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Abstract— Let X be a hidden real stochastic chain, R be a 

discrete finite Markov chain, Y be an observed stochastic chain. 

In this paper we address the problem of filtering and smoothing 

in the presence of stochastic switches where the problem is to 

recover both R and X from Y. In the classical conditionally 

Gaussian state space models, exact computing with polynomial 

complexity in the time index is not feasible and different 

approximations are used. Different alternative models, in which 

the exact calculations are feasible, have been recently proposed 

since 2008. The core difference between these models and the 

classical ones is that the couple (R, Y) is a Markov one in the 

recent models, while it is not in the classical ones. Another 

extension deals with the case in which the observed chain Y is 

not necessarily Markovian conditionally on (X, R) and, in 

particular, the long-memory distributions can be considered. 

The aim of this paper is to show that, in the context of these 

different recent models, it is possible to calculate any moments 

of the posterior marginal distribution, which makes it feasible 

to know these distributions with any desired precision.  

I. INTRODUCTION 

et )...,,(
11 N

N
XXX = , )...,,(

11 N

N
RRR = , and 

)...,,(
11 N

N YYY =  be three sequences of random variables. 

Each 
n

X  and 
n

Y  takes its values from R , while each 
n

R   

takes its values from a finite set { }
K

λλ ...,,
1

=Ω . Let us 

notice that the proposed study is likely to be extended to N
X

1
 

and N
Y

1
 taking their values in qR  and mR , respectively; 

however, we keep R  for the sake of simplicity. The 

sequences NX
1

 and NR
1

 are hidden and the sequence NY
1

 is 

observed. We deal with two classical problems, which are 

the “filtering” problem and the “smoothing” one. The 

formulation of these problems considered in the present 

paper will be, respectively: 

(F) : Computation of )( 1

n

n yrp  and ],[ 1

n

nn yrXE  with 

complexity polynomial in time; 

 (S) : Computation of )( 1

N

n yrp  and ],[ 1

N

nn yrXE  with 

complexity polynomial in time. 

Let us consider a simple classical conditionally Gaussian 

state space model, which consists of considering that NR
1

 is a 

Markov chain and, roughly speaking, ),(
11

NN
YX  is the 
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classical linear system conditionally on N
R

1
. This is 

summarized in the following:  

 

     NR1  is a Markov chain;       (1) 

     nnnnnnn WRGXRFX )()(1 +=+ ;    (2) 

     nnnnnnn ZRJXRHY )()( += ,      (3) 

 

where 
1

X , 
1

W , …, 
N

W  , 
1

Z , …, 
N

Z  are independent 

(conditionally on N
R

1
) Gaussian variables, and )(

11
RF , …, 

)(
NN

RF , )(
11

RH , …, )(
NN

RH , )( 11 RG , …, )( NN RG , 

)( 11 RJ , …, )( NN RJ  are real numbers depending on 

switches )(
n

R , and (2), (3) hold for each 1=n , …, for each 

N . Such models are of interest in numerous situations [2], 

[3], [12], among others. However, it has been well known 

since [13] that the exact filtering and smoothing are not 

feasible with linear - or even polynomial - complexity in time 

in such models, and different approximations must be used. 

Many papers deal with this approximation problem and a 

rich bibliography can be seen in [1]-[3], [12].  

To remedy this impossibility of exact computation different 

models have been recently proposed in [9]. These models, 

whose general idea is to consider the independence of NX
1

 

and N
Y

1
 conditionally on N

R
1

, lead to exact filtering and 

smoothing. Two kinds of extensions of these models have 

then been proposed. The first one, called “Markov marginal 

switching hidden model” (MMSHM [10]), verifies: 

 

   ),(
11

NN YR  is a Markov chain;        (4) 

   1111111 )(),( +++++++ += nnnnnnnn WRGXYRFX ,  (5) 

 

where ),(
nnn

yrF , )(
nn

rG  are real numbers depending on 

),(
nn

yr , and 
1

W , …, 
N

W  are independent centered real 

random variables such that 
n

W  is independent from ),(
11

NN YR  

for each 1=n , …, N . In the second one, proposed in [11], 

the Markov chain ),(
11

NN
YR  is replaced by a “partially” 

Markov Gaussian chain recently introduced in [8], and (5) is 

kept. Both problems (F) and (S) can still be solved using 

these two models without any approximation.  

The aim of this paper is to show that the calculations 

proposed in [10], [11] can be extended to calculations of 

],)[(
1

n

n

k

n
yrXE  and ],)[(

1

N

n

k

n
yrXE , where k  is an 

arbitrary positive integer. In addition, we consider a third 
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model, in which the switching chain NR
1

 has a semi-Markov 

distribution. This gives the moments of the distributions 

),(
1

n

nn
yrxp  and ),(

1

N

nn
yrxp , which means that these 

distributions can be known with any desired precision. 

The oriented dependence graphs of the models (1)-(3), 

(4)-(5), and the “partially” Markov model (12)-(13) - which 

will be specified below - are given in Figure 1. 
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Fig. 1. (a): classical model (1)-(3), (b): short memory triplet 

Markov model (4)-(5) ; (c): long memory triplet partially Markov 

model. 

 

The organization of the paper is the following. The next 

section is devoted to the MMSHM models, while the 

“hidden Markov switching conditionally linear model” 

(HMSCLM) models are dealt with in section three. The 

semi-Markov switching models are addressed in section four, 

and some experiments are provided in section five. The sixth 

section contains some conclusions. 

II. TRIPLET SHORT MEMORY MARKOV MODELS 

A. Filtering in a Short Memory Model 

Let us consider the MMSHM model defined with (4)-(5). 

The computations of )(
1

n

n
yrp  and ],)[( 1

n

n

m

n yrXE  are 

specified in the following Lemma 1 and Proposition 1, 

respectively. 
 

Lemma 1 

 

Let us consider a triplet Markov chain (TMM) 

),,(
111

NNN
YRX  verifying (4)-(5). Then )( 1

11

+
+

n

n
yrp  is given 

from )(
1

n

n
yrp  by 
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  (6) 

 

Proof 

We have ==
+

++
+

+

∑

)(

),,(

)(
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1

11 n

n

r

n

nnn

n

n
yyp

yyrrp
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)(

),,(),()(
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1111

n
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n

+

+++∑
, and 

==∑∑
+

+++
1

),,()(
11111

n nr r

n

nnn

n

n
yyrrpyyp  

∑∑
+

+++
1

),,(),()(
1111

n nr r

nnnnnnn

n

n
yrrypyrrpyrp , which ends the 

proof. 

 

Proposition 1 

 

Let us consider a TMM ),,(
111

NNN
YRX  defined with (4)-(5). 

Let )!)(!/()!( jkjkC k

j
−= . 

For each natural number 0>m , and each 1=k , …, m , the 

conditional expectation ],)[( 1

111

+
++

n

n

k

n
yrXE  is given from the 

conditional expectations ],[
1

n

nn
yrXE , ],)[(

1

2 n

nn
yrXE ,…, 

],)[(
1

n

n

k

n
yrXE  by 

                  

]))[()]([

],)[()],([(

],)[(

111

0

1

11111

1

111
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nn

k
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k

i

n

n

i

n

i

nnn

k

i

n

n

k

n

WErGC
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−
+

−
++−

=

+
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+
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=

      (7) 

 

=+
+ ],)[( 1

11

n

n

i

n
yrXE ∑ +

+
nr

n

nn

n

n

i

n
yrrpyrXE ],(],)[( 1

111
,  (8) 

 

and 

 

=+
+ ),( 1

11

n

nn
yrrp

∑ +

+

nr

nnn

n

n

nnn

n

n

yrrpyr

yrrpyrp

),()(

),()(

11

11

.   (9) 

 

As a consequence, for each fixed natural number 0>m , 

],)[( 1

111

+
++

n

n

k

n
yrXE  is computable with complexity 

polynomial in time. 

 

Proof 

Let 0>m , and let mk ≤≤1 . According to (5) we have  

=+= +++++++
k

nnnnnnn

k

n
WRGXYRFX ))(),(()(

1111111
 

∑
=

−
+

−
++−+++ +

k
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i
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0

111111
))()]([)()],([ . 

Taking the expectation of k

n
X )(

1+  conditional on 

),(),(
1

11

1

11

+
+

+
+ = n

n

n

n
yrYR , and taking into account the fact  that 

the independence of 
1+n

W  from ),(
1

11

+
+

n

n
YR  implies 

])[(],)[(
1

1

111

i

n

n

n

i

n
WEyrWE +

+
++ = , we may write: 

=+
++ ],)[( 1

111

n

n

k

n
yrXE ∑

=

+
++++ +

k

i

n

n

i

n

i

nnn

k

i
yrXEyrFC

0

1

11111
],)[()],([(

]))[()]([
111

ik

n

ik

nn

k

ik
WErGC −

+
−

++−+ , which is (7).  

Besides we have:  
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n
yrrpyrXE ],(],)[( 1

111
, the last equality being due 

to the independence of 
n

X  and ),(
11 ++ nn

YR  conditionally on 

),(
1

n

n
YR  (see the dependence graph (b), Figure 1). Thus (8) 

is verified. Finally, as 
n

R  is independent from 
1+n

Y  

conditionally on ),(
11

n

n
YR + , we have =+

+ ),(
1

11

n

nn
yrrp  

== + ),(
11

n

nn
yrrp =

∑ +

+

nr

n
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n
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+
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n

n
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n
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)()(

)()(

11

11
, 

which is (9) and ends the proof. 

 

B. Smoothing in a Short Memory Model 

Let us consider a TMM ),,( YRX  defined with (4)-(5), and 

let 0>m  be a natural fixed number. The problem in this 

section is to calculate )(
1

N

n
yrp  and ],)[(

1

N

n

k

n
yrXE  for 

each 1=n , …, N . We can state the following results. 

 

Lemma 2 

 

Let us consider a TMM ),,(
111

NNN
YRX  verifying (4)-(5). The 

probabilities )(
1

N

n
yrp , ),(

11

N

nn
yrrp + , and ),(

11

N

nn
yrrp +  are 

computable with complexity linear in time.  

 

Proof 

As ),(
11

NN
YR  is a Markov chain, )(

1

N

n
yrp  and 

),(
11

N

nn
yrrp +  are computable (see [8]); then ),(

11

N

nn
yrrp +  is 

computed with (9). 

 

Proposition 2 

 

Let us consider a TMM ),,( YRX  defined with (4)-(5).  

For each natural number 0>m , and each 1=k , …, m , the 

conditional expectation ],)[(
111

N

n

k

n
yrXE ++  is given from 

],[
1

N

nn
yrXE , ],)[(

1

2 N

nn
yrXE ,…, ],)[(

1

N

n

k

n
yrXE  by 

 

=++ ],)[(
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yrXEyrFC
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+
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with )!)(!/()!( jkjkC k

j
−=  and  

 

=+ ],)[(
11

N

n

i

n
yrXE ∑ +

nr

N

nn

N

n

i

n
yrrpyrXE ],(],)[(

111
, (11) 

 

As a consequence, for each fixed natural number 0>k , 

],)[(
1

N

n

k

n
yrXE  is computable with complexity polynomial 

in time. 

 

Proof 

To show (10), we have by assumption (5) 

=+= +++++++
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nnnnnnn

k
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WRGXYRFX ))(),(()(
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Taking the expectation of both sides conditional on 

),(),(
1111

N

n

N

n
yrYR ++ = , and using the fact that the noise 

1+n
W  

is independent from ),(
11

N

n
YR + , we have (10).  

To show (11), we classically write =+ ),(
11

N

nn
yrxp  

=∑ +
nr

N

nnn
yrrxp ),,(

11
=∑ ++

nr

N

nn

N

nnn
yrrpyrrxp ),(),,(

1111
 

∑ +
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nn
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nn
yrrpyrxp ),(),(

111
, the last equality coming from 

),(),,(
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N

nn

N

nnn
yrxpyrrxp =+ . 

 

III. TRIPLET LONG MEMORY PARTIALLY MARKOV MODELS 

A. Filtering in a Long Memory Model 

Let us consider the following model introduced in [11]. Let  

),,(
111

NNN YRX  be the triplet of random sequences as above. 

The core point of the model is that the distribution of the 

couple ),(
11

NN YR  is the distribution of the “partially Markov 

Gaussian chain” (PMGC) recently introduced in [8]. Let us 

recall that the transitions of the distribution ),(
11

NN
yrp  of a 

“partially” Markov chain ),(
11

NN YR  verify 

),,(),,(
1111111

n

nnn

nn

nn
yryrpyryrp ++++ = , which means that the 

chain ),(
11

NN
YR  is a Markov one with respect to the 

variables NR
1

, but is not necessarily Markovian with respect 

to the variables N
Y

1
 (which is at the origin of the name 

“partially” Markov chain). In addition, it will be assumed 

that ),()(),,(
1111111

n

nnnn

n

nnn
yryprrpyryrp +++++ =  - which 

means that )(),(
111 nn

n

nn
rrpyrrp ++ =  - and it will be assumed 

that ),(
111

n

nn
yryp ++  is the conditional distribution defined by 

a Gaussian distribution )( 1

11

+

+

n

r
yg

n
. Let us focus on the last 

point. Recalling that each 
n

R  takes its values from 

{ }
K

ωω ...,,
1

=Ω , let us consider, for each 
i

ω , a Gaussian 

distribution N

iwg  on NR . Then )( 1

11

+

+

n

r
yg

n
, which is a 

Gaussian distribution on 
1R +n
, is the marginal distribution of 

N

nr
g

1+
. Finally, we see that the distribution of a PMGC 

),(
11

NN YR  is given by a Markov distribution of NR
1

 and K  

Gaussian densities on NR . 
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Le us underline that such a model is quite different from the 

PMC model ),(
11

NN
YR  considered in the previous section. In 

fact, in PMC )(
11

NN ryp  is a Markov distribution, but )(
1

N
rp  

is not necessarily Markovian. In PMGC considered here, 

)(
11

NN ryp  is not necessarily a Markov distribution, when 

)(
1

N
rp  is. Thus in a PMGC considered here we have a 

“Markov switching” model because of the Markov 

distribution )(
1

Nrp . 

Concerning the dependence graphs presented in Figure 1, let 

us highlight that the main difference between the classical 

models of kind (a) and the models of kind (b) or (c) consists 

of the fact that in (a) the arrows go from 
1

x , 
2

x , and 
3

x  to 

1
y , 

2
y , and 

3
y , while in the models (b) and (c) they go from 

1
y , 

2
y , and 

3
y  to 

1
x , 

2
x , and 

3
x . 

Let us also notice that (5) includes different “long memory” 

distributions for )(
11

NN ryp , which are very useful in 

numerous situations [5].  

Finally, the triplet ),,(
111

NNN YRX  is said to be a “hidden 

Markov switching conditionally linear model” (HMSCLM) 

if 

 

),(
11

NN
YR  is a PMGC;           (12) 

1111111
)(),( +++++++ +=

nnnnnnnn
WRGXYRFX  ,    (13) 

 

where ),(
nnn

yrF , )(
nn

rG  are real numbers depending on 

),(
nn

yr , and 
1

W , …, 
N

W  are independent centered real 

random variables such that 
n

W  is independent from 

),(
11

NN YR  for each 1=n , …, N .  

Then in an HMSCLM ),,(
111

NNN YRX  )( 1

11

+
+

n

n
yrp  is given 

from )(
1

n

n
yrp  by [11]: 
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The following result shows the computability of 

],)[( 1

111

+
++

n

n

k

n
yrXE  with complexity linear in time: 

 

Proposition 3 

 

Let us consider a HMSCLM ),,(
111

NNN YRX . Then  for each 

natural number 0>m , and each 1=k , …, m , the 

conditional expectation ],)[( 1

111

+
++

n

n

k

n
yrXE  is given from the 

conditional expectations ],[
1

n

nn
yrXE , ],)[(

1

2 n

nn
yrXE ,…, 

],)[(
1

n

n

k

n
yrXE  by (7), with )!)(!/()!( jkjkC k

j
−= , 

],)[( 1

11

+
+

n

n

i

n
yrXE  given by (8), and  
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The proof is analogous to the proof of the Proposition 1. 

 

B. Smoothing in a Long  Memory Model 

Let us consider a HMSCLM ),,(
111

NNN
YRX  defined with 

(12)-(13), and let 0>k  be a natural fixed number. As in the 

previous section, the problem is to compute )(
1

N

n
yrp  and 

],)[(
1

N

n

k

n
yrXE . According to the results presented in the 

probabilities )(
1

N

n
yrp , ),(

11

N

nn
yrrp + , and ),(

11

N

nn
yrrp +  are 

computable with complexity linear in time. 

We can state: 

 

Proposition 4 

 

Let us consider an  HMSCLM ),,(
111

NNN
YRX .  

 For each natural number 0>m , and each 1=k , …, m , the 

conditional expectation ],)[(
111

N

n

k

n
yrXE ++  is given from 

],[
1

N

nn
yrXE , ],)[(

1

2 N

nn
yrXE ,…, ],)[(

1

N

n

k

n
yrXE  by (10) 

and (11). 

As a consequence, for each 0>k , ],)[(
1

N

n

k

n
yrXE  is 

computable with complexity polynomial in time. 

The proof is similar to the proof of the Proposition 2. 

IV. SEMI-MARKOV SWITCHING MODELS 

We have considered, in the two previous sections, two 

different distributions for the couple ),(
11

NN YR : pairwise 

Markov chains (PMC) and pairwise partially Markov chains 

(PPMC), the latter being considered with two additional 

hypotheses which are the Gaussianity of )(
11

NN
ryp  and the 

markovianity of )(
1

Nrp . In the first case, the distribution of 

N
R

1
 is the marginal distribution of a Markov one, and thus, 

in the general case, it can be Markovian or not. However, in 

both cases the distribution )(
11

NN
yrp  is a Markov one. The 

aim of this section is to mention a more general case, in 

which )(
11

NN yrp  is semi-Markovian. Let us first recall how 

one can introduce an auxiliary finite chain N
U

1
 in such a 

way that ),(
11

NN UR  is a Markov chain and NR
1

 is a semi-

Markov one. Following [9], we will assume that each 
i

U  

takes its values in a finite set { }LA ...,,1,0= , so that 

),(
11

NN
UR  is a finite Markov chain. For ),(),(

nnnn
urUR = , 
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the number 
n

u  denotes the minimal sojourn time of the next 

1+n
R , …., 

N
R  in 

n
r . Therefore, if 0>= ju

n
, we have 

)1,(),(
11

−=++ nnnn
urur , …,  )0,(),(

njnjn
rur =++ . If 0=

n
u , 

the distribution of 
1+n

R  is a given transition 

)0,(
1

=+ nnn
urrp . Finally, the transition =++ ),,(

11 nnnn
ururp  

),,(),(
111 nnnnnnn

urrupurrp +++ of the Markov chain ),(
11

NN UR  

is defined by 
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nnn

nnr

nnn uifrrp

uifr
urrp n

δ
       (16) 
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with 1)( =b
a

δ  for ba = , and 0)( =b
a

δ  otherwise. 

Once the distribution of ),(
11

NN
UR  is defined as a Markov 

chain distribution, we may consider the chain 

),,,(
1111

NNNN
YURX , and we may make  ),(

11

NN
UR  play a 

similar role to that played by N
R

1
 in the previous sections. 

For example, we can consider the following model: 

 

),(
11

NN UR  verifies (16)-(17);         (18) 

∏
=

=
N

n

nn

NNN
rypuryp

1

111
)(),( ;        (19) 

  
1111111

)(),( +++++++ +=
nnnnnnnn

WRGXYRFX  , (20) 

 

where each ),(
nnn

yrF , )(
nn
rG  are a real numbers depending 

on ),(
nn

yr , and 
1

W , …, 
N

W  are independent centered real 

random variables such that 
n

W  is independent from 

),(
11

NN
YR  for each 1=n , …, N . Then we have a system 

with semi-Markov switches, in which the probabilities 

)(
1

n

n
yrp , )(

1

N

n
yrp  and the conditional expectations 

],)[(
1

n

n

k

n
yrXE , ],)[(

1

N

n

k

n
yrXE  are computable in similar 

ways that in the previous sections.  

The oriented dependence graph of the model (18)-(20) is 

presented in Figure 2.  
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Fig. 2. Oriented graph dependence of a semi-Markov switching 

model (18)-(20). 

 

V. PARAMETER ESTIMATION AND EXPERIMENTS 

The common point in the different models presented in the 

previous sections is that the distribution of the triplet 

),,(
111

NNN
YRX  is defined in two stages: first, one defines the 

distribution ),(
11

NN yrp  of ),(
11

NN YR , and then the 

distribution ),(
111

NNN yrxp  is defined by the linear equation 

(20). When ),(
11

NN
YR  is a Markov chain with Gaussian 

)( 11

NN ryp , all the parameters can be estimated by “Iterative 

Conditional Estimation” (ICE) as described in [4]. When 

),(
11

NN
YR  is a partially Markov chain with Gaussian 

)( 11

NN ryp , all the parameters can still be estimated by ICE, 

as described in [8]. Thus we can consider “partially” 

unsupervised processing in both (4)-(5) (MMSHM) and 

(12)-(13) (HMSCLM) models: filtering and smoothing can 

be performed once the parameters of ),(
111

NNN
yrxp  defined 

with (5) – or with (13), which is identical – are known. 

The interest of these different models in real situations has 

to be tested by experiments, some of which are in progress. 

However, as shown by the following simple simulation 

study, they seem to be very powerful and promising.  

Let us consider the following model 

 
NR1  is a Markov chain;       (21) 

     
nnnnnnn

WRGXRFX )()(
1

+= − ;    (22) 

     ∏
=

=
N

n

nn

NNN rypxryp
1

111
)(),( ,      (23) 

 

which is a very simple particular case of the model (4)-(5).  

We simulate data according to the classical model (1)-(3) 

and then they are filtered by two methods. The first one is 

the classical particle filtering based method explained in [1]. 

The second one is the exact method based on the MMSHM 

(21)-(23). The parameters of the hidden Markov chain 

),(
11

NN
YR  needed in the MMSHM used are estimated with an 

“adaptive” ICE and the parameters in (22) are  the same as 

the parameters in (2) used for simulation. Notice that the 

distribution of NR1  is known; however, to make the filtering 

more unsupervised in the second method we use the 

distribution of NR1  which is estimated with ICE.  

The model (1)-(3) considered is given by a two-state 

stationary Markov chain taking its values from { }
21

,λλ=Ω . 

The parameters used to simulate realizations of the triplet 

),,(
1111

NNNN YRXT =  are the following. The initial 

distribution of )(
1

N
rp  is ( )5.0,5.0

1
=p , and the transitions 

are ( ) ρ−== 1
212
rrrp , ( ) ρ=≠

212
rrrp . The remaining 

parameters are 5.0)(
1

−=λ
n

F , 5.0)(
2

=λ
n

F , 2)(
1

−=λ
n

H , 

2)(
2

=λ
n

H , 5.0)(
1

=λ
n

G , 1)(
2

=λ
n

G , 1)(
1

=λ
n

J , and 
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2)(
2

=λ
n

J . We consider 1000=N  for the sample size and 

the results for four different values of ρ  are presented in 

Table 1, where the difference between 
n

x  and the filtered 
n

x̂  

is measured by Nxx
N

n

nn
/])ˆ([

2

1

∑
=

− . One example of 

simulated trajectory and filtered results (last fifty points), 

corresponding to 35.0=ρ , is presented in Figure 3. 

The presented results, and others experiments results we 

performed, show that the semi-unsupervised (21)-(23) based 

method always takes upper hand over the particle filtering 

based one. 
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(c)  
Fig. 3. (a): simulated Nr

1
 (top), Nx

1
 (dotted line), and Ny

1
 (double 

dotted line); (b): N
x

1
 (dotted) and PF based N

x
1

ˆ  (double dotted) (c): 

Nx
1

 (dotted) and MMSHM based Nx
1

ˆ  (double dotted). 

 
ρ  0.10 0.35 0.65 0.90 

PF 0.96 0.99 0.99 1.05 

MMSHM 0.78 0.89 0.89 0.95 

 
Table 1. Errors of filters based on PF and MMSHM measured by  

Nxx
N

n

nn
/])ˆ([ 2

1

∑
=

− . 

VI. CONCLUSION 

We have considered the problem of filtering and 

smoothing in the presence of stochastic switches. Thus there 

is a triplet ),,(
1111

NNNN
YRXT =  of random chains, where N

X
1

 

is hidden continuous, N
R

1
 is hidden discrete, and N

Y
1

 is 

observed continuous. Usually, the distribution )(
1

Ntp  of  NT
1

 

is given by ),(
11

NN
rxp  and ),(

111

NNN rxyp , which makes the 

computations of ][
1

n

n
yXE  and ][

1

N

n
yXE  with complexity 

polynomial in time unfeasible and different approximations 

methods are needed. Here we exploited recent ideas 

according to which )(
1

N
tp  can also be defined by 

),(
11

NN yrp  and ),(
111

NNN ryxp . This key point makes 

filtering and smoothing computations feasible in different 

general models [9]-[11]. The contribution of this paper was 

to extend the computation of the conditional expectations 

][
1

n

n
yXE  and ][

1

N

n
yXE  to the computation of any 

conditional moments ])[(
1

nm

n
yXE  and ])[(

1

Nm

n
yXE , which 

makes the computation of the marginal posterior 

distributions )(
1

n

n
yxp , )(

1

N

n
yxp  feasible with any desired 

precision. In addition, some experiments based on the very 

simple model proposed in [9] show the interest of the new 

models with respect to the classical particle filtering based 

methods. 

As perspectives, we can mention the study extensions of 

the different models to general Bayesian networks [7]. 
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