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Universal Gaussian fluctuations of non-Hermitian
matrix ensembles

by Ivan Nourdin1 and Giovanni Peccati2

Université Paris VI and Université Paris Ouest

Abstract. In the paper [19], written in collaboration with Gesine Reinert, we proved a uni-
versality principle for the Gaussian Wiener chaos. In the present work, we aim at providing an
original example of application of this principle in the framework of random matrix theory. More
specifically, by combining the result in [19] with some combinatorial estimates, we are able to
prove multi-dimensional central limit theorems for the spectral moments (of arbitrary degrees)
associated with random matrices with real-valued i.i.d. entries, satisfying some appropriate mo-
ment conditions. Our approach has the advantage of yielding, without extra effort, bounds over
classes of smooth (i.e., thrice differentiable) functions. Moreover, it allows to deal directly with
discrete distributions.
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1 Introduction

1.1 Overview and main results

In the paper [19], written in collaboration with Gesine Reinert, we proved several univer-

sality results, involving sequences of random vectors whose components have the form of
finite homogeneous sums based on sequences of independent random variables. Roughly
speaking, our main finding implied that, in order to study the normal approximations of
homogeneous sums (and under suitable moment conditions) it is always possible to replace
the original sequence with an i.i.d. Gaussian family. The power of this approach resides in
the fact that homogeneous sums associated with Gaussian sequences are indeed elements of
the so-called Wiener chaos, so that normal approximations can be established by means of
the general techniques developed in [18, 22, 23] – that are based on a powerful interaction
between standard Gaussian analysis, Malliavin calculus (see e.g. [21]) and Stein’s method

(see e.g. [6]). Moreover, in the process one always recovers uniform bounds over suitable
classes of smooth functions.

The aim of this paper is to introduce these techniques into the realm of random matrix
theory. More specifically, our goal is to use the universality principles developed in [19], in
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order to prove the forthcoming Theorem 1.1, which consists in a multidimensional central
limit theorem (CLT) for traces of non-Hermitian random matrices with i.i.d. real-valued
entries. More precisely, let X be a centered real random variable, having unit variance and
with finite moments of all orders, that is, E(X) = 0, E(X2) = 1 and E|X|n < ∞ for every
n > 3. We consider a doubly indexed collection X = {Xij : i, j > 1} of i.i.d. copies of X.
For every integer N > 2, we denote by XN the N × N random matrix

XN =

{
Xij√

N
: i, j = 1, ..., N

}
, (1.1)

and by Tr(·) and Xk
N , respectively, the usual trace operator and the kth power of XN .

Theorem 1.1 Let the above notation prevail. Fix m > 1, as well as integers

1 6 k1 < . . . < km.

Then, the following holds.

(i) As N → ∞,

(
Tr(Xk1

N )−E
[
Tr(Xk1

N )
]
, . . . , Tr(Xkm

N )−E
[
Tr(Xkm

N )
] ) Law−→

(
Zk1 ,..., Zkm

)
, (1.2)

where Z = {Zk : k > 1} denotes a collection of real independent centered Gaussian
random variables such that, for every k > 1, E(Z2

k) = k.

(ii) Write β = E|X|3. Suppose that the function ϕ : Rm → R is thrice differentiable and
that its partial derivatives up to the order three are bounded by some constant B < ∞.
Then, there exists a finite constant C = C(β, B, m, k1, ..., km), not depending on N ,
such that

∣∣∣∣∣E


ϕ


Tr(Xk1

N ) − E[Tr(Xk1
N )]√

Var(Tr(Xk1
N ))

, . . . ,
Tr(Xkm

N ) − E[Tr(Xkm

N )]√
Var(Tr(Xkm

N ))
]




 (1.3)

−E

[
ϕ

(
Zk1√

k1

, ...,
Zkm√
km

)] ∣∣∣∣∣ 6 C N−1/4.

Remark 1.2 1. We chose to state and prove Theorem 1.1 in the case of non-Hermitian
matrices with real-valued entries, mainly in order to facilitate the connection with
the universality results proved in [19]. However, our techniques may be extended to
the case where the random variable X is complex-valued and with finite absolute
moments of every order. This line of research will be pursued elsewhere. One should
also note that, differently from [25], in the present paper we do not use any technique
coming from complex analysis.
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2. Fix an integer K > 2 and assume that E|X|2K < ∞, while higher moments are
allowed to be possibly infinite. By inspection of the forthcoming proof of Theorem
1.1, one sees that the CLT (1.2) as well as the bound (1.4) continue to hold, as long
as the integers k1, ..., km verify kj 6 K for j = 1, ..., m.

3. In a similar vein as at the previous point, by imposing adequate uniform bounds on
moments one can easily adapt our techniques in order to deal with random matrices
whose entries are independent but not identically distributed. One crucial fact sup-
porting this claim is that the universality principles of Section 2 hold for collections
of independent, and not necessarily identically distributed, random variables.

4. For non-Hermitian matrices, limits of moments are not sufficient to provide an ex-
haustive description of the limiting spectral measure or of the fluctuations around it.
Rather, one would need to consider polynomials in the eigenvalues and their complex
conjugates. These quantities cannot be represented using traces of powers of XN , so
that our approach cannot be extended to this case.

The upper bound appearing in Theorem 1.1-(ii) is based on the forthcoming Theorem
2.7, which hinges in turn on some intricated combinatorial estimates taken from [19].
However, when X is a standard Gaussian random variable one can directly use the results
of [20, Theorem 3.5 and Lemma 3.7], and obtain an even better rate of convergence (in
the stronger Wasserstein distance). This fact is described in the following statement (the
proof is left to the reader).

Proposition 1.3 Assume that X is a centered standard Gaussian random variable. Sup-
pose that the function ϕ : Rm → R is differentiable and that its (first) partial deriva-
tive is bounded by some constant B < ∞. Then, there exists a finite constant C =
C(B, m, k1, ..., km), not depending on N , such that

∣∣∣∣∣E



ϕ



Tr(Xk1
N ) − E[Tr(Xk1

N )]√
Var(Tr(Xk1

N ))
, . . . ,

Tr(Xkm

N ) − E[Tr(Xkm

N )]√
Var(Tr(Xkm

N ))
]







 (1.4)

−E

[
ϕ

(
Zk1√

k1

, ...,
Zkm√
km

)] ∣∣∣∣∣ 6 C N−1/2.

1.2 Discussion

In this section we compare our Theorem 1.1 with some related results proved in the existing
probabilistic literature.

1. In the paper [25], Rider and Silverstein proved the following CLT.

Theorem 1.4 Let X be a complex random variable such that E(X) = E(X2) = 0,
E(|X|2) = 1, E(|X|k) 6 kαk, k > 3 (for some α > 0) and Re(X), Im(X) possess a
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joint bounded density. For N > 2, let XN be defined as in (1.1). Consider the space H of
functions f : C → C which are analytic in a neighborhood of the disk |z| 6 4 and otherwise
bounded. Then, as N → ∞, the random field

{Tr(f(XN)) − E [Tr(f(XN))] : f ∈ H}

converges in the sense of finite-dimensional distributions (f.d.d.) to the centered complex-
valued Gaussian field {Z(f) : f ∈ H}, whose covariance structure is given by

E[Z(f)Z(g)] =

∫

U

f ′(z)g′(z)
d2z

π
. (1.5)

Here, U = {z ∈ C : |z| 6 1} is the unit disk, and d2z/π stands for the uniform measure on
U (in other words, d2z = dxdy for x, y ∈ R such that z = x + iy).

By using the elementary relations: for every integers n, m > 0,

1

π

∫

U

znzmd2z =

{
(n + 1)−1 if m = n
0 otherwise,

one sees that our Theorem 1.1 can be reformulated by saying that

{Tr(f(XN)) − E [Tr(f(XN))] : f ∈ Pol(C)} f.d.d.−→ {Z(f) : f ∈ Pol(C)}, (1.6)

where the covariance structure of {Z(f) : f ∈ Pol(C)} is given by (1.5). It follows that
Theorem 1.1 roughly agrees with Theorem 1.4. however, we stress that the framework of
[25] is different from ours, since the findings therein cannot be applied to the real case due
to the assumption that real and imaginary parts of entries must possess a joint bounded
density. In addition, also note that (differently from [25]) we do not introduce in the
present paper any requirement on the absolute continuity of the law of the real random
variable X, so that the framework of our Theorem 1.1 contemplates every discrete random
variable with values in a finite set and with unit variance.

2. One should of course compare the results of this paper with the CLTs involving
traces of Hermitian random matrices, like for instance Wigner random matrices. One gen-
eral reference in this direction is the fundamental paper by Anderson and Zeitouni [3],
where the authors obtain CLTs for traces associated with large classes of (symmetric)
band matrix ensembles, using a version of the classical method of moments based on graph
enumerations. It is plausible that some of the findings of the present paper could be also
deduced from a suitable extension of the combinatorial devices introduced in [3] to the case
of non-Hermitian matrices. However, proving Theorem 1.1 using this kind of techniques
would require estimates for arbitrary joint moments of traces, whereas our approach merely
requires the computation of variances and fourth moments. Also, the findings of [3] do not
allow to directly deduce bounds such as (1.4). We refer the reader e.g. to Guionnet [14]
or to Anderson et al. [2], and the references therein, for a detailed overview of existing
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asymptotic results for large Hermitian random matrices.

3. The general statement proved by Chatterjee in [5, Theorem 3.1] concerns the nor-
mal approximation of linear statistics of random matrices that are possibly non-Hermitian.
However, the techniques used by the author require that the entries can be re-written as
smooth transformations of Gaussian random variables. In particular, the findings of [5] do
not apply to discrete distributions. On the other hand, the results of [5] also provide uni-
form bounds (based on Poincaré-type inequalities and in the total variation distance) for
one-dimensional CLTs. Here, we do not introduce any requirements on the absolute con-
tinuity of the law of the real random variable X, and we get bounds for multi-dimensional
CLTs.

4. Let us denote by {λj(N) : j = 1, ..., N} the complex-valued (random) eigenvalues
of XN , repeated according to their multiplicities. Theorem 1.1 deals with the spectral
moments of XN , that are defined by the relations:

N ×
∫

zkdµXN
(z) =

N∑

j=1

λj(N)k = Tr(Xk
N ), N > 2, k > 1, (1.7)

where µXN
denote the spectral measure of XN . Recall that

µXN
(·) =

1

N

N∑

j=1

δλj(N)(·), (1.8)

where δz(·) denotes the Dirac mass at z, and observe that one has also the alternate
expression

Tr(Xk
N) = N− k

2

N∑

i1,...,ik=1

Xi1i2Xi2i3 · · · Xiki1 . (1.9)

It follows that our Theorem 1.1 can be seen as a partial (see Remark 1.2 (4) above)
characterization of the Gaussian fluctuations associated with the so-called circular law,
whose most general version has been recently proved by Tao and Vu:

Theorem 1.5 (Circular law, see [29]) Let X be a complex-valued random variable, with
mean zero and unit variance. For N > 2, let XN be defined as in (1.1). Then, as N → ∞,
the spectral measure µXN

converges almost surely to the uniform measure on the unit disk
U = {z ∈ C : |z| 6 1}. The convergence takes place in the sense of the vague topology.

To see why Theorem 1.1 concerns fluctuations around the circular law, one can proceed
as follows. First observe that, since E(X2) = 1 and E(X4) < ∞ by assumption, one can
use a result by Bai and Yin [4, Theorem 2.2] stating that, with probability one,

lim sup
N→∞

max
j=1,...,N

|λj(N)| 6 1. (1.10)
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Now fix a polynomial p(z). Elementary considerations yield that, since (1.10) and the
circular law are in order, with probability one

1

N
Tr(p(XN)) → 1

π

∫

U

p(z)d2z = p(0). (1.11)

On the other hand, it is not difficult to see that, for every k > 1 and as N → ∞,

E

[∫
zkdµXN

(z)

]
= E

[
1

N
Tr(Xk

N )

]
→ 0

(one can use e.g. the same arguments exploited in the second part of the proof Proposition
3.1 below). This implies in particular, for every complex polynomial p,

E

[
1

N
Tr(p(Xn))

]
→ p(0) =

1

π

∫

U

p(z)d2z. (1.12)

By (1.11) and (1.12), one has therefore that the quantities 1
N

Tr(p(XN)) and E( 1
N

Tr(p(XN)))
both converge to p(0), and (1.6) ensures that, for N sufficiently large, the difference

Tr(p(XN)) − Np(0) − [E (Tr(p(XN))) − Np(0)]

has approximately a centered Gaussian distribution with variance 1
π

∫
U
|p′(z)|2d2z. Equiva-

lently, one can say that the random variable 1
N

Tr(p(XN)) tends to concentrate around its
mean as N goes to infinity, and (1.6) describes the Gaussian fluctuations associated with
this phenomenon.

On the other hand, one crucial feature of the proof of the circular law provided in
[29] is that it is based on a universality principle. This result basically states that, under
adequate conditions, the distance between the spectral measures of (possibly perturbed)
non-Hermitian matrices converges systematically to zero, so that Theorem 1.5 can be es-
tablished by simply focussing on the case where X is complex Gaussian (this is the so-called
Ginibre matrix ensemble, first introduced in [13]). It is interesting to note that our proof of
Theorem 1.1 is also based on a universality result. Indeed, we shall show that the relevant
part of the vector on the LHS of (1.2) (that is, the part not vanishing at infinity) has the
form of a collection of homogeneous sums with fixed orders. This implies that the CLT
in (1.2) can be deduced from the results established in [19], where it is proved that the
Gaussian Wiener chaos has a universal character with respect to Gaussian approximations.
Roughly speaking, this means that, in order to prove a CLT for a vector of general ho-
mogeneous sums, it is sufficient to consider the case where the summands are built from
an i.i.d. Gaussian sequence. This phenomenon can be seen as a further instance of the
so-called Lindeberg invariance principle for probabilistic approximations, and stems from
powerful approximation results by Rotar’ [27] and Mossel et al. [17]. See the forthcoming
Section 2 for precise statements.

5. We finish this section by listing and discussing very briefly some other results related
to Theorem 1.1, taken from the existing probabilistic literature.
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- In Rider [24] (but see also Forrester [10]), one can find a CLT for (possibly discon-
tinuous) linear statistics of the eigenvalues associated with complex random matrices
in the Ginibre ensemble. This partially builds on previous findings by Costin and
Lebowitz [7].

- Reference [26], by Rider and Virag, provides further insights into limit theorems
involving sequences in the complex Ginibre ensemble. In particular, one sees that re-
laxing the assumption of analyticity on test functions yields a striking decomposition
of the variance of the limiting noise, into the sum of a “bulk” and of a “bound-
ary” term. Another finding in [26] is an asymptotic characterization of characteristic
polynomials, in terms of the so-called Gaussian free field.

- Finally, one should note that the Gaussian sequence Z in Theorem 1.1 also appears
when dealing with Gaussian fluctutations of vectors of traces associated with large,
Haar-distributed unitary random matrices. See e.g. [8] and [9] for two classic refer-
ences on the subject.

1.3 Proof of Theorem 1.1: the strategy

In order to prove (1.2) (and (1.4) as well), we use an original combination of techniques,
which are based both on the universality results of [19] and on combinatorial considerations.
The aim of this section is to provide a brief outline of this strategy.

For N > 1, write [N ] = {1, ..., N}. For k > 2, let us denote by D
(k)
N the collection of

all vectors i = (i1, . . . , ik) ∈ [N ]k such that all pairs (ia, ia+1), a = 1, . . . , k, are different

(with the convention that ik+1 = i1), that is, i ∈ D
(k)
N if and only if (ia, ia+1) 6= (ib, ib+1)

for every a 6= b. Now consider the representation given in (1.9) and, after subtracting the
expectation, rewrite the resulting expression as follows:

Tr(Xk
N) − E

[
Tr(Xk

N)
]

= N− k
2

N∑

i1,...,ik=1

(
Xi1i2Xi2i3 · · · Xiki1 − E[Xi1i2Xi2i3 · · · Xiki1 ]

)
(1.13)

= N− k
2

∑

i∈D
(k)
N

Xi1i2Xi2i3 · · · Xiki1

+N− k
2

∑

i 6∈D
(k)
N

(
Xi1i2Xi2i3 · · · Xiki1 − E[Xi1i2Xi2i3 · · · Xiki1 ]

)
. (1.14)

Our proof of (1.2) is based on the representation (1.13)–(1.14), and it is divided in two
(almost independent) parts.

I. In Section 3, we shall prove that the following multi-dimensional CLT takes place for
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every integers 2 6 k1 < ... < km:

N−1/2

N∑

i=1

Xii, N− k1
2

∑

i∈D
(k1)
N

Xi1i2Xi2i3 · · · Xik1
i1 , . . . (1.15)

. . . , N− km
2

∑

i∈D
(km)
N

Xi1i2Xi2i3 · · · Xikm i1


 Law−→

(
Z1, Zk1, ..., Zkm

)
,

for Z = {Zi : i > 1} as in Theorem 1.1. In order to prove (1.15), we apply the univer-
sality result obtained in [19] (and stated in a convenient form in the subsequent Section
2). This result roughly states that, in order to show (1.15) in full generality, it is sufficient
to consider the special case where the collection X = {Xij : i, j > 1} is replaced by an
i.i.d. centered Gaussian family G = {Gij : i, j > 1}, whose elements have unit variance.
In this way, the components of the vector on the LHS of (1.15) become elements of the
so-called Gaussian Wiener chaos associated with G: it follows that one can establish the
required CLT by using the general criteria for normal approximations on a fixed Wiener
chaos, recently proved in [18, 22, 23]. Note that the results of [18, 22, 23] can be described
as a “simplified method of moments”: in particular, the proof of (1.15) will require the
mere computation of quantities having the same level of complexity of covariances and
fourth moments.

II. In Section 4, we shall prove that the term (1.14) vanishes as N → ∞, that is, for
every k > 2,

N− k
2

∑

i 6∈D
(k)
N

(
Xi1i2Xi2i3 · · · Xiki1 − E[Xi1i2Xi2i3 · · · Xiki1 ]

)
→ 0 in L2(Ω).

(1.16)

The proof of (1.16) requires some subtle combinatorial analysis, that we will illustrate
by means of graphical devices, known as diagrams. Some of the combinatorial arguments
and ideas developed in Section 4 should be compared with the two works by Geman [11, 12].

Then, the upper bound (1.4) will be deduced in Section 4.4 from the estimates obtained
at the previous steps.

The rest of the paper is organized as follows. In Section 2 we present the universality
results proved in [19], in a form which is convenient for our analysis. Section 3 contains a
proof of (1.15), whereas Section 4 deals with (1.16).
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2 Main tool: universality of Wiener chaos

In what follows, every random object is defined on an adequate common probability space
(Ω, F , P ). The symbols E and ‘Var’ denote, respectively, the expectation and the variance
associated with P . Also, given a finite set B, we write |B| to indicate the cardinality of B.
Finally, given numerical sequences aN , bN , N > 1, we write aN ∼ bN whenever aN/bN → 1
as N → ∞.

We shall now present a series of invariance principles and central limit theorems involv-
ing sequences of homogeneous sums. These are mainly taken from [19] (Theorem 2.2), [23]
(Theorem 2.4) and [22] (Theorem 2.6). Note that the framework of [19] is that of random
variables indexed by the set of positive integers. Since in this paper we mainly deal with
random variables indexed by pairs of integers (i.e., matrix entries) we need to restate some
of the findings of [19] in terms of random variables indexed by a general (fixed) discrete
countable set A.

Definition 2.1 (Homogeneous sums) Fix an integer k > 2. Let Y = {Ya : a ∈ A}
be a collection of square integrable and centered independent random variables, and let
f : Ak → R be a symmetric function vanishing on diagonals (that is, f(a1, ..., ak) = 0
whenever there exists k 6= j such that ak = aj), and assume that f has finite support. The
random variable

Qk(f,Y) =
∑

a1,...,ak∈A

f(a1, ..., ak)Ya1 · · · Yak
=

∑

{a1,...,ak}⊂Ak

k!f(a1, ..., ak)Ya1 · · · Yak

(2.17)

is called the homogeneous sum, of order k, based on f and Y. Clearly, E[Qk(f,Y)] = 0
and also, if E(Y 2

a ) = 1 for every a ∈ A, then

E[Qk(f,Y)2] = k!‖f‖2
k, (2.18)

where, here and for the rest of the paper, we set

‖f‖2
k =

∑

a1,...,ak∈A

f 2(a1, ..., ak).

Now let G = {Ga : a ∈ A} be a collection of i.i.d. centered Gaussian random variables
with unit variance. We recall that, for every k and every f , the random variable Qk(f,G)
(defined according to (2.17)) is an element of the kth Wiener chaos associated with G. See
e.g. Janson [15] for basic definitions and results on the Gaussian Wiener chaos. The next
result, proved in [19], shows that sequences of random variables of the type Qk(f,G) have
a universal character with respect to normal approximations. The proof of Theorem 2.2
is based on a powerful interaction between three techniques, namely: the Stein’s method

for probabilistic approximations (see e.g. [6]), the Malliavin calculus of variations (see e.g.
[21]), and a general Lindeberg-type invariance principle recently proved by Mossel et al.
in [17].
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Theorem 2.2 (Universality of Wiener chaos, see [19]) Let G = {Ga : a ∈ A} be a
collection of standard centered i.i.d. Gaussian random variables, and fix integers m > 1 and
k1, ..., km > 2. For every j = 1, ..., m, let {f (j)

N : N > 1} be a sequence of functions such that

f
(j)
N : Akj → R is symmetric and vanishes on diagonals. We also suppose that, for every

j = 1, ..., m, the support of f
(j)
N , denoted by supp(f

(j)
N ), is such that |supp(f

(j)
N )| → ∞,

as N → ∞. Define Qkj
(f

(j)
N ,G), N > 1, according to (2.17). Assume that, for every

j = 1, ...m, the following sequence of variances is bounded:

E[Qkj
(f

(j)
N ,G)2], N > 1. (2.19)

Let V be a m×m non-negative symmetric matrix, and let Nm(0, V ) indicate a m-dimensional
centered Gaussian vector with covariance matrix V . Then, as N → ∞, the following two
conditions are equivalent.

(1) The vector {Qkj
(f

(j)
N ,G) : j = 1, ..., m} converges in law to Nm(0, V ).

(2) For every sequence X = {Xa : a ∈ A} of independent centered random variables, with

unit variance and such that supa E|Xa|3 < ∞, the law of the vector {Qkj
(f

(j)
N ,X) :

j = 1, ..., m} converges to the law of Nm(0, V ).

Note that Theorem 2.2 concerns only homogeneous sums of order k > 2: it is easily seen
(see e.g. [19, Section 1.6.1]) that the statement is indeed false in the case k = 1. However,
if one considers sums with a specific structure (basically, verifying some Lindeberg-type
condition) one can embed sums of order one into the previous statement. A particular
instance of this fact is made clear in the following statement, whose proof (combining the
results of [19] with the main estimates of [17]) is standard and therefore omitted.

Proposition 2.3 For m > 1, let the kernels {f (j)
N : N > 1}, j = 1, ..., m, verify the

assumptions of Theorem 2.2. Let {ai : i > 1} be an infinite subset of A, and assume
that condition (1) in the statement of Theorem 2.2 is verified. Then, for every sequence
X = {Xa : a ∈ A} of independent centered random variables, with unit variance and such

that supa E|Xa|3 < ∞, as N → ∞ the law of the vector {WN ; Qkj
(f

(j)
N ,X) : j = 1, ..., m},

where WN = 1√
N

∑N
i=1 Xai

, converges to the law of {N0 ; Nj : j = 1, ..., m}, where N0 ∼
N (0, 1), and (N1, ..., Nm) ∼ Nm(0, V ) denotes a centered Gaussian vector with covariance
V , and independent of N0.

Theorem 2.2 and Proposition 2.3 imply that, in order to prove a CLT involving vectors
of homogeneous sums based on some independent sequence X, it suffices to replace X with
an i.i.d. Gaussian sequence G. In this way, one obtains a sequence of random vectors
whose components belong to a fixed Wiener chaos. We now present two results, showing
that proving CLTs for this type of random variables can be a relatively easy task: indeed,
one can apply some drastic simplification of the method of moments. The first statement
deals with multi-dimensional CLTs and shows that, in a Gaussian Wiener chaos setting,
componentwise convergence to Gaussian always implies joint convergence. See also [1] for
some connections with Stokes formula.
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Theorem 2.4 (Multidimensional CLTs on Wiener chaos, see [19, 23]) Let the fam-
ily G = {Ga : a ∈ A} be i.i.d. centered standard Gaussian and, for j = 1, ..., m, define

the sequences Qkj
(f

(j)
N ,G), N > 1, as in Theorem 2.2 (in particular, the functions f

(j)
N

verify the same assumptions as in that theorem). Suppose that, for every i, j = 1, ..., m, as
N → ∞

E
[
Qki

(f
(i)
N ,G) × Qkj

(f
(j)
N ,G)

]
→ V (i, j), (2.20)

where V is a m×m covariance matrix. Finally, assume that WN , N > 1, is a sequence of
N (0, 1) random variables with the representation

WN =
∑

a∈A

wN(a) × Ga,

where the weights wN(a) are zero for all but a finite number of indices a, and
∑

a∈A wN(a)2 =
1. Then, the following are equivalent:

(1) The random vector {WN ; Qkj
(f

(j)
N ,G) : j = 1, ..., m} converges in law to {N0 ; Nj :

j = 1, ..., m}, where N0 ∼ N (0, 1), and (N1, ..., Nm) ∼ Nm(0, V ) denotes a centered
Gaussian vector with covariance V , and independent of N0.

(2) For every fixed j = 1, ..., m, the sequence Qkj
(f

(j)
N ,G), N > 1, converges in law to

Z ∼ N
(
0, V (j, j)

)
, that is, to a centered Gaussian random variable with variance

V (j, j).

The previous statement implies that, in order to prove CLTs for vectors of homoge-
neous sums, one can focus on the componentwise convergence of their (Gaussian) Wiener
chaos counterpart. The forthcoming Theorem 2.6 shows that this type of one-dimensional
convergence can be studied by focussing exclusively on fourth moments. To put this result
into full use, we need some further definitions.

Definition 2.5 Fix k > 2. Let f : Ak → R be a (not necessarily symmetric) function
vanishing on diagonals and with finite support. For every r = 0, ..., k, the contraction f ⋆r f
is the function on A2d−2r given by

f ⋆rf(a1, ..., a2d−2r) (2.21)

=
∑

(x1,...,xr)∈Ar

f(a1, ..., ak−r, x1, ..., xr)f(ak−r+1, ..., a2d−2r, x1, ..., xr).

Observe that (even when f is symmetric) the contraction f ⋆rf is not necessarily symmetric
and not necessarily vanishes on diagonals. The canonical symmetrization of f ⋆rf is written
f ⋆̃rf .

Theorem 2.6 (The simplified method of moments, see [22]) Fix k > 2. Let G =
{Ga : a ∈ A} be an i.i.d. centered standard Gaussian family. Let {fN : N > 1} be a

11



sequence of functions such that fN : Ak → R is symmetric and vanishes on diagonals.
Suppose also that |supp(fN )| → ∞, as N → ∞. Assume that

E[Qk(fN ,G)2] → σ2 > 0, as N → ∞. (2.22)

Then, the following three conditions are equivalent, as N → ∞.

(1) The sequence Qk(fN ,G), N > 1, converges in law to Z ∼ N (0, σ2).

(2) E[Qk(fN ,G)4] → 3σ4.

(3) For every r = 1, ..., k − 1, ‖fN ⋆r fN‖2k−2r → 0.

Finally, we present a version of Theorem 2.2 with bounds, that will lead to the proof
of Theorem 1.1-(ii) provided in Section 4.4.

Theorem 2.7 (Universal bounds, see [19]) Let X = {Xa : a ∈ A} be a collection of
independent centered random variables, with unit variance and such that β := supa E|Xa|3 <
∞. Fix integers m > 1, km > ... > k1 > 2. For every j = 1, ..., m, let f (j) : Akj → R be
a symmetric function vanishing on diagonals. Define Qj(X) := Qkj

(f (j),X) according to
(2.17), and assume that E[Qj(X)2] = 1 for all j = 1, . . . , m. Also, assume that K > 0 is
given such that

∑
a∈A max16j6m Infa(f

(j)) 6 K, where

Infa(f
(j)) =

∑

{a2,...,akj
}⊂Akj

f (j)(a, a2, . . . , akj
)2 =

1

(kj − 1)!

∑

a2,...,akj
∈A

f (j)(a, a2, . . . , akj
)2.

Let ϕ : Rm → R be a thrice differentiable function such that ‖ϕ′′‖∞ + ‖ϕ′′′‖∞ < ∞,
with ‖ϕ(k)‖∞ = max|α|=k

1
α!

supz∈Rm |∂αϕ(z)|. Then, for Z = (Z1, . . . , Zm) ∼ Nm(0, Im)
(standard Gaussian vector on Rm), we have

∣∣E[ϕ(Q1(X), . . . , Qm(X))] − E[ϕ(Z)]
∣∣ 6 ‖ϕ′′‖∞

(
m∑

i=1

∆ii + 2
∑

16i<j6m

∆ij

)

+K‖ϕ′′′‖∞
(

β +

√
8

π

)[
m∑

j=1

(16
√

2β)
kj−1

3 kj !

]3√
max

16j6m
max
a∈A

Infa(f (j)),

where ∆ij, 1 6 i 6 j 6 m, is given by

kj√
2

kj−1∑

r=1

(r − 1)!

(
ki − 1

r − 1

)(
kj − 1

r − 1

)√
(ki + kj − 2r)!

(
‖f (i) ⋆ki−r f (i)‖2r+‖f (j) ⋆kj−r f (j)‖2r

)

+1{ki<kj}

√

kj !

(
kj

ki

)
‖f (j) ⋆kj−ki

f (j)‖2ki
.
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We finish this section by a useful result, which shows how the influence Infaf of f :
Ak → R can be bounded by the norm of the contraction of f of order k − 1:

Proposition 2.8 Let f : Ak → R be a symmetric function vanishing on diagonals. Then

(k − 1)! max
a∈A

Infa(f) := max
a∈A

∑

a2,...,ak∈A

f(a, a2, . . . , ak)
2

6 ‖f ⋆k−1 f‖2.

Proof. We have

‖f ⋆k−1 f‖2
2 =

∑

a,b∈A

[
∑

a2,...,ak∈A

f(a, a2, . . . , ak)f(b, a2, . . . , ak)

]2

>
∑

a∈A

[
∑

a2,...,ak∈A

f 2(a, a2, . . . , ak)

]2

> max
a∈A

[
∑

a2,...,ak∈A

f 2(a, a2, . . . , ak)

]2

=

[
(k − 1)! max

a∈A
Infa(f)

]2

.

2

As a consequence of Theorem 2.7 and Proposition 2.8, we immediately get the following
result.

Corollary 2.9 Let X = {Xa : a ∈ A} be a collection of independent centered random
variables, with unit variance and such that β := supa E|Xa|3 < ∞. Fix integers m > 1,

km > ... > k1 > 1. For every j = 1, ..., m, let {f (j)
N : N > 1} be a sequence of functions such

that f
(j)
N : Akj → R is symmetric and vanishes on diagonals. Define Qj

N(X) := Qkj
(f

(j)
N ,X)

according to (2.17), and assume that E[Qj
N(X)2] = 1 for all j = 1, . . . , m and N > 1. Let

ϕ : Rm → R be a thrice differentiable function such that ‖ϕ′′‖∞ + ‖ϕ′′′‖∞ < ∞. If, for

some α > 0, ‖f (j)
N ⋆kj−r f

(j)
N ‖2r = O(N−α) for all j = 1, . . . , m and r = 1, . . . , kj − 1, then,

by noting (Z1, . . . , Zm) a centered Gaussian vector such that E[Z iZj ] = 0 if i 6= j and
E[(Zj)2] = 1, we have

∣∣E[ϕ(Q1
N (X), . . . , Qm

N(X))] − E[ϕ(Z1, . . . , Zm)]
∣∣ = O(N−α/2).

3 Gaussian fluctuations of non-diagonal trace compo-

nents

Our aim in this section is to prove the multidimensional CLT (1.15), by using the uni-
versality results presented in Section 2. To do this, we shall use an auxiliary collection
G = {Gij : i, j > 1} of i.i.d. copies of a N (0, 1) random variable.
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As in Section 1.3, for a given integer k > 2, we write D
(k)
N to indicate the set of vectors

i = (i1, . . . , ik) ∈ [N ]k such that all the elements (ia, ia+1), a = 1, . . . , k, are different in
pairs (with the convention that ik+1 = i1). We have the following preliminary result:

Proposition 3.1 For any fixed integer k > 2,

N−k/2
∑

i∈D
(k)
N

Gi1i2 . . . Giki1
Law−→ Zk ∼ N (0, k) as N → ∞.

Remark 3.2 When k = 1, the conclusion of the above proposition continues to be true,
since in this case we obviously have

N−1/2

N∑

i=1

Gii ∼ N (0, 1).

Proof of Proposition 3.1: The main idea is to use the results of Section 2, in the special
case A = N2, that is, A is the collection of all pairs (i, j) such that i, j > 1. Observe that

N−k/2
∑

i∈D
(k)
N

Gi1i2 . . . Giki1 = Qk(fk,N ,G),

with fk,N : ([N ]2)k → R the symmetric function defined by

fk,N =
1

k!

∑

σ∈Sk

f
(σ)
k,N , (3.23)

where we used the notation

f
(σ)
k,N

(
(a1, b1), . . . , (ak, bk)

)
= N−k/2

∑

i∈D
(k)
N

1{iσ(1)=a1, iσ(1)+1=b1} . . .1{iσ(k)=ak, iσ(k)+1=bk}, (3.24)

and Sk denotes the set of all permutations of [k]. Hence, by virtue of Theorem 2.6, to
prove Proposition 3.1 it is sufficient to accomplish the following two steps: (Step 1) prove
that property (3) (with fk,N replacing fN) in the statement of Theorem 2.6 takes place,
and (Step 2) show that relation (2.22) (with fk,N replacing fN) is verified.

Step 1. Let r ∈ {1, . . . , k − 1}. For σ, τ ∈ Sk, we compute

f
(σ)
k,N ⋆r f

(τ)
k,N

(
(x1, y1), . . . , (x2k−2r, y2k−2r)

)
(3.25)

= N−k
∑

i,j∈D
(k)
N

1{iσ(1)=x1, iσ(1)+1=y1} . . .1{iσ(k−r)=xk−r, iσ(k−r)+1=yk−r}

×1{jτ(1)=xk−r+1, jτ(1)+1=yk−r+1} . . .1{jτ(k−r)=x2k−2r , jτ(k−r)+1=y2k−2r}

×1{iσ(k−r+1)=jτ(k−r+1), iσ(k−r+1)+1=jτ(k−r+1)+1} . . .1{iσ(k)=jτ(k), iσ(k)+1=jτ(k)+1
}.
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We now want to assess the quantity ‖f (σ)
k,N ⋆r f

(τ)
k,N‖2

2k−2r. To do this, we exploit the represen-

tation (3.25) in order to write such a squared norm as a sum over ([N ]k)4: as a consequence,

one deduces that ‖f (σ)
k,N ⋆r f

(τ)
k,N‖2

2k−2r 6 |F (r,σ,τ)
N |N−2k where F

(r,σ,τ)
N is the subset of ([N ]k)4

composed of those quadruplets (i, j, a,b) such that

iσ(1) = aσ(1), iσ(1)+1 = aσ(1)+1, . . . , iσ(k−r) = aσ(k−r), iσ(k−r)+1 = aσ(k−r)+1

jτ(1) = bτ(1), jτ(1)+1 = bτ(1)+1, . . . , jτ(k−r) = bτ(k−r), jτ(k−r)+1 = bτ(k−r)+1

iσ(k−r+1) = jτ(k−r+1), iσ(k−r+1)+1 = jτ(k−r+1)+1, . . . , iσ(k) = jτ(k), iσ(k)+1 = jτ(k)+1

aσ(k−r+1) = bτ(k−r+1), aσ(k−r+1)+1 = bτ(k−r+1)+1, . . . , aσ(k) = bτ(k), aσ(k)+1 = bτ(k)+1.

(3.26)

It is immediate that, among the equalities in (3.26), the 2k equalities appearing in the
forthcoming display (3.27) are pairwise disjoint (that is, an index appearing in one of the
equalities does not enter into the others):

iσ(1) = aσ(1), . . . , iσ(k−r) = aσ(k−r), jτ(1) = bτ(1), . . . , jτ(k−r) = bτ(k−r)

iσ(k−r+1) = jτ(k−r+1), . . . , iσ(k) = jτ(k), aσ(k−r+1) = bτ(k−r+1), . . . , aσ(k) = bτ(k).

(3.27)

Hence, the cardinality of F
(r,σ,τ)
N is less than N2k, from which we infer that ‖f (σ)

k,N⋆rf
(τ)
k,N‖2

2k−2r

is bounded by 1. This is not sufficient for our purposes, since we need to show that
‖f (σ)

k,N ⋆r f
(τ)
k,N‖2

2k−2r tends to zero as N → ∞. To prove this, it is sufficient to extract
from (3.26) one supplementary equality which is not already written in (3.27). We shall
prove that this equality exists by contradiction. Set L = {σ(s) : 1 6 s 6 k − r} and
R = {σ(s) + 1 : 1 6 s 6 k − r} (with the convention that k + 1 = 1). Now assume that
R = L. Then σ(1) + 1 ∈ R also belongs to L, so that σ(1) + 2 ∈ R. By repeating this
argument, we get that L = R = [k], which is a contradiction because r > 1. Hence, R 6= L.
In particular, the display (3.26) implies at least one relation involving two indices that are

not already coupled in (3.27). This yields that the cardinality of F
(r,σ,τ)
N is at most N2k−1,

and consequently that ‖f (σ)
k,N ⋆r f

(τ)
k,N‖2

2k−2r 6 N−1. This fact implies immediately that the
norms ‖fN ⋆r fN‖2k−2r, r = 1, . . . , k − 1, verify

‖fN ⋆r fN‖2k−2r = O(N−1/2), (3.28)

and tend to zero as N → ∞. In other words, we have proved that condition (3) in the
statement of Theorem 2.6 is met.

Step 2. We have

Var


N−k/2

∑

i∈D
(k)
N

Gi1i2 . . . Giki1


 = N−k

∑

i,j∈D
(k)
N

E[Gi1i2 . . . Giki1Gj1j2 . . . Gjkj1].

For fixed i, j ∈ D
(k)
N , observe that the expectation E[Gi1i2 . . . Giki1Gj1j2 . . . Gjkj1] can only

be zero or one. Moreover, it is one if and only if, for all s ∈ [k], there is exactly one t ∈ [k]
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such that (is, is+1) = (jt, jt+1). In this case, we define σ ∈ Sk as the bijection of [k] into
itself which maps each s to the corresponding t and we have, for all s ∈ [k],

is = jσ(s) = jσ(s−1)+1. (3.29)

To summarize, one has that Var
(
N−k/2

∑
i∈D

(k)
N

Gi1i2 . . . Giki1

)
equals

N−k
∑

σ∈Sk

∣∣{(i, j) ∈ (D
(k)
N )2 : (is, is+1) = (jσ(s), jσ(s)+1) for all s ∈ [k]

}∣∣. (3.30)

If σ ∈ Sk is such that σ(s) = σ(s−1)+1 for all s (it is easily seen that there are exactly k
permutations verifying this property in Sk), we get k different conditions by letting s run
over [k] in (3.29), so that

{
(i, j) ∈ (D

(k)
N )2 : (is, is+1) = (jσ(s), jσ(s)+1) for all s ∈ [k]

}
∼ Nk, as N → ∞.

In contrast, if σ ∈ Sk is not such that σ(s) = σ(s − 1) + 1 for all s, then by letting s run
over [k], one deduces from (3.29) at least k + 1 different conditions, so that, in this case,

{
(i, j) ∈ (D

(k)
N )2 : (is, is+1) = (jσ(s), jσ(s)+1) for all s ∈ [k]

}
= o(Nk), as N → ∞.

Taking into account these two properties together with the representation (3.30), we deduce
that the variance of

N−k/2
∑

i∈D
(k)
N

Gi1i2 . . . Giki1

tends to k as N → ∞. It follows that the required property (2.22) in Theorem 2.6 (with
σ2 = k) is met.

The proof of Proposition 3.1 is concluded.
2

The multidimensional version of Proposition 3.1 reads as follows:

Proposition 3.3 Fix m > 1, as well as integers km > . . . > k1 > 2. Then, as N → ∞,

N−1/2

N∑

i=1

Gii, N− k1
2

∑

i∈D
(k1)
N

Gi1i2 · · · Gik1
i1 , . . . (3.31)

. . . , N− km
2

∑

i∈D
(km)
N

Gi1i2 · · · Gikm i1


 Law−→

(
Z1, Zk1, ..., Zkm

)
,

where Z = {Zk : k > 1} denotes a collection of independent centered Gaussian random
variables such that, for every k > 1, E(Z2

k) = k.
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Proof: It is an application of Theorem 2.4, in the following special case:

- wN(i, j) = 1√
N

, if i = j 6 N and wN(i, j) = 0 otherwise;

- V is equal to the diagonal matrix such that V (a, b) = 0 if a 6= b and V (a, a) = ka,
for a = 1, ..., m;

- for j = 1, ..., m, f
(j)
N = fkj ,N , where we used the notation (3.23).

Indeed, in view of Proposition 3.1, one has that condition (2) in the statement of Theorem
2.4 is satisfied. Moreover, for fixed a 6= b and since G consists of a collection of independent
and centered (Gaussian) random variables, it is clear that, for all N ,

E



∑

i∈D
(ka)
N

Gi1i2 . . . Gika i1 ×
∑

j∈D
(kb)

N

Gj1j2 . . . Gjkb
j1


 = 0,

so that condition (2.20) is met. The proof is concluded.
2

By combining Proposition 3.3 and Proposition 2.3, we can finally deduce the following
general result for non-diagonal trace components.

Corollary 3.4 For N > 2, let XN be the N × N random matrix given by (1.1), where
the reference random variable X has mean zero, unit variance and finite absolute third
moment. Fix m > 1, as well as integers 2 6 k1 < . . . < km. Then, the CLT (1.15)
takes place, with Z = {Zk : k > 1} denoting a sequence of independent centered Gaussian
random variables such that, for every k > 1, E(Z2

k) = k.

Remark 3.5 In order to prove Corollary 3.4, one only needs the existence of third mo-
ments. Note that, as will become clear in the following Section 4, moments of higher orders
are necessary for our proof of (1.16).

4 The remainder: combinatorial bounds on partitioned

chains and proof of Theorem 1.1

Fix an integer k > 2. From section 1.3, recall that D
(k)
N denotes the subset of vectors

i = (i1, . . . , ik) ∈ [N ]k such that all the elements (ia, ia+1), a = 1, . . . , k, are different in
pairs (with the convention that ik+1 = i1). From the Introduction, recall that X is a
centered random variable, having unit variance and with finite moments of all orders. Let
also X = {Xij : i, j > 1} be a collection of i.i.d. copies of X. In the present section, our
aim is to prove (1.16), that is
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Proposition 4.1 For every k > 2, as N → ∞,

Var


N−k/2

∑

i 6∈D
(k)
N

[
Xi1i2 . . .Xiki1 − E(Xi1i2 . . .Xiki1)

]

 = O(N−1). (4.32)

The proof of Proposition 4.1 is detailed in Section 4.4, and builds on several combinatorial
estimates derived in Sections 4.2–4.3. To ease the reading of the forthcoming material, we
now provide an intuitive outline of this proof.

Remark on notation. Given an integer k > 2, we denote by P(k) the collection of all
partitions of [k] = {1, ..., k}. Recall that a partition π ∈ P(k) is an object of the type
π = {B1, ..., Br}, where the Bj ’s are disjoint and non-empty subsets of [k], called blocks,

such that ∪j=1,...,rBj = [k]. Given a, x ∈ [k] and π ∈ P(k), we write a
π∼ x whenever a and

x are in the same block of π. We also use the symbol 1̂ to indicate the one-block partition
1̂ = {[k]} (this is standard notation from combinatorics – see e.g. [28]). In this section, for

the sake of simplicity and because k is fixed, we write DN instead of D
(k)
N .

4.1 Sketch of the proof of Proposition 4.1

Our starting point is the following elementary decomposition:

[N ]k \ DN =
⋃

π∈Q(k)

AN (π),

where Q(k) stands for the collection of all partitions of [k] containing at least one block
of cardinality > 2, and AN (π) is the collection of all vectors i ∈ [N ]k such that the
equality (ia, ia+1) = (ix, ix+1) holds if and only if a

π∼ x. Using this decomposition, one
sees immediately that, in order to show (4.32), it is sufficient to prove that, for each fixed

π ∈ Q(k), the quantity

Var


N−k/2

∑

i∈AN (π)

[
Xi1i2 . . .Xiki1 − E(Xi1i2 . . . Xiki1)

]

 (4.33)

= N−k
∑

(i,j)∈AN (π)×AN (π)

[ E(Xi1i2 . . .Xiki1Xj1j2 . . .Xjkj1) − E(Xi1i2 . . . Xiki1)E(Xj1j2 . . .Xjkj1) ]

is O(N−1), as N → ∞. Let GN(π) denote the subset of pairs (i, j) ∈ AN (π)×AN(π) such
that the following non-vanishing condition is in order:

E(Xi1i2 . . .Xiki1Xj1j2 . . .Xjkj1) − E(Xi1i2 . . .Xiki1)E(Xj1j2 . . .Xjkj1) 6= 0. (4.34)

Hence

Var



N−k/2
∑

i∈AN (π)

[
Xi1i2 . . .Xiki1 − E(Xi1i2 . . .Xiki1)

]


 (4.35)

= N−k
∑

(i,j)∈GN (π)

[E(Xi1i2 . . .Xiki1Xj1j2 . . .Xjkj1) − E(Xi1i2 . . .Xiki1)E(Xj1j2 . . .Xjkj1) ] .
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Due to the finite moment assumptions for X, and by appling the generalized Hölder in-
equality, it is clear that, for a generic pair (i, j),

∣∣E(Xi1i2 . . .Xiki1Xj1j2 . . .Xjkj1)−E(Xi1i2 . . .Xiki1)E(Xj1j2 . . .Xjkj1)
∣∣ 6 2 E(|X|2k) < ∞.

It follows that, in order to prove that the sum in (4.35) is O(N−1), it is enough to show
that

∣∣GN(π)
∣∣ 6 Θ(k, π)Nk−1, (4.36)

for some constant Θ(k, π) not depending on N . Our way of proving (4.36) is to show that,
if (i, j) denotes a generic element of GN (π), then, necessarily, there exists at least k + 1
equalities between the 2k indices i1, . . . , ik, j1, . . . , jk of (i, j). Note that by ‘equality’ we
just mean the existence of two different integers a, b ∈ [k] such that ia = ib or ja = jb, or
the existence of two integers a, b ∈ [k] such that ia = jb. Proving this fact implies that
the 2k indices of a generic elements (i, j) of GN(π) have at most k − 1 degrees of freedom

(see Point 7 of Section 4.2 for a precise definition), so that (4.36) holds immediately — the
constant Θ(k, π) merely counting the number of ways in which the k + 1 equalities can be
consistently distributed among the indices composing (i, j). In order to extract these k +1
equalities between the 2k indices of a generic element (i, j) of GN(π), we will consider two
cases, according as the partition π ∈ Q(k) contains at least one singleton or not.

Case A: No singletons in π. By definition of AN(π), and due to the absence of singleton
in π, we already see that there are at least k/2 or (k + 1)/2 (according to the evenness of
k) equalities between the k indices of i (resp. j). Moreover, the non-vanishing condition
(4.34) implies that there is at least one further equality between one index of i and one
index of j. So, we proved the existence of k + 1 equalities between the 2k indices of (i, j),
and the proof of (4.36) in the Case A is done.

Case B: At least one singleton in π. Let S denote the collection of the singleton(s) of π. In
order for (4.34) to be true, observe that, for all s ∈ S, we must have (js, js+1) = (ia, ia+1)
for some a ∈ [k]. In particular, this means that there exist |S| equalities of the type js = ia
for the indices composing (i, j). Also, by definition of the objects we are dealing with, for
all t ∈ [k] \ S, we must have (it, it+1) = (ia, ia+1) for some a, different from t, in the same
π-block as t. Of course, the same must hold with i replaced by j. Hence, in order for (4.36)
to be true, it remains to produce one equality between indices that has not been already
considered. We mentioned above that for all t ∈ [k]\S, there exists a, different from t and
in the same block as t, such that jt = ja. Hence, to conclude it remains to show that we
have jt = ja for at least one integer t belonging to [k] \ S and one integer a not belonging
to the same block as t. Since, by assumption, π contains at least one singleton and one
block of cardinality > 2 (indeed, π ∈ Q(k)), without loss of generality (up to relabeling
the indices according to a cyclic permutation of [k]), we can assume that S contains the
singleton {k}. Consider now the singleton {s∗} of S, where s∗ is defined as the greatest of
the integers m such that {m} is adjacent from the right to a block, say Bu∗, of cardinality
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> 2. For a particular example of this situation, see the diagram in Fig. 1, where each row
represents the same partition of [7] having s∗ = 6 (see Point 3. in the subsequent Section
4.2 for a formal construction of diagrams). To finish the proof, once again we split it into
two cases:

Case B1: The block Bu∗ contains two consecutive integers. This assumption implies that
jx = jt = jt+1 for all x, t ∈ Bu∗. Since {a} is adjacent from the right to Bu∗, we have
ja = jt for all t ∈ Bu∗, which is exactly what we wanted to show.

Case B2: The block Bu∗ does not contain two consecutive integers. Fig. 7 is an illus-
trative example of such situation, where each row represents the same partition of [8],
with s∗ = 7. As we see on this picture, we have necessarily j7 = j5, yielding the desired
additional equality, which could not be extracted from the previous discussion. In Section
4.3, it is shown that this line of reasoning can be extended to general situations.

Remark 4.2 The sketch given above contains all the main ideas entering in the proof
of Proposition 4.1. The reader not interested in technical combinatorial details, can then
go directly to Section 4.4, where the proof of Theorem 1.1 is concluded. The subsequent
Sections 4.2–4.3 fill the gaps of the above sketch, by providing exact definitions as well as
complete formal arguments leading to the estimate (4.32).

4.2 Definitions

In the following list, we introduce some further definitions that are needed for the analysis
developed in the rest of this section.

1. Fix integers N, k > 2. A chain c of length 2k, built from [N ], is an object given
by the juxtaposition of 2k pairs of integers of the type

c = (i1, i2)(i2, i3)...(ik, i1)(j1, j2)(j2, j3)...(jk, j1), (4.37)

where ia, jx ∈ [N ], for a, x = 1, ..., k. The class of all chains of length 2k built from [N ] is
denoted by C(2k, N). As a notational convention, we will use the letter i to write the first
k pairs in the chain, and the letter j to write the remaining ones. For instance, an element
of C(6, 5) (that is, a chain of length 6 built from the set {1, 2, 3, 4, 5}) is

c = (1, 5)(5, 1)(1, 1)(3, 3)(3, 3)(3, 3),

where i1 = 1, i2 = 5, i3 = 1, j1 = j2 = j3 = 3. According to the graphical conventions
given below (at Point 3 of the present list) we will sometimes say that (i1, i2)(i2, i3)...(ik, i1)
and (j1, j2)(j2, j3) ...(jk, j1) are, respectively, the upper sub-chain and the lower sub-chain

associated with the chain c in (4.37). For instance, in the previous example the upper
sub-chain is (1, 5)(5, 1)(1, 1), whereas the lower one is (3, 3)(3, 3)(3, 3). We shall say that
(il, il+1) is the lth pair in the upper sub-chain of c (and similarly for the elements of the
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lower sub-chain). We shall sometimes call ia the left index of the pair (ia, ia+1). Also, we
use the convention ik+1 = i1 and jk+1 = j1. Of course, a chain is completely determined
by the left indices of its pairs.

2. Let π ∈ P(k) be a partition of [k]. Recall that, for a, b ∈ [k], we write a
π∼ b to

indicate that a and b belong to the same block of π. We say that a chain c as in (4.37)
has partition π if, for every a, b ∈ [k], the following double implications take place: (i)
(ia, ia+1) = (ib, ib+1) if and only if a

π∼ b, and (ii) (ja, ja+1) = (jb, jb+1) if and only if a
π∼ b.

In other words, a chain has partition π if and only if the partitions of [k] induced by the
identical pairs in its upper and lower sub-chain are both equal to π, that is (with the
notation of Section 4.1), if and only if (i1, ..., ik), (j1, ..., jk) ∈ AN(π). For instance, take
k = 4 and π = {{1, 3}, {2, 4}}. Then, the following chain built from [3] has partition π:

c = (1, 2)(2, 1)(1, 2)(2, 1)(3, 1)(1, 3)(3, 1)(1, 3).

Note the ‘only if’ part in the definition given above, implying that, if a chain has partition
π and if x and y are not in the same block of π, then necessarily (ix, ix+1) 6= (iy, iy+1)
and (jx, jx+1) 6= (jy, jy+1). This yields in particular that a chain cannot have two different
partitions.

3. Given k > 2, we shall sometimes represent a generic chain with partition π ∈ P(k)
by means of diagrams. These diagrams are mnemonic devices composed of an upper row
and a lower row, of k dots each. These rows represent, respectively, the upper and lower
sub-chain of a given chain, in such a way that the lth dot (from left to right) in the upper
(resp. lower) row corresponds the lth pair in the upper (resp. lower) sub-chain. Each block
B of the partition π is represented by two closed curves: the first one is drawn around
the dots of the upper row corresponding to the pairs (ia, ia+1) verifying a ∈ B; the second
one is drawn around the dots of the lower row corresponding to those (jx, jx+1) verifying
x ∈ B. The resulting diagram is the superposition of two identical combinations of dots
and curves. Note that the shape of the diagram does not depend on N . For instance, the
diagram in Fig. 1 corresponds to the case k = 7, and π = {{1, 4, 5}, {2}, {3}, {6}, {7}},3
whereas the diagram in Fig. 2 corresponds to k = 6 and the one-block partition 1̂ = {[6]}.

4. In general, given a chain c as in (4.37) with partition π = {B1, ..., Br} as at Point 2
of the present list, we shall say the the block Bu of the upper sub-chain corresponds to
the block Bv of the lower sub-chain, whenever (ia, ia+1) = (jx, jx+1) for every a ∈ Bu and
every x ∈ Bv. Note that one given block Bu in the upper sub-chain cannot correspond to
more than one block in the lower sub-chain. For π = {B1, ..., Br} ∈ P(k), we shall now
define a class of chains Cπ(2k, N) ⊂ C(2k, N), whose elements have partition π and are

3A chain with partition π as in Fig. 1 is

c = (1, 1)(1, 2)(2, 1)(1, 1)(1, 1)(1, 3)(3, 1)(1, 1)(1, 4)(4, 1)(1, 1)(1, 1)(1, 5)(5, 1).
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b bb bb b b

b bb bb b b

Figure 1: a chain with a five-block partition

b b b b b b

b b b b b b

Figure 2: a chain with a one-block partition

characterized by two facts: the associated upper and lower sub-chains have at least one
pair in common, and “no singletons are left on their own”. Formally, the class Cπ(2k, N)
is defined as follows (recall that we use the letter i for the elements of the upper sub-
chain, and the letter j for the elements of the lower sub-chain). (i) If |Bt| > 2 for every
t = 1, ..., r, then Cπ(2k, N) is the collection of all chains of partition π verifying that there
exists a, x ∈ [k] such that the block Ba in the upper sub-chain corresponds to the block
Bx in the lower sub-chain. (ii) If π contains at least one singleton, then Cπ(2k, N) is the
collection of all chains of partition π such that every singleton in the upper (resp. lower)
sub-chain corresponds to a block of the lower (resp. upper) subchain, that is: for every
{a} ∈ π, there exists u = 1, ..., r such that (ia, ia+1) = (jl, jl+1) for every l ∈ Bu, and, for
every {x} ∈ π, there exists v = 1, ..., r such that (jx, jx+1) = (js, js+1) for every s ∈ Bv.
For instance, if k = 3 and π = {[3]}, then one element of Cπ(6, 5) is

c = (5, 5)(5, 5)(5, 5)(5, 5)(5, 5)(5, 5).

If k = 6 and π = {{1, 2, 3}, {4}, {5}, {6}}, then one element of Cπ(12, 5) is

c = (1, 1)(1, 1)(1, 1)(1, 2)(2, 5)(5, 1)(2, 2)(2, 2)(2, 2)(2, 5)(5, 1)(1, 2).

5. Fix k, N > 2, as well as a partition π = {B1, ..., Br} ∈ P(k). Given two subsets
U, V ⊂ [r] such that |U | = |V |, let R : U → V : u 7→ R(u) be a bijection from U
onto V . We shall denote by CR

π (2k, N) the subset of Cπ(2k, N) composed of those chains
c ∈ Cπ(2k, N) such that the block Bu in the upper sub-chain corresponds to the block
BR(u) in the lower sub-chain. When U = {u} and V = {v} are singletons, we shall simply
write Cu,v

π (2k, N) to indicate the set of those c ∈ Cπ(2k, N) such that the block Bu in
the upper sub-chain corresponds to the block Bv in the lower sub-chain. For instance, the
chain

c1 = (1, 1)(1, 1)(1, 2)(2, 5)(5, 1)(2, 2)(2, 2)(2, 5)(5, 1)(1, 2)
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is an element of CR
π (10, 4), where π = {B1, B2, B3, B4} = {{1, 2}, {3}, {4}, {5}}, U = V =

{2, 3, 4}, and R(2) = 4, R(3) = 2 and R(4) = 3. The chain

c2 = (3, 3)(3, 3)(3, 3)(3, 3)

belongs to C1,1

1̂
(4, 3), where 1̂ = {B1} = {[2]}. Note that the definition of CR

π (2k, N) does
not give any information concerning the blocks of the upper and lower sub-chains that do
not belong, respectively, to the domain and the image of R. In other words, for a chain
c ∈ CR

π (2k, N), one can have that the block Bu in the upper sub-chain corresponds to the
block Bv in the lower sub-chain even if u ∈/ U and v ∈/ V . For instance, the chain

c = (1, 1)(1, 1)(1, 2)(2, 5)(5, 1)(1, 1)(1, 1)(1, 2)(2, 5)(5, 1)

is counted as an element of CR
π (10, 4), where

π = {B1, B2, B3, B4} = {{1, 2}, {3}, {4}, {5}},

U = V = {2, 3, 4}, and R(u) = u, for u = 2, 3, 4.

6. Fix k, N > 2, as well as a partition π = {B1, ..., Br} ∈ P(k). Given a bijection
R : U → V as at Point 5 above, we shall represent a generic element of the class CR

π (2k, N)
by means of a diagram built as follows: first (i) draw the diagram associated with the class
Cπ(2k, N), as explained at Point 3 of the present list, then (ii) for every pair of blocks Bu

and Bv such that u ∈ U , v ∈ V and v = R(u) (note that Bu is in the upper sub-chain, and
Bv in the lower sub-chain), draw a segment linking a representative element of Bu with a
representative element of Bv. For instance, the class CR

π (10, N), associated with the chain
c1 appearing at Point 5 above, is represented by the diagram appearing in Fig. 3, whereas
the chain c2 is associated with the class C1,1

1̂
(4, 3), whose diagram is drawn in Fig. 4.

b b b b

b b b b

b

b

b

b

Figure 3: a chain with three pairs of corresponding singletons

b b

b b

Figure 4: a chain with two corresponding blocks
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7. Fix k, N > 2 and let C ⊂ C(2k, N) be a generic subset of C(2k, N). Let q = 1, ..., 2k
be an integer. We say that C has at most q degrees of freedom (or, equivalently, that
C has at most q free indices) if there exists two subsets D, E ⊂ [k] such that |D| > 1
and the following two properties are verified: (i) |D| + |E| 6 q, and (ii) for every4 xD =
{xa : a ∈ D} ∈ [N ]|D| and every yE = {yb : b ∈ E} ∈ [N ]|E|, there exists at most one
chain c as in (4.37) such that ia = xa for every a ∈ D and jb = yb for every b ∈ E. Note
that our definition contemplates the possibility that E = ∅, and in this case the role of
yE = ∅ is immaterial. In other words, the class C has at most q degrees of freedom if every
c ∈ C is completely determined by those ia in the upper sub-chain such that a ∈ D and
those jb in the lower sub-chain such that b ∈ E. For instance, it is easily seen the class
C(2k, N) has (exactly) 2k degrees of freedom. Another example is the diagram in Fig.
5, which corresponds to the case k = 6, π = {{1, 2}, {3, 5}, {4, 6}} and u = v = 1. One
sees that, for every N , specifying i1, i4 and j4 completely identifies a chain inside the class
C1,1

π (12, N), which has therefore three degrees of freedom.5

bbbb b b

bbbb b b

Figure 5: a class with three degrees of freedom

The proof of the two (useful) results contained in the next statement is elementary and
omitted.

Lemma 4.3 Fix k, N > 2.

(1) Let q = 1, ..., 2k. Assume that a generic class C ⊂ C(2k, N) has at most q degrees of
freedom. Then, |C| 6 N q.

(2) Let 1̂ = {[k]} be the one-block partition of [k]. Then, the class C1̂(2k, N) contains
only “constant” chains of the type (4.37) such that (i1, i2) = (ia, ia+1) = (jx, jx+1),
for every a = 2, ..., k and every x = 1, ..., k. It follows that |C1̂(2k, N)| = N .

Lemma 4.3 will be used in the subsequent section.

4.3 Combinatorial upper bounds

We keep the notation introduced in the previous section. The following statement, which
is the key element for proving Proposition 4.1, contains the main combinatorial estimate
of the paper.

4As indicated by our notation, we regard xD and yE as vectors, respectively in [N ]|D| and [N ]|E|, by
endowing D and E with the natural ordering induced by the ordering on [k].

5Indeed, one has necessarily that i1 = i2 = i3 = i5 = j1 = j2 = j3 = j5, i4 = i6 and j4 = j6.
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Proposition 4.4 Fix k, N > 2, and let π = {B1, ..., Br} ∈ P(k) be a partition containing
at least one block of cardinality > 2. Let the class Cπ(2k, N) be defined as at Point 4. of
the previous section. Then, there exists a finite constant Θ(k, π) > 0, depending only on k
and π (and not on N), such that

|Cπ(2k, N)| 6 Θ(k, π) × Nk−1. (4.38)

Proof: We shall consider separately the two cases

A. For every v = 1, ..., r, |Bv| > 2.

B. The partition π contains at least one singleton.

Case A. When k = 2, 3, the only partition meeting the needed requirements is 1̂. According
to Lemma 4.3-(2), |C1̂(2k, N)| = N , so that the claim is proved, and we shall henceforth
assume that k > 4. Start by observing that r 6 k/2. Moreover, the class Cπ(2k, N)
contains only chains such that at least one block in the upper sub-chain corresponds to a
block in the lower sub-chain, which yields in turn that

Cπ(2k, N) =
r⋃

u,v=1

Cu,v
π (2k, N),

where we adopted the notation introduced at Point 5. of Section 4.2. This implies the
crude estimate

|Cπ(2k, N)| 6

r∑

u,v=1

|Cu,v
π (2k, N)|. (4.39)

According to Lemma 4.3-(1), it is now sufficient to prove that each class Cu,v
π (2k, N) has

at most 2r−1 degrees of freedom: indeed, (4.39) together with the fact that 2r−1 6 k−1
would imply relation (4.38), with Θ(k, π) = r2 6 k2/4. Fix u, v ∈ {1, ..., r}. To prove that
Cu,v

π (2k, N) has at most 2r − 1 degrees of freedom, we shall build two sets D, E ⊂ [k] as
follows. For every s = 1, ..., r, choose an element of the block Bs, and denote this element
by as. Then, define

D = {as : s = 1, ..., r}, E = D\{av},

where ‘\’ denotes the difference between sets. We now claim that, for every xD = {xa :
a ∈ D} ∈ [N ]|D| and every yE = {yb : b ∈ E} ∈ [N ]|E|, there exists at most one chain
c ∈ Cu,v

π (2k, N) as in (4.37) such that ia = xa for every a ∈ D and jb = yb for every b ∈ E.
To prove this fact, suppose that such a chain c exists, and assume that there exists another
chain

c′ = (i′1, i
′
2)(i

′
2, i

′
3)...(i

′
k, i

′
1)(j

′
1, j

′
2)(j

′
2, j

′
3)...(j

′
k, j

′
1)
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verifying this property and such that c′ ∈ Cu,v
π (2k, N). The following hold: (a) for every

s = 1, ..., r and every a ∈ Bs, one has that i′a = xas
= ias

= ia, (b) for every s 6= v and
every a ∈ Bs, j′a = yas

= jas
= ja and (c) for s = v and every a ∈ Bv,

j′a = j′av
= i′au

= xau
= iau

= jav
= ja.

As a consequence, c′ = c. Since |D|+ |E| = 2r− 1, this concludes the proof of Proposition
4.4 in the Case A.

Case B. We shall denote by S the collection of the singleton(s) of π, that is the subset of
[k] composed of those indices a such that {a} ∈ π. Note that |S| > 0 by assumption. We
also write P for the collection of the indices u ∈ [r] such that |Bu| > 2. Note that P is
a subset of [r], whereas S ⊂ [k]. Note also that the set [r]\P is the collection of all those
v ∈ [r] such that Bv is a singleton. Clearly,

|P | = r − |S| 6
k − |S|

2
.

By exploiting the cyclic nature of sub-chains, we can always assume, without loss of gener-
ality, that S contains the singleton {k}. Since P is not empty, this entails that there exists
at least one singleton of π that is adjacent from the right to a block of cardinality at least
two. Formally, this means that there exists s∗ ∈ S and u∗ ∈ P such that s∗− 1 ∈ Bu∗ . We
shall distinguish two cases

B1. The block Bu∗ contains two consecutive integers.

B2. The block Bu∗ does not contain two consecutive integers.

(Proof under B1.) The situation of B1 is illustrated in Fig. 6, where k = 9,

π = {B1, ..., B7} = {{1}, {2}, {3, 6, 7}, {4}, {5}, {8}, {9}},

and one can take s∗ = 8, u∗ = 3, and the two consecutive integers in Bu∗ are 6 and 7.

b bb bb b b

b bb bb b b

b b

b b

Figure 6: a singleton is adjacent to a 3-block with two consecutive elements

Since each element of Cπ(2k, N) is such that every singleton in a given sub-chain corre-
sponds to a block in the opposite sub-chain, we have that

Cπ(2k, N) =
⋃

R∈R
CR

π (2k, N), (4.40)
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where we adopted the same notation as at Point 5. of Section 4.2, and the union runs over
the class R of all bijections R : U → V such that both U and V contain the set [r]\P , and
every pair (u, R(u)) is such that at least one of the two blocks Bu and BR(u) is a singleton.
This entails the estimate

|Cπ(2k, N)| 6
∑

R∈R
|CR

π (2k, N)|. (4.41)

To conclude the proof, we shall show that every class CR
π (2k, N) appearing in (4.41) has

at most k− 1 degrees of freedom: indeed, this fact together with Lemma 4.3-(1) yields the
desired conclusion (4.38), with the constant Θ(k, π) = |R| (note that the definition of R
does not depend on N) . To prove that CR

π (2k, N) has at most k − 1 degrees of freedom,
we define two sets D, E ⊂ [k] as follows. For every s = 1, ..., r, choose an element of the
block Bs, and denote this element by as. Then, define

D = {as : s = 1, ..., r}, E = D\ {{au∗} ∪ {as : s ∈ [r]\P}} .

In other words, E is obtained by subtracting from D the singleton(s) and the representative
element of the block Bu∗ , that is, of the block adjacent to {s∗}. We now want to prove
that, for every xD = {xa : a ∈ D} ∈ [N ]|D| and every yE = {yb : b ∈ E} ∈ [N ]|E|, there is
at most one chain c ∈ CR

π (2k, N) as in (4.37) such that ia = xa for every a ∈ D and jb = yb

for every b ∈ E. To show this, assume that such a chain c exists, and suppose that there
exists another chain

c′ = (i′1, i
′
2)(i

′
2, i

′
3)...(i

′
k, i

′
1)(j

′
1, j

′
2)(j

′
2, j

′
3)...(j

′
k, j

′
1)

verifying this property and such that c′ ∈ CR
π (2k, N) and c′ 6= c. By construction of the

sets D and E, all the indices composing the upper chain are completely determined by
the choice of xD, whereas the choice of yE determines the indices jx such that either x is
a singleton or x ∈ Bv for some block Bv of cardinality > 2 and such that v 6= u∗. This
entails in turn that, necessarily since c′ 6= c, one has that j′x 6= jx for every x ∈ Bu∗ . This
is absurd. Indeed, since Bu∗ contains two consecutive integers, one has that j′x = j′x+1 and
jx = jx+1 for every x ∈ Bu∗ ; it follows that, since {s∗} is adjacent from the right to Bu∗

and therefore s∗ − 1 ∈ Bu∗ ,

j′x = j′s∗−1 = j′s∗ = ys∗ = js∗ = js∗−1 = jx,

which is indeed a contradiction. Since

|D| + |E| = r + |P | − 1 6
k − |S|

2
+ |S| + k − |S|

2
− 1 = k − 1,

the proof is concluded.

(Proof under B2.) Since Bu∗ does not contain two consecutive integers and |Bu∗| > 2, we
deduce the existence of a block Bu ∈ π, which is different from Bu∗ and {s∗}, enjoying the
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following “interlacement property”: there exists an integer a ∈ [k] such that a+1 < s∗−1,
a ∈ Bu∗ and a + 1 ∈ Bu. The block Bu can be either a singleton or a block with two or
more elements. This situation is illustrated in Fig. 7, corresponding to the case k = 8
and π = {B1, ..., B5} = {{1, 2}, {3, 5}, {4, 6}, {7}, {8}}. Here, s∗ = 7, Bu∗ = B3 = {4, 6},
Bu = B2 = {3, 5} and a = 4.

bb bb bb b b

bb bb bb b b

Figure 7: a singleton is adjacent to a 2-block with no consecutive elements

The crucial remark is now that, for a chain c as in (4.37) with partition π, one has that
is∗ = ia+1. Indeed, a and s∗ − 1 both belong to Bu∗ , and therefore (is∗−1, is∗) = (ia, ia+1).
Since a + 1 ∈ Bu, this fact yields in particular that, ix = is∗ for every x ∈ Bu, that is,
the left indices associated with Bu are completely determined by the choice of is∗ . By the
same argument, one shows that js∗ = ja+1. The rest of the proof is similar to the case
B1. First, we observe that the representation (4.40), with R defined exactly as for B1,
continues to be true, from which we deduce the estimate (4.41). It is now sufficient to show
that each class CR

π (2k, N) has at most k − 1 degrees of freedom. To do this, one chooses
a representative element from each block Bs ∈ π, noted as, and then defines the sets

D = {as : s = 1, ..., r, s 6= u}, E = D\ {as : s ∈ [r]\P} ,

that is, D is built by selecting one element from each block of π, except for Bu, and E is
obtained by subtracting from D all the remaining indices a such that {a} is a singleton of
π. One has that

|D| + |E| 6 k − 1. (4.42)

Indeed, |D| = r−1 = |P |+ |S|−1 6
k−|S|

2
+ |S|−1, and then one has to consider two cases:

either (a) Bu is a singleton, from which it follows that |E| = |D| − (|S| − 1) 6
k−|S|

2
, or (b)

Bu is not a singleton, yielding |E| = |D| − |S| 6
k−|S|

2
− 1. In these two cases, (4.42) is

then in order. To conclude, it remains to show that, for every xD = {xa : a ∈ D} ∈ [N ]|D|

and every yE = {yb : b ∈ E} ∈ [N ]|E|, there is at most one chain c ∈ CR
π (2k, N) as in

(4.37) such that ia = xa for every a ∈ D and jb = yb for every b ∈ E. To see this, assume
that such a chain c exists, and observe that, due to the above considerations, the choice of
xD completely determines the upper sub-chain of c, as well as those indices jx in the lower
sub-chain such that {x} is a singleton of π or (whenever Bu is not a singleton) such that
x ∈ Bu. Since the remaining left indices in the lower sub-chain of c are determined by the
choice of yE, the claim is proved. In view of (4.42), this shows that CR

π (2k, N) has at most
k − 1 free indices. This concludes the proof of Proposition 4.4.
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As an illustration of the above arguments, one can consider the diagram in Fig. 8, that is
constructed from the situation in Fig. 7 by selecting U = V = {2, 3, 4, 5} and R(2) = 4,
R(3) = 5, R(4) = 2 and R(5) = 3. In particular, it is easily seen that fixing i4, i7 and i8
completely identifies a chain c inside the class CR

π (16, N), that has therefore three degrees
of freedom.

bb bb bb b b

bb bb bb b b

Figure 8: a class with three free indices

2

4.4 Proofs of Proposition 4.1 and Theorem 1.1

Proof of Proposition 4.1: We take up the notation introduced in Section 4.1. In view
of Proposition 4.4, in order to prove relation (4.36) (and therefore Proposition 4.1), it
is sufficient to show that, for every π ∈ Q(k), each pair (i, j) ∈ GN(π) is such that
the corresponding chain (i1, i2)...(ik, i1)(j1, j2)...(jk, j1) is an element of Cπ(2k, N), from
which one deduces |GN(π)| 6 |Cπ(2k, N)| 6 Θ(k, π)Nk−1. To show the desired prop-
erty, it is enough to prove that, for every pair (i, j) ∈ AN(π) × AN (π) such that the
chain (i1, i2)...(ik, i1)(j1, j2)...(jk, j1) is not in Cπ(2k, N), one has that (i, j) 6∈ GN(π).
By definition of Cπ(2k, N), we have to examine two cases. Start by considering a par-
tition π ∈ Q(k) not containing any singleton: if (i, j) ∈ AN (π) × AN (π) is such that
(i1, i2)...(ik, i1)(j1, j2)...(jk, j1) 6∈ Cπ(2k, N), then the random variables Xiaia+1 indexed by
the upper sub-chain are independent of those indexed by the lower sub-chain, and conse-
quently

E(Xi1i2 . . .Xiki1Xj1j2 . . .Xjkj1) = E(Xi1i2 . . .Xiki1)E(Xj1j2 . . .Xjkj1),

yielding (i, j) 6∈ GN(π). On the other hand, if π ∈ Q(k) contains a singleton and if (i, j)
is such that (i1, i2)...(ik, i1)(j1, j2)...(jk, j1) 6∈ Cπ(2k, N), then there exists a = 1, ..., k such
that Xiaia+1 or Xjaja+1 is independent of all the other variables indexed by the elements of
the chain. This gives

E(Xi1i2 . . .Xiki1Xj1j2 . . .Xjkj1) = E(Xi1i2 . . .Xiki1)E(Xj1j2 . . .Xjkj1) = 0,

thus proving the required property (i, j) 6∈ GN(π). The proof is finished.
2
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Proof of Theorem 1.1-(i): By virtue of the representation (1.13)–(1.14) and of Proposition
4.1, one sees that, for every 2 6 k1 < ... < km, the limit in distribution of the vector

(
Tr(XN), Tr(Xk1

N ) − E
[
Tr(Xk1

N )
]
,..., Tr(Xkm

N ) − E
[
Tr(Xkm

N )
] )

coincides with the limit in distribution of


N−1/2

N∑

i=1

Xii, N− k1
2

∑

i∈D
(k1)
N

Xi1i2Xi2i3 · · · Xik1
i1, . . . , N− km

2

∑

i∈D
(km)
N

Xi1i2Xi2i3 · · · Xikm i1


 ,

so that the desired conclusion follows from Corollary 3.4.
2

Proof of Theorem 1.1-(ii): For the simplicity of exposition, we assume that k1 > 2, the

proof when k1 = 1 being completely similar and easier. We have, using the notation D
(k)
N

introduced in the beginning of Section 1.3 and using (1.14),

∣∣∣∣∣E


ϕ


Tr(Xk1

N ) − E[Tr(Xk1
N )]√

Var(Tr(Xk1
N ))

, . . . ,
Tr(Xkm

N ) − E[Tr(Xkm

N )]√
Var(Tr(Xkm

N ))






−E

[
ϕ

(
Zk1√

k1

, ...,
Zkm√
km

)] ∣∣∣∣∣ 6 AN + BN ,

where, by writing Var(Tr(X
kj

N )) = Cj(N),

AN =

∣∣∣∣∣E


ϕ




1

C1(N)1/2N
k1
2

∑

i∈D
(k1)
N

Xi1i2 . . .Xik1
i1 , . . . ,

1

Cm(N)1/2N
km
2

∑

i∈D
(km)
N

Xi1i2 . . .Xikm i1





 − E

[
ϕ

(
Zk1√

k1

, ...,
Zkm√
km

)] ∣∣∣∣∣

and

BN =
∣∣∣∣∣E


ϕ




1

C1(N)1/2N
k1
2

∑

i∈D
(k1)
N

Xi1i2 . . .Xik1
i1, . . . ,

1

Cm(N)1/2N
km
2

∑

i∈D
(km)
N

Xi1i2 . . .Xikm i1







−E


ϕ


Tr(Xk1

N ) − E[Tr(Xk1
N )]√

Var(Tr(Xk1
N ))

, . . . ,
Tr(Xkm

N ) − E[Tr(Xkm

N )]√
Var(Tr(Xkm

N ))





∣∣∣∣∣.
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By combining Corollary 2.9 with the computations made in the proof of Proposition 3.1,
we immediately get that AN = O(N−1/4). For BN , we can write

|BN | 6 K‖ϕ′‖∞
m∑

j=1

E


N− kj

2

∣∣∣∣∣∣∣

∑

i 6∈D
(kj)

N

(
Xi1i2 . . .Xikj

i1 − E[Xi1i2 . . .Xikj
i1]
)
∣∣∣∣∣∣∣




6 K‖ϕ′‖∞
m∑

j=1

√√√√√√Var


N− kj

2

∣∣∣∣∣∣∣

∑

i 6∈D
(kj)

N

(
Xi1i2 . . .Xikj

i1 − E[Xi1i2 . . .Xikj
i1 ]
)
,

∣∣∣∣∣∣∣


,

for some constant K not depending on N , so that BN = O(N−1/2) = O(N−1/4) by Propo-
sition 4.1.

2
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