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Abstract

We consider the task of optimally sensing a two-state Markovian channel with an observation cost

and without any prior information regarding the channel’s transition probabilities. This task is of in-

terest in the field of cognitive radio as a model for opportunistic access to a communication network

by a secondary user. The optimal sensing problem may be cast into the framework of model-based

reinforcement learning in a specific class of Partially Observable Markov Decision Processes (POMDPs).

We propose the Tiling Algorithm, an original method aimed at reaching an optimal tradeoff between

the exploration (or estimation) and exploitation requirements. It is shown that this algorithm achieves

finite horizon regret bounds that are as good as those recently obtained for multi-armed bandits and

finite-state Markov Decision Processes (MDPs).

Index Terms: Cognitive Radio, Opportunistic Channel Access, POMDPs, Regret Bounds, Reinforce-

ment learning, Restless Bandit.

1 Introduction

In recent years, opportunistic spectrum access for cognitive radio has been the focus of significant research

efforts [1, 10, 16]. These researches propose to improve spectral efficiency by making smarter use of the large

∗This publication is partially supported by Orange Labs under contract no289365.
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portion of the frequency bands that remains unused. In Licensed Band Cognitive Radio, the goal is to share

the bands licensed to primary users with non primary users called secondary users or cognitive users. These

secondary users must carefully identify available spectrum resources and communicate avoiding to disturb

the primary network. Opportunistic spectrum access thus has the potential for significantly increasing the

spectral efficiency of wireless networks.

The opportunistic communication model previously considered by [13, 24] consists of N independent

channels with time-varying states in which a single secondary user searches for idle channels temporarily

unused by primary users. These N channels are licensed to a primary network whose users communicate

according to a synchronous slot structure. The state Xt(i) of the i-th channel is modelled by a Markov

chain: at each time slot, the channel is either idle or occupied and the availability of the channel evolves in

a Markovian way (see Fig.1).
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Figure 1: Representation of the primary network

Consider now a secondary user seeking opportunities of transmitting in the free slots of these N channels

without disturbing the primary network. Due to hardware limitations and the energy cost of spectrum

monitoring, the secondary user can not sense all the channels simultaneously [11, 13, 23], his main task is

then to choose which channel to sense at each time aiming to maximize its expected long-term transmission

efficiency. Under this model, channel access may be interpreted as a planning task in a particular class of

Partially Observable Markov Decision Process (POMDP) also called restless bandits [13, 24]. The restless
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bandit model differs from the simpler multi-armed bandit model [3] by the fact that the state of each arm

(here, each channel) evolves in a Markovian way - even the arms that are not played (here, the channels that

are not accessed).

Papadimitriou and Tsitsiklis [17] have established that the planning task in the restless bandit model

is PSPACE-hard, and hence that optimal planning is not practically achievable for a large number N of

channels. Nevertheless, recent publications have focused on near-optimal so-called index strategies [9, 12, 13],

which have a reduced implementation cost. An index strategy consists in splitting the optimization task

into N channel-specific sub-problems, following the idea originally proposed by Whittle [22]. Interestingly,

to determine the Whittle index pertaining to each channel, one has to solve the planning problem in a single

channel model with an additional cost (or penalty) term associated with the action of actually observing the

channel, whether it is found idle or not [12, 13]. Besides, another suboptimal strategy consists in relaxing

the constraint that the number of observable channels at each time slot is fixed and in introducing a cost

that is proportional to the number of observed channels. Under this latter formulation, the planning task

is fully decoupled and the optimal channel access policy is found by determining the optimal policies for

the N single channel models with observation cost already mentioned above. In the following, we focus on

the single channel model with observation cost, which we refer to as the channel sensing model. As we will

see in Section 2, in the channel sensing model, the optimal sensing policies are computable, though already

non-trivial.

It is usually assumed that the statistical information about the primary users’ traffic is fully available to

the secondary user [7, 13, 23, 24]. In practice however, the statistical characteristics of the traffic are not

fixed a priori and must be somehow estimated by the secondary user. The goal of the present work is to

determine the optimal policy in the channel sensing model without any prior information on the channel

parameters, a task which is usually referred to as reinforcement learning [20]. Related works include [15]

which proposed a heuristic rule based on the asymptotic behavior of the parameter estimate. Lai et al [11]

also considered the learning task in the opportunistic channel access model but in the simpler case where

each channel is memoryless. In addition, an asymptotically efficient algorithm has been proposed by [2] for

both the memoryless and the Markovian model. Some similar settings with multiple cognitive users have
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also raised some interest: in particular, an algorithm for a decentralized model in the case where the channels

are memoryless has been recently introduced by [14].

We focus on the scenario where the secondary user first carries out an exploration phase aimed at

estimating the channel parameter and then follows a fixed sensing policy, based on the estimated parameters.

This second phase is called the exploitation phase. The key issue is to reach the proper balance between

exploration and exploitation so as to interrupt the exploration phase as soon as enough statistical evidence

is available to determine the optimal sensing policy. To evaluate the proposed algorithm, we will consider

the so-called finite-horizon regret criterion, which, for any time horizon n, compares the expectations of the

accumulated reward to that gained by the “oracle” agent who knows the channel parameters beforehand

and thus always applies the optimal sensing policy (the reward scheme appropriate in the channel sensing

model will be fully described in Section 2 below).

In the field of reinforcement learning, several approaches have been proposed recently to explicitely

balance exploration and exploitation. [4, 19, 21]. This is in particular the aim of model-based reinforcement

learning. Auer et al. and Tewari and Bartlett [4, 21] provide finite horizon regret bounds that apply for

finite-state MDPs (Markov Decision Processes). The bounds given in [4] are of the form C|X|2 log(n), where

n is the time horizon, |X| is the size of the state-space and C is a constant that does depend on the (unknown)

underlying MDP model. [4] also provides a uniform bound of the form C|X|√n logn, where C this time

refers to a universal constant. Despite its apparent simplicity, the channel sensing model corresponds to a

POMDP that can only be represented as an MDP by rewriting it as a function of an internal state that takes

an infinite number of distinct values [5] (see also Section 2 below). Hence, none of the approaches proposed

so far for model-based reinforcement learning in MDPs appears to be usable for the channel sensing model.

However, we show that it is possible to profit from the specificities of the channel sensing model, namely

that (1) the state is partially observable by means of the sensing action, (2) the model is parametered by a

low-dimensional parameter vector, and (3) the state transitions do not depend on the agent’s actions. The

resulting Tiling Algorithm, described in Section 3 below, achieves C log(n) regret (where C depends on the

actual parameter values) and C(log n)1/3 n2/3 uniform regret for the channel sensing model. To the best of

our knowledge, this is the first algorithm that obtains such strong performance guarantees for the channel

4



sensing model.

The rest of the article is organized as follows. The channel sensing model is formally described in

Section 2. In Section 3, the Tiling Algorithm is presented and its performance in terms of finite-horizon

regret are analyzed. Section 4 provides a detailed account of the use of the approach for the channel sensing

access as well as some numerical experiments.

2 Channel Sensing Model

Let Xt denote the state of the channel which is equal to 0 when the channel is occupied and 1 when it is

idle. Let α (resp.β) be the transition probability from state 0 (resp. 1) to state 1 (see Fig. 2). Additionally,

denote by (ν0, ν1) the stationary probability of the Markov chain (Xt)t.

10

α

β

1− β

1− α

Figure 2: Transition probabilities in the i-th channel.

At each time slot, the secondary user can choose to sense the channel (At = 1) or to not observe it

(At = 0). The observation Yt is equal to the state Xt if the channel has been observed, and is void otherwise.

For discussions of alternative models, including in particular sensing errors, see [6]. The reward gained at

each time slot is defined as follows

r(Xt, At) =































1 if At = 1, Xt = Yt = 1

0 if At = 1, Xt = Yt = 0

λ otherwise

,

which depends on Xt only through Yt. The reward 0 ≤ λ ≤ 1 associated to the action of not observing

(called “subsidy” by Whittle [22]) may also be interpreted as a fixed cost for sensing the channel. Indeed,
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the model would be equivalent upon redefining r(Xt, At) as the difference between a reward for utilizing

the channel (1 if the channel is free and 0 othwerwise) minus a fixed sensing cost equal to λ. The channel

sensing model is a particular POMDP (see [5]) in which the state transition probabilities do not depend on

the actions and where an action enables the secondary user to observe a part of the channel state. Note also

that the model is fully determined by the two unknown transition parameters α and β and by the cost λ.

It is possible to reformulate the channel sensing model as an MDP by introducing the so-called belief state

pt [5] that summarizes all past decisions and observations: pt = P [Xt = 1 |A0:t−1, Y0:t−1]. The belief state

satisfies the following recursion

pt+1 =































α if At = 1, Yt = 0

β if At = 1, Yt = 1

ptβ + (1− pt)α otherwise

. (1)

Equivalently, the belief state pt is completely determined by the pair of variables (Kt, Ut), where Kt is the

lag to the latest channel observation and Ut is the latest observed status of the channel, i.e., the last time

the channel was observed was at time t − Kt and it was then in state Ut ∈ {0, 1}. We refer to the pair

(Kt, Ut) as the internal state of the system. Note that the internal state takes its values in N
∗ × {0, 1}

which is a countably infinite set. Further denote by pk,uα,β the conditional probability that the channel is

free given that (Kt, Ut) = (k, u): for k > 1, pk,uα,β = P[Xt = 1|At−k+1:t−1 = 0, At−k = 1, Yt−k = u] and

p1,uα,β = P [Xt = 1 |At−1 = 1, Yt−1 = u]. Eq. (1) implies that, for k > 1, pk,uα,β = pk−1,u
α,β β + (1 − pk−1,u

α,β )α and

p1,uα,β = βuα1−u. It is then easily shown by induction that these probabilities may be written as follows:

pk,0α,β =
α(1 − (β − α)k)

1− β + α
, (2)

pk,1α,β =
(β − α)k(1− β) + α

1− β + α
. (3)

The belief state (and thus the internal state) is a sufficient statistic in the sense that there exists an

optimal policy depending only on it [7]. Let thus π : N∗ × {0, 1} → A denote a policy which assigns an

action according to the current internal state (Kt, Ut), and let Π be the set of the policies. A policy in Π

6



is characterized by the pair (m0,m1) which defines how long the secondary user decides to wait (i.e. not

observe the channel) before observing the channel again, depending on the outcome of the last observation.

Denote by π(m0,m1) the policy which consists in waiting m0 − 1 (resp. m1 − 1) time slots before observing

the channel again if, last time the channel was sensed, it was occupied (resp. idle). Let π∞ be the policy

which consists in never observing the channel. The average reward received following such a policy can be

exactly computed (see Appendix C for details) depending on the transition probabilities (α, β):

V
π(m0,m1)

α,β =
pm0,0
α,β + λ[(m1 − 1)pm0,0

α,β + (m0 − 1)pm1,1
α,β ]

m0(1− pm1,1
α,β ) +m1p

m0,0
α,β

, for m0, m1 ∈ N
∗, (4)

V π∞

α,β = λ . (5)

For each value of the parameter (α, β), one can identify the optimal policy π∗
α,β such that

V
π∗

α,β

α,β = max
π∈Π

V π
α,β .

Similarly, in both [12] and an extended version of [13], the optimal policies for this model has been studied

as a function of (α, β). It is then possible to determine policy zones that are regions of the parameter space

[0, 1] × [0, 1] that correspond to a single optimal policy. Fig. 3 displays the policy zones for λ = 0.3. Let

Z(m0,m1) (resp. Z∞) denote the region of the parameter space such that π(m0,m1) (resp. π∞) is the optimal

policy. Note that for α > λ and β > λ, the optimal policy π(1,1) consists in always observing the channel

since the expected received reward if the channel is observed (equal to α or β) is larger than the reward λ

received if it is not observed (see Fig. 3). In contrast, when α < λ and β < λ, it is optimal never to observe

the channel. For α < λ < β , there are an infinity of policy zones. Each of them consists in observing the

channel if it has been observed to be free and wait m0− 1 times before observing it otherwise, with different

values of m0 between 2 and infinity.
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Figure 3: The optimal policy regions in the one channel model with λ = 0.3.

3 The Tiling Algorithm

As can be seen in Fig. 3, the exact configuration of the policy zones in the channel sensing model is quite

complex and, in addition, it depends on the value selected for λ. As a matter of fact, we propose here an

algorithm that is relevant in a more abstract framework, which does not rely on the exact shapes of the

policy zones in the channel model. This abstract framework also highlights the features of the problem that

are of some importance for optimal sensing; these are summarized as Assumptions 1 and 3 in Section 3.3

below. It is also conjectured that the Tiling Algorithm could be useful for other models, although we do not

consider this issue in the current paper.

3.1 The Abstract Model

Consider a POMDP defined by (X,A,Y, Qθ , f, r), where X is the discrete state space, Y is the observation

space, A is the finite set of actions, Qθ : X × A × X → [0, 1] is the transition probability, f : X × A → Y is

the observation function, r : X × A → R is the bounded reward function and θ ∈ Θ denotes an unknown

parameter. Given the current hidden state x ∈ X of the system, and a control action a ∈ A, the probability of

the next state x′ ∈ X is given byQθ(x, a;x
′). At each time step t, one chooses an action At = π(A0:t−1, Y0:t−1)
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according to a policy π, and hence observes Yt = f(Xt, At) and receives the reward r(Xt, At). Without loss

of generality, we assume that for all x ∈ X, for all a ∈ A, r(x, a) ≤ 1.

Since we are interested in rewards accumulated over finite but large horizons, we will consider the average

(or long-term) reward criterion defined by

V π
θ = lim

n→∞
1

n
E
π
θ

(

n
∑

t=1

r(Xt, At)

)

, (6)

where π denotes a fixed policy. The notation V π
θ is meant to highlight the fact that the average reward

depends on both the policy π and the actual parameter value θ. For a given parameter value, the optimal

long-term reward is defined as V ∗
θ = supπ V

π
θ and π∗

θ denotes the associated optimal policy. We assume that

the dependence of V π
θ and π∗

θ with respect to θ is fully known. In addition, there exists a particular default

policy π0 under which the parameter θ can be consistently estimated. In the channel sensing problem, this

policy π0 consists in continually observing the channel so as to estimate the transition probabilities by direct

counting.

Given the above, one can partition the parameter space Θ into non-intersecting subsets, Θ =
⋃

i Zi, such

that each policy zone Zi corresponds to a single optimal policy, which we denote by π∗
i . In other words, for

any θ ∈ Zi, V
∗
θ = V

π∗

i

θ . In each policy zone Zi, the corresponding optimal policy π∗
i is assumed to be known

as well as the long-term reward function V
π∗

i

θ for any θ ∈ Θ.

3.2 The Tiling Algorithm (TA)

We denote by θ̂t the parameter estimate obtained after t steps of the exploration policy and by ∆t the

associated confidence region, whose construction will be made more precise below. The principle of the

Tiling Algorithm is to use the policy zones (Zi)i to determine the length of the exploration phase: basically,

the exploration phase will last until the estimated confidence region ∆t fully enters one of the policy zones. It

turns out however that this naive principle does not allow for a sufficient control of the expected duration of

the exploration phase, and, hence, of the algorithm’s regret. In order to deal with parameter values located

close to the borders of policy zones, one needs to introduce additional frontier zones (Fj(n))j that will shrink

at a suitable rate with the time horizon n. In Fig. 4, we represent the tiling of the parameter space for an
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hypothetical example with three distinct optimal policy zones. In this case, there are four frontier zones:

one between each pair of policy zones (F1(n), F2(n) and F3(n)) and another (F4(n)) for the intersection of

all the policy zones.

Z
1

Z
2

Z
3

F
3

F
1

F
2

F
4

Figure 4: Tiling of the parameter space for an example with three distinct optimal policy zones.

Let

Tn = inf{t ≥ 1 : ∃i, ∆t ⊂ Zi or ∃j, ∆t ⊂ Fj(n)} (7)

denote the random instant where the exploration terminates. Note that the frontier zones (Fj(n))j depend on

n. Indeed, the larger n the smaller the frontier zones can be in order to balance the length of the exploration

phase and the loss due to the possible choice of a suboptimal policy. The Tiling Algorithm consists in using

the default exploratory policy π0 until the occurrence of the stopping time Tn, according to (7). From Tn

onward, the algorithm then selects a policy to use during the remaining time as follows: if at the end of the

exploration phase, the confidence region is fully included in a policy zone Zi, then the selected policy is π∗
i ;

otherwise, the confidence region is included in a frontier zone Fj(n) and the selected policy is any optimal

policy π∗
k compatible with the frontier zone Fj(n). An optimal policy π∗

k is said to be compatible with the

frontier zone Fj(n) if the intersection between the policy zone Zk and the frontier zone is non empty. In

the example of Fig. 4, for instance, π∗
1 and π∗

2 are compatible with the frontier zone F1(n), while all the

optimal policies (π∗
i )i=1,2,3 are compatible with the central frontier zone F4(n). If the exploration terminates

in a frontier zone, then one basically does not have enough statistical evidence to favor a particular optimal
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policy and the Tiling Algorithm simply selects one of the optimal policies compatible with the frontier zone.

Hence, the purpose of frontier zones is to guarantee that the exploration phase will stop even for parameter

values for which discriminating between several neighboring optimal policies is challenging. Of course, in

practice, there may be other considerations that suggest to select one compatible policy rather than another

but the general regret bound below simply assumes that any compatible policy is selected at the termination

of the exploration phase.

3.3 Performance Analysis

To evaluate the performance of this algorithm, we will consider the regret, for the prescribed time horizon

n, defined as the difference between the expected cumulated reward obtained under the optimal policy and

the one obtained following the algorithm,

Rn(θ
∗) = E

π∗

θ∗

θ∗

[

n
∑

t=1

r(Xt, At)

]

− E
TA
θ∗

[

n
∑

t=1

r(Xt, At)

]

, (8)

where θ∗ is the unknown parameter value. For any subset B of Θ, denote by δ(B) = sup{‖θ − θ′‖∞, θ, θ′ ∈

B} the diameter of B. To obtain bounds for Rn(θ
∗) that do not depend on θ∗, we will need the following

assumptions.

Assumption 1. The confidence region ∆t is constructed so that there exists constants c1, c
′
1, nmin ∈ R+ such

that, for all θ ∈ Θ, for all n ≥ nmin, for all t ≤ n, Pθ

(

θ ∈ ∆t, δ(∆t) ≤ c1
√
logn√
t

)

≥ 1− c′1 exp{− 1
3 logn} .

Assumption 2. Given a size ǫ(n), one may construct the frontier zones (Fj(n))j such that there exists

constants c2, c
′
2 ∈ R+ for which

• δ(∆t) ≤ c2ǫ(n) implies that there exists either i such that ∆t ⊂ Zi or j such that ∆t ⊂ Fj(n),

• if θ ∈ Fj(n), there exists θ′ ∈ Zi such that ‖θ − θ′‖∞ ≤ c′2ǫ(n), for all policy zones Zi compatible with

Fj(n) (i.e., such that Zi

⋂

Fj(n) 6= ∅).

Assumption 3. For all i, there exists di ∈ R+ such that for all θ, θ′ ∈ Θ, |V π∗

i

θ − V
π∗

i

θ′ | ≤ di‖θ − θ′‖∞ .
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Assumption 1 pertains to the construction of the confidence region and is usually met by standard

applications of the Hoeffding inequality. The constant 1/3 is meant to match the worst-case rate given in

Theorem 1 below. Assumption 2 formalizes the idea that the frontier zones should allow any confidence

region of diameter less than ǫ(n) to be fully included either in an original policy zone or in a frontier zone,

while at the same time ensuring that, locally, the size of the frontier is of order ǫ(n). The applicability of the

Tiling Algorithm crucially depends on the construction of these frontiers. Finally, Assumption 3 is a standard

regularity condition (Lipschitz continuity) which is usually met in most applications. The performance of

the tiling approach is given by the following theorem, which is proved in Appendix A.

Theorem 1. Under Assumptions 1, 2 and 3, and for all n ≥ nmin, the duration of the exploration phase is

bounded, in expectation, by

Eθ∗(Tn) ≤ c
logn

ǫ2(n)
, (9)

and the regret by

Rn(θ
∗) ≤ Eθ∗(Tn) + c′nǫ(n) + c′′n2/3 , (10)

where c = (c1/c2)
2, c′ = c′2 maxi,k(di + dk) and c′′ = c′1. The minimal worst-case regret is obtained when

selecting ǫ(n) of the order of (logn/n)1/3, which yields the bound Rn(θ
∗) ≤ C(logn)1/3 n2/3 for some constant

C.

The duration bound in (9) follows from the observation that exploration is guaranteed to terminate only

when the confidence region defined by Assumption 1 reaches a size which is of the order of the diameter

of the frontier, that is, ǫ(n). The second term in the right-hand side of (10) corresponds to the maximal

regret if the exploration terminates in a frontier zone. The rate (logn)1/3n2/3 is obtained when balancing

these two terms (Eθ∗(Tn) and c′nǫ(n)). A closer examination of the proof in Appendix A shows that if one

can ensure that the exploration indeed terminates in one of the policy regions Zi, then the regret may be

bounded by an expression similar to (10) but without the c′nǫ(n) term. In this case, by modifying slightly

Assumption 1, one can obtain logarithmic regret bounds.

Assumption 4. The confidence region ∆t is constructed so that there exist constants c1, c
′
1, nmin ∈ R+, x > 1

such that, for all θ ∈ Θ, for all n ≥ nmin, for all t ≤ n, Pθ

(

θ ∈ ∆t, δ(∆t) ≤ c1
√
x√
t

)

≥ 1− c′1 exp{−2x} .
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Doing so, however, requires to introduce additional constraints to guarantee that exploration terminates

into a policy region rather than in a frontier. These constraints typically take the form of an assumed

sufficient margin between the actual parameter value θ∗ and the borders of the associated policy zone. This

is formalized in Theorem 2 which is proved in Appendix B.

Theorem 2. Consider θ∗ in a policy zone Z such that there exists κ for which minθ/∈Z ‖θ∗ − θ‖∞ > κ.

Under assumptions 2, 3 and 4, the regret is bounded by Rn(θ
∗) ≤ C(κ) log(n) + C′(κ) for all n ≥ nmin and

for some constants C(κ) and C′(κ) which decrease as κ increases.

4 Application to Channel Sensing

4.1 Applying the Tiling Algorithm

In the following, we apply the Tiling Algorithm to the channel sensing model presented in Section 2. We

previously showed that, for a fixed value of λ, one can tile the parameter space [0, 1] × [0, 1] into distinct

policy zones. In Fig. 3, this tiling is represented for λ = 0.3. The frontier zones may be constructed in many

ways; as explained in Section 3.3, the only requirement is that Assumption 2 be satisfied. Fig. 5 displays a
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Figure 5: The proposed frontier zones for λ = 0.3.

possible contruction of the frontier zones. We introduce:
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• a rectangular frontier zone between Z(1,1) and Z(1,2);

• a rectangular frontier zone between Z(1,1) and Z(2,1);

• a rectangular frontier zone between Z(1,2) and Z∞;

• a square zone centered at the joining point (λ, λ) of those three frontier zones.

The width ǫ(n) of the rectangular frontier zones depends on the time horizon n. As mentioned above, there

is an accumulation of policy zones in the upper left corner (see Fig. 3); to address this issue, we aggregate

the zones Z(2,1), and Z(3,1) on one hand and the non-observation zone Z∞ with the zones Z(m0,1) for m0 ≥ 4

on the other hand. Then, we introduce as a frontier zone between them the union Z(3,1) ∪ Z(4,1) ∪ Z(5,1).

The equation of the two curves delimiting this frontier zone are V
π(2,1)

α,β = V
π(3,1)

α,β and V
π(5,1)

α,β = V
π(6,1)

α,β

(see (4)). More zones could of course be constructed but for practical purposes the proposed tiling is already

satisfactory as the the value function has very limited variations among the zones that are agregated.

Note that this tiling construction only needs to be done once, prior to parameter estimation. The Tiling

Algorithm then consists in estimating the parameter θ = (α, β) until the estimated confidence region fully

enters, either, one of the policy zones, or, one of the frontier zones. The exploration policy, denoted by π0

in Section 3, consists in always sensing the channel. In that way, the parameter is easily estimated by direct

counting: at time t, the estimated parameter is given by

α̂t =
N0,1

t

N0
t

and β̂t =
N1,1

t

N1
t

, (11)

where N0
t (resp. N1

t ) is the number of visits to 0 (resp. 1) until time t and N0,1
t (resp. N1,1

t ) is the number

of visits to 0 (resp. 1) followed by a visit to 1 until time t. Once the exploration phase ended, the secondary

user follows the optimal policy pertaining to the estimated parameter.

In order to verify that this model satisfies the conditions of Theorem 1, we need to make an irreducibility

assumption on the Markov chain.

Assumption 5. There exists η such that (α, β) ∈ Θ = [η, 1− η]2.
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We then define the confidence region as the rectangle

∆t =

[

α̂t ±
√

logn

6N0
t

]

×
[

β̂t ±
√

logn

6N1
t

]

. (12)

Assumption 5 bounds the expected time during which the channel’s state stay fixed. It is related to the

“diameter” assumption introduced in Definition 1 of [4] and is necessary to obtain confidence intervals of

the form given in (12).

To prove that the regret of the Tiling Algorithm in the channel sensing model is bounded, we need to

check that the three assumptions of Theorem 1 are satisfied. It is shown in Appendix D that Assumption 1

holds. We show that the parameter space partitioning scheme discussed at the beginning of Section 4.1

does satisfy Assumption 2. The first part of this assumption requires that any confidence region of diameter

less than c2ǫ(n) is fully included either in a policy zone or in a frontier zone. This is trivially satisfied

for all the proposed rectangular frontier zones taking c2 = 1. The difficulty concerning the frontier zone

Z(3,1) ∪ Z(4,1) ∪ Z(5,1) is that the width of the frontier decreases when α and β approach λ. However, the

central zone addresses this problem; in fact, the two curves defined by V
π(3,1)

α,β = V
π(4,1)

α,β and V
π(5,1)

α,β = V
π(6,1)

α,β

both intersect the vertical line α = λ− ǫ(n) at the left border of the rectangular frontier zones; it is sufficient

to choose c2 such that c2ǫ(n) is equal to the distance between those two intersection points. Moreover, the

second item of Assumption 2, requiring that the distance between any θ in the frontier zone and all the

compatible policy zones is upper-bounded, is obviously satified. Finally, for all optimal policy, the average

reward, defined in (4) and (5), is a Lipschitz continuous function of (α, β) for α, β ∈ [η, 1 − η], and, hence,

the third condition is also satisfied.

4.2 Experimental Results

As suggested by Theorems 1–2, the length of the exploration phase following the Tiling Algorithm depends on

the value of the true parameter (α∗, β∗). In addition, for a fixed value of (α∗, β∗), the length of the exploration

varies from one run to another, depending on the size of the confidence region. To illustrate these effects, we

take λ = 0.3 and we consider two different values of the parameters: (α∗, β∗) = (0.8, 0.05), which is included

in the policy zone Z(1,2) and far from any frontier zone, and, (α∗, β∗) = (0.8, 0.2) which lies in the frontier
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zone between Z(1,1) and Z(1,2) and is close to the border of the frontier zone. The corresponding empirical

distributions of the length of the exploration phase are represented in Fig. 6. Remark that the shape of these

two distributions are quite different and that the empirical mean of the length of the exploration phase is

lower for a parameter which is far from any frontier zone than for a parameter which is close to the border

of a frontier zone.

50 100 150 200

β*=0.05

50 100 150 200

β*=0.2

Figure 6: Distribution of the length of the exploration phase following the Tiling Algorithm for (α∗, β∗) =
(0.8, 0.05) and for (α∗, β∗) = (0.8, 0.2).

In Fig. 7, we compare the cumulated regrets RTA
n of the Tiling Algorithm to the regrets RDL

n (lexpl) of an

algorithm with a deterministic length of exploration phase lexpl. Both algorithms are run with (α∗, β∗) =

(0.8, 0.05). We use two values of lexpl: one lower (lexpl = 20) and the other larger (lexpl = 300) than the

average length of the exploration phase following the tiling algorithm which ranges between 40 and 150

for this value of the parameter (see Fig. 6). The algorithms are run four times independently and every

cumulated regret are represented in Fig. 7. Note that, (α∗, β∗) being in the interior of a policy zone (i.e.

not in a frontier zone), the regret of the Tiling Algorithm is null during the exploitation phase since the

optimal policy for the true parameter is used. Similarly, when the deterministic length lexpl of the exploration

phase is sufficiently large, the estimation of the parameter is quite precise, therefore the regret during the

16



0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

t

R
t

 

 

TA
DL with l

expl
=20

DL with l
expl

=300

Figure 7: Comparison of the cumulated regret of the Tiling Algorithm (shaped markers) and an algorithm
with a deterministic length of exploration phase equal to 20 (dashed line) or equal to 300 (solid line) for
(α∗, β∗) = (0.8, 0.05)

exploitation phase is null. On the other hand, a too large value of lexpl increases the regret during the

exploration phase: we observe in Fig. 7 that the regret RDL
n (lexpl) with lexpl = 300 is larger than RTA

n .

When the deterministic length of the exploration phase is smaller than the average length of the exploration

phase following the tiling algorithm, either the parameter is estimated precisely enough and then RDL
n (lexpl)

is smaller than RTA
n , or, the estimated value is too far away from the actual value and the policy followed

during the exploitation phase is not the optimal one. In the latter case, the regret is not null during the

exploitation phase and RDL
n (lexpl) is noticeably large. This can be observed in Fig. 7: in three of the four

runs, the cumulated regret RD
n L(lexpl) with lexpl = 20 (dashed line) are small, whereas in the remaining run

it sharply and constantly increases.

5 Conclusions

The Tiling Algorithm is a model-based reinforcement learning algorithm applicable to channel sensing. This

algorithm is meant to adequately balance exploration and exploitation by adaptively monitoring the duration

of the exploration phase so as to guarantee a (log n)1/3 n2/3 worst-case regret bounds for a pre-specified
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finite horizon n. Furthermore, it has been shown in Theorem 2 that in large regions of the parameter space,

the regret can be guaranteed to be logarithmic. In numerical experiments, it has been observed that the

Tiling Algorithm is indeed able to adapt the length of the exploration phase, depending on the sequence of

observations.

Although, we have focussed in this paper on the single channel case, the Tiling Algorithm can also be

used to address at least some cases of the original N channel model depicted in Fig. 1. In fact, as mentioned

in Sec. 3, the Tiling Algorithm applies in any situation where the planning problem can be solved explicitly.

Unfortunately, the general multi-channel model does not fall into this category [14]; but, in the particular

case where the channels are stochastically identical (i.e., share common transition parameters), an explicit

near-optimal planning strategy based on the so-called Whittle index has been pointed out by [23]. This

policy only depends on whether the system is positively correlated (α ≤ β) or negatively correlated (β ≤ α).

It is therefore possible to apply the Tiling Algorithm considering the two resulting policy zones separated

by the line α = β and defining the frontier zone as F (n) = {(α, β), |α− β| ≤ ǫ(n)}. As in Sec. 4.1, the three

assumptions of Theorem 1 are easily checked. The Tiling Algorithm thus provides a formal decision rule

which ensures a small regret: the secondary user senses a channel to estimate the parameters folowing (11)

until the confidence region is fully included either in one of the two policy zones or in the frontier zone, then

he applies the policy related to the estimated parameter.

A Appendix: Proof of Theorem 1

The confidence zone is such that, at the end of the exploration phase, Pθ∗

(

θ∗ ∈ ∆t , δ(∆t) ≤ c1
√
logn/

√
t
)

≥

1 − c′1 exp{− 1
3 logn} . At the end of the exploration phase, if the true parameter θ∗ is in the confidence

region, there are two possibilities: either the confidence zone ∆t is included in a policy zone Zi or it is

included in a frontier zone Fj(n). If the confidence zone is in a policy region, the regret is equal to the

sum of the duration of the exploration phase and of the loss corresponding to the case where the confidence

region is violated: Rn(θ
∗) = Eθ∗(Tn) + c′1n exp{− 1

3 logn} . If the confidence zone is in a frontier region

Fj(n), an additional term of the regret is the loss due to the fact that the policy selected at the end of the

exploration phase is not necessarily the optimal one for the true parameter θ∗. Let π∗
i denote the optimal
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policy for θ∗ and π∗
k the selected policy. Note that Zi and Zk are compatible with Fj(n). The loss is

V
π∗

i

θ∗ − V
π∗

k

θ∗ = (V
π∗

i

θ∗ − V
π∗

i

θ ) + (V
π∗

k

θ − V
π∗

k

θ∗ ) + (V
π∗

i

θ − V
π∗

k

θ ) , where θ ∈ Zk

⋂

Fj(n). The last term is negative

since π∗
k is the optimal policy for θ. The two other terms can be bounded using Assumption 3. Then,

|V π∗

i

θ∗ − V
π∗

k

θ∗ | ≤ (di + dk)‖θ∗ − θ‖∞ . According to Assumption 2, one can choose θ such that ‖θ∗ − θ‖∞ <

c′2ǫ(n) for which Rn(θ
∗) ≤ Eθ∗(Tn) + nc′ǫ(n) + c′1n exp{− 1

3 logn} , where c′ = c′2 maxi,k(di + dk) .

The maximal regret is obtained when the confidence region belongs to a frontier zone. According to

Assumptions 1 and 2, if t satisfies c1(logn/t)
1/2 < c2ǫ(n) then t ≥ Tn, with large probability. Therefore,

Eθ∗(Tn) ≤ (c21 logn)/(c2ǫ(n))
2. The regret is then bounded by

max
θ∗

Rn(θ
∗) ≤ c21 logn

c22ǫ
2(n)

+ nc′ǫ(n) + c′1n exp{−1

3
logn} ,

which is minimized for ǫ(n) =
(

2c21 logn

c22c
′ n

)1/3

.

B Appendix: Proof of Theorem 2

The condition minθ/∈Z |θ∗ − θ| > κ means that the distance between θ∗ and any border of the policy zone

Z is larger than κ. Hence, as soon as δ(∆t) ≤ κ, the confidence region ∆t is included in the policy zone

Z. The regret of the Tiling Algorithm is then equal to Rn(θ
∗) = Eθ∗(Tn) + c′1n exp{−2x} . According to

Assumption 4, if t satisfies c1(x/t)
1/2 < κ then t ≥ Tn with large probability. Therefore, Eθ∗(Tn) ≤ c1x/κ

2

and the regret is bounded by Rn(θ
∗) = c1x

κ2 + c′1n exp{−2x} , which is minimized for x =
log(2c′1nκ

2/c21)
2 . For

this value of x, we have Rn(θ
∗) = c21

2κ2 (log(n) + log(2c′1κ
2/c21) + 1) .

C Appendix: Average Reward for the Channel Sensing Model

Let P π and µπ denote, respectively, the transition probability matrix and the stationary probability of the

internal state {(Kt, Ut)}t Markov chain, when following a policy π. The average reward of a policy π, defined
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in (6), can be written as a function of the stationary probability µπ (see [18]):

V π
α,β =

∑

k∈N∗

∑

u∈{0,1}
µπ(k, u)

[

pk,uα,β1{π(k,u)=1} + λ1{π(k,u)=0}
]

. (13)

Therefore, to compute the average reward of the policies introduced in Section 2, it is sufficient to determine

the stationary probability of the internal state markov chain under those policies.

Policy π(m0,m1) with m0 , m1 ∈ N
∗. Under the policy π(m0,m1), the internal state (Kt, Ut) can only

take one of the following value: (k, 0) with 1 ≤ k ≤ m0 or (k′, 1) with 1 ≤ k′ ≤ m1. It is then easy to

compute the transition probabilities P π(m0,m1) between those states:

• for all 1 ≤ k ≤ m0 − 1, P π(m0,m1)((k, 0), (k + 1, 0)) = 1,

• for all 1 ≤ k ≤ m1 − 1, P π(m0,m1)((k, 1), (k + 1, 1)) = 1,

• P π(m0,m1)((m0, 0), (1, 1)) = pm0,0
α,β = 1− P π(m0,m1)((m0, 0), (1, 0)),

• P π(m0,m1)((m1, 1), (1, 1)) = pm1,1
α,β = 1− P π(m0,m1)((m1, 1), (1, 0)).

Solving the equation µπ(m0,m1)P π(m0,m1) = µπ(m0,m1) , we determine the stationary probability:

µπ(m0,m1)(k, 0) =
1− pm1,1

α,β

m1p
m0,0
α,β +m0(1− pm1,1

α,β )
for all 1 ≤ k ≤ m0 ,

µπ(m0,m1)(k, 1) =
pm0,0
α,β

m1p
m0,0
α,β +m0(1− pm1,1

α,β )
for all 1 ≤ k ≤ m1 .

Finally, using (13), we obtain the average reward:

V
π(m0,m1)

α,β =
pm0,0
α,β + λ[(m1 − 1)pm0,0

α,β + (m0 − 1)pm1,1
α,β ]

m0(1− pm1,1
α,β ) +m1p

m0,0
α,β

, for m0, m1 ∈ N
∗.

Policy π∞. If m0 or m1 is equal to infinity, the secondary user never observes the channel after a

finite number of time steps. Then, the average reward is V π∞ = λ.
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D Appendix: Confidence Interval for Markov Chains

In this appendix, we prove that the confidence region ∆t defined in equation (12) satisfies Assumption 1.

First, remark that the event {δ(∆t) ≤ c1
√
logn√
t

} = {N0
t ≥ cηt2 , N1

t ≥ cηt2 } for c1 = 2/
√
3cη. Hence, using

the Hoeffding inequality, we have P(α,β)

(

(α, β) /∈ ∆t, δ(∆t) ≤ c1
√
logn√
t

)

≤ 4 exp{− 1
3 logn} . Moreover, we

need to bound the probability P

(

δ(∆t) > c1
√
logn√
t

)

. We apply Theorem 2 of [8] to bound P
(

N1
t < cηt2

)

. To

do so, remark that infα,β ν1 = η and that the minoration constant 1 − |β − α| is lower-bounded by 2η. We

then have

P

(

N1
t < c

ηt

2

)

≤ P
(

N1
t − ν1t < −(1− c/2)ν1t

)

≤ exp{−4η2(t2η(1− c/2)− 1/η)2

2t
} ≤ exp{−1

3
log(n)} ,

where the last inequality holds for t ≥ tn
def
= (8/3 log(n)η−4(2 − c)−2)1/3. Similarly, we can show that, for

t ≥ tn, P(N
0
t < cηt2 ) ≤ exp{− 1

3 log(n)} . Hence, for all t ≥ tn, P
(

δ(∆t) > c1
√
log n√
t

)

≤ 2 exp{− 1
3 log(n)} . In

addition, for all t < tn, c1

√

logn
t > c1

√

logn
tn

≥ 1 , for n ≥ exp{3× 2−3/2c3/2(2− c)−1η−1/2} def
= nmin. Then,

for t < tn and n ≥ nmin, the event {δ(∆t) ≤ c1
√
logn√
t

} is always verified. To conclude, we have

P(α,β)

(

(α, β) ∈ ∆t, δ(∆t) ≤ c1

√
logn√
t

)

≥ 1− P(α,β)

(

δ(∆t) > c1

√
logn√
t

)

− P(α,β)

(

(α, β) /∈ ∆t, δ(∆t) ≤ c1

√
logn√
t

)

≥ 1− 6 exp{−1

3
log(n)} .
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