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A cracked beam finite element for rotating

shaft dynamics and stability analysis

Saber El Arem Habibou Maitournam

Laboratoire de Mécanique des Solides CNRS (UMR 7649)
Ecole Polytechnique, 91128 Palaiseau, France

Abstract

In this paper, a method for the construction of a cracked beam finite element
is presented. The additional flexibility due to the cracks is identified from three-
dimensional finite element calculations taking into account the unilateral contact
conditions between the cracks lips as originally developed by Andrieux and Varé
[2002]. Based on this flexibility which is distributed over the entire length of the
element, a cracked beam finite element stiffness matrix is deduced. Considerable
gain in computing efforts is reached compared to the nodal representation of the
cracked section when dealing with the numerical integration of differential equations
in structural dynamics. The stability analysis of a cracked shaft is carried using the
Floquet theory.

Key words: breathing crack, beam, unilateral contact, finite element, rotor,
Floquet, Stability.

1 Introduction

Because of the increasing need of energy, the plants installed by electricity
supply utilities throughout the world are becoming larger and more highly
stressed. Thus, the risk of turbogenerator shaft cracking is increasing also.
Rotating shafts are omnipresent in Aeronautics, aerospace, automobile indus-
tries and in particular in the energy sector which is vital for any economic
development.
Fatigue cracks is an important form of rotor damage which can lead to catas-
trophic failures if undetected early. They can have detrimental effects on the
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reliability of rotating shafts. According to Bently and Muszynska [1986], in the
70s and till the beginning of the 80s, at least 28 shaft failures due to cracks
were registered in the USA energy industry. Thus, Since the 80s, the interest
of researchers to characterize structures containing cracks is growing remark-
ably. Between the beginning of the 70s and the end of the 90s, more than 500
articles concerning the cracked structures was published [Dimarogonas, 1996,
Bachschmid and Pennacchi, 2007].

The problem of determination of the behavior of cracked structures has been
tackled with for a long time. And the fact that a crack presence or a local
defect in a structural member introduces a local flexibility that affects its
vibration response was known long ago. This local flexibility is related to the
strain energy concentration in the vicinity of the crack.

The study of cracked turbines rotors began in the industry of the energy in the
USA with the works of Dimarogonas [1970, 1971]. In Europe, the first works
appeared only some years later in papers by Gasch [1976], Mayes and Davies
[1976] and Henry and Okah-Avae [1976]. These authors considered a simple
model to account for the crack breathing mechanism to which we often make
reference by ”the switching crack model ” or ”the hinge crack model” : the
crack is totally opened or totally closed.

The vibration analysis of cracked beams or shafts is a problem of great in-
terest due to its practical importance. In fact, vibration measurements offer
a non-destructive, inexpensive and fast means to detect and locate cracks.
Thus, vibration behavior analysis and monitoring of cracked rotors has re-
ceived considerable attention in the last three decades [Gudmundson, 1982,
1983]. It has, perhaps, the greatest potential since it can be carried without
dismantling any part of the machine and usually online avoiding the costly
downtime of turbomachinery.

Zuo [1992], and Zuo and Curnier [1994] also used a bilinear model to charac-
terize the vibrational response of a cracked shaft with the aim of developing an
online cracks detection method. They, first, examined the 1 degree of freedom
(dof) system then studied the behavior of a system with 2 dof. By extend-
ing the Rosenberg normal mode notion for smooth and symmetric nonlinear
systems to conwise linear systems, they defined the nonlinear modes of the bi-
linear system which were calculated numerically, and in certain simple cases,
analytically. The application of this method to systems with high number of
dof is complicated and would lead to high computation costs.

Bachschmid and his co-workers [Bachschmid et al., 1980, 2002, 2004b] ex-
amined the effects of the presence of a crack on the vibratory response of a
rotor or a pump axis. Experimental and numerical models were proposed, the
thermal effects on the crack breathing mechanism were taken into account
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[Bachschmid et al., 2004b]. It was reported that the temperature distribution
is not influenced by the presence of the crack unlike those of the stresses and
deformations.

A comparison of various cracked beams models was presented by Friswell
and Penny [2002]. The authors showed that in the low frequencies domain,
simple models of the crack breathing mechanism and beam type elements are
adequate to monitor structures health. However, the approach of modeling
based on a bilinear dynamic system, which still makes reference, remains a
simplistic approach which leads to some reserves about the quality of the
quantitative results stemming from its exploitation.

A good review on the most relevant analytical, experimental and numerical
works conducted in the three last decades and related to the cracked structures
behavior were reported by Dimarogonas and Paipetis [1983], Entwistle and
Stone [1990], Dimarogonas [1996], Wauer [1990], Gasch [1993], El Arem [2006].

Today, most of the works on the cracked shafts vibration analysis are con-
cerned with investigating more deeply certain particular points such as the
phase of acceleration or deceleration of the shaft, the passage through the
critical speed or the coupling between diverse modes of vibrations to high-
light parameters facilitating the online cracks detection when dealing with
machines monitoring. These works such as those of Darpe et al. [2004], those
of Jun et al. [1992] and those of Sinou and Lees [2005, 2007] where we find nu-
merical and experimental results of their investigations on certain points such
as aforementioned, remain faithful to the theoretical principles formalized in
the 70s in some reference papers. In the other hand, remarkable and contin-
uous progress of the computational tools allows the realization of successful
three-dimensional modelings. So, it becomes possible to envisage an identifi-
cation of the law of behavior of a cracked shaft section (breathing mechanism
description) which frees from certain simplifying hypotheses and approxima-
tions made until now; this without degrading the costs of the calculations of
the vibrational response.

The main objective of this work is the presentation of a method of construc-
tion of a cracked beam finite element. The stiffness variation of the element
is deduced from three-dimensional finite element computations accounting for
the unilateral contact between the cracks lips. Based on an energy approach,
this method could be applied to cracks of any shape. The validation of the ap-
proach on a case of a cracked rotating shaft is then presented and its stability
analysis is carried using the Floquet theory. The work of El Arem and Mai-
tournam [2007] is taken back to show the general form of the stiffness matrix
of the finite element and then facilitate the approximation of its terms.

3



2 Cracked rotors modeling: State of the art

The analysis of rotating machinery shafts behavior is a complex structural
problem. It requires, for a relevant description, a fine and precise modeling of
the rotor and cracks in order to allow the identification and calculation of the
parameters characterizing their presence.

Researchers dealing with the problem of rotating cracked beam recognize its
two main features, namely:

• the determination of the local flexibility of the beam cracked section;
• the consideration of the crack breathing mechanism responsible of the sys-

tem nonlinearity: the system stiffness is depending on the cracked section
position.

Most researchers agree with the application of the linear fracture mechanics
theory to evaluate the local flexibility introduced by the crack [Gross and Sraw-
ley, 1965, Anifantis and Dimarogonas, 1983, Dimarogonas and Paipetis, 1983,
Dimarogonas, 1996, Papadopoulos and Dimarogonas, 1987a,b,c, Papadopou-
los, 2004]. Obviously, the first work was done in the early 1970 by Dimarogo-
nas [1970, 1971] and Pafelias [1974] at the General Electric Company. There
have been different attempts to quantify local effect introduced by cracks. The
analysis of the local flexibility of a cracked region of structural element was
quantified in the 1950s by Irwin [1957a,b], Bueckner [1958] , Westmann and
Yang [1967] by relating it to the Stress Intensity Factors (SIF). Afterwards,
the efforts to calculate the SIF for different cracked structures with simple
geometry and loading was duplicated [Tada et al., 1973, Bui, 1978].

For an elastic structure, the additional displacement u due to the presence of
a straight crack of depth a under the generalized loading P is given by the
Castigliano theorem

u =
∂

∂P

∫ a

0
G(a)da (1)

G is the energy release rate defined in fracture mechanics and related to the
SIF by the Irwin formula [Irwin, 1957a]. Then, the local flexibility matrix
coefficients are obtained by

cij =
∂2

∂Pi∂Pj

∫ a

0
G(a) da, 1 ≤ i, j ≤ 6 (2)

Extra diagonal terms of this matrix are responsible for longitudinal and lateral
vibrations coupling that can be with great interest when dealing with cracks
detection.

In two technical notes of the NASA, Gross and Srawley [1964, 1965] computed
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the local flexibility corresponding to tension and bending including their cou-
pling terms. This coupling effect was observed by Rice and Levy [1972] in their
study of cracked elastic plates for stress analysis.

Dimarogonas and his co-workers [Dimarogonas, 1982, Dimarogonas and Paipetis,
1983, Dimarogonas, 1987, 1988], and Anifantis and Dimarogonas [1983] intro-
duced the full (6 × 6) flexibility matrix of a cracked section. They noted the
presence of extra diagonal terms which indicate the coupling between the lon-
gitudinal and lateral vibrations. Papadopoulos and Dimarogonas [1987a,b,c],
and Ostachowicz and Krawwczuk [1992] computed all the (6 × 6) flexibility
matrix of a Timoshenko beam cracked section for any loading case.

However, there are no results for the SIF for cracks on a cylindrical shaft.
Thus, Dimarogonas and Paipetis [1983] have developed a procedure which is
commonly used in FEM software: the shaft was considered as an assembly
of elementary rectangular strips where approximation of the SIF using frac-
ture mechanics results remains possible. The SIF are obtained by integration
of the energy release rate on the crack tip. Although it offers the advantage
of being easily applicable in a numerical algorithm, this method remains an
approximation whose convergence remains to be checked. In fact, some nu-
merical problems were noted [Abraham et al., 1994, Dimarogonas, 1994] when
the depth of the crack exceeds the section radius. Moreover, generalization of
this method to any geometry of cracked section is complex, even impossible in
the case of non connate multiple cracks affecting the same transverse section.

L L

z

x

y

(a) Three-dimensional model

L L

Discrete element

(b) beam model

Fig. 1. The cracked beam element modeling

An original method for deriving a lumped cracked section beam model was
proposed by Varé and Andrieux [2000] and Andrieux and Varé [2002]. The
procedure was designed by starting from three-dimensional computations and
incorporating more realistic behavior on the cracks than the previous models,
namely the unilateral contact conditions on the cracks lips and the breathing
mechanism of the cracks under variable loading. The approach was validated
experimentally by Audebert and Voinis [2000] and applied for the study of
real cracked structures specially turbines.

The cracked element of Figure 1 is submitted to an end moment M 2L =
(Mx(2L),My(2L)) at z = 2L. Andrieux [2000] has demonstrated certain prop-
erties of the problem elastic energy , W ∗, leading to a considerable gain in
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three-dimensional calculus needed for the identification of the behavior law.
In particular, for a linear elastic material, under the small displacements and
small deformations assumptions, and in the absence of friction on the cracks
lips, the energy function could be written by distinguishing the contribution
of the cracked section from that of the uncracked elements, in the form :

W ∗(M 2L) = W ∗(M) = W ∗
s (M) + w∗(M) =

L

EI
||M ||2(1 + s(Φ)) (3)

where M = (Mx,My) is the resulting couple of flexural moments at the
cracked section , W ∗

s (M) the total elastic energy of uncracked element sub-
mitted to the flexural moment M and w∗(M) the additional elastic energy
due to the presence of the cracked section. The loading direction angle is de-
fined by Φ = atan(My

Mx
). E is the Young modulus and I quadratic moment of

inertia. In this framework, the nonlinear behavior law of the discreet element
modelling the cracked section is obtained by derivation of the function w∗(M)
by M . We obtain

[θ] =




[θx]

[θy]


 =

2L

EI




s(Φ) −1
2
s′(Φ)

1
2
s′(Φ) s(Φ)







Mx

My


 with s′(Φ) =

ds(Φ)

dΦ
(4)

However, for finite element computational codes in rotordynamics, the com-
pliance function s(Φ) is of low interest and a nonlinear relation of the form
[θ] = f(M) is to be integrated in transient computations. Thus, Andrieux
and Varé [2002] introduced some properties of the additional strain energy
due to the cracked section, w([θ]). Thus, w could be written as a quadratic
function of the rotations jumps as:

w([θx], [θy]) =
EI

4L
k(ϕ)||[θ]||2 with ϕ = atan(

[θy]

[θx]
) (5)

By using the Légendre-Fenchel transform to establish the relation between
the two energy functions w∗(M) and w([θ]), the stiffness function k(ϕ) is
obtained from the compliance function s(Φ) identified from three-dimensional
calculus.
As described by Andrieux and Varé [2002], the behavior law is finally deduced
from the derivation of w([θ]) by [θ] as




Mx

My


 =

EI

2L




k(ϕ) −1
2
k′(ϕ)

1
2
k′(ϕ) k(ϕ)







[θx]

[θy]


 with k′(ϕ) =

dk(ϕ)

dϕ
(6)
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Mx1

A
Ty1
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Mx2

Ty2

B

Le Le

Fig. 2. The cracked beam finite element.

3 A cracked beam finite element construction

There are two procedures to introduce the local flexibility generated by a
cracked section when dealing with the numerical integration of differential
equations in dynamics. The first technique considers the construction of a
stiffness matrix exclusively for the cracked section by computing the inverse
of the flexibility matrix. However, for small cracks, the additional flexibil-
ity is very small and, consequently, the corresponding stiffness coefficient are
extremely large leading to high numerical integration costs and convergence
problems [El Arem, 2006].

The second procedure, adopted here, consists in the construction of a cracked
finite element stiffness matrix, which is later assembled with the other un-
cracked elements of the system. Thus, the elastic energy due to the cracks is
distributed over the entire length of the cracked element. This method has
been used in works by Bachschmid et al. [2004a] and Saavedra and Cuitino
[2001].

The studies of Verrier and El Arem [2003], El Arem et al. [2003], Varé and An-
drieux [2005] and El Arem [2006] showed that the shear effects on the breath-
ing mechanism of the cracks is insignificant and will be neglected in this study.

Let consider the cracked finite element of length 2Le, circular transverse sec-
tion of diameter D and quadratic moment of inertia I, cf. Figure 2.

First, we clamp all the displacements of node A and establish a relation of the
form

u = S(f) · f (7)

f = {Tx2 , Ty2 ,Mx2 , My2}t and u = {ux2 , uy2 , θx2 , θy2}t denote, respectively,
the loading and displacements vectors at the end section (z = 2Le). S(f)
represents the compliance matrix of the structure.
At the cracked section (z = Le), the internal efforts are given by :
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Tx = Tx2

Ty = Ty2

Mx = Mx2 − LeTy

My = My2 + LeTx

(8)

The breathing mechanism of the cracks is governed by the flexural moment
direction Φ = atan(My

Mx
) at the cracked section. The elastic energy of the

cracked element could be written as

W ∗(f) = W ∗
s (f) + w∗(M ) = W ∗

s (f) +
L

EI
||M ||2s(Φ) (9)

W ∗
s (f) denotes the elastic energy of the uncracked finite element of the same

geometry and submitted to the same loading conditions. By using equation
(3), the additional elastic energy due to the cracked section is given by

w∗(M ) =
L

EI
||M ||2s(Φ) (10)

where L is the half length of the three-dimensional element used to identify
the compliance function s(Φ) as described below.
The nonlinear relation between the applied efforts and the resulting displace-
ments at the end section (z = 2Le) are obtained by derivation of the function
W ∗ by f . Thus, by using (8), we write

u = S(f) · f = S(Φ) · f (11)

where

S(Φ) = S0 +
2L

EI




L2
es(Φ) −L2

e

2
s′(Φ) Le

2
s′(Φ) Les(Φ)

L2
e

2
s′(Φ) L2

es(Φ) −Les(Φ) Le

2
s′(Φ)

−Le

2
s′(Φ) −Les(Φ) s(Φ) −1

2
s′(Φ)

Les(Φ) −Le

2
s′(Φ) 1

2
s′(Φ) s(Φ)




(12)

S0 denotes the compliance matrix of an uncracked beam element of length
2Le.
Let consider {uB/A} the relative displacement of node B in rapport of node
A. It verifies the relation

{Tx2 , Ty2 ,Mx2 ,My2}t = (S(Φ))−1{uB/A} (13)
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From equilibrium conditions of the element of Figure 2, the internal forces in
B can be expressed in terms of those in A as:





Tx1 = −Tx2

Ty1 = −Ty2

Mx1 = −Mx2 + 2LeTy2

My1 = −My2 − 2LeTx2

(14)

or, written in a matrix form:

{Tx1 , Ty1 ,Mx1 ,My1 , Tx2 , Ty2 ,Mx2 ,My2}t = Π1{Tx2 , Ty2 , Mx2 ,My2}t (15)

with Π1 =




−1 0 0 0

0 −1 0 0

0 2Le −1 0

−2Le 0 0 −1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




(16)

In addition, when writing {uB/A} in the form

{uB/A} = {u1
B/A, u2

B/A, u3
B/A, u4

B/A}
we obtain





ux2 = u1
B/A + ux1 + 2Leθy1

uy2 = u2
B/A + uy1 − 2Leθx1

θx2 = u3
B/A + θx1

θy2 = u4
B/A + θy1

(17)

or, in a matrix form

{uB/A} = Π2{ux1 , uy1 , θx1 , θy1 , ux2 , uy2 , θx2 , θy2}t (18)
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where Π2 =




−1 0 0 −2Le 1 0 0 0

0 −1 2Le 0 0 1 0 0

0 0 −1 0 0 0 1 0

0 0 0 −1 0 0 0 1




(19)

Comparing with equation (16), it can be seen that:

Π2 = Πt
1

Moreover, the cracked beam finite element stiffness matrix Kef verifies

{Tx1 , Ty1 ,Mx1 ,My1 , Tx2 , Ty2 ,Mx2 ,My2}t =

Kef{ux1 , uy1 , θx1 , θy1 , ux2 , uy2 , θx2 , θy2}t (20)

Substituting equation (15) into equation (20) gives

Π1{Tx2 , Ty2 ,Mx2 ,My2}t = Kef{ux1 , uy1 , θx1 , θy1 , ux2 , uy2 , θx2 , θy2}t (21)

Then, substituting equation (13) into equation (21), results in

Π1(S(Φ))−1{uB/A} = Kef{ux1 , uy1 , θx1 , θy1 , ux2 , uy2 , θx2 , θy2}t (22)

Finally, using equation (18) leads to:

Kef = Π1(S(Φ))−1Πt
1 (23)

In this relation, the stiffness matrix appears as depending on the loading efforts
represented by angle Φ. However, in a finite element code, it is preferable to
express relation (23) as a function of the problem’s unknowns, that is the
nodal displacements. We start by writting :

(S(Φ))−1 = K(ϕe) = K0 −Ke(ϕe) (24)

to distinguish the stiffness matrix of an uncracked element of length 2Le and
inertial moment I, Π1K0Π

t
1, from the matrix modelling the cracked section

presence Π1Ke(ϕe)Π
t
1. ϕe is the angle given by ϕe = atan(

θy2−θy1

θx2−θx1
) and K0

by Lalanne and Ferraris [1990]
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K0 = S0
−1 =

EI

2Le(1 + a)




3
L2

e
0 0 − 3

Le

0 3
L2

e

3
Le

0

0 3
Le

4 + a 0

− 3
Le

0 0 4 + a




(25)

a = 12EI
4µkSL2

e
is the shearing effects coefficient. For an Euler-Bernoulli beam

element, a is zero.

Equation (24) leads to

Ke(ϕe) =K0 − (S(Φ))−1 =
EI

2L




0 0 0 0

0 0 0 0

0 0 kxx(ϕe) kxy(ϕe)

0 0 kyx(ϕe) kyy(ϕe)




(26)

where





kxx(ϕe) = kyy(ϕe) = L2(4Les(Φ)+4Ls2(Φ)+Ls′2(Φ))
Le(4L2

e+8LLes(Φ)+4L2s2(Φ)+L2s′2(Φ))

kxy(ϕe) = −kyx(ϕe) = − 2L2s′(Φ)
4L2

e+8LLes(Φ)+4L2s2(Φ)+L2s′2(Φ)

(27)

When L = Le, we obtain





kxx(ϕe) = kyy(ϕe) = 4s(Φ)+4s2(Φ)+s′2(Φ)
4+8s(Φ)+4s2(Φ)+s′2(Φ)

kxy(ϕe) = −kyx(ϕe) = − 2s′(Φ)
4+8s(Φ)+4s2(Φ)+s′2(Φ)

(28)

Using the three-dimensional calculus conducted on the cracked element of
Figure 1, we identify the compliance function s(Φ) as described previously.
Then, we determine the stiffness matrix Ke(ϕe) terms by using relation (26).

We have noticed that:

kxy(ϕe) = −1

2
k′xx(ϕe) (29)
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Fig. 3. Ke(ϕe) terms for a straight crack of depth a = D
2 , Le = L = 2D.

Thus, Ke(ϕe) can be written in the form:

Ke(ϕe) =
EI

2L




0 0 0 0

0 0 0 0

0 0 kxx(ϕe) −1
2
k′xx(ϕe)

0 0 1
2
k′xx(ϕe) kxx(ϕe)




(30)

For a straight crack of depth a = D
2
, these terms are shown by Figure 3. We

notice small variations on [0, π
2
] interval, however, on [π

2
, 2π], these variations

becomes important but remain regular. The crack is totally closed when ϕe =
π
2
, image of Φ = π

2
. It opens totally at ϕe = 3π

2
, image of Φ = 3π

2
. Φ is the

angle defined in section 2 by Φ = atan(My

Mx
)

4 Validation of the approach

T
z

2D 4D

Cracked Section

(a) Three-dimensional model

T
z

4D 2D

Uncracked elementCracked element

(b) Beam model

Fig. 4. Three-dimensional and beam modeling of the system.

In order to validate the stiffness beam finite element matrix construction
method presented above, we propose to compare the three-dimensional mod-
eling calculus results to those obtained using a beam modeling of the cracked
structure of Figure 4. The cylinder element of axis (oz), of diameter D = 0.5m,
and total length Lt = 3m, is clamped at its end z = 0 and submitted at the
other to couple of efforts T = (Tx = cos(α), Ty = sin(α)) with α varying from
0 to 2π. The cracked section is located at z = 1 m. The crack is straight with
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depth a = 0.5D, cf. Figure 4(a). The three-dimensional finite element calculus
take into account the unilateral contact conditions between the crack lips. The
beam model consists of two beam finite elements: the first one is a cracked
beam finite element of length 2 m. The second is a classic beam finite element
of length 1 m, cf. Figure 4(b). Figure 5 shows excellent results concordance .
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Fig. 5. Model comparison to three-dimensional results and nodal modelling,
a
D = 0.50.

5 Vibratory response of a cracked shaft

This section is deserved to explore the vibratory response of a shaft with a
cracked section under own weight effects. The system is composed of a beam
of distributed mass m, circular section S and diameter D = 0.20 m. The
cracked section is located at mid-span. The structure is simply supported at
node 1 and node 6 and submitted to the effects of its own weight. The shaft
is rotating at the frequency Ω about (oz) axis. The system is divided into five
elements of length l = 4D, cf. Figure 6. The elements 1− 2, 2− 3, 4− 5 and
5 − 6 represent the structure uncracked parts. 3 − 4 is a cracked beam finite
element.

At t = 0, the crack is totally open, cf. Figure 6(b). We suppose that the
stiffness matrix remains constant between two instants tn = nh and tn+1 =
(n + 1)h where h is the time step used for the numerical integration of the
dynamical system. For the validity of this approximation, the time steps should
be relatively small compared to the excitation period ( 1

Ω
). In the low frequency
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Fig. 6. Finite element modeling of the cracked structure.

domain, this difficulty is easily overcame. Thus, the stiffness matrix is updated
at the end of each integration step. The HHT method is adopted for the
numerical integration of the obtained system [Hilber et al., 1977] with:

α =
1

3
, γ =

1

2
+ α et β =

1

4
(1 + α)2

which corresponds, in the linear analysis, to an unconditionally stable scheme
with maximum precision. With this modeling, the unilateral contact condi-
tions between the crack lips are taken into account exactly. In fact, when the
crack is totally closed, we obtain

Ke(ϕe) = 0

and the cracked element stiffness matrix is the one of an uncracked element.
Overmore, the time step used here is 10−3s which is at least 20 to 100 times
smaller than the ones used for penalization-implicit approach when the cracked
section is modeled by a nodal element (element of length zero). In this later
approch, the time step depends on the value given to the penalization constant
and is always less than 10−5s to ensure calculus convergence.

The vibratory response shows the superharmonic resonance phenomena pres-
ence when the rotating frequency passes through entire divisions of the critical
speed w1. Thus, for

ξ ≈ w1

n
with n ∈ N

the shaft orbit and the phase diagram are composed of n interlaced loops (cf.
Figure 7 where the viscous damping d is of 5%). Also, the vibratory amplitude
of harmonic n× reaches, at this rotating frequency, higher levels, cf. Figure 8.
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Fig. 7. Examples of node 2 orbits, a
D = 0.50, d=0.05.

6 Stability analysis

The stability of a cracked shaft is analyzed using the Floquet method Flo-
quet [1879], Nayfeh and Mook [1979], Nayfeh and Balachandran [1994]. This
method was used by Gasch [1976], Meng and Gasch [2000] and El Arem and
Nguyen [2006] for the stability analysis of a two parameters cracked rotating
shaft. The first step of this section consists of approximating the Ke(ϕe) terms
by a classical function of the crack depth a and angle ϕe. We have noticed
that the function kxx(ϕe) for different straight tip crack depths shows that it
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Fig. 8. Examples of node 3 u(t) amplitude spectra, a
D = 0.50, d=0.05.

could be approximated by:

kxx(ϕe) ≈ kmaxsin
4(

ϕe

2
− π

4
)e(sin(ϕe

2
−π

4
))4 (31)

where kmax is given by

kmax ≈ 3.43(
a

D
)2.73 (32)

These approximations remain satisfactory for cracks of depth going up to 30
percent of the diameter of the shaft, cf. Figure 9.

By using the Floquet theory, we have investigated, numerically, the stability
of a cracked rotating shaft with a straight tip crack at mid-span, cf. Figure
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Fig. 9. kxx(ϕe) approximation for different straight crack depths.
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Fig. 10. Stable and instable (hatched) regions.

6. Results, cf. Figure 10, show three principal instability areas: the first zone
corresponds to (0 < ξ < 0.5) superharmonic resonance phenomenon. The
second is located around the exact resonance (ξ = 1) and the third area
(around ξ = 2) corresponds to subharmonic resonance. It’s important to note
that even for weak viscous damping (d ≈ 1 % ) the stability of the cracked
shaft is only slightly affected. The zones of instabilities appear for Ω near the
first critical speed (ξ ≈ 1) and twice the critical speed (ξ ≈ 2) and correspond
to deep cracks ( a

D
> 25% ).
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7 Conclusions

A method for the construction of a cracked beam finite element is presented.
The crack breathing phenomenon is finely described since the flexibility due
to the presence of the cracks is deduced from three-dimensional finite element
calculations taking into account of the conditions of unilateral contact be-
tween the cracks lips as originally developed by Andrieux and Varé [2002].
The precise descriptions of the loss of stiffness and of the progressive closure
or opening of the cracks are of fundamental importance.

The approach is quite simple and comprehensive and can be applied to any
geometry of cracks. It is important to note the considerable gain in computa-
tional efforts when comparing with the use of the technique of penalization.

Indeed this technique, used when the cracked section is modeled by a nodal
element [El Arem, 2006], leads to the appearance of very high numerical fre-
quencies (without physical signification). The time steps considered for the
temporal numerical integration of the dynamic system are then very small
and the computation costs are, consequently, very important. Compared to
the nodal representation of the cracked section and the technique of penaliza-
tion to consider the conditions of contact between the cracks lips, this model
has the following advantages:

• taking into account in an exact way of the phenomenon of cracks breathing
mechanism,

• reduction of the costs of calculations from 20 to 100 times.

In the study of the cracked shafts, the researchers often supposed, to reduce
the difficulty of the problem, that the amplitude of the vibrations due to
the presence of cracks is weak compared to those of the vibrations due to
permanent loads (El Arem and Nguyen [2006], Gasch [1976], Mayes and Davies
[1976], Mayes and Davies [1980], Davies and Mayes [1984], Henry and Okah-
Avae [1976], Gasch [1993]). The present model is more general and allows to
overcome limitations due to such an assumption.

The stability analysis of the cracked shaft of Figure 6 was carried using the
Floquet theory. Figure 10 shows stable and instable zones in the (ξ, a

D
) plan

for different viscous damping coefficients. We have noticed that the instability
zones disappear for d ≥ 3%. It can be deduced that, for real turbines shafts,
where the viscous damping is about 3% to 4% [Lalanne and Ferraris, 1990],
the effects of a cracked section at mid-span on the stability of the structure is
negligible when a

D
is less than 35% .
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91–97, 2000.
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