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Shearing effects on the breathing mechanism

of a cracked beam section in bi-axial flexure

Saber El Arem

Laboratoire Sols Solides Structures-Risques, Domaine Universitaire BP53 38041
Grenoble, France

Abstract

The main purpose of this paper is to complete the works presented by Andrieux
and Varé [2002] and El Arem et al. [2003] by taking into account the effects of
shearing in the constitutive equations of a beam cracked section in bi-axial flex-
ure. The paper describes the derivation of a lumped cracked beam model from the
three-dimensional formulation of the general problem of elasticity with unilateral
contact conditions on the crack lips. Properties of the potential energy and con-
vex analysis are used to reduce the three-dimensional computations needed for the
model identification, and to derive the final form of the elastic energy that deter-
mines the nonlinear constitutive equations of the cracked transverse section. We
aim to establish a relation of behavior between the applied forces and the resulting
displacements field vectors, which is compatible with the beams theory in order to
allow the model exploitation for shafts dynamics analysis. The approach has been
applied to the case of a cracked beam with a single crack covering the half of its
circular cross section.

Key words: beam finite element, breathing crack, unilateral contact, shearing
effects, convex analysis.

1 Introduction: state of the art

Since the early 1970s when investigations on the vibrational behavior of cracked
rotors began, numerous papers on this subject have been published, as a lit-
erature survey by Dimarogonas [1996] shows. The analysis of the behavior of
cracked rotating machinery shafts is a complex structural problem. It requires,
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for a relevant description, a fine and precise modeling of the shaft and cracks
in order to allow the identification and calculation of the parameters charac-
terizing their presence.
Researchers dealing with the problem of rotating cracked beams recognize its
two main features, namely:

• the determination of the local flexibility of the beam cracked section;
• the consideration of the opening−closing phenomenon of the crack during

the shaft rotation, commonly called breathing mechanism of the crack, and
responsible of the system nonlinear behavior: when the shaft is rotating,
then the crack opens and closes according to the stresses developped in
the cracked surface. If these stresses are extensive, then the crack opens,
resulting in a reduced shaft stiffness. When the stresses are compressive,
then the crack remains closed and the shaft has the same stiffness as the
non-cracked shaft. Thus, the system stiffness is depending on the cracked
section position (Figure 1).

This breathing mechanism depends on the shaft rotation in the case when the
static deflection dominates the vibration of the rotating shaft. This is a very
common situation in large turbine-generators rotors.

(a) crack in compressed zone

(b) Crack in tense zone

Fig. 1. Crack breathing mechanism

During the last three decades, great attention has been paid by several research
scientists to the analysis and diagnosis of cracks in rotating machinery. The
excellent review papers by Entwistle and Stone [1990], Dimarogonas [1996],
Wauer [1990a] and Gasch [1993] cover many aspects of this area and summa-
rize the most relevant analytical, experimental and numerical works conducted
in the last three decades and related to the cracked structures modeling.
There have been different attempts to quantify local effect introduced by
cracks. The analysis of the local flexibility of a cracked region of structural
element was quantified in the 1950s by Irwin [1957a,b], Bueckner [1958], West-
mann and Yang [1967] by relating it to the Stress Intensity Factors (SIF). Af-
terwards, the efforts to calculate the SIF for different cracked structures with
simple geometry and loading was duplicated [Tada et al., 1973, Bui, 1978].
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Most researchers agree with the application of the linear fracture mechanics
theory to evaluate the local flexibility introduced by the crack [Gross and Sraw-
ley, 1965, Anifantis and Dimarogonas, 1983, Dimarogonas and Paipetis, 1983,
Dimarogonas, 1996, Papadopoulos and Dimarogonas, 1987a,b,c, Papadopou-
los, 2004]. Obviously, the first work was done in the early 1970s by Dimarog-
onas [1970, 1971] and Pafelias [1974] at the General Electric Company. The
energy release rate approach combines the linear fracture mechanics to rotor-
dynamics theory in order to calculate the compliance caused by a transverse
surface crack affecting a rotating shaft. A good review on this method is pre-
sented by Papadopoulos [2008].

For an elastic structure, the additional displacement u due to the presence of
a straight crack of depth a under the generalized loading P is given by the
Castigliano theorem

u =
∂

∂P

∫ a

0
G(a)da (1)

G is the energy release rate related to the SIF by the Irwin formula [Irwin,
1957a]. Then, the local flexibility matrix coefficients are obtained by

cij =
∂2

∂Pi∂Pj

∫ a

0
G(a) da, 1 ≤ i, j ≤ 6 (2)

Extra diagonal terms of this matrix are responsible for longitudinal and lateral
vibrations coupling that could be with great interest when dealing with cracks
detection.

In two technical notes of the NASA, Gross and Srawley [1964, 1965] computed
the local flexibility corresponding to tension and bending including their cou-
pling terms. This coupling effect was observed by Rice and Levy [1972] in their
study of cracked elastic plates for stress analysis.

Dimarogonas and his co-workers [Dimarogonas, 1982, Dimarogonas and Paipetis,
1983, Dimarogonas, 1987, 1988], and Anifantis and Dimarogonas [1983] intro-
duced the full (6 × 6) flexibility matrix of a cracked section. They noted the
presence of extra diagonal terms which indicate the coupling between the lon-
gitudinal and lateral vibrations. Papadopoulos and Dimarogonas [1987a,b,c],
and Ostachowicz and Krawwczuk [1992] computed all the (6 × 6) flexibility
matrix of a Timoshenko beam cracked section for any loading case.
However, there are no results for the SIF for cracks on a cylindrical shaft.

Thus, Dimarogonas and Paipetis [1983] have developed a procedure which is
commonly used in FEM software: the shaft was considered as an assembly
of elementary rectangular strips where approximation of the SIF using frac-
ture mechanics results remains possible (Figure 2). The SIF are obtained by
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Fig. 2. Geometry of the shaft cracked section

integration of the energy release rate on the crack tip by

cij =
∂2

∂Pi∂Pj

∫ a

0

∫ b

−b
G(a, ξ) dξ da (3)

Although it offers the advantage of being easy to insert in a numerical algo-
rithm, this method has some limitations. In fact, some numerical problems
were reported by Abraham et al. [1994] when the depth of the crack a ex-
ceeds the section radius R. Dimarogonas [1994], in his reply, stated that this
divergence does not reflect reality; it is due to the assumption of a 2D stress
distribution which is not valid near the ends of the crack tip.

Papadopoulos [2004] suggested to consider equation (3) with :

0.90b ≤ |ξ| ≤ 0.95b

when the crack depth a exceeds the shaft radius R.
Wauer [1990b] explored the dynamics of a cracked, distributed parameter ro-
tor component. The proposed model is a rotating Timoshenko shaft which is
also flexible in extension and torsion. The stiffness matrix is constructed using
the energy release rate approach as described in papers by Papadopoulos and
Dimarogonas [1987a,b], and Gudmundson [1983]. The geometric discontinuity
due to the crack is replaced by a load discontinuity. The procedure reduces the
problem to equations for one uniform beam with a modified load distribution.
The proposed approach is a powerful instrument to obtain approximate results
by a relatively small calculation expense. Although the shearing is considered
in this approach, the author did not discuss the importance of its effects on
the crack breathing mechanism.
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2 Review of the Andrieux and Varé model

An original method for deriving a lumped model for a cracked beam section
was proposed by Andrieux and Varé [2002]. Based on three-dimensional com-
putations, the procedure incorporates more realistic behavior of the cracks
than the previous models, namely the unilateral contact conditions on the
crack lips and their breathing mechanism under variable loading. The method
was derived from three-dimensional formulation of the general problem of
elasticity with unilateral contact conditions on the crack lips. The authors
established properties of the potential energy of this problem to reduce the
amount of computation required for its determination in the case of a beam
containing cracks of any shape and number. Convex analysis was also used to
derive the final form of the energy that determines the nonlinear constitutive
equations of the section of the beam which was incorporated in a FE analysis
code. Great attention is paid to the capability of such a model to take into
account the real 3D geometry of a crack and to represent, as general as pos-
sible, the effects of different load components on its nonlinear behavior.
The experimental validation of the approach is presented by Stoisser and Au-
debert [2008]. The authors reported that the model reproduces with good
accuracy the overall behavior of the shaft line in presence of cracks. The exper-
imental validation allows the use of the model, with confidence and reliability,
for the determination of the dynamics of supposed cracked rotors.
Based on the approach of Andrieux and Varé [2002], El Arem and Maitour-
nam [2008, 2007] presented a method of construction of a cracked beam finite
element which they used afterwards for the stability analysis of cracked shafts.
The authors distributed the additional energy due to the cracked section on
the entire length of the cracked beam finite element. Considerable gain in com-
puting efforts was reached compared to the nodal representation of the cracked
section when dealing with the numerical integration of differential equations
in structural dynamics.
The cracked structure of Figure 3(a) is subjected to an end moment M 2L =
(Mx(2L), My(2L)) at z = 2L. Andrieux [2000] has demonstrated certain prop-
erties of the problem elastic energy, W ∗, leading to a considerable gain in the
three-dimensional calculus required for the identification of the constitutive
equations. In particular, for a linear elastic material, under the small displace-
ments and small deformations assumptions, and in the absence of friction on
the crack lips, the energy function could be written by distinguishing the con-
tribution of the cracked section from that of the non-cracked elements, in the
form :

W ∗(M 2L) = W ∗(M) = W ∗
s (M) + w∗(M) =

L

EI
||M ||2(1 + s(Φ)) (4)

where M = (Mx, My) is the resulting couple of flexural moments at the
cracked section, W ∗

s the total elastic energy of non-cracked structure subjected
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Fig. 3. The cracked beam model of Andrieux and Varé [2002]

to the flexural moment M and w∗ the additional elastic energy due to the
presence of the cracked section. In order to simulate a rotating load on a fixed
beam, the bending load is applied in several aperture angles Φ = atan(My

Mx
),

with Φ varying over [0, 2π[. E is the Young modulus and I quadratic moment
of inertia.
In this framework, the nonlinear constitutive equations of the discreet element
modeling the cracked section are obtained by differentiating w∗ with respect
to M . We obtain

[θ] =







[θx]

[θy]





 =
2L

EI







s(Φ) −1
2
s′(Φ)

1
2
s′(Φ) s(Φ)













Mx

My





with s′(Φ) =
ds(Φ)

dΦ
(5)

However, for finite element computational codes in rotordynamics, a nonlinear
relation of the form [θ] = f(M) is to be identified. Thus, Andrieux and Varé
[2002] introduced some properties of the additional deformation energy due to
the cracked section, w([θ]). Thus, w could be written as a quadratic function
of the rotations jumps as:

w([θx], [θy]) =
EI

4L
k(ϕ)||[θ]||2 with ϕ = atan(

[θy ]

[θx]
) (6)

The Légendre-Fenchel transform is used to establish the relation between the
two energy functions w∗ and w, then the stiffness function k is obtained from
the compliance function s identified from three-dimensional calculus.
As described by Andrieux and Varé [2002], the constitutive equations are
finally obtained by differentiating w with respect to [θ] as
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Mx

My





 =
EI

2L







k(ϕ) −1
2
k′(ϕ)

1
2
k′(ϕ) k(ϕ)













[θx]

[θy]





with k′(ϕ) =
dk(ϕ)

dϕ
(7)

The purpose of this paper is to complete the models suggested by Andrieux
and Varé [2002] and El Arem et al. [2003] by considering the shearing effects in
the constitutive equations of a cracked beam section in bi-axial flexure. Our
main purpose is to establish constitutive relations (nonlinear) between the
applied forces and the resulting displacements field, which is compatible with
the beams theory in order to allow the model exploitation for shafts dynamics
analysis using a beam model.

3 Description of the current model

The study of the in-plane flexural behavior of a cracked beam by El Arem
et al. [2003] and El Arem [2006] showed that for straight line tip cracks the
shearing and flexure effects could be separated when aiming to identify the
constitutive equations of a cracked transverse section. In fact, the bending
moments are only responsible for the rotations discontinuities, and the shear
forces for the displacements discontinuities (slips). In this paper, we present
the case of the bi-axial flexural behavior.

Our objective is to identify the characteristics of a one-dimensional model
(Figure 3(c) ) from accurate three-dimensional FE model (Figure 3(a)). The
transverse cracked section (Figure 3(b)) is replaced by two lumped nonlinear
flexural and shearing springs (Figure 3(d)) for which we aim to establish the
constitutive equations.
The three-dimensional FE model considered is that of a cylinder of axis (oz),
diameter D = 1m, cross section S, length 2L = 4D, containing, at midspan,
a cracked section, cf. Figure 4. The structural element, clamped at its end
z = 0, is subjected at z = 2L to a couple of shear forces and a couple of
flexural moments: (Tx(2L), Ty(2L), Mx(2L), My(2L)).
In the one-dimensional (beam) model, the non-cracked parts of the structures
are represented by Timoshenko beam elements, and the cracked section by
a nodal element (zero length) allowing discontinuities of displacements and
rotations. Indeed, this nodal element is composed of two uncoupled nonlin-
ear springs modeling the cracked section flexural and shearing stiffnesses, cf.
Figure 4. The unilateral contact between the crack lips is considered.

The following assumptions are considered for the modeling of the structure:
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Fig. 4. The current cracked beam modeling

• assumption of small displacements and small deformations,
• linear and isotropic elastic material,
• transverse cracks of any shape and in any number,
• unilateral contact without friction between the crack lips,
• the crack is completely closed in the unstressed configuration.

3.1 Properties of the energies functions of the problem

Let W ∗ be the total elastic energy of the system. According to what precedes,
W ∗ can be put in the form

W ∗(F ) = W ∗
s (F ) + w∗(F ) = W ∗

s (F ) + w∗
f(F ) + w∗

c (F ) (8)

where W ∗
s denotes the total elastic energy of the non-cracked structure under

the loading F (2L), and w∗(F ) the elastic energy due to the presence of the
crack. The study of the in-plane flexural behavior showed that the bending
and shearing effects can be dissociated. Based on this result, w∗ is divided
into:

• w∗
f(F ) = w∗

f(M) denotes the part of w∗(F ) due to the resulting couple of
flexural moments M = (Mx(L), My(L)) at the cracked section, and

• w∗
c(F ) = w∗

c (T ) the part due to the couple of shear forces T = (Tx(L), Ty(L)).

According to Andrieux and Varé [2002], El Arem et al. [2003] and El Arem
[2006], w∗ is strictly convex and positively homogeneous of degree 2,
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from which rise the following properties:

Property 1 Functions w∗
c and w∗

f are strictly convex.

Property 2 Functions w∗
c and w∗

f are positively homogeneous of degree 2 :

∀λ ≥ 0 we have :











w∗
f(λM) = λ2w∗

f(M)

w∗
c (λT ) = λ2w∗

c(T )
(9)

It should be noticed that an essential hypothesis for obtaining properties
1 and 2 is that the gap between the lips of the crack is zero in the
unstressed configuration. For the contribution of the bending moments,
the quadratic form of w∗

f used in the study presented by Andrieux and Varé
[2002], is considered:

w∗
f(M) =

L

EI
||M ||2s(Φ) (10)

With Φ = atan(My(L)
Mx(L)

) and s(Φ) the additional flexibility due to the presence
of the crack and related to the effects of flexural moments at the cracked
section of the beam. Energy due to the shearing effects at the cracked section
is also quadratic and can be put in the form:

w∗
c (T ) =

L

µκS
||T ||2sc(Φc), with Φc = atan(

Ty(L)

Tx(L)
) (11)

µ is the shear modulus and κ the shear correction factor of Timoshenko. Due
to property 2, the problem of identification of the function w∗

c on R
2 is reduced

to the identification of the flexibility function sc(Φc) on the interval [0, 2π] by
considering the particular case of ||T || = 1. This additional flexibility is iden-
tified from three-dimensional finite element calculus using Code Aster c©.
Varé and Andrieux [2005] presented a simpler form of w∗

c . They brought the
problem back, for certain shapes of cracks, to the identification of three con-
stants by writing:

w∗
c (T ) =

1

2
T 2

x (L)sx +
1

2
T 2

y (L)sy + sxyTx(L)Ty(L) (12)

sx, sy and sxy depend only on the geometry of the crack, they are independent
of the parameters of loading and identified using the three following three-
dimensional finite element calculations cases:

w∗
c (Tx = 1, Ty = 0), w∗

c (Tx = 0, Ty = 1) and w∗
c (Tx = 1, Ty = 1)
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This model allowed the obtaining, for certain cracks geometries, of results in
excellent agreement with the three-dimensional FE calculations. However, it
cannot be applied to any geometry of crack affecting beams or shafts with
various cross section forms. Indeed, the shearing forces at the cracked section
lead to the opening and closure of the crack according to mode II and/or
mode III (modes of fracture). This depends on the orientation of the shearing
force defined here by angle Φc. The contact area between the lips of the crack,
and consequently the additional flexibility due to its presence, depends on the
direction of the applied shear force.

The present method, based on energy properties, could, without the use of
additional simplifying assumptions, be applied to cracks of any shape and
number affecting the same beam transverse section.

3.2 Constitutive equations of the discrete element with shearing effects con-
sideration

The required relation describing the nodal element (Figure 4(d)) behavior is
of the form:











T

M











= f(











[u]

[θ]











) (13)

with

[u] =











[ux]

[uy]











=











ux(L
+) − ux(L

−)

uy(L
+) − uy(L

−)











and

[θ] =











[θx]

[θy]











=











θx(L
+) − θx(L

−)

θy(L
+) − θy(L

−)











Consequently, it is the stiffness matrix of the nodal element which would be
necessary to identify. Thus, we need to exploit the properties of the additional
elastic deformation energy w due to the presence of the cracked section for
the displacements discontinuities [u] and the rotations discontinuities [θ].
Given the assumption of separating the shearing and flexure effects at the
cracked section, w could be written in the form:

w([u], [θ]) = wf([θ]) + wc([u]) (14)

wf and wc are the elastic deformation energies associated with flexure and
shearing, respectively. According to the work by Andrieux and Varé [2002]
and El Arem [2006], wf and wc have the following properties:
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Property 3 Functions wc and wf are strictly convex.

Property 4 Functions wc and wf are positively homogeneous of degree 2 :

∀λ ≥ 0 we have :











wf (λ[θ]) = λ2wf(λ[θ])

wc(λ[u]) = λ2wc([u])
(15)

For wf , the form proposed by Andrieux and Varé [2002] is considered:

w([θx], [θy]) =
EI

4L
k(ϕ)||[θ]||2 (16)

With ϕ = atan(
[θy]

[θx]
) and k the flexural stiffness function of the nodal element.

Function k is deduced from s by using the Légendre-Fenchel transform relating
wf to w∗

f .
Following the development steps described in (Andrieux and Varé [2002],Varé
[2000]) for wf , wc can be put in the form :

wc([u]) =
µκS

4L
||[u]||2kc(ϕc) (17)

With ϕc = atan( [uy]
[ux]

) and kc the shearing stiffness function of the nodal ele-
ment to be identified. Using the Légendre-Fenchel transform we establish the
relation between wc to w∗

c by writing:

wc([u])= sup
T

(T · [u] − w∗
c(T )) = sup

||T ||=1
λ≥0

(λT · [u] − w∗
c(λT ))

= sup
||T ||=1

λ≥0

(λT · [u] − λ2 L

µκS
||T ||2sc(Φc)) (18)

Contrary to the flexural flexibility function s of the nodal element which van-
ishes for certain couples of flexural moments leading to a total closing of the
crack, the linearity noted with respect to the shearing action shows that the
flexibility function sc due to shearing is never zero:

∀T 6= 0, we have [u] 6= 0

Thus, the required maximum in (18) is reached when:

λ =











µκS

2L

T ·[u]
sc(Φc)

if T · [u] ≥ 0

0 otherwise
(19)
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This leads to:

kc(ϕc) = sup
||T ||=1
T ·[u]≥0

(
(T · [u])2

sc(Φc)
) (20)

Thus, for [u] =











cosϕc

sinϕc











and T =











cosΦc

sinΦc











, we obtain:

kc(ϕc) = sup
cos(Φc−ϕc)≥0

(
cos2(Φc − ϕc)

sc(Φc)
) (21)

The condition cos(Φc − ϕc) ≥ 0 implies, for a given ϕc, that:

Φc ∈ [ϕc −
π

2
, ϕc +

π

2
]

The relation (21) becomes :

kc(ϕc) = sup
Φc∈[ϕc−

π
2
,ϕc+

π
2
]
(
cos2(Φc − ϕc)

sc(Φc)
) (22)

The constitutive equations of the cracked section is obtained by differentiating
w([u], [θ]) as follows:



























Tx = ∂w([u],[θ])
∂[ux]

= ∂wc([u])
∂[ux]

, Ty = ∂w([u],[θ])
∂[uy]

= ∂wc([u])
∂[uy]

Mx = ∂w([u],[θ])
∂[θx]

=
∂wf ([θ])

∂[θx]
, My = ∂w([u],[θ])

∂[θy]
=

∂wf ([θ])

∂[θy]

(23)

Finally, the required relation is given by:





















Tx

Ty

Mx

My





















=



































µκS
2L

kc(ϕc) −µκS
4L

k′
c(ϕc) 0 0

µκS
4L

k′
c(ϕc)

µκS
2L

kc(ϕc) 0 0

0 0 EI
2L

k(ϕ) −EI
4L

k′(ϕ)

0 0 EI
4L

k′(ϕ) EI
2L

k(ϕ)























































[ux]

[uy]

[θx]

[θy]





















(24)

3.3 Identification of functions sc and kc

Three-dimensional finite element calculations were carried out under the Code aster c©

to identify sc. The cracked structure, cf. Figure 4(a), is then subjected, at
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z = 2L, to the loading vector:

F =

(

Tx(2L) = cos(Φc), Ty(2L) = sin(Φc), Mx(2L) = LTy(2L), My(2L) = −LTx(2L)

)

which leads, at the cracked section (z = L), to:

(T , M) =

(

Tx(L), Ty(L), Mx(L), My(L)

)

=

(

Tx(2L), Ty(2L), 0, 0

)

Thus, the additional deformation energy due to the cracked section w∗ is re-
duced to w∗

c . The angle Φc varies in [0◦, 360◦[ at a rate of a loading case every

0 1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Φ
c
  (rad)

s c(Φ
c)

Fig. 5. Additional shearing flexibility sc,
a
D

= 50%

0 1.57 3.14 4.71 6
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20

k c(φ
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φ
c
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(a)

0 1.57 3.14 4.71 6
−15

−10

−5

0

5

10

15

k c’(
φ c)

φ
c
  (rad)

(b)

Fig. 6. Stiffness function kc and its derivative k
′
c,

a
D

= 50%

5◦ and, thus, a total of 72 loading cases where carried out. The identification
of function sc also requires the realization of the same three-dimensional cal-
culations on the non-cracked structure (of the same geometry). The formula of
Clapeyron makes it possible to calculate, for each loading case, the elastic en-
ergies W ∗

s and W ∗ of the non-cracked and the cracked structures, respectively.
Consequently, w∗

c is given by

w∗
c = W ∗ − W ∗

s
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Since ||T || = 1, and using the relation (11), the additional shearing flexibility
function is obtained, for all loading cases, by:

sc(Φc) = µκS
w∗

c(T )

L

Figure 5 shows the evolution of sc for a straight line front crack with a relative
depth a

D
= 50%. It is noticed in particular that sc does not vanish on [0, 2π[.

Also, the strong dependency of sc on the loading direction Φc is clearly visible.
Moreover, we show that the model presented by Varé and Andrieux [2005]
corresponds to particular loading cases since

sx =
2L

µκS
sc(Φc = 0), sy =

2L

µκS
sc(Φc =

π

2
) and sxy =

2L

µκS
sc(Φc =

π

4
)

The stiffness function kc is then calculated by using the formula (22), cf.
Figure 6(a). Finally, its derivative k′

c is calculated using the centered differences
method, cf. Figure 6(b).

3.4 Validation of the approach

Now that we have identified the constitutive equations of the nodal element
that represents the cracked transverse section, it is the objective of this sec-
tion to introduce it in a one-dimensional FE code and see if we get sufficient
agreement with three-dimensional representation. For a better validation of
the approach, it is certainly more adequat to consider a cracked structure dif-
ferent from the one used in the identification procedure of the nodal element.

Let consider a cylinder of axis (oz), diameter D = 0.5m, quadratic moment
of inertia I = πD4

64
, total length 3m, clamped in z = 0 and subjected at the

other end to a couple of forces

T = (Tx = cos(α), Ty = sin(α)) with α ∈ [0, 2π[

The cylinder contains, at z = 1m, a straight line front crack with a relative
depth a

D
= 50%. Three-dimensional calculations accounting for the unilateral

contact without friction between the lips of the crack are carried using the
code aster c©. The one-dimensional model of the same structure is made of two
non-cracked elements of Timoshenko beam type and respective lengths 1m
and 2m connected at z = 1m by a nodal element that represents the cracked
section ( node 2), cf. Figure 7. Two cases are considered:

• in the first, the effects of shearing at the cracked section are neglected. Only
discontinuities of rotations are then allowed at node 2 ([ux] = [uy] = 0). In
this case we consider the model presented by Andrieux and Varé [2002].
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(a) 3D model (b) Cracked trans-
verse section

(c) Beam model

Fig. 7. Structure Modelling: 3D and beam Finite elements
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Fig. 8. Comparison of the present model to the three-dimensional results, a
D

= 50%.

• in the second, the nodal element behavior is described by relation (24):
shearing effects are considered in this case.

Figure 8 shows an excellent agreement between the beam and the three-
dimensional models. It appears that the effects of shearing on the crack breath-
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Fig. 9. discontinuties of the displacements and rotations at the cracked section,
a

D
= 50%.

ing mechanism are negligible since the Andrieux and Varé [2002] model (with
no consideration of the shearing effects) and the current model (taking into
account the shearing effects) give the same results. The breathing mechanism
is, thus, governed by the normal stresses on the crack lips.

4 Conclusions

The present approach consists in introducing the effects of shearing in the con-
stitutive equations of a beam cracked transverse section. Three-dimensional
calculations were carried out in order to identify the required nonlinear rela-
tions. In particular, the 3D nonlinear finite element calculations allowed the
breathing mechanism of the crack to be predicted accurately. Based on the
properties of the problem energy, the procedure presented in this paper could
be applied to cracks of any shape and, moreover, to the case of multiple cracks
affecting the same section. The approach was applied to the case of a single
straight line front crack covering the half of a cylindrical beam cross section
( a

D
= 50%). For this form of crack, as illustrated in the Figure 8, the shearing

effects on the breathing mechanism of the crack are negligible when compared
to those of the flexural moments. The opening and closure of the crack are
governed by the normal stress on the crack lips. The relative slip between the
crack lips associated with shear forces remains very small compared to the
rotations jumps due to the flexural moments at the cracked section (Figure
9).
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