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Abstract

Scheideler has shown that peer-to-peer overlays networks can only survive Byzantine attacks if malicious nodes
are not able to predict what is going to be the topology of the network for a given sequence of join and leave oper-
ations. In this paper we investigate adversarial strategies by following specific games. Our analysis demonstrates
first that an adversary can very quickly subvert DHT-based overlays by simply never triggering leave operations. We
then show that when all nodes (honest and malicious ones) are imposed on a limited lifetime, the system eventually
reaches a stationary regime where the ratio of polluted clusters is bounded, independently from the initial amount
of corruption in the system.

1 Introduction

The adoption of peer-to-peer overlay networks as a building block for architecting Internet scale systems has
raised the attention of making these overlays resilient not only to benign crashes, but also to more malicious
failure models for the peers [5, 12, 13, 14]. As a result, Byzantine-resilient overlay systems have been proposed
(e.g., [6, 4, 1]). The key to achieve Byzantine resilience in a peer-to-peer overlay is to prevent malicious peers
from isolating correct ones. This in turn, can only be achieved if malicious peers are not able to predict what
will be the topology of the overlay for a given sequence of join and leave operations. Hence, a prerequisite
for this condition to hold is to guarantee that malicious nodes are well-mixed with honest ones, that is nodes
identifiers randomness is continuously preserved. Unfortunately, targeted join/leave attacks may quickly endanger
the relevance of such assumption. Actually by holding a logarithmic number of IP addresses, an adversary can very
easily and efficiently disconnect some target from the rest of the system. This can be achieved in a linear number of
offline trials [2]. Awerbuch and Scheideler [3] have analysed several ways to make overlay networks provably robust
against different forms of malicious attacks, and in particular targeted join/leave attacks, through competitive
algorithms. All these solutions are based on the introduction of locally induced churn to prevent the adversary
from thwarting randomness. The same authors have shown that despite the high level of randomness introduced
in each of these strategies, most of them are either incorrect, or they involve tight synchronization among nodes
which becomes unbearable in the context we address, namely targeted and frequent join/leave attacks. The other
proposed approach based on globally induced churn, enforce limited lifetime for each node in the system. However,
these solutions keep the system in an unnecessary hyper-activity, and thus need to impose strict restrictions on
nodes joining rate which clearly limit their applicability to open systems.

In this paper we propose to leverage the power of clustering to design a practically usable solution that pre-
serves randomness under an ǫ-bounded adversary. Our solution relies on the clusterized version of peer-to-peer
overlays combined with a mechanism that allows the enforcement of limited nodes lifetime. Clusterized versions
of structured-based overlays are such that clusters of nodes substitute nodes at the vertices of the graph. Cluster-
based overlays have revealed to be well adapted for efficiently reducing the impact of churn on the system and/ or
in greatly reducing the damage caused by failures—assuming that failures assumptions hold anywhere and at any
time in the system [1, 9, 6].
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The contributions of the paper are two-fold. First we investigate adversarial strategies by following specific
games. Our analysis demonstrates that an adversary can very quickly subvert cluster-based overlays by simply
never triggering leave operations. We then show that when nodes are imposed on a limited lifetime and under the
assumption that we are able to enforce the adversary to leave the system after expiration of its ID, the system
eventually reaches a stationary regime where the ratio of polluted clusters is bounded. Second we propose a simple
and generic mechanism to limit nodes lifetime in those systems.

The remainder of this paper is as follows: In Section 2 we briefly describe the main features of cluster-based
overlays, and propose a mechanism that enables the enforcement of limited nodes lifetime. In Section 3, we model
adversarial behaviours through the use of games. We study the outcome of these games by using a Markovian
analysis. In this section, we consider a non restricted adversary. Section 4 is devoted to the same study in the case
of a restricted adversary. Finally, we conclude with future works.

2 Cluster-based DHT Overlays in a Nutshell

In this section we first present the common features of cluster-based overlays and then present different join/leave
strategies whose long term behaviors are analysed in Section 3.

Clusterized versions of structured-based overlays are such that clusters of nodes substitute nodes at the vertices
of the graph. Nodes are uniquely identified with some m-bit string randomly chosen from an ID-space. Identifiers
(IDs) are derived by using standard collision-resistant one-way hash functions (e.g., [10]). Each graph vertex
is composed of a set of nodes self-organised within a cluster according to some distance metrics (e.g., logical or
geographical). Clusters in the system are uniquely labelled. Size of each cluster is lower (resp. upper) bounded. The
lower bound, named Smin in the following, usually satisfies some constraint based on the assumed failure model.
For instance Smin ≥ 4 allows Byzantine tolerant agreement protocols to be run among these Smin nodes [8].
The upper bound, that we call Smax, is typically in O(logN), where N is the current number of nodes in the
system, to meet scalability requirements. When a cluster size reaches these bounds, cluster-based overlays react
by respectively splitting that cluster into two smallest clusters or by merging it with its closest cluster neighbours.
Finally for most of the cluster-based overlays, operations (join, leave, merge, and split) are poly-logarithmic in
the number of nodes in the system.

In the present work we assume that at cluster level nodes are organised as core and spare members. Members of
the core set are primarily responsible for handling messages routing and clusters operations. Management of the
core set is such that its size is maintained to constant Smin. Spare members are the complement number of nodes
in the cluster. In contrast to core members, they are not involved in any of the overlay operations. Rationale
of this classification is two-fold: first it allows to introduce the unpredictability required to deal with Byzantine
attacks through a randomized core set generation algorithm. Second it limits the management overhead caused by
the natural churn present in typical overlay networks through the spare set management.

Specifically we consider the following join and leave operations:

• join(p): when a peer joins a cluster, it joins it as a spare member.

• leave(p): When a peer p leaves a cluster either p belongs to the spare set or to the core set. In the former
case, core members simply update their spare view to reflect p’s departure, while in the latter case, the core
view maintenance procedure is triggered. Two different maintenance policies are implemented. The first one,
referred in the following as policy 1, simply consists in replacing the left core member by one randomly chosen
spare member. The second one, referred as policy 2, consists in refreshing the whole core set by choosing
Smin random peers within the cluster.

For space reasons we do not give any detail regarding the localization of a cluster nor its creation/split/merge
process. None of these operations are necessary for the understanding of our work. The interested reader is invited
to read their description in the original papers (e.g. [1, 9, 6]).

2.1 Implementing a limited nodes lifetime

To implement limited nodes lifetime, we propose to proceed as follows: Peers identifiers are generated based
on certificates acquired at trustworthy Certification Authorities (CAs). Identifiers (denoted IDs) are generated
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as the result of applying a hash function to some of the fields of a X.509 [7] certificate. To enforce all peers,
including malicious ones, leaving and rejoining the system from time to time, we add a incarnation number to
the fields that appear in the peer’s certificate that will be hashed to generate the peer’s ID. The incarnation
number limits the lifetime of IDs. The current incarnation k of any peer is given by the following expression
k = ⌈(CT − IV T )⌉/IL, where IV T is the initial validity time of the peer’s certificate, CT is the current time, and
IL is the length of the lifetime of each peer’s incarnation. Thus, the kth incarnation of a peer p expires when its
local clock reads IV T + k ∗ IL. At this time p must rejoin the system using its (k + 1)th incarnation. The IV T
is one of the fields in the peer’s certificate and since certificates are signed by the CA, it cannot be unnoticeably
modified by a malicious peer. Moreover, a certificate commonly contains the public key of the certified entity. This
way, messages exchanged by the peers can be signed using this key, preventing malicious peers from unnoticeably
altering messages originated from other peers in the system. Messages must contain the certificate of their issuer,
so as to allow recipients to validate them. Therefore, at any time, any peer can check the validity of the ID of
any other peers in the system, by simply calculating the current incarnation of the other peer and generating the
corresponding ID. If some peer detects that the ID of one of its neighbours is not valid then it cuts its connection
with it. Note that because clocks are loosely synchronised, it is possible that a correct peer is still using its ID
for incarnation k when other correct peers would expect it to be in incarnation k + 1. To mitigate this problem,
we assume that any correct peer may have two subsequent valid incarnation numbers, for a fixed grace window
GW of time that encompasses the expiration time of an incarnation number (GW is the maximum deviation of
the clocks of any two correct peers). More precisely, at any time t, both incarnation k and k′ are valid, where:
k = ⌈(t − GW/2 − IV T )⌉/IL, and k′ = ⌈(t + GW/2 − IV T )⌉/IL. Notice that this means that although at any
time t each peer p has a single incarnation number that it uses to define its current ID, other peers calculate two
possible incarnation numbers for p. These are frequently equal, but may differ when p’s local time is close to the
expiration time of its current/last incarnation.

3 Modelling the adversarial strategy as a game

In this section, we investigate the previously described policies (policy 1 and 2). We model adversarial behavior
by focusing on specific games. Both games intend to prevent the adversary from elaborating deterministic strategies
to win. These games are played in the following context. There is a potentially infinite number of balls in a bag,
with a proportion µ of red balls and a proportion 1 − µ of white balls, µ being a constant in (0, 1). White (resp.
red) balls are indistinguishable. Red balls are owned by the adversary. In addition to the bag, there are two urns,
named C and S. Initially, c + s balls are drawn from the bag such that c of them are thrown into urn C, and the
other s ones are thrown into urn S. We denote by Cr (resp. Sr) the number of red balls in C (resp. S). It is easily
checked that Cr and Sr are independent and have a binomial distribution, i.e. for x = 0, . . . , c and y = 0, . . . , s,
we have P{Cr = x, Sr = y} = P{Cr = x}P{Sr = y}

=
(

c
x

)

µx(1 − µ)c−x
(

s
y

)

µy(1 − µ)s−y.
(1)

This joint distribution represents the initial distribution of the process detailed below. Each game is a succession
of rounds r1, r2, . . . during which the game rule described in Figure 1 is applied. Rules are oblivious to the colour
of the balls, that is, they cannot distinguish between the white and the red balls.

The goal of the adversary is to get a quorum Q of red balls in both urns C and S so that the number of red
balls in C is bound to continuously exceed ⌊(c − 1)/3⌋. An intuition of why having more than ⌊(c − 1)/3⌋ red
balls in urn C is necessary for polluting it is related to agreement problems in distributed systems in presence of
Byzantine processes. The value of quorum Q is derived in the sequel. The adversary may at any time inspect both
urns and bag to elaborate adversarial strategies to win the game. In particular it may not follow the rule of the
games by preventing its red balls from being extracted from both urns. Specifically, at stage 1 of both games, if
the drawn ball b0 is red then the adversary puts back the ball into the urn from which it has been drawn. Stage 2
is not applied, and a new round is triggered. Clearly this strategy ensures that the number of red balls in C ∪ S is
monotonically non decreasing.

We model the effects of these rounds using a homogeneous Markov chain denoted by X = {Xn, n ≥ 0} repre-
senting the evolution of the number of red balls in both urns C and S. More formally, the state space S of X is
defined by S = {(x, y) | 0 ≤ x ≤ c, 0 ≤ y ≤ s}, and, for n ≥ 1, the event Xn = (x, y) means that, after the n-th
transition or n-th round, the number of red balls in urn C is equal to x and the number of red balls in urn S is
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/* First game */
/* stage 1 */

draw ball b0 from C ∪ S

/* stage 2 */
if b0 was in S then

throw b0 into the bag
draw ball b2 from the bag
throw it into S

else

throw b0 into the bag
draw ball b1 from S

throw it into C

draw ball b2 from the bag
throw it into S

/* Second game */
/* stage 1 */

draw ball b0 from C ∪ S

/* stage 2 */
if b0 was in S then

throw b0 into the bag
draw ball b2 from the bag
throw it into S

else

throw b0 into the bag
draw c balls from S ∪ C

throw these c balls into C

draw one ball b2 from the bag
throw it in S

Figure 1. Rule of the first and second game.

equal to y. The transition probability matrix P of X depends on the rule of the given game and on the adversarial
behaviours. This matrix is detailed in each of the following subsections. In all the cases, the initial state X0 is
given by X0 = (Cr, Sr) and its probability distribution is denoted by the row vector α which is given by relation
(1), i.e. α(x, y) = P{X0 = (x, y)} = P{Cr = x, Sr = y}.

We define a state as polluted if in that state urn C contains more than ⌊(c − 1)/3⌋ balls. In the following, we
denote by c′ the value ⌊(c − 1)/3⌋. Conversely, a state that is not polluted is said safe. The subset of safe states,
denoted by A, is defined as: A = {(x, y) | 0 ≤ x ≤ c′, 0 ≤ y ≤ s}, while the set of polluted states, denoted by B,
is the subset S − A, i.e. B = {(x, y) | c′ + 1 ≤ x ≤ c, 0 ≤ y ≤ s}. We partition matrix P in a manner conformant
to the decomposition of S = A ∪ B, by writing

P =

(

PA PAB

PBA PB

)

,

where PA (resp. PB) is the sub-matrix of dimension |A| × |A| (resp. |B| × |B|), containing the transitions between
states of A (resp. B). In the same way, PAB (resp. PBA) is the sub-matrix of dimension |A|× |B| (resp. |B|× |A|),
containing the transitions from states of A (resp. B) to states of B (resp. A). We also partition the initial
probability distribution α according to the decomposition S = A ∪ B, by writing α = (αA αB), where sub-vector
αA (resp. αB) contains the initial probabilities of states of A (resp. B).

3.1 First game

Regarding the first game, computation of the probabilities of the transition matrix is illustrated in Figure 2.
In this tree, each edge is labelled by a probability and its corresponding event following the rule of the game (see
Figure 1). This figure can be interpreted as follows: At round r, r ≥ 1, starting from state (x; y) (root of the tree)
the Markov chain can transit to four different states, namely (x; y), (x; y + 1), (x + 1; y), and (x + 1; y + 1) (leaves
of the tree). The probability associated to each one of these transitions is obtained by summing the products of
the probabilities discovered along each path starting from the root to the leaf corresponding to the target state.

We can easily derive the transition probability matrix P of the Markov chain X chain associated to this game.
For all x ∈ {0, . . . , c} and for all y ∈ {0, . . . , s}, we have

p(x,y),(x,y) =

„

c

c + s

« „

x

c
+

„

c − x

c

« „

s − y

s

«

(1 − µ)

«

+

„

s

s + c

«

“ y

s
µ + 1 − µ

”

p(x,y),(x,y+1) =

„„

c

c + s

« „

c − x

c

«

+

„

s

s + c

«« „

s − y

s

«

µ for y ≤ s − 1

p(x,y),(x+1,y−1) =

„

c

c + s

« „

c − x

c

«

y

s
(1 − µ) for x ≤ c − 1 and y ≥ 1

p(x,y),(x+1,y) =

„

c

c + s

« „

c − x

c

«

y

s
µ for x ≤ c − 1.

In all other cases, transition probabilities are null.
Clearly, the adversary wins the game when the process X reaches the subset of states B from which it cannot

exit. Thus quorum Q = {(x, y) | (x, y) ∈ B}. with B the set of polluted states. By the rule of the game, one can
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(x; y)

(x; y)

(b0 is red) x
c

(x + 1; y − 1)

(b2 is white) 1 − µ

(x + 1; y)

µ (b2 is red)

(b1 is red)
y
s

(x; y + 1)

µ

(x; y)

1 − µ (b2 is white)

s−y
s

(b1 is white)

c−x
c

(b0 is white)

(b0 ∈ C) c
c+s

(x; y)

(b0 is red)
y
s

(x; y)

1 − µ

(x; y + 1)

µ (b2 is red)

1

s−y
s

(b0 is white)

s
s+c

(b0 ∈ S)

Figure 2. Transition diagram for the computation of the transition probability matrix P for the first game.

never escape from these states to switch to safe states since the number of red balls in C is non decreasing. Thus
there is a finite random time T after which the process X is absorbed within B. Thus we have PBA = 0. The
Markov chain X is reducible and the states of A are transient, which means that matrix I −PA is invertible, where
I is the identity matrix of the right dimension which is |A| here. Specifically T , the time needed to reach subset
B, is defined as T = inf{n ≥ 0 | Xn ∈ B}. The cumulative distribution function of T is easily derived asP{T ≤ k} = 1 − αA(PA)k1, (2)

where 1 is the column vector of the right dimension with all components equal to 1. The expectation of T is given
by

E(T ) = αA(I − PA)−11, (3)

3.2 Second game

By proceeding similarly as above, we can derive the following transitions of process X associated to the second
game. Briefly, when the game starts in state (x, y) at round r, it remains in state (x, y) during the round if either
ball b0 is red or b0 is white, and has been drawn from S, and b2 is white. It changes to state (x, y + 1) if b0 is
white, it has been drawn from S, and b2 is red. Finally the game switches to state (k, x + y − k + ℓ), where k is
an integer k = 0, . . . , c′ and ℓ = 0 or 1 if b0 is white, it has been drawn from C, and the renewal process leads to
the choice of k red balls. For all x ∈ {0, . . . , c} and y ∈ {0, . . . , s}, we have

p(x,y),(x,y) =

„

c

c + s

« „

x

c
µq(x, x + y − 1) +

c − x

c
(1 − µ)q(x, x + y)

«

+

„

s

c + s

« „

s − y

s
(1 − µ) +

y

s
µ

«

p(x,y),(x,y+1) =

„

c

c + s

«

x

c
µq(x, x + y) +

„

s

c + s

« „

s − x

c
µ

«

for y ≤ s − 1

p(x,y),(x,y−1) =

„

c

c + s

«

x

c
(1 − µ)q(x, x + y − 1) +

„

s

c + s

« „

s − x

c
µ

«

for y ≥ 1

p(x,y),(k,x+y−k) =

„

c

c + s

« „

c − x

c

«

(1 − µ) q(k, x + y)

for max(0, x + y − s) ≤ k ≤ min(c, x + y) and k 6= x

p(x,y),(k,x+y−k+1) =

„

c

c + s

« „

c − x

c

«

µq(k, x + y)

for max(0, x + y + 1 − s) ≤ k ≤ min(c, x + y + 1) and k 6= x

where

q(x, x + y) =

“x + y

x

”“c + s − 1 − (x + y)

c − x

”

“c + s − 1

c

”
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A C D

Figure 3. An aggregated view of the Markov chain associated to the second game. Safe states are represented by A,
and polluted states by C and D.

is the probability of getting x red balls when c balls are drawn, without replacement, in an urn containing x + y
red balls and c + s − 1 − (x + y) white balls, referred to as the hypergeometric distribution. In all other cases,
transition probabilities are null.

In contrast to the first game, this game alternates between safe and polluted states. After a random number
of these alternations the process ends by entering a set of closed polluted states. Indeed, by the rule of the
game, one can escape finitely often from polluted state (x; y) to switch back to a safe state as long as (x; y)
satisfies c′ + 1 ≤ x + y ≤ s + c′ (there are still sufficiently many white balls in both C and S so as to successfully
withdrawing c balls such that C can be reverted to a safe state). However, there is a time TD when state (x; y),
with x + y ≥ s + c′ + 1, is entered. From TD onwards, going back to safe states is impossible. Thus at time TD

the adversary wins the game. Hence an interesting metrics to be evaluated is the total time spent by the process
in safe states before being definitely absorbed in polluted states.

Formally, we need to decompose the set B of polluted states into two subsets C and D defined by C = {(x; y) |
c′ + 1 ≤ x + y ≤ s + c′, c′ + 1 ≤ x ≤ c, 0 ≤ y ≤ s}, and D = {(x; y) | x + y ≥ s + c′ +1, 0 ≤ y ≤ s}. Subsets A and
C are transient and subset D is a closed subset. We partition matrix P and initial probability vector α following
the decomposition of S = A ∪ C ∪ D, by writing

P =





PA PAC 0
PCA PC PCD

0 0 PD



 and α = (αA αC αD).

Figure 3 illustrates the states partition of the process X .
We are interested in the random variable TA which counts the total time spent in subset A before reaching

subset D. Following the result obtained in [11], we have, for every k ≥ 0,P{TA ≤ k} = 1 − vGk1, (4)

where v = αA +αC(I −PC)−1PCA and G = PA +PAC(I −PC)−1PCA. The expected total time spent in A is given
by

E(TA) = v(I − G)−11. (5)

Figure 4(a) compares the expectation of the time spent in safe states for both games. In accordance with the
intuition, increasing the size of the urns augments the expected time spent in safe states of both games, i.e., E(T )
and E(TA), independently of the ratio of red balls in the bag. Similarly, for a given cluster size, increasing the
ratio of red balls in the bag drastically decreases both E(T ) and E(TA). However surprisingly enough, increasing
the level of randomness (game 2 vs. game 1) does not increase the resilience to the adversary behavior since the
first game always overpasses the second one in expectation. It is even more true when S size is large with respect
to C one. The intuition behind this fact is as follows: when S size is equal to 1, both games are equivalent as
illustrated in Figure 4(a) for s = 1. Now, consider the case where the size of S is large with respect to C one. First
of all, note that the probability to draw a ball from S tends to 1, and because the adversary never withdraw its
red balls from any urns, the ratio of red balls within S is monotonically non decreasing. Hence, the ratio of red
balls in S tends also to 1. With small probability, a ball from C is drawn. In the first game it is replaced with high
probability by a red ball drawn from S. Hence to reach a polluted state, at least c′ white balls have to be replaced
by red ones. While in the second game with high probability, the renewal of C reaches a polluted state in a single
step. From this crude reasoning we can derive that the ratio of E(T ) over E(TA) tends to c′.
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Figure 4. (a) Expectation of the number of rounds spent in safe states for games 1 and 2 function of S size and
the ratio of malicious nodes µ as resp. given by relations (??) and (??). (b) Mean number of safe clusters E(Nn)
(relation (??)) in function of the rounds number n for both games and both kind of adversaries. There are l=100
clusters, and the ratio of red balls in the bag is equal to .25 and c = 7. Note that the initial number of safe clusters
is equal to 16.

4 Constraining the adversary

Our next step is to evaluate the benefit of constraining the adversary by limiting the sojourn time of its balls
in both urns, so that randomness among red and white balls is continuously preserved. In the model we propose,
we assume that the adversary cannot prevent red balls from being withdrawn for both urns.

By proceeding as in Sections 3.1 and 3.2, we can derive the transition probability matrix P for both games. For
all x ∈ {0, . . . , c} and y ∈ {0, . . . , s}, the entries of P are given, for the first game, by

p(x,y),(x,y) =
xy + (c(s − y) − xs)(1 − µ)

(c + s)s
) +

yµ + (s − y)(1 − µ)

c + s

p(x,y),(x,y−1) =
(x + s)y

(c + s)s
(1 − µ) for y ≥ 1

p(x,y),(x,y+1) =

„

c − x + s

c + s

« „

s − y

s

«

µ for y ≤ s − 1

p(x,y),(x+1,y−1) =
(c − x)y

(c + s)s
(1 − µ) for x ≤ c − 1 and y ≥ 1 (6)

p(x,y),(x+1,y) =
(c − x)y

(c + s)s
µ for x ≤ c − 1

p(x,y),(x−1,y) =
x(s − y)

(c + s)s
(1 − µ) for x ≥ 1

p(x,y),(x−1,y+1) =
x(s − y)

(c + s)s
µ for x ≥ 1 and y ≤ s − 1.

In all other cases, transition probabilities are null. Similarly for second game , for all x ∈ {0, . . . , c} and y ∈
{0, . . . , s}, we have

p(x,y),(x,y) =
xq(x, x + y − 1)µ + (c − x)q(x, x + y)(1 − µ)

c + s
+

yµ + (s − y)(1 − µ)

c + s
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p(x,y),(x,y−1) =
x

c + s
q(x, x + y − 1)(1 − µ) +

y

c + s
(1 − µ) for y ≥ 1

p(x,y),(x,y+1) =
c − x

c + s
q(x, x + y)µ +

s − y

c + s
µ for y ≤ s − 1

p(x,y),(k,x+y−k−1) =
x

c + s
q(k, x + y − 1)(1 − µ) (7)

for max(0, x + y − 1 − s) ≤ k ≤ min(c, x + y − 1) and k 6= x

p(x,y),(k,x+y−k) =
x

c + s
q(k, x + y − 1)µ +

c − x

c + s
q(k, x + y)(1 − µ)

for max(0, x + y − s) ≤ k ≤ min(c, x + y − 1) and k 6= x

p(x,y),(k,x+y−k+1) =
c − x

c + s
q(k, x + y)µ

for max(0, x + y + 1 − s) ≤ k ≤ min(c, x + y) and k 6= x,

where we set q(u, v) = 0 when u > v. In all other cases, transition probabilities are null.
It is not difficult to see that none of the games exhibit an absorbing class of states (i.e., both games never ends).

We have PBA 6= 0 and the process X is irreducible and aperiodic since at least one state has a transition to itself.
The distribution of the time T needed to reach subset B is given, for every k ≥ 0, byP{T ≤ k} = 1 − αA(PA)k1. (8)

We denote by π the stationary distribution of the Markov chain X . The row vector π is thus the solution to
the linear system

π = πP and π1 = 1.

As we did for row vector α, we partition π according to the decomposition S = A ∪ B, by writing π = (πA πB),
where sub-vector πA (resp. πB) contains the stationary probabilities of states of A (resp. B).

Theorem 1 For both games 1 and 2, the stationary distribution π is equal to α, i.e. for all x = 0, . . . , c and
y = 0, . . . , s, we have

lim
n−→∞

P{Xn = (x, y)} = α(x, y),

which is given by relation (1).

Proof. For space reasons, we omit the proof of the theorem. The interested reader is invited to read it in the
Appendix.

Theorem 1 is interesting in two aspects. First it shows that the stationary distribution π is exactly the same for
both games, and second, that this distribution is equal to the initial distribution α. At a first glance, we could
guess that this phenomenon is due to the fact that the Markov chain X is the tensor product of two independent
Markov chains, representing respectively the evolution of the red balls in C and S. Although this is clearly not the
case as the behavior of red balls in C depends on the behavior of red balls in S. This holds for both games.

The stationary availability of the system defined by the long run probability to be in safe states is denoted by
Psafe and is given by

Psafe = πA1 =
c′

∑

x=0

(

c

x

)

µx(1 − µ)c−x.

This probability can also be interpreted as the long run proportion of time spent in safe states. Note that the
stationary distribution does not depend on the size of S.

Now let us consider that we have ℓ identical and independent Markov chains X(1), . . . , X(ℓ) on the same state
space S = A∪{S \A}, with initial probability distribution β and transition probability matrix P . The probability
distribution β represents the state (0; 0), i.e., the safest state. Each Markov chain models a particular cluster of
nodes and, for n ≥ 0, Nn represents the number of safe clusters after the n-th round, i.e. the number of Markov
chains being in subset A after the n-th transition has been triggered, defined by

Nn =

ℓ
∑

j=1

1
{X

(j)
n ∈A}

.

8



The ℓ Markov chains being identical and independent, Nn has a binomial distribution, that is, for k = 0, . . . , ℓ, we
have P{Nn = k} =

(

ℓ

k

)

(P{X(1)
n ∈ A}

)k (

1 −P{X(1)
n ∈ A}

)ℓ−k

=

(

ℓ

k

)

(βPn1A)
k
(1 − βPn1A)

ℓ−k

and
E(Nn) = ℓβPn1A,

where 1A is the column vector with the i-th entry equal to 1 if i ∈ A and equal to 0 otherwise. If N denotes the
stationary number of safe clusters, we have, for k = 0, . . . , ℓ,P{N = k} =

(

ℓ
k

)

(πA1)
k
(1 − πA1)

ℓ−k
for a constrained adversary

= 0 for a non constrained adversary

and
E(N) = ℓπA1 for a constrained adversary

= 0 for a non constrained adversary

These results are illustrated in Figure 4(b). We can observe that with a constrained adversary, the ratio of safe
clusters tends to the same limit for both games, whatever the amount of initially safe clusters (less than a 1/4),
while with a non constrained adversary eventually all the clusters get polluted.

5 Conclusion

In this paper, we have proposed a mechanism that enables the enforcement of limited nodes lifetime compli-
ant with DHT-based overlays specificities. We have investigated several adversarial strategies. Our analysis has
demonstrated that an adversary can easily subvert a cluster-based overlay by simply never triggering leave oper-
ations. We have then shown that when nodes have to regularly leave the system, eventually this one reaches a
stationary regime where the ratio of malicious nodes is bounded.

For future work, we plan to implement this limited node lifetime mechanism in PeerCube to study its impact on
the induced churn and its management overhead. We are convinced that this additional churn will be efficiently
amortised thanks to the organisation of nodes in core and spare sets.
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Appendix

Theorem 1 For both games 1 and 2, the stationary distribution π is equal to α, i.e. for all x = 0, . . . , c and y = 0, . . . , s,
we have

lim
n−→∞

P{Xn = (x, y)} = α(x, y),

which is given by relation (1).

Proof. For both games, the Markov chain X is finite, irreducible and aperiodic so the stationary distribution exists and is
unique. It thus suffices to show that for both games we have α = αP , i.e. for all i ∈ {0, . . . , c} and j ∈ {0, . . . , s}, we have

(αP )(i, j) =

c
X

u=0

s
X

v=0

α(u, v)p(u,v),(i,j) = α(i, j).

First of all, note that, from relation (1), we have

α(i, j + 1) = α(i, j) (s−j)µ
(j+1)(1−µ)

for j ≤ s − 1,

α(i, j − 1) = α(i, j) j(1−µ)
(s−j+1)µ

for j ≥ 1,

α(i − 1, j + 1) = α(i, j) i(s−j)
(c−i+1)(j+1)

for i ≥ 1 and j ≤ s − 1,

α(i − 1, j) = α(i, j) i(1−µ)
(c−i+1)µ

for i ≥ 1,

α(i + 1, j) = α(i, j) (c−i)µ
(i+1)(1−µ)

for i ≤ c − 1,

α(i + 1, j − 1) = α(i, j) (c−i)j
(i+1)(s−j+1)

for i ≤ c − 1 and j ≥ 1.

For first game , the transition probability matrix P is given by relations (6). Using these relations and relations above,
we obtain for i = 1, . . . , c − 1 and j = 1, . . . , s − 1,

(αP )(i, j) = α(i, j)p(i,j),(i,j) + α(i, j + 1)p(i,j+1),(i,j) + α(i, j − 1)p(i,j−1),(i,j)

+ α(i − 1, j + 1)p(i−1,j+1),(i,j) + α(i − 1, j)p(i−1,j),(i,j)

+ α(i + 1, j)p(i+1,j),(i,j) + α(i + 1, j − 1)p(i,j),(i,j)

= α(i, j)

„

ijµ + (c − i)(s − j)(1 − µ)

(c + s)s
+

jµ + (s − j)(1 − µ)

c + s

+
µ(s − j)i

(c + s)s
+

µ(s − j)

c + s
+

(1 − µ)j(c − i)

(c + s)s
+

(1 − µ)j

c + s

+
i(1 − µ)

c + s
+

(c − i)µ

c + s

«

= α(i, j).

When i = 0 or i = c and j = 0 or j = s we obtain the same result more easily.
For second game , the transition probability matrix P is given by relations (7). For i = 1, . . . , c − 1 and j = 1, . . . , s− 1,

we have

(αP )(i, j) = α(i, j)
jµ + (s − j)(1 − µ)

c + s
+ α(i, j + 1)

(j + 1)(1 − µ)

c + s

+ α(i, j − 1)
(s − j + 1)µ

c + s
+

X

(u,v)∈Si+j+1

α(u, v)
u(1 − µ)

c + s
q(i, i + j)

+
X

(u,v)∈Si+j

α(u, v)

„

uµ

c + s
q(i, i + j − 1) +

(c − u)(1 − µ)

c + s
q(i, i + j)

«

+
X

(u,v)∈Si+j−1

α(u, v)
(c − u)µ

c + s
q(i, i + j − 1),
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where Sℓ is the set defined by Sℓ = {(u, v) | 0 ≤ u ≤ c, 0 ≤ v ≤ c and u + v = ℓ}. Using the recurrence relations above on
α and two variables changes u := u + 1 and u := u − 1, we obtain

(αP )(i, j) = α(i, j)
s

c + s
+

X

(u,v)∈Si+j

α(u, v)
(c − u)µ

c + s
q(i, i + j)

+
X

(u,v)∈Si+j

α(u, v)

„

uµ

c + s
q(i, i + j − 1) +

(c − u)(1 − µ)

c + s
q(i, i + j)

«

+
X

(u,v)∈Si+j

α(u, v)
u(1 − µ)

c + s
q(i, i + j − 1),

which leads to

(αP )(i, j) =
α(i, j)s

c + s
+

X

(u,v)∈Si+j

α(u, v)

„

c − u

c + s
q(i, i + j) +

u

c + s
q(i, i + j − 1)

«

.

By definition of q(i, i + j), we have

q(i, i + j − 1) = q(i, i + j)
j(c + s − (i + j))

(i + j)(s − j)

and by definition of α(u, v), we have

X

(u,v)∈Si+j

uα(u, v) =

 

c + s

i + j

!

µ
i+j(1 − µ)c+s−(i+j) (i + j)c

c + s
,

and thus
X

(u,v)∈Si+j

(c − u)α(u, v) =

 

c + s

i + j

!

µ
i+j(1 − µ)c+s−(i+j) c(c + s − (i + j))

c + s
.

This leads to

(αP )(i, j) =
α(i, j)s

c + s
+

 

c + s

i + j

!

µ
i+j(1 − µ)c+s−(i+j)

q(i, i + j)cs(c + s − (i + j))

(c + s)2(s − j)
.

Again, by definition of q(i, i + j), we have

 

c + s

i + j

!

µ
i+j(1 − µ)c+s−(i+j)

q(i, i + j) = α(i, j)
(c + s)(s − j)

s(c + s − (i + j))
,

which gives (αP )(i, j) = α(i,j)s
c+s

+ α(i,j)c
c+s

= α(i, j). As for game 1, the result for frontier states is easier to derive.
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