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DISTRIBUTED SYNTHESIS FOR WELL-CONNECTED ARCHITECTURES

PAUL GASTIN, NATHALIE SZNAJDER, AND MARC ZEITOUN

Abstract. We study the synthesis problem for external linear or branching specifications
and distributed, synchronous architectures with arbitrary delays on processes. External means
that the specification only relates input and output variables. We introduce the subclass of
uniformly well-connected (UWC) architectures for which there exists a routing allowing each
output process to get the values of all inputs it is connected to, as soon as possible. We prove
that the distributed synthesis problem is decidable on UWC architectures if and only if the
output variables are totally ordered by their knowledge of input variables. We also show that
if we extend this class by letting the routing depend on the output process, then the previous
decidability result fails. Finally, we provide a natural restriction on specifications under which
the whole class of UWC architectures is decidable. Synthesis problem and Distributed systems
and Synchronous architectures.

1. Introduction

Synthesis is an essential problem in computer science introduced by Church [6]. It consists
in translating a system property which relates input and output events, into a low-level model
which computes the output from the input, so that the property is met. The property may
be given in a high level specification language (such as monadic second order logic) while the
low-level model can be a finite state machine. More generally, the problem can be parametrized
by the specification language and the target model.

The controller synthesis problem, in which a system is also part of the input, extends the
synthesis problem. The goal is to synthesize a controller such that the system, synchronized with
the controller, meets the given specification. Thus, the synthesis problem corresponds to the
particular case of the controller synthesis problem with a system having all possible behaviors.
Both problems have a classical formulation in terms of games. See for instance [27, 28] for a
presentation of relationships between two-player infinite games in an automata-theoretic setting,
and the synthesis problem. Both problems also have several variants. Let us review some of
them, in order to relate the contribution of the present paper to existing work.

1.1. Some variants of the synthesis problem.

Closed vs. open systems. Early approaches consider closed systems, in which there is no in-
teraction with an environment [7]. Synthesis has later been extended to open systems [22, 1],
that is, to systems interacting with an unpredictable environment. The goal is to enforce the
specification no matter how the environment acts. In this work, we consider open systems.
Centralized vs. distributed systems. A solution to Church’s problem for centralized systems
has been presented by Büchi and Landweber [5], for monadic second order specifications. A
distributed system is made up of several communicating processes. The additional difficulty
showing up with distributed systems is that the information acquired by each individual process
about the global state of the system is only partial. Indeed, data exchanges between processes
are constrained by a given communication architecture. For controller synthesis, the controller
itself is required to be distributed over the same communication architecture, so that each of its
components cannot have a complete knowledge of what happens. In this paper we also consider
distributed systems.

Partially supported by projects ARCUS Île-de-France/Inde, DOTS (ANR-06-SETIN-003), and P2R
MODISTE-COVER/Timed-DISCOVERI.
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Algorithms solving the synthesis problem with incomplete information are given in [12, 14, 3]
for branching-time logic specifications. Synthesis has also been studied for specifications in
the logic of knowledge and linear time, in [29] for systems with a single agent, and in [30] for
distributed systems. The game-theoretic framework remains useful in the distributed case [4].
Unifying several formalisms, [19] proposed the framework of distributed games, a specialized
variant of multiplayer games, to reason about distributed synthesis.
Synchronous vs. asynchronous systems. For distributed systems, two classical semantics have
been previously considered. In synchronous systems, there is a global clock, and each process
executes one computation step at each clock tick. In asynchronous systems, there is no such
global clock: each process behaves at its own speed. This paper considers synchronous systems.
Only a few cases for such systems have been identified as decidable. See [24, 15] where the
problem is studied for temporal logic specifications.
Full vs. local vs. external specifications. In addition to the specification language itself, another
natural parameter concerns the variables that a specification is allowed to refer to. Variables
are of three kinds: input variables carry the values provided by the environment. Output
variables are written by the system, and are not used for internal communication. Finally,
for a distributed system, there is a fixed number of variables, called internal, corresponding to
communication links between processes. We define three types of specifications:

• Full specifications are the most general ones: they may refer to any variable.
• External specifications only refer to input and output variables, but not to internal ones.
• Local specifications are Boolean combinations of p-local specifications, where p denotes

a process. For a given process p, a specification is said p-local if it only refers to variables
read or written by process p.

In this work, we use external specifications. Before discussing this choice and presenting our
contributions, let us review the most salient existing results on the synthesis problem.

1.2. Synthesis for distributed systems: related work. For asynchronous systems, synthe-
sis has first been studied in [23] for single-process implementations and linear-time specifications.
In [17], the synthesis problem in the distributed setting is proved decidable for trace-closed spec-
ifications, yet for a quite specific class of controllers. This result has been strengthened in [18],
where restrictions on the communication patterns of the controllers have been relaxed. Another
subclass of decidable systems, incomparable with the preceding one, has been identified in [10],
using an enhanced memory for controllers. The synthesis of asynchronous distributed systems in
the general case of µ-calculus specifications was studied in [9]. Also, the theory of asynchronous
automata has been applied in [26] to solve the synthesis problem of closed distributed systems.

For synchronous systems, undecidability is the point in common to most existing results.
This question has been first studied in [24], where synthesis has been proved undecidable for
LTL specifications and arbitrary architectures. For pipeline architectures (where processes are
linearly ordered and each process communicates to its right neighbor), synthesis becomes non
elementarily decidable for LTL specifications. The lower bound follows from a former result
on multiplayer games [21]. Even for local specifications, constraining only variables local to
processes, the problem is still undecidable for most communication architectures [16]. Synthesis
has been shown decidable for the pipeline architecture and CTL∗ full specifications [15]. A
decision criterion for full specifications has then been established in [8]. It implies that the
problem is undecidable for the architecture of Figure 1. The reason is that full specifications
make it possible to enforce a constant value on variable t, breaking the communication link
between processes p0 and p1.

1.3. Contributions. We address the synthesis problem for open distributed synchronous sys-
tems and temporal logic specifications. In contrast to the situation in the asynchronous setting,
most decidability results for synthesis of synchronous systems are negative. The goal of this
paper is to investigate relevant restrictions to obtain decidability. Undecidability often arises
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Figure 1. Architecture decidable/undecidable for external/full specifications.

when dealing with full specifications. For the rare positive statements, as for the pipeline archi-
tecture, allowing full specifications strengthen the decidability result [15]. On the other hand,
for the undecidability part of the criterion obtained in [8], allowing full specifications weak-
ens the result by yielding easy reductions to the basic undecidable architecture of Pnueli and
Rosner [24] (see Figure 1), for instance by breaking communication links at will.

In the seminal paper [24], specifications were assumed to be external, or input-output: only
variables communicating with the environment could be constrained. The way processes of
the system communicate was only restricted by the communication architecture, not by the
specification. This is very natural from a practical point of view: when writing a specification,
we are only concerned by the input/output behavior of the system and we should leave to the
implementation all freedom on its internal behavior. For that reason, solving the problem for
external specifications is more relevant and useful—albeit more difficult—than a decidability
criterion for arbitrary specifications. We will show that the synthesis problem is decidable for
the architecture of Figure 1 and external specifications, that is, if we do not constrain the
internal variable t.
Results. We consider the synthesis problem for synchronous semantics, where each process is
assigned a nonnegative delay. The delays can be used to model latency in communications,
or slow processes. This model has the same expressive power as the one where delays sit on
communication channels, and it subsumes both the 0-delay and the 1-delay classical semantics
[24, 15].

To rule out unnatural properties yielding undecidability, the specifications we consider are
external, coming back to the original framework of [24, 6]. In Section 3, we first determine
a sufficient condition for undecidability with external specifications, that generalizes the un-
decidability result of [24]. We next introduce in Section 4 uniformly well-connected (UWC)
architectures. Informally, an architecture is UWC if there exists a routing allowing each output
process to get, as soon as possible, the values of all inputs it is connected to. Using tree au-
tomata, we prove that for such architectures and external specifications, the sufficient condition
for undecidability becomes a criterion. (As already pointed out, synthesis may be undecidable
for full specifications while decidable for external ones.) We also propose a natural restriction
on specifications for which synthesis, on UWC architectures, becomes decidable. We call such
specifications robust specifications. Finally, we introduce in Section 5 the larger class of well-
connected architectures, in which the routing of input variables to an output process may depend
on that process. We show that our criterion is not a necessary condition anymore for this larger
class. The undecidability proof highlights the surprising fact that in Figure 1, blanking out a
single information bit in the transmission of x0 to p1 through t suffices to yield undecidability.
This is a step forward in understanding decidability limits for distributed synthesis. It remains
open whether the problem is decidable for robust external specifications and well-connected
architectures.

An extended abstract of this work appeared in [11].

2. Preliminaries

Trees and tree automata. Given two finite sets X and Y , a Y -labeled X-tree (also called full
tree) is a total function t : X∗ → Y where elements of X are called directions, and elements of
Y are called labels. A word σ ∈ X∗ defines a node of t and t(σ) is its label. The empty word ε
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Figure 2. An architecture with input variables u,w and output variables zij .

is the root of the tree. A word σ ∈ Xω is a branch. In the following, a tree t : X∗ → Y will be
called an (X,Y )-tree.

A non-deterministic tree automaton (NDTA) A = (X,Y,Q, q0, δ, α) runs on (X,Y )-trees. It

consists of a finite set of states Q, an initial state q0, a transition function δ : Q × Y → 2Q
X

and an acceptance condition α ⊆ Qω. A run ρ of such an automaton over an (X,Y )-tree t is an
(X,Q)-tree ρ such that ρ(ε) = q0, and for all σ ∈ X∗, (ρ(σ · x))x∈X ∈ δ(ρ(σ), t(σ)). The run ρ
is accepting if all its branches s1s2 · · · ∈ X

ω are such that ρ(ε)ρ(s1)ρ(s1s2) · · · ∈ α. The specific
acceptance condition chosen among the classical ones is not important in this paper.

Architectures. An architecture A = (V ⊎ P,E, (Sv)v∈V , s0, (dp)p∈P ) is a finite directed acyclic
bipartite graph, where V ⊎ P is the set of vertices, and E ⊆ (V × P ) ∪ (P × V ) is the set of
edges, such that |E−1(v)| ≤ 1 for all v ∈ V . Elements of P will be called processes and elements
of V variables. Intuitively, an edge (v, p) ∈ V × P means that process p can read variable v,
and an edge (p, v) ∈ P × V means that p can write on v. Thus, |E−1(v)| ≤ 1 means that a
variable v is written by at most one process. An example of an architecture is given in Figure 2,
where processes are represented by boxes and variables by circles. Input and output variables
are defined, respectively, by

VI = {v ∈ V | E−1(v) = ∅},

VO = {v ∈ V | E(v) = ∅}.

Variables in V \ (VI ∪ VO) will be called internal. We assume that no process is minimal or
maximal in the graph: for p ∈ P , we have E(p) 6= ∅ and E−1(p) 6= ∅.

Each variable v ranges over a finite domain Sv, given with the architecture. For U ⊆ V ,
we denote by SU the set

∏

v∈U S
v. A configuration of the architecture is given by a tuple

s = (sv)v∈V ∈ S
V describing the value of all variables. For U ⊆ V , we denote by sU = (sv)v∈U

the projection of the configuration s to the subset of variables U . The initial configuration is
s0 = (sv0)v∈V ∈ S

V .
We will assume that |Sv| ≥ 2 for all v ∈ V , because a variable v for which |Sv| = 1 always

has the same value and may be ignored. It will be convenient in some proofs to assume that
{0, 1} ⊆ Sv and that sv0 = 0 for all v ∈ V .

Each process p ∈ P is associated with a delay dp ∈ N that corresponds to the time interval
between the moment the process reads the variables v ∈ E−1(p) and the moment it will be able
to write on its own output variables. Note that delay 0 is allowed. In the following, for v ∈ V ,
we will often write dv for dp where E−1(v) = {p}.

Runs. A run of an architecture is an infinite sequence of configurations, i.e., an infinite word
over the alphabet SV , starting with the initial configuration s0 ∈ S

V given by the architecture.
If σ = s0s1s2 · · · ∈ (SV )ω is a run, then its projection on U ⊆ V is σU = sU0 s

U
1 s
U
2 · · · . Also,

we denote by σ[i, j] the factor si . . . sj and by σ[i] the prefix of length i of σ (by convention,
σ[i] = ε if i ≤ 0). A run tree is a full tree t : (SVI)∗ → SV , where t(ε) = s0 and for ρ ∈ (SVI)∗,
r ∈ SVI , we have t(ρ · r)VI = r. The projection of t on U ⊆ V is the tree tU : (SVI)∗ → SU

defined by tU (ρ) = t(ρ)U .
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Specifications. Specifications over a set U ⊆ V of variables can be given, for instance, by a µ-
calculus, CTL∗, CTL, or LTL formula, using atomic propositions of the form (v = a) with v ∈ U
and a ∈ Sv. We then say that the formula is in L(U) where L is the logic used. Specifications
over U are external if U ⊆ VI ∪ VO. The validity of an external formula on a run tree t (or
simply a run) only depends on its projection tVI∪VO onto VI ∪ VO.

Programs, strategies. We consider a discrete time, synchronous semantics. Informally, at step
i = 1, 2, . . ., the environment provides new values for input variables. Then, each process p
reading values written by its predecessors or by the environment at step i−dp, computes values
for the variables in E(p), and writes them. Let v ∈ V \ VI and let R(v) = E−2(v) be the
set of variables read by the process writing to v. Intuitively, from a word σR(v) in (SR(v))+

representing the projection on R(v) of some run prefix, a program (or a strategy) advises a
value to write on variable v. But, since the process may have a certain delay dv, the output of
the strategy must not depend on the last dv values of σR(v).

Formally, a program (or local strategy) for variable v is a mapping f v :
(

SR(v)
)+
→ Sv

compatible with the delay dv, i.e., such that for all σ, σ′ ∈ (SR(v))i, if σ[i − dv] = σ′[i − dv],
then f v(σ) = f v(σ′). This condition – called delay-compatibility or simply d-compatibility
– ensures that the delay dv is respected when computing the next value of variable v. A
distributed program (or distributed strategy) is a tuple F = (f v)v∈V \VI

of local strategies. A run

σ = s0s1s2 · · · ∈ (SV )ω is an F -run (or is F -compatible) if for all v ∈ V \ VI and all i > 0,

svi = f v(σR(v)[i]). Given an input sequence ρ ∈ (SVI)ω, there is a unique run σ ∈ (SV )ω which
is F -compatible and such that σVI = ρ.

The F -run tree is the run tree t : (SVI)∗ → SV such that each branch is labeled by a word
s0s1s2 · · · ∈ (SV )ω which is an F -run. Note that, in an F -run σ ∈ (SV )ω, the prefix σ[i] only
depends on the prefix σVI [i]. This shows that the F -run tree is unique.

Distributed synthesis problem. Let L be a specification language. The distributed synthesis
problem for an architecture A is the following: given a formula ϕ ∈ L, decide whether there
exists a distributed program F on A such that every F -run (or the F -run tree) satisfies ϕ. We
will then say that F is a distributed implementation for the specification ϕ. If for some archi-
tecture the synthesis problem is undecidable, we say that the architecture itself is undecidable
(for the specification language L).

Memoryless strategies. The strategy f v is memoryless if it does not depend on the past, that is,
if there exists g : SR(v) → Sv such that f v(s0 · · · si · · · si+dv) = g(si) for s0 · · · si+dv ∈ (SR(v))+.
In case dv = 0, this corresponds to the usual definition of a memoryless strategy.

Summaries. For a variable v ∈ V , we let View(v) = (E−2)∗(v)∩VI be the set of input variables
v might depend on. Observe that if σ is an F -run, then for all v ∈ V \ VI, for all i ≥ 0, svi only

depends on σView(v)[i]. This allows us to define the summary f̂ v : (SView(v))+ → Sv such that

f̂ v(σView(v)[i]) = svi , corresponding to the composition of all local strategies used to compute v.

Smallest cumulative delay. Throughout the paper, the notion of smallest cumulative delay of
transmission from u to v will extensively be used. It is defined by d(u, u) = 0, d(u, v) = +∞ if
v /∈ (E2)+(u), i.e., if there is no path from u to v in the architecture, and for u 6= v ∈ (E2)+(u)

d(u, v) = dv + min{d(u,w) | w ∈ R(v) and w ∈ (E2)+(u)} .

d-compatibility for summaries. The compatibility of the strategies F = (f v)v∈V \VI
with the

delays extends to the summaries F̂ = (f̂ v)v∈V \VI
. Formally, a map h : (SView(v))+ → Sv is

d-compatible (or compatible with the delays (dv)v∈V \VI
) if for all ρ ∈ (SView(v))i, h(ρ) only

depends on the prefixes (ρu[i − d(u, v)])u∈View(v).
5
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Figure 3. Architectures A and A′

3. Architectures with incomparable information

In this section, we state a sufficient condition for undecidability; this relies on an easy gener-
alization of the undecidable architecture presented in [24].

Definition 3.1. An architecture has incomparable information if there exist variables x, y ∈ VO

such that View(x) \ View(y) 6= ∅ and View(y) \ View(x) 6= ∅. Otherwise the architecture has
linearly preordered information.

For instance, the architectures of Figures 1, 2, 5 and 6 have linearly preordered information,
while the architecture A′ of Figure 3 has incomparable information. The following proposition
extends the undecidability result of [24, 8].

Proposition 3.2. Architectures with incomparable information are undecidable for LTL or CTL
external specifications.

In [24], the architecture A′ shown in Figure 3 is proved undecidable, both for LTL and
CTL specifications. We will reduce the synthesis problem of A′ to the synthesis problem of an
architecture with incomparable information. This reduction is rather natural but not completely
straightforward, for instance the specification needs to be changed in the reduction. For the
sake of completeness, we give a precise proof of the reduction in the rest of this section.

Let A = (P ⊎ V,E, (Sv)v∈V , s0, (dp)p∈P ) be an architecture with incomparable information.
Without loss of generality, we assume that sv0 = 0 for all v ∈ V . By definition, we find
x0, y0 ∈ VI and xn, ym ∈ VO such that x0 /∈ View(ym) and y0 /∈ View(xn). Consider paths
x0 E

2 x1 E
2 . . . E2 xn from x0 to xn, and y0 E

2 y1 E
2 . . . E2 ym from y0 to ym such that

d(x0, xn) = dx1 + · · · + dxn and d(y0, ym) = dy1 + · · · + dym . Note that the sets of variables
{x0, . . . , xn} and {y0, . . . , ym} are disjoint.

Let A′ = (P ′ ⊎ V ′, E′, (S′v)v∈V ′ , s
′
0, (d

′
p)p∈P ′) be the architecture of Figure 3 with VI

′ =

{x0, y0}, VO
′ = {xn, ym}; with unchanged domains for output variables: S′xn = Sxn and S′ym =

Sym ; with S′x0 = S′y0 = {0, 1} as domain for input variables; and with s′0 = sV
′

0 . The delays
for xn and ym are the smallest cumulative delays of transmission from x0 to xn and y0 to ym
as defined earlier: d′xn = d′p = d(x0, xn) and d′ym = d′q = d(y0, ym).

The architecture A′ is undecidable for LTL or CTL specifications (it suffices to adapt the
proofs of [24, 8] taking into account different delays on processes). We reduce the distributed
synthesis problem for A′ to the same problem for A. We first consider CTL specifications.

Note that we do need to modify the specification when reducing the distributed synthesis
problem from A′ to A. Indeed, observe that the specification

ψ = EG((x0 = 0) ∧ (xn = 0)) ∧ EG((x0 = 0) ∧ (xn = 1))

is not implementable over A′ whereas it is implementable over A, provided View(xn)\{x0} 6= ∅
and assuming no delays.

To define an implementation F ′ over A′ given an implementation F over A, we simulate
the behavior of F when all variables in VI \ VI

′ are constantly set to 0. This will be enforced
when defining the reduction of the specification from A′ to A, using the formula χ = (x0 ∈
{0, 1}) ∧ (y0 ∈ {0, 1}) ∧

∧

v∈VI\VI
′(v = 0). We define a reduction that maps a formula ψ of
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Figure 4. Simulation of f ′xn by fxn .

CTL(V ′) into a formula ψ in CTL(VI ∪ VO) that ensures ψ only on the subtree of executions
respecting χ. This reduction is defined by

(x = s) = (x = s) ¬ψ = ¬ψ

ϕ ∨ ψ = ϕ ∨ ψ EXψ = EX(χ ∧ ψ)

Eϕ U ψ = E(χ ∧ ϕ) U (χ ∧ ψ) EGψ = EG(χ ∧ ψ).

We use the following notation: for r ∈ S′VI
′

, we define r̄ ∈ SVI by r̄VI
′

= r and r̄v = 0 for
all v ∈ VI \ VI

′, and we extend this definition to words (with ε̄ = ε). This allows us to fix the

run tree t̃ : (S′VI
′

)∗ → SV
′

over A′ that corresponds to a run tree t : (SVI)∗ → SV over A:

t̃(ρ) = t(ρ̄)V
′

for ρ ∈ (S′VI
′

)∗. The reduction of the formula is correct in the following sense:

Lemma 3.3. For every formula ψ ∈ CTL(V ′), every tree t : (SVI)∗ → SV , and every ρ ∈

(S′VI
′

)∗ we have t, ρ̄ |= ψ if and only if t̃, ρ |= ψ.

Proof. By an easy induction on ψ. Let t : (SVI)∗ → SV and ρ ∈ (S′VI
′

)∗. When ψ = (x = s) for
some x ∈ V ′ and s ∈ Sx, the result follows from t̃(ρ)x = t(ρ̄)x. The cases of boolean connectives
are trivial. So let ψ = Eψ1 U ψ2 and assume that t, ρ̄ |= ψ. Then we find s1 · · · sn ∈ (SVI)∗

such that t, ρ̄ · s1 · · · sn |= χ ∧ ψ2 and t, ρ̄ · s1 · · · si |= χ ∧ ψ1 for all 0 ≤ i < n. Since si |= χ,

we deduce that si = ri for ri = sVI
′

i ∈ S
′VI
′

. By induction we obtain t̃, ρ · r1 · · · rn |= ψ2 and
t̃, ρ ·r1 · · · ri |= ψ1 for all 0 ≤ i < n. Therefore, t̃, ρ |= ψ. The converse implication can be shown
similarly.

The cases EX and EG are left to the reader. �

Now we prove the reduction:

Lemma 3.4. If there is a distributed program F ′ over A′ that satisfies ψ, then there is a
distributed program F over A that satisfies ψ.

Proof. Let F ′ = (f ′xn , f ′ym) be a distributed implementation for ψ over A′. We will define a
distributed strategy F = (f v)v∈V for ψ over A so that the projection on V ′ of any F -run will
be an F ′-run. More precisely, if σ ∈ (SV )+ is a prefix of an F -run with σx0 ∈ {0, 1}+, then the
following will hold:

(1) fxn(σR(xn)) = f ′xn(σx0)

and similarly for (y0, ym).
To do so, we use the variables x1, . . . , xn−1 to transmit the value of x0 through the architec-

ture. Formally, at each step, fxk copies the last value of xk−1 it can read – the one that was
written dxk steps before: for 0 < k < n and τ ∈ (SR(xk))+, we define

fxk(τ) =

{

sxk−1 if τ = τ1sτ2 with |τ2| = dxk and sxk−1 ∈ {0, 1},

0 otherwise.

By definition, fxk is clearly compatible with the delay dxk . It is easy to check that if we provide
ρ ∈ {0, 1}ω as input on x0 and follow the strategies (fxk) above then we get on xn−1 the outcome

0d(x0,xn−1)ρ corresponding to the shift by d(x0, xn−1) = d′xn − dxn .
In order to satisfy (1), the last strategy fxn simulates f ′xn taking into account the shift by

d′xn − dxn of their respective inputs. To explain the definition of fxn , consider σ ∈ (SV )+
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compatible with (fxk)0<k<n and such that σx0 ∈ {0, 1}+. If |σ| ≤ d′xn then f ′xn(σx0) does not

depend on σ so we define fxn(σR(xn)) = f ′xn(0|σ|) = f ′xn(σx0) so that (1) holds. Assume now
that σ = σ1σ2σ3 with |σ1| = d′xn − dxn , |σ3| = dxn . Note that f ′xn(σx0) only depends on the

prefix of σx0 of length |σ2| which is precisely σ
xn−1

2 due to the shift induced by the strategies

(fxk)0<k<n (see Figure 4). Hence, in this case, we define fxn(σR(xn)) = f ′xn(σ
xn−1

2 0d
′

xn ) =
f ′xn(σx0) in order to get (1) again. The formal definition of fxn is given for arbitrary τ ∈
(SR(xn))+ by

fxn(τ) =























f ′xn(0|τ |) if |τ | ≤ d′xn ,

f ′xn(τ
xn−1

2 0d
′

xn ) if τ = τ1τ2τ3 with |τ1| = d′xn − dxn , |τ3| = dxn
and τ

xn−1

2 ∈ {0, 1}+,

0 otherwise.

By definition, fxn is clearly compatible with the delay dxn . Also, we have explained that (1)
holds with this definition of (fxk)0<k≤n. For 0 < k ≤ m, we define similarly fyk and for every
other variable v, we set f v = 0. The resulting distributed strategy F = (f v)v∈V is indeed
compatible with the delays. It remains to show that F is a distributed implementation for ψ
over A.

Let t : (SVI)∗ → SV be the F -run tree over A. We show below that t̃ : (S′VI
′

)∗ → SV
′

is in
fact the F ′-run tree over A′. Then, since F ′ is a distributed implementation of ψ, we deduce
t̃, ε |= ψ, and Lemma 3.3 implies t, ε |= ψ. Hence F is a distributed implementation of ψ.

First, it is easy to see that t̃ is a run-tree over A′: t̃(ε) = t(ε̄)V
′

= sV
′

0 = s′0, and for ρ ∈ (S′VI
′

)∗

and r ∈ S′VI
′

we have t̃(ρ · r)VI
′

= t(ρ̄ · r̄)VI
′

= r̄VI
′

= rVI
′

. Next, to show that t̃ is the F ′-run

tree, we have to check that t̃(ρ)xn = f ′xn(ρx0) for each ρ = r1 · · · ri ∈ (SVI
′

)+ and similarly for
(y0, ym). Let σ ∈ (SV )+ be the F -run induced by ρ̄: σ = t(ε)t(r̄1)t(r̄1r̄2) · · · t(ρ̄). Using (1) we

obtain t̃(ρ)xn = t(ρ̄)xn = fxn(σR(xn)) = f ′xn(σx0) = f ′xn(ρx0). Using the same arguments, we
also obtain that t̃(ρ)ym = f ′ym(ρy0), and that t̃ is the F ′-run tree. �

Lemma 3.5. If there is a distributed program F over A that satisfies ψ, then there is a dis-
tributed program F ′ over A′ that satisfies ψ.

Proof. Suppose F = (f v)v∈V \VI
is a distributed implementation of ψ over A. We need to define

the strategies f ′xn : (S′x0)+ → Sxn and f ′ym : (S′y0)+ → Sym of the variables in A′. The
difficulty here is that f ′xn may have less input variables than fxn so it cannot simply simulate
it. To overcome this, we use the fact that, due to the special form of ψ, the F -run tree t satisfies
ψ if and only if the sub-tree restricted to branches where all input variables other than x0 and
y0 are always 0 also satisfies ψ. So the processes of A′ will behave like the processes of A writing
respectively on xn and ym in the special executions when the values of input variables other
than x0 and y0 are always 0.

Formally, for ρ ∈ (S′VI
′

)+, we set f ′xn(ρx0) = f̂xn(ρ̄View(xn)). Observe that, due to incom-

parable information, f̂xn does not depend on ρ̄y0 . Hence f ′xn only depends on ρx0 and is a
correct strategy for variable xn in the architecture A′. Moreover, f̂xn is d-compatible and so
f ′xn is d′-compatible. We define f ′ym similarly. It is easy to check that F ′ = (f ′xn , f ′ym) is a
distributed implementation of ψ over A′: let t be the F -run tree and t′ be the F ′-run tree. We
have t′(ρ)xn = f ′xn(ρx0) = f̂xn(ρ̄View(xn)) = t(ρ̄)xn = t̃(ρ)xn and similarly, t′(ρ)ym = t̃(ρ)ym .
Hence t′ = t̃ and since t, ε |= ψ, Lemma 3.3 implies that t̃, ε |= ψ and F ′ is a distributed
implementation of ψ on A′. �

We consider the reduction for LTL specifications. In this case, the specification over A only
needs to ensure ψ when the input values on x0 and y0 are in the domain allowed by A′. We use
the reduction

ψ = (G ξ)→ ψ

where the formula ξ is defined by ξ = (x0 ∈ {0, 1}) ∧ (y0 ∈ {0, 1}).
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The same constructions as the ones described in the proofs of Lemma 3.4 and Lemma 3.5 yield
the reduction. Indeed, let F ′ be a distributed implementation of ψ over A′, and let F be defined
as in the proof of Lemma 3.4. Let ρ ∈ (SVI)ω be an input sequence and σ = s0s1s2 · · · ∈ (SV )ω be
the induced F -run. If ρx0 /∈ {0, 1}ω or ρy0 /∈ {0, 1}ω then σ, ε 6|= G ξ. Otherwise, by equation (1),
we get for all i > 0, sxni = fxn(σR(xn)[i]) = f ′xn(σx0 [i]) and symi = fym(σR(ym)[i]) = f ′ym(σy0 [i]).

Then σV
′

is an F ′-run, and σV
′

, ε |= ψ. Since ψ ∈ LTL(V ′) we deduce σ, ε |= ψ. We obtain that
any F -run σ is such that σ, ε |= (G ξ)→ ψ, and F is a distributed implementation of ψ over A.

Conversely, given F a distributed implementation of ψ over A, define F ′ as in the proof of
Lemma 3.5. Let ρ ∈ (S′VI

′

)ω be an input sequence and σ = s0s1s2 · · · ∈ (SV )ω be the F -run
induced by ρ̄. By definition of ρ̄, we have σ, ε |= G ξ and since F is a distributed implementation

of ψ we get σ, ε |= ψ. Again, ψ ∈ LTL(V ′) implies that σV
′

, ε |= ψ. Given that σV
′

is in fact the
F ′-run induced by ρ (this is immediate from the definition of f ′xn and f ′ym), F ′ is a distributed
implementation of ψ over A′.

We have defined a reduction from the distributed synthesis problem over the architecture
A′ to the distributed synthesis problem over an architecture with incomparable information,
for LTL or CTL specifications. Since the synthesis problem is undecidable both for LTL and
CTL specifications over A′, we obtain its undecidability for architectures with incomparable
information.

4. Uniformly well-connected architectures

This section introduces the new class of uniformly well-connected (UWC) architectures and
provides a decidability criterion for the synthesis problem on this class. It also introduces
the notion of robust specification and shows that UWC architectures are always decidable for
external and robust specifications.

4.1. Definition. A routing for an architecture A = (V ⊎P,E, (Sv)v∈V , s0, (dp)p∈P ) is a family
of memoryless local strategies Φ = (f v)v∈V \(VI∪VO). Observe that a routing does not include
local strategies for output variables. Informally, we say that an architecture is uniformly well
connected if there exists a routing Φ that makes it possible to transmit with a minimal delay
to every process p writing to an output variable v, all the values of the variables in View(v).

Definition 4.1. An architecture A is uniformly well-connected (UWC) if there exist a routing

Φ and, for every v ∈ VO and u ∈ View(v), a decoding function gu,v :
(

SR(v)
)+
→ Su that

can reconstruct the value of u, i.e., such that for any Φ-compatible sequence σ = s0s1s2 · · · ∈
(

SV \VO
)+

, we have for i ≥ 0

(2) sui = gu,v(σR(v)[i+ d(u, v) − dv])

In case there is no delay, the uniform well-connectedness refines the notion of adequate
connectivity introduced by Pnueli and Rosner in [24], as we no longer require each output
variable to be communicated the value of all input variables, but only of those belonging to its
view. In fact, this gives us strategies for internal variables, that are simply to route the input
to the processes writing on output variables.

Observe that, whereas the routing functions are memoryless, memory is required for the
decoding functions. Indeed, consider the architecture of Figure 5. The delays are written
next to the processes, and all variables range over the domain {0, 1}. Observe first that this
architecture is UWC: process p writes to t the xor of u1 and u2 with delay 1. This could
be written t = Y u1 ⊕ Y u2 where Y x denotes the previous value of variable x. In order to
recover (decode) Y u2, process q1 memorizes the previous value of u1 and makes the xor with
t: Y u2 = t⊕ Y u1. But if we restrict to memoryless decoding functions, then we only know u1

and t and we cannot recover Y u2.
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u1 u2

p 1

t

q1 0 q20

v1 v2

Figure 5. A uniformly well-connected architecture

4.2. Decision criterion for UWC architectures. We first show that distributed programs
are somewhat easier to find in a UWC architecture. As a matter of fact, in such architectures,
to define a distributed strategy it suffices to define a collection of input-output strategies that
respect the delays given by the architecture.

Lemma 4.2. Let A = (V ⊎P,E, (Sv)v∈V , s0, (dp)p∈P ) be a UWC architecture. For each v ∈ VO,

let hv : (SView(v))+ → Sv be an input-output mapping which is d-compatible. Then there exists

a distributed program F = (f v)v∈V \VI
over A such that hv = f̂ v for all v ∈ VO.

Proof. Let Φ = (f v)v∈V \(VI∪VO) and (gu,v)v∈VO,u∈View(v) be respectively the routing and the
decoding functions giving the uniform well-connectedness of the architecture A. We use the
routing functions f v as memoryless strategies for the internal variables v ∈ V \ (VI ∪ VO).

It remains to define f v for v ∈ VO. Let ρ ∈ (SVI)i for i > 0 and let σ ∈ (SV \VO)i be the
corresponding Φ-compatible sequence. For v ∈ VO, we want to define f v such that f v(σR(v)) =

hv(ρView(v)). We need to verify that this is well-defined.

Let i > 0 and ρ, ρ′ ∈ (SVI)i. Let σ, σ′ ∈ (SV \VO)i be the corresponding Φ-compatible

sequences, and assume σR(v)[i− dv ] = σ′R(v)[i− dv]. Then, for all u ∈ View(v), ρu[i− d(u, v)] =

ρ′u[i− d(u, v)]. Indeed, for all 0 ≤ j ≤ i− d(u, v), we have suj = gu,v(σR(v)[j + d(u, v)− dv ]) and

s′uj = gu,v(σ′R(v)[j + d(u, v)− dv]) by (2). Using σR(v)[i− dv] = σ′R(v)[i− dv] and j + d(u, v) ≤ i

we get suj = s′uj as desired. Since hv is d-compatible, we deduce that hv(ρView(v)) = hv(ρ′View(v)).

Hence for τ ∈ (SR(v))i with i > 0, we can define

f v(τ) =















hv(σView(v)) if τ [i− dv] = σR(v)[i− dv] for some

Φ-compatible sequence σ

0 otherwise

By the above, f v is well-defined and obviously it depends only on τ [i − dv ]. Thus, it is indeed
d-compatible. Now, let ρ ∈ (SVI)+, and let σ be the F -run induced by ρ. We get, by definition

of summaries, f̂ v(ρView(v)) = f v(σR(v)). Since σV \VO is also a Φ-compatible sequence for ρ, we

have f̂ v(ρView(v)) = f v(σR(v)) = hv(ρView(v)). �

We now give a decision criterion for this specific subclass of architectures.

Theorem 4.3. A UWC architecture is decidable for external (linear or branching) specifications
if and only if it has linearly preordered information.

We have already seen in Section 3 that incomparable information yields undecidability of the
synthesis problem for LTL or CTL external specifications. We prove now that, when restricted
to the subclass of UWC architectures, this also becomes a necessary condition.

We assume that the architecture A is UWC and has linearly preordered information, and
therefore we can order the output variables VO = {v1, . . . , vn} so that View(vn) ⊆ · · · ⊆
View(v1) ⊆ VI.
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In the following, in order to use tree-automata, we extend a local strategy f : (SX)+ → SY

by letting f(ε) = sY0 , so that it becomes an (SX , SY )-tree. We proceed in two steps. First,
we build an automaton accepting all the global input-output 0-delay strategies implementing
the specification. A global input-output 0-delay strategy for A is an (SView(v1), SVO)-tree h

satisfying h(ε) = sVO
0 . This first step is simply the program synthesis for a single process with

incomplete information (since we may have View(v1) ( VI). This problem was solved in [13] for
CTL∗ specifications.

Proposition 4.4 ([13, Th. 4.4]). Given an external specification ϕ ∈ CTL∗(VI ∪ VO), one
can build a non-deterministic tree automaton (NDTA) A1 over (SView(v1), SVO)-trees such that
h ∈ L(A1) if and only if the run tree induced by h satisfies ϕ.

If L(A1) is empty then we already know that there are no distributed implementations for
the specification ϕ over A. Otherwise, thanks to Lemma 4.2, we have to check whether for each
v ∈ VO there exists an (SView(v), Sv)-tree hv which is d-compatible and such that the global
strategy

⊕

v∈VO
hv induced by the collection (hv)v∈VO

is accepted by A1. Formally, the sum of
strategies is defined as follows. Let X = X1∪X2 ⊆ VI and Y = Y1⊎Y2 ⊆ VO, and for i = 1, 2 let
hi be an (SXi , SYi)-tree. We define the (SX , SY )-tree h = h1⊕h2 by h(σ) = (h1(σX1), h2(σX2))
for σ ∈ (SX)∗.

To check the existence of such trees (hv)v∈VO
, we will inductively eliminate the output vari-

ables following the order v1, . . . , vn. It is important that we start with the variable that views
the largest set of input variables, even though, due to the delays, it might get the information
much later than the remaining variables. Let Vk = {vk, . . . , vn} for k ≥ 1. The induction step
relies on the following statement.

Proposition 4.5. Let 1 ≤ k < n. Given a NDTA Ak accepting (SView(vk), SVk)-trees, one can
build a NDTA Ak+1 accepting (SView(vk+1), SVk+1)-trees, such that a tree t is accepted by Ak+1 if

and only if there exists an (SView(vk), Svk)-tree hvk which is d-compatible and such that hvk ⊕ t
is accepted by Ak.

The proof of Proposition 4.5 is split in two steps. Since Vk = {vk} ⊎ Vk+1, we have t =
tvk ⊕ tVk+1 for each (SView(vk), SVk)-tree t (recall that tU is the projection of t on U). So one
can first transform the automaton Ak into A

′
k that accepts the trees t ∈ L(Ak) such that tvk is

d-compatible (Lemma 4.6). Then, one can build an automaton that restricts the domain of the

directions and the labeling of the accepted trees to SView(vk+1) and SVk+1 respectively.

Lemma 4.6. Let v ∈ U ⊆ VO. Given a NDTA A over (SView(v), SU )-trees one can build

a NDTA A
′ = compatv(A) also over (SView(v), SU )-trees such that L(A′) = {t ∈ L(A) |

tv is d-compatible}.

Proof. Intuitively, to make sure that the function tv is d-compatible, the automaton A
′ will

guess in advance the values of tv and then check that its guess is correct. The guess has
to be made K = max{d(u, v), u ∈ View(v)} steps in advance and consists in a d-compatible
function g : (SView(v))K → Sv that predicts what will be K steps later the values of variable

v. During a transition, the guess is sent in each direction r ∈ SView(v) as a function r−1g
defined by (r−1g)(σ) = g(rσ) which is stored in the state of the automaton. Previous guesses
are refined similarly and are also stored in the state of the automaton so that the new set of
states is Q′ = Q×F where F is the set of d-compatible functions f : (SView(v))<K → Sv, where
Z<K =

⋃

i<K Z
i. The value f(ε) is the guess that was made K steps earlier and has to be

checked against the current value of v in the tree.
To formalize this, we define the (transition) function ∆ : F × SView(v) → 2F by

∆(f, r) = {f ′ | f ′(σ) = f(rσ) for |σ| < K − 1} .

Intuitively, if we are in state (q, f) ∈ Q×F at some node τ and move in direction r ∈ SView(v)

then ∆(f, r) computes the set of functions in F that could label the node τ · r. Observe that f ′

is determined by f and r for any σ such that |σ| < K − 1 and corresponds to the specialization
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of f according to the new direction r. The functions f ′ ∈ ∆(f, r) differ only on values f ′(σ) for
|σ| = K − 1 which correspond to the new guesses.

Now, the transition function of A
′ is defined for (q, f) ∈ Q′ and s ∈ SU only if sv = f(ε) (this

ensures that the guess made K steps earlier was correct) and sends in each direction r ∈ SV iew(v)

of the tree a copy of the automaton in the state (qr, gr) where qr corresponds to the simulation
of a run of A and gr ∈ ∆(f, r). Formally, if sv = f(ε) then

δ′
(

(q, f), s
)

=

{

(qr, gr)r∈SView(v)

∣

∣

∣

(qr)r∈SView(v) ∈ δ(q, s) and

gr ∈ ∆(f, r) for all r ∈ SView(v)

}

.

Finally, the set of initial states of A
′ is I ′ = {q0}×F and α′ = π−1(α) where π : (Q×F)ω → Qω

is the projection on Q, i.e., a run of A
′ is successful if and only if its projection on Q is a successful

run of A.
Let t be an (SView(v), SU )-tree accepted by A and suppose that tv is d-compatible. Let

ρ : (SView(v))∗ → Q be an accepting run of A over t. There is a unique way to extend ρ to a

run ρ′ : (SView(v))∗ → Q×F of A
′ over t. The only possibility is to label a node τ ∈ (SView(v))∗

by the map fτ : (SView(v))<K → Sv defined by fτ (σ) = tv(τσ) for σ ∈ (SV iew(v))<K so that all
guesses are correct. Since tv is d-compatible, we deduce that fτ is also d-compatible, hence it
belongs to F . Then we can define the run ρ′ by ρ′(τ) =

(

ρ(τ), fτ
)

for τ ∈ (SView(v))∗. We show

that it is an accepting run of A′ over t. First, we prove that at each node τ ∈ (SView(v))∗ the

transition function δ′ is satisfied. Let (q, fτ ) = ρ′(τ) and (qr, fτr) = ρ′(τr) for all r ∈ SView(v).
By definition, fτ (ε) = tv(τ) and δ′((qr, fτr), t(τ)) is defined. Now, since π(ρ′) = ρ which is
a run of A over t we have (qr)r∈SView(v) ∈ δ(q, t(τ)). It remains to show that fτr ∈ ∆(fτ , r)

for all r ∈ SView(v). This is obvious from the definitions: fτr(σ) = tv(τrσ) = fτ (rσ) for

σ ∈ (SV iew(v))<K−1. Finally, the run ρ′ is successful since its projection on Q is ρ which is
successful.

Conversely, suppose there is a successful run ρ′ of A
′ over t. We need to show that tv is d-

compatible and that t ∈ L(A). Let ρ′ :
(

SView(v)
)∗
→ Q×F be such a run. We have ρ′ = (ρ,H)

with ρ :
(

SView(v)
)∗
→ Q and H : (SView(v))∗ → F . By definition of δ′, we immediately get that

ρ is a run of A, which is successful since ρ′ is successful.
It remains to prove that tv is d-compatible. Since ρ′ is a run and the transition function δ′ is

only defined on ((q, f), s) when sv = f(ε), we deduce that tv(τ) = H(τ)(ε) for all τ ∈ (SView(v))∗.
Hence, we need to show that the map τ 7→ H(τ)(ε) is d-compatible.

Let τ, τ ′ ∈ (SView(v))i be such that τu[i − d(u, v)] = τ ′u[i − d(u, v)] for all u ∈ View(v). We
have to show H(τ)(ε) = H(τ ′)(ε).

If |τ | = |τ ′| > K then we show that τ , τ ′ necessarily share a common prefix. More precisely,
since K ≥ d(u, v) for all u ∈ View(v), we deduce from the equalities τu[i − d(u, v)] = τ ′u[i −
d(u, v)] for all u ∈ View(v) that τ = τ1τ2, and τ ′ = τ1τ

′
2 with |τ2| = |τ ′2| = K and τu2 [K −

d(u, v)] = τ ′u2 [K − d(u, v)] for all u ∈ View(v). We can show, by successive applications of the
transition function δ′ and by definition of ∆, that the value of H(τ1τ2)(ε) is indeed the guess
made at node τ1 for the direction defined by τ2, i.e., H(τ1τ2)(ε) = H(τ1)(τ2). Similarly, we
obtain H(τ1τ

′
2)(ε) = H(τ1)(τ ′2). Since H(τ1) ∈ F , it is d-compatible. Using τu2 [K − d(u, v)] =

τ ′u2 [K − d(u, v)] for all u ∈ View(v), we deduce H(τ1)(τ2) = H(τ1)(τ ′2). Therefore, H(τ)(ε) =
H(τ ′)(ε).

If |τ | < K, then we obtain similarly that H(τ)(ε) = H(ε)(τ) = H(ε)(τ ′) = H(τ ′)(ε) since
H(ε) ∈ F is d-compatible. �

of Proposition 4.5. We consider the NDTA compatvk(Ak). It remains to project away the Svk

component of the label and to make sure that the SVk+1 component of the label only de-
pends on the SView(vk+1) component of the input. The first part is the classical projection
on SVk+1 of the automaton and the second part is the narrowing construction introduced
in [13]. The automaton Ak+1 fulfilling the requirements of Proposition 4.5 is therefore given
by narrowView(vk+1)(projVk+1

(compatvk(Ak))). Note that, even when applied to a NDTA, the
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narrowing construction of [13] yields an alternating tree automaton. Here we assume that
the narrowing operation returns a NDTA using a classical transformation of alternating tree
automata into NDTA [20]. The drawback is that this involves an exponential blow up. Unfor-
tunately, this is needed since Lemma 4.6 requires a NDTA as input. �

We can now conclude the proof of Theorem 4.3. Using Proposition 4.5 inductively starting
from the NDTA A1 of Proposition 4.4, we obtain a NDTA An accepting an (SView(vn), Svn)-

tree hvn if and only if for each 1 ≤ i < n, there exists an (SView(vi), Svi)-tree hvi which is
d-compatible and such that hv1 ⊕ · · · ⊕ hvn is accepted by A1. Therefore, using Lemma 4.2,
there is a distributed implementation for the specification over A if and only if L(compatvn(An))
is nonempty. The overall procedure is non-elementary due to the exponential blow-up of the
inductive step in Proposition 4.5. We do not know for now the lower bound of the complexity
of this problem. �

4.3. Decidability for UWC architectures and robust specifications. We now show that
we can obtain decidability of the synthesis problem for the whole subclass of UWC architectures
by restricting ourselves to specifications that only relate output variables to their own view.

Definition 4.7. A specification ϕ ∈ L with L ∈ {LTL,CTL,CTL∗} is robust if it is a (finite)
disjunction of formulas of the form

∧

v∈VO
ϕv where ϕv ∈ L(View(v)∪ {v}). Note that a robust

formula is always external.

Proposition 4.8. The synthesis problem for robust CTL∗ specifications is decidable over UWC
architectures.

Proof. Let A = (V ⊎ P,E, (Su)u∈V , s0, (dp)p∈P ) be a UWC architecture and ϕ be a robust
CTL∗ specification. Without loss of generality, we may assume that ϕ =

∧

v∈VO
ϕv where

ϕv ∈ CTL∗(View(v)∪{v}). Using Proposition 4.4, for each v ∈ VO we find a NDTA Av accepting
a strategy h : (SView(v))∗ → Sv if and only if the induced run tree t : (SView(v))∗ → SView(v)∪{v}

satisfies ϕv. The proposition then follows from the

Claim 4.9. There exists a distributed implementation of ϕ over A if and only if for each v ∈ VO,
the automaton compatv(Av) is nonempty.

First, let F be a distributed implementation of ϕ over A and let t : (SVI)∗ → SV be the

induced run-tree. Fix some v ∈ VO. The map f̂ v : (SView(v))∗ → Sv is d-compatible. Let

t′ : (SView(v))∗ → SView(v)∪{v} be the run-tree induced by f̂ v. For each σ ∈ (SVI)∗ we have

t(σ)View(v)∪{v} = t′(σView(v)). Since F implements ϕ, we have t |= ϕ and then t |= ϕv . We
can prove by structural induction on the formula that for any ψ ∈ CTL∗(View(v) ∪ {v}), any

branch σ ∈ (SVI)ω and any position i we have t, σ, i |= ψ if and only if t′, σView(v), i |= ψ. Since

ϕv ∈ CTL∗(View(v) ∪ {v}), we deduce that t′ |= ϕv. Therefore, f̂ v is accepted by Av and also
by compatv(Av).

Conversely, for each v ∈ VO, let hv : (SView(v))∗ → Sv be a strategy accepted by the automa-

ton compatv(Av). By Lemma 4.6, hv is d-compatible. Let tv : (SView(v))∗ → SView(v)∪{v} be
the run-tree induced by hv. We have tv |= ϕv by definition of Av and Proposition 4.4. Now,

using Lemma 4.2 we find a distributed program F = (f v)v∈V \VI
such that f̂ v = hv for each

v ∈ VO. Let t : (SVI)∗ → V VI∪VO be the run-tree induced by F . For each σ ∈ (SVI)∗ we have

t(σ)View(v)∪{v} = tv(σ
View(v)) and we obtain as above that t |= ϕv. Therefore, t |= ϕ and F

implements ϕ on A. �

5. Well-connected architectures

It is natural to ask whether the decision criterion for UWC architectures can be extended to
a larger class. In this section, we relax the property of uniform well-connectedness and show
that, in that case, linearly preordered information is not anymore a sufficient condition for
decidability.
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Definition 5.1. An architecture is said to be well-connected, if for each output variable v ∈ VO,
the sub-architecture consisting of (E−1)∗(v) is uniformly well-connected.

Intuitively this means that for each output variable v there is a routing making it possible
to transmit the values of the input variables in View(v) to the process that writes on v, but
such a routing may vary from one output variable to another, in contrast with the case of
UWC architectures, where a single routing is used for all output variables. For instance, the
architecture of Figure 2 is well-connected. Indeed, to transmit the values of u and v to zij , it is
enough to write u on zi and v on zj. Note that this does not give a uniform routing. Actually,
the architecture of Figure 2 is not UWC assuming that variables values range over {0, 1} (as
shown by Proposition 5.3 below). Hence, the subclass of UWC architectures is strictly contained
in the subclass of well-connected architectures.

In the proof of Proposition 5.3, we use the following lemma, established in [25] for solving
the network information flow problem introduced in [2].

We say that two functions f and g from S2 to S are independent if (f, g) : S2 → S2 is
invertible.

Lemma 5.2 ([25, Lemma 3.1]). If f1, . . . , fn are pairwise independent functions from S2 to S
then n ≤ |S|+ 1.

This lemma asserts that over a small alphabet, one cannot build a large set of pairwise
independent functions. In our setting, it implies the following result:

Proposition 5.3. Assuming that all variables are Boolean, the architecture of Figure 2 is well-
connected but not uniformly well-connected.

Proof. It is easy to see that the architecture A of Figure 2 is well-connected. However, it
is not uniformly well-connected. Indeed, suppose it is. Then there exist a routing Φ =
(f z1, f z2, f z3 , f z4) consisting of four memoryless strategies, and for all v ∈ VO, a decoding
function gv : {0, 1}2 → {0, 1}2. Therefore, uniform well-connectedness of A implies that ev-
ery pair (f zi , f zj) is invertible, using gzij as inverse. This is in contradiction with Lemma 5.2,
which implies that for Boolean variables, there are at most three pairwise independent functions.
Hence the architecture is not uniformly well-connected. �

Interestingly enough, the size of the alphabet has an influence on the possibility to have a
uniform routing and Lemma 5.2 helps to understand why. In our setting, this means that by
enlarging the domains of internal variables, we may obtain uniform well-connectedness from a
well-connected architecture.

The following theorem asserts that, unfortunately, the decision criterion cannot be extended
to well-connected architectures.

Theorem 5.4. The synthesis problem for LTL specifications and well-connected architectures
with linearly preordered information is undecidable.

Let A be the architecture of Figure 6, in which all the delays are set to 0, and which is clearly
well-connected and linearly preordered. To show its undecidability, fix a deterministic Turing
machine M with tape alphabet Γ and state set Q. We reduce the non halting problem of M
starting from the empty tape to the distributed implementability of an LTL specification over
A. Let Sz = {0, 1} for z ∈ V \ {x, y} and Sx = Sy = Γ⊎Q⊎{#} where # is a new symbol. As
usual, the configuration of M defined by state q and tape content γ1γ2, where the head scans the
first symbol of γ2, is encoded by the word γ1qγ2 ∈ Γ∗QΓ+ (we require that γ2 6= ε for technical
reasons, including in it some blank symbols if necessary). An input word u ∈ 0∗1p0{0, 1}ω

encodes the integer n(u) = p and similarly for v. We construct an LTL specification ϕM forcing
any distributed implementation to output on variable x the n(u)-th configuration of M starting
from the empty tape. Processes p0 and p6 play the role of the two processes of the undecidable
architecture of Pnueli and Rosner (A′ in Figure 3). The difficulty is to ensure that process p6

cannot receive relevant information about u.
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Figure 6. Undecidable, well-connected and linearly preordered architecture

The specification ϕM = α ∧ β ∧ γM ∧ δ ∧ ψM is a conjunction of five properties described
below that can all be expressed in LTL(VI ∪ VO).

(1) The processes pi for 1 ≤ i ≤ 5 have to output the current values of (u,w) on (ui, wi)
until (including) the first 1 occurs on w. Afterwards, they are unconstrained. Process
p6 must always output the value of w on w6. Moreover, after the first 1 on w, it also has
to output the current value of u on u6. Formally, this is defined by the LTL formula α:

α
def
= G(w6 = w) ∧

[

(

(w = 0) ∧ α′
)

W
(

(w = 1) ∧ α′ ∧ X G(u6 = u)
)

]

, where

α′
def
=
∧

1≤k≤5

(uk = u) ∧ (wk = w)

(2) If the input word on u (resp. v) is in 0q1p0{0, 1}ω , then the corresponding output word
x (resp. y) is in #q+pΓ∗QΓ+#ω.

This is expressed by β = βu,x ∧ βv,y, where

βz,t
def
= ((z = 0) ∧ (t = #)) W

(

(z = 1) ∧
(

((z = 1) ∧ (t = #)) W ((z = 0) ∧ (t ∈ Γ∗QΓ+#ω))
)

)

where

(t ∈ Γ∗QΓ+#ω)
def
= (t ∈ Γ) U ((t ∈ Q) ∧ X(t ∈ Γ) U ((t ∈ Γ) ∧ X G(t = #)))

(3) We next express with a formula γM that if n(u) = 1 then x has to output the first con-
figuration C1 of M starting from the empty tape. That is, if the input is in 0q10{0, 1}ω ,
then the corresponding output is #q+1C1#ω. The LTL formula is

γM
def
= (u = 0) W ((u = 1) ∧ X((u = 0)→ (x ∈ C1#ω)))

where (x ∈ C1#ω) can be expressed easily.
(4) We say that the input words are synchronized either if u, v ∈ 0q1p0{0, 1}ω or else if

u ∈ 0q1p+10{0, 1}ω and v ∈ 0q+11p0{0, 1}ω . We use a formula δ to express the fact that
if u and v are synchronized and n(u) = n(v), then the outputs on x and y are equal.
We first define the LTL formula

(n(u) = n(v))
def
= (u = v = 0) U ((u = v = 1) ∧ (u = v = 1) U (u = v = 0))

to express the fact that the input words u and v are synchronized and n(u) = n(v).
Then the formula δ is defined by:

δ
def
= (n(u) = n(v))→ G(x = y)

(5) Finally, one can express with an LTL formula ψM that if the input words are syn-
chronized and n(u) = n(v) + 1 then the configuration encoded on x is obtained by a
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computation step of M from the configuration encoded on y. We use the LTL formula
(n(u) = n(v) + 1) defined by

(u = v = 0) U

(

(u = 1) ∧ (v = 0) ∧ X((u = v = 1) ∧ (u = v = 1) U (u = v = 0))
)

to express the fact that u and v are synchronized and n(u) = n(v)+ 1. The formula ψM
is defined by

ψM = (n(u) = n(v) + 1)→
(

(x = y) U
(

Trans(y, x) ∧ X
3

G(x = y)
)

)

where Trans(y, x) expresses the fact that the factor of length 3 of x is obtained from the
one of y by a transition of the Turing machine M . We have

Trans(y, x) =
∨

(p,a,q,b,←)∈T,c∈Γ

(y = cpa) ∧ (x = qcb)

∨
∨

(p,a,q,b,→)∈T,c∈Γ

(y = pac) ∧ (x = bqc)

∨
∨

(p,a,q,b,→)∈T

(y = pa#) ∧ (x = bq�)

Here (x = abc) is an abbreviation for (x = a) ∧ X(x = b) ∧ X
2(x = c). Furthermore,

� is the blank symbol of the tape and T is the set of transitions of M (the transition
(p, a, q, b, dir ), taken when M is in state p and scans symbol a, switches the state to q,
writes symbol b and moves the head according to the direction dir ∈ {←,→}).

We first show that there exists a distributed implementation of ϕM over A. Let ⊕ be the
addition modulo 2 (xor). Process p0 forwards u to z0. Process q forwards u to z1, u ⊕ w
to z2 and w to z3. The strategy for z4 is not memoryless. Process q forwards w to z4 until
(including) the first 1 on w and then it forwards u ⊕ w to z4. Formally, f z4(u, 0qb) = b and
f z4(ua, 0q1wb) = a ⊕ b. We also use memoryless strategies for the processes pi so that α is
satisfied. For instance, the strategy for p1 is f1(b1, b2) = (b1, b1 ⊕ b2) and the strategy for p6

(y excluded) is f6(b3, b4) = (b3 ⊕ b4, b3). It is easy to see that with these strategies, the first
property α of the specification is satisfied. Note that, until the first 1 on w, p6 outputs 0 on u6,
and after this first 1, p5 cannot decode u and w anymore.

The strategy fx (respectively fy) is to output the p-th configuration of M starting from the
empty tape when u (respectively v) encodes p. Then, the rest of the specification, β∧γM∧δ∧ψM ,
is satisfied.

Remark 5.5. Actually, one can define another distributed implementation by changing only
the strategy f z4: at each step, process q transmits to p6 the value of u at the preceding step as
the mod 2 difference between z3 and z4, until the first 1 occurs on w. Formally, f z4(a, b) = b,
f z4(u · a1 · a2, 0

qb) = a1 ⊕ b and f z4(ua, 0q1wb) = a ⊕ b. We also adapt the strategies of
p1, . . . , p6 so that α is satisfied. Note that these strategies are no longer memoryless, they have
to remember the last bit of u. By xoring its two arguments, process p6 can then recover the
whole history of u, except the bit occurring simultaneously with the first 1 of w. Hence, we are
almost in the situation of the decidable architecture of Figure 1, but surprisingly, missing only
one bit of information suffices to yield undecidability.

Let now F = (f v)v∈V \VI
be a distributed implementation of ϕM on the architecture A of

Figure 6. We prove that fx must simulate the computation of M starting from the empty tape.

Step 1: relating the strategies for z3 and z4.

Lemma 5.6. Let g1, g2, g3 : {0, 1}2 → {0, 1} be pairwise independent functions. Then, there
exists ε ∈ {0, 1} such that for all a, b ∈ {0, 1}:

g3(a, b) = ε⊕ g1(a, b) ⊕ g2(a, b)
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Proof. We first note that each function gk is two to one, i.e., |g−1
k (c)| = 2 for c ∈ {0, 1}. Indeed,

if this is not the case then we have for instance |g−1
k (0)| ≥ 3 and the map (gk, gℓ) for ℓ 6= k

cannot be injective.
For the same reason, if gk(a, b) = gk(a

′, b′), then gℓ(a, b) 6= gℓ(a
′, b′). Therefore, permuting

indices if necessary, we may assume that g1(0, 0) = g1(0, 1), g2(0, 0) = g2(1, 0) and g3(0, 0) =
g3(1, 1), so that each gk is completely determined by its value on (0, 0). A simple computation
then shows that g1 ⊕ g2 ⊕ g3 is constant. For instance, we have (g1 ⊕ g2 ⊕ g3)(1, 0) = (¬g1 ⊕
g2 ⊕ ¬g3)(0, 0) = (g1 ⊕ g2 ⊕ g3)(0, 0). �

Applying Lemma 5.6 both to (f̂ z1, f̂ z2 , f̂ z3) and (f̂ z1, f̂ z2, f̂ z4) after an input (0q, 0q) on (u,w),
we get:

Corollary 5.7. For all q ≥ 0, there exists ε ∈ {0, 1} such that

∀a, b ∈ {0, 1}, f̂ z3(0qa, 0qb) = ε⊕ f̂ z4(0qa, 0qb).

Proof. Fix q ≥ 0. Let gi : {0, 1}2 → {0, 1} be defined by gi(a, b) = f̂ zi(0qa, 0qb). The conjunct
α of the specification ϕM imposes to p1, p2 and p4 to output the current value of (u,w), hence
they must distinguish the four possible values of (u,w). Therefore, g1, g2 and g3 are pairwise
independent. Applying Lemma 5.6, we obtain ε3 ∈ {0, 1} such that g3(a, b) = ε3 ⊕ g1(a, b) ⊕
g2(a, b) for all (a, b) ∈ {0, 1}2. Similarly, considering outputs of processes p1, p3, p5, we deduce
that g1, g2 and g4 are also pairwise independent and that g4(a, b) = ε4 ⊕ g1(a, b) ⊕ g2(a, b).

Therefore, for all (a, b) ∈ {0, 1}2, we have g3(a, b) ⊕ g4(a, b) = ε3 ⊕ ε4 = ε and we obtain

f̂ z3(0qa, 0qb) = ε⊕ f̂ z4(0qa, 0qb) as desired. �

Step 2: masking one bit of u to p6.

Let q ≥ 0. For u = 0q1u′, we define u0 = 0q0u′. Observe that if u ∈ 0q1p+10{0, 1}ω encodes
p+ 1 > 1 then u0 ∈ 0q+11p0{0, 1}ω encodes p. The next lemma states that strategies f z3 (resp.
f z4) must output the same sequence for u and u0 if the input word w is suitable, so that p6

cannot distinguish between encodings of p and p+ 1 on input variable u.

Lemma 5.8. Let u,w ∈ 0q1{0, 1}ω . For k ∈ {3, 4}, we have for all n > 0:

(3) f̂ zk(u0[n], w[n]) = f̂ zk(u[n], w[n]).

Proof. By induction on n. If n ≤ q, then u0[n] = u[n] so (3) trivially holds.

Next, assume n = q + 1, so u0[n] = 0q0 and u[n] = 0q1 = w[n]. Assume f̂ z3(0q0, 0q0) =

f̂ z3(0q0, 0q1) then we have f̂ z4(0q0, 0q0) = f̂ z4(0q0, 0q1) by Corollary 5.7. Fixing some v ∈
{0, 1}n, we deduce that process p6 has observed exactly the same history on the input triples
(0q0, 0q0, v) and (0q0, 0q1, v), therefore it would write at step n the same value on w6, a contra-

diction with requirement α. Therefore, f̂ z3(0q0, 0q0) 6= f̂ z3(0q0, 0q1). Similarly, f̂ z3(0q0, 0q0) 6=

f̂ z3(0q1, 0q1). Since the map f̂ z3 may only take two values, we get f̂ z3(0q0, 0q1) = f̂ z3(0q1, 0q1).

Applying again Corollary 5.7, we deduce that f̂ z4(0q0, 0q1) = f̂ z4(0q1, 0q1) and (3) is proved for
n = q + 1.

Finally, assume that n > q + 1. By induction hypothesis, for k ∈ {3, 4} and all i < n,

we have f̂ zk(u0[i], w[i]) = f̂ zk(u[i], w[i]). Therefore, the history z3[n − 1] and z4[n − 1] is the
same on the inputs (u,w) and (u0, w). Fixing some v ∈ {0, 1}n, we deduce that process p6

has observed exactly the same history on the input triples (u0[n − 1], w[n − 1], v[n − 1]) and
(u[n − 1], w[n − 1], v[n − 1]).

Consider now the 3 mappings from {0, 1}2 to {0, 1}2 defined by

h(c, d) = (fu6, fw6)(z3[n− 1]c, z4[n − 1]d, v)

h1(a, b) = (f̂ z3, f̂ z4)(u[n − 1]a,w[n − 1]b)

h0(a, b) = (f̂ z3, f̂ z4)(u0[n− 1]a,w[n − 1]b)

We deduce from the requirement α that h is an inverse of h1 and also an inverse of h0. Therefore,
h0 = h1 and we obtain f̂ zk(u0[n], w[n]) = f̂ zk(u[n], w[n]) for k ∈ {3, 4}, as required. �
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Step 3: enforcing output of the n(u)-th configuration of M on x.

Lemma 5.9. If x is computed by fx from the input word u then for all p > 0 we have

(4) ∀q ≥ 0, u ∈ 0q1p0{0, 1}ω =⇒ x = #p+qCp#
ω

where Cp is the p-th configuration reached by M starting from the empty tape.

Proof. The proof is by induction on p. The case p = 1 follows from the specification γM . Let
now p > 1 and assume that u ∈ 0q1p+10{0, 1}ω . Let v = 0q+11p0ω and w = 0q1ω. By induction,
for u0 ∈ 0q+11p0{0, 1}ω the output is x = #q+1+pCp#

ω. Using δ, we deduce that on the input
triple (u0, w, v) the output is y = x = #q+1+pCp#

ω. Now, by Lemma 5.8, on the input pairs
(u0, w) and (u,w), the outputs on z3 and z4 are the same. Hence, on the input triples (u0, w, v)
and (u,w, v) the outputs on y must be y = #q+1+pCp#

ω by the above. Using ψM , we deduce
that on the input triple (u,w, v) the output on x must be x = #q+1+pCp+1#ω. This concludes
the proof since x only depends on u. �

By masking one bit of u to p6, we cause uncertainty with respect to the value of n(u),
preventing this process to “cheat”. In turn, process p0, which has no information about the
other input values, only knows that p6 is not always able to cheat, and has then to always
output the correct Turing machine configuration.

of Theorem 5.4. Starting from a Turing machine M , we have shown that any distributed im-
plementation of the specification ϕM is forced to output on x the n(u)-th configuration of
M . Therefore, there is a distributed implementation on this architecture for the formula
ϕM ∧ G(x 6= halt) if and only if M does not halt starting from the empty tape. We have
thus reduced the non halting problem of a Turing machine on the empty tape to the LTL
distributed synthesis problem over a well-connected architecture with linearly preordered infor-
mation, proving that this latter problem is undecidable (more precisely not co-RE). �

6. Conclusion

In this paper, we have shown that every decidable architecture must have linearly preordered
information, and that this condition is sufficient for deciding external specifications on UWC
architectures. On the other hand, we have exhibited a well-connected architecture with linearly
preordered information, yet undecidable for external LTL specifications, by simulating the loss
of a single information bit on the UWC architecture of Figure 1.

Finally, we have shown that all UWC architectures are decidable for robust specifications,
i.e., specifications constraining external variables which are causally related by a communication
path. A challenging problem is to find whether this still holds for well-connected architectures.

Acknowledgements. We thank the anonymous referees for their remarks which helped us to
improve the presentation of the paper.
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