fréchet manifold and in particular on Diff ∞ (S 1 ), the existence of this privileged chart is far from being granted automatically. One may find useful to recall on this occasion that the group exponential of Diff ∞ (S 1 ) is not a local diffeomorphism [START_REF] Milnor | Remarks on infinite-dimensional Lie groups, Relativity, groups and topology[END_REF]. Moreover, the Riemannian exponential map for the L 2 metric (Burgers equation) on Diff ∞ (S 1 ) is not a local C 1diffeomorphism near the origin [START_REF] Constantin | On the geometric approach to the motion of inertial mechanical systems[END_REF].

However, it has been established in [START_REF] Constantin | On the geometric approach to the motion of inertial mechanical systems[END_REF], that for the Camassa-Holm equation -which corresponds to the Euler equation of the H 1 metric on Diff ∞ (S 1 ) -and more generally for H k metrics (k ≥ 1) (see [START_REF]Geodesic flow on the diffeomorphism group of the circle[END_REF]), the Riemannian exponential map was in fact a smooth local diffeomorphism. We extend this result here for the general b-equation (a non metric Euler equation).

Theorem 14. The exponential map exp at the unit element id for the bequation on Diff ∞ (S 1 ) is a smooth local diffeomorphism from a neighborhood of zero in Vect ∞ (S 1 ) to a neighborhood of id on Diff ∞ (S 1 ).

The proof of this theorem relies mainly on a linearized version of Lemma 10. Let n ≥ 3 and (ϕ ε (t), v ε (t)) be the local expression of an integral curve in T Diff n (S 1 ) of ( 9), defined on [0, T ], with initial data (id, u + εw), where u, w ∈ C n (S 1 ). We define

ψ(t) = ∂ ∂ε ε=0 ϕ ε (t).
Then ψ(t) = L n (t, u)w where L n (t, u) is a bounded linear operator of C n (S 1 ).

Lemma 15. Suppose u ∈ C n+1 (S 1 ). Then, we have

L n (t, u)(C n (S 1 )\C n+1 (S 1 )) ⊂ C n (S 1 )\C n+1 (S 1 ))
for all t ∈ (0, T ],

Proof. Writing [START_REF] Degasperis | Asymptotic integrability, Symmetry and perturbation theory[END_REF] for (ϕ ε (t), v ε (t)) and taking the derivative with respect to ε at ε = 0, we get 

ψ xx (t) = a(t)ψ x (t) + b(t)ψ(t) -c ( 
∈ C n (S 1 ) \ C n+1 (S 1 ) then ψ(t) = L n (t, u)w ∈ C n (S 1 ) \ C n+1 (S 1
), ∀t ∈ (0, T ], which achieves the proof of the lemma.

Proof of Theorem 14. First, we can find neighborhoods U 3 of 0 in C 3 (S 1 ) and V 3 of id in Diff 3 (S 1 ) such that

exp 3 : U 3 → V 3 is a smooth diffeomorphism (for the C 3 norm). For n ≥ 3, let U n = U 3 ∩ C n (S 1 ) and V n = V 3 ∩ Diff n (S 1 ).
By Corollary 11, exp 3 (U n ) = V n and exp n := exp 3

 

Un : U n → V n is a bijection. By virtue of the Cauchy-Lipschitz theorem in Banach spaces, exp n is smooth (for the C n norm). We are going to show that it is a diffeomorphism. For each u ∈ C n (S 1 ), Dexp n (u) is a bounded linear operator of C n (S 1 ). Notice that

Dexp n (u) = Dexp 3 (u)   C n (S 1 )
. It is therefore one-to-one. We now prove inductively that Dexp n (u) is surjective. For n = 3 this is so by our hypothesis. If it is true for 3 ≤ j ≤ n, then it true also for n + 1 (with u ∈ C n+1 (S 1 )) because of Lemma 15 and the fact that Dexp n (u) = L n (1, u). Therefore, according to the open mapping theorem, we get that for every n ≥ 3 and each u ∈ C n (S 1 ) Dexp n (u) : C n (S 1 ) → C n (S 1 ) is a topological linear isomorphism. Applying the inverse function theorem for exp n , we deduce that exp n is a diffeomorphism from U n to V n . Since this is true for all n ≥ 3, we conclude, using Lemma 8 that exp ∞ := exp 3   U∞ : U ∞ → V ∞ as well as exp -1 ∞ : V ∞ → U ∞ are smooth maps. That is exp ∞ is a diffeomorphism (in the smooth category) between U ∞ and V ∞ .

The non-periodic case

It would be interesting to extend the whole work done in this paper for the non-periodic case -that is for the group Diff ∞ (R) of smooth orientationpreserving diffeomorphisms of the real line. Unfortunately and contrary to Diff ∞ (S 1 ), this Fréchet Lie group is not regular as defined by Milnor in [START_REF] Milnor | Remarks on infinite-dimensional Lie groups, Relativity, groups and topology[END_REF]. In particular, not every of its Lie algebra, Vect ∞ (R) can be integrated into a one parameter subgroup.

In order to extend straightforwardly the present work, one needs therefore to restrict to a subgroup of Diff ∞ (R) which is a regular Fréchet Lie group. Moreover, the Fréchet space on which the differentiable structure is modeled must admit a Banach approximation, as defined in Section 5. And last but not least, these Banach spaces must be Banach algebras (for pointwise multiplication of functions) in order to prove Theorem 4.

One candidate was proposed in [START_REF] Michor | Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the Hamiltonian approach, Phase space analysis of partial differential equations[END_REF]. It consists of the subgroup of rapidly decreasing diffeomorphisms Diff S (R) = id + f ; f ∈ S(R) and f ′ > -1

where S(R) is the Schwartz space of rapidly decreasing functions. This group is a regular Fréchet Lie group (see [START_REF] Michor | Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the Hamiltonian approach, Phase space analysis of partial differential equations[END_REF]).

Another and simpler solution has been proposed in [START_REF] Djebali | Existence de géodésiques d'un groupe de difféomorphismes muni d'une métrique de Sobolev[END_REF]. It consists of the subgroup of Diff ∞ (R), defined as

Diff H ∞ (R) = id + f ; f ∈ H ∞ (R) and f ′ > -1
where

H ∞ (R) = +∞ n=1 H n (R)
and H n (R) are the Sobolev spaces on the line. It has been shown in [START_REF] Djebali | Existence de géodésiques d'un groupe de difféomorphismes muni d'une métrique de Sobolev[END_REF] that this group is a regular Fréchet Lie group and that the theory extends well, at least in the metric case. Notice that Diff S (R) ⊂ Diff H ∞ (R) and that this inclusion is strict.

Remark 7 .

 7 Proposition 9, Lemma 10 and Corollary 11 are of course true if we replace the time interval [0, T ] by [-T, 0].