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Abstract

We consider the task of opportunistic channel access in a primary system composed of independent

Gilbert-Elliot channels where the secondary (or opportunistic) user does not dispose of a priori informa-

tion regarding the statistical characteristics of the system. It is shown that this problem may be cast

into the framework of model-based learning in a specific class of Partially Observed Markov Decision

Processes (POMDPs) for which we introduce an algorithm aimed at striking an optimal tradeoff between

the exploration (or estimation) and exploitation requirements. We provide finite horizon regret bounds

for this algorithm as well as a numerical evaluation of its performance in the single channel model as well

as in the case of stochastically identical channels.

1 Introduction

In recent years, opportunistic spectrum access for cognitive radio has been the focus of significant research

efforts [1, 5, 10]. These works propose to improve spectral efficiency by making smarter use of the large

portion of the frequency bands that remains unused. In Licensed Band Cognitive Radio, the goal is to share

the bands licensed to primary users with non primary users called secondary users or cognitive users. These

secondary users must carefully identify available spectrum resources and communicate avoiding to disturb

∗This work is partially supported by Orange Labs under contract no289365.
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the primary network. Opportunistic spectrum access thus has the potential for significantly increasing the

spectral efficiency of wireless networks.

In this paper, we focus on the opportunistic communication model previously considered by [8, 17], which

consists of N channels in which a single secondary user searches for idle channels temporarily unused by

primary users. The N channels are modeled as Gilbert-Elliot channels: at each time slot, a channel is either

idle or occupied and the availability of the channel evolves in a Markovian way. Assuming that the secondary

user can only sense M ≪ N channels simultaneously [6, 8, 16], his main task is to choose which channel

to sense at each time aiming to maximise its expected long-term transmission efficiency. Under this model,

channel allocation may be interpreted as a planning task in a particular class of Partially Observed Markov

Decision Process (POMDP) also called restless bandits [8, 17].

In the works of [8, 16, 17], it is assumed that the statistical information about the primary users’ traffic

is fully available to the secondary user. In practice however, the statistical characteristics of the traffic are

not fixed a priori and must be somehow estimated by the secondary user. As the secondary user selects

channels to sense, we are not faced with a simple parameter estimation problem but with a task which is

closer to reinforcement learning [13]. We consider scenarios in which the secondary user first carries out

an exploration phase in which the statistical information regarding the model is gathered and then follows

by the exploitation phase, where the optimal sensing policy, based on the estimated parameters, is applied.

The key issue is to reach the proper balance between exploration and exploitation. This issue has been

considered before by [9] who proposed an asymptotic rule to set the length of the exploration phase but

without a precise evaluation of the performance of this approach. Lai et al [6] also considered this problem

in the multiple secondary users case but in a simpler model where each channel is modeled as an independent

and identically distributed source. In the field of reinforcement learning, this class of problems is known

as model-based reinforcement learning for which several approaches have been proposed recently [2, 12, 14].

However, none of these directly applies to the channel allocation model in which the state of the channels is

only partially observed.

Our contribution consists in proposing a strategy, termed Tiling Algorithm, for adaptively setting the

length of the exploration phase. Under this strategy, the length of the exploration phase is not fixed
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beforehand and the exploration phase is terminated as soon as we have accumulated enough statistical

evidence to determine the optimal sensing policy. The distinctive feature of this approach is that it comes

with strong performance guarantees in the form of finite-horizon regret bounds. For the sake of clarity, this

strategy is described in the general abstract framework of parametric POMDPs. Remark that the channel

access model corresponds to a specific example of POMDP parameterized by the transition probabilities of

the availability of each channel. As the approach relies on the restrictive assumption that for each possible

parameter value the solution of the planning problem be fully known, it is not applicable to POMDPs at

large but is well suited to the case of the channel allocation model. We provide a detailed account of the

use of the approach for two simple instances of the opportunistic channel access model, including the case

of stochastically identical channels considered by [16].

The article is organized as follows. The channel allocation model is formally described in Section 2. In

Section 3, the tiling algorithm is presented and its performance in terms of finite-horizon regret bounds are

obtained. The application to opportunistic channel access is detailed in Section 4, both in the one channel

model and in the case of stochastically identical channels.

2 Channel Access Model

Consider a network consisting of N independent channels with time-varying state, with bandwidths B(i),

for i = 1, . . . N . These N channels are licensed to a primary network whose users communicate according to

a synchronous slot structure. At each time slot, channels are either free or occupied (see Fig. 1). Consider

now a secondary user seeking opportunities of transmitting in the free slots of these N channels without

disturbing the primary network. With limited sensing, a secondary user can only access a subset of M ≪ N

channels. The aim of the secondary user is to leverage this partial observation of the channels so as to

maximize its long-term opportunities of transmission.

Introduce the state vector which describes the network at time t, [Xt(1), . . . , Xt(N)]′, where Xt(i) is

equal to 0 when the channel i is occupied and 1 when the channel is idle. The states Xt(i) and Xt(j) of

different channels i 6= j are assumed to be independent. Let α(i) (resp.β(i)) be the transition probability

from state 0 (resp. 1) to state 1 in channel i (see Fig. 2). Additionally, denote by (ν0(i), ν1(i)) the stationary
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Figure 1: Representation of the primary network

10 βi
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Figure 2: Transition probabilities in the i-th channel.

probability of the Markov chain (Xt(i))t. The secondary user selects a set of M channels to sense. This

choice corresponds to an action At = [At(1), . . . , At(N)]′, where At(i) = 1 if the i-th channel is sensed

and At(i) = 0 otherwise. Since only M channels can be sensed,
∑N

i=1 At(i) = M . The observation is an

N -dimensional vector [Yt(1), . . . , Yt(N)]′ such that Yt(i) = Xt(i) for the M selected channels and Yt(i) is

an arbitrary value not in {0, 1} for the other channels. The reward gained at each time slot is equal to

the aggregated bandwidth available. In addition, a reward equal to 0 ≤ λ ≤ mini B(i) is received for each

unobserved channel. At each time t, the received reward is
∑N

i=1 r(Xt(i), At(i)) where

r(Xt(i), At(i)) =































B(i) if At(i) = 1, Xt(i) = Yt(i) = 1

0 if At(i) = 1, Xt(i) = Yt(i) = 0

λ otherwise

,

which depends on Xt(i) only through Yt(i). The gain λ associated to the action of not observing may also
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be interpreted as a penalty for sensing occupied channels. Indeed, this model is equivalent to the one where

a positive reward B(i) − λ is received for available sensed channels, a penalty −λ is received for occupied

sensed channels and no reward are received for non-sensed channels.

Note that this model is a particular POMDP in which the state transition probabilities do not depend

on the actions. Moreover, the independence between the channels may be exploited to construct a N -

dimensional sufficient internal state which summarizes all past decisions and observations. The internal

state pt is defined as follows: for all i ∈ {1, . . .N}, pt(i) = P [Xt(i) = 1 |A0:t−1(i), Y0:t−1(i)]. This internal

state enables the secondary user to select the channels to sense. The internal state recursion is

pt+1(i) =































α(i) if At(i) = 1, Yt(i) = 0

β(i) if At(i) = 1, Yt(i) = 1

pt(i)β(i) + (1 − pt(i))α(i) otherwise

. (1)

Moreover, remark that at each time t, the internal state pt is completely defined by the pair (k, y) where

y = [y(1), . . . , y(N)]′ denotes the last observed state for each channel and k = [k(1), . . . , k(N)]′ is the duration

during which the corresponding channel has not been observed. Denote by p
k(i),y(i)
α(i),β(i) the probability that a

channel is free given that it has not been observed for k(i) time slots and that the last observation was y(i).

That is to say, for k(i) > 1, p
k(i),y(i)
α(i),β(i) = P[Xt(i) = 1|At−k(i)+1:t−1(i) = 0, At−k(i)(i) = 1, Yt−k(i)(i) = y(i)]

and p
1,y(i)
α(i),β(i) = P [Xt(i) = 1 |At−1(i) = 1, Yt−1(i) = y(i)] . Using equation (1), these probabilities may be

written as follows:

p
k(i),0
α(i),β(i) =

α(i)(1 − (β(i) − α(i))k(i))

1 − β(i) + α(i)
, (2)

p
k(i),1
α(i),β(i) =

(β(i) − α(i))k(i)(1 − β(i) + α(i))

1 − β(i) + α(i)
. (3)

The channel allocation model may also be interpreted as an instance of the restless multi-armed bandit

framework introduced by [15]. Papadimitriou and Tsitsiklis [11] have established that the planning task in

the restless bandit model is PSPACE-hard, and hence that optimal planning is not practically achievable

when the number N of channels becomes important. Nevertheless, recent works have focused on near-optimal
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so-called index strategies [7, 4, 8], which have a reduced implementation cost. An index strategy consists in

separating the optimization task into N channel-specific sub-problems, following the idea originally proposed

by Whittle [15]. Interestingly, to determine the Whittle index pertaining to each channel, one has to solve

the planning problem in the single channel model for arbitrary values of λ. Using this interpretation, explicit

expressions of the Whittle’s indexes as a function of the channel transition probabilities {α(i), β(i)}i=1,...,N

have been provided by [7, 8].

3 The Tiling Algorithm

Here, we focus on determining the sensing policy when the secondary user does not have any statistical

information about the primary users’ traffic. A common approach is to learn the transition probabilities

{α(i), β(i)}i=1,...,N in a first phase and then to act optimally according to the estimated model. If the

learning phase is sufficiently long, the estimates of the probabilities can be quite precise and there is a higher

chance that the policy followed during the exploitation phase is indeed the optimal policy. On the other

hand, blindly sensing channels to learn the model parameters does not necessarily coincide with the optimal

policy and thus has a cost in terms of performance. The question is hence: how long should the secondary

user learn the model (explore) before applying an exploitation policy such as Whittle’s policy ?

This problem is the well known dilemma between exploration and exploitation [13]. Here we propose an

algorithm to balance exploration and exploitation by adaptively monitoring the duration of the exploration

phase. We present this algorithm in a more abstract framework for generality. We assume that the optimal

policy is a known function of a low dimensional parameter. This condition can be restrictive but it is verified

in simple cases such as finite state space MDPs or in particular cases of POMDPs like the channel access

model (see also Section 4).

3.1 The Parametric POMDP Model

Consider a POMDP defined by (X, A, Y, Qθ , f, r), where X is the discrete state space, Y is the observation

space, A is the finite set of actions, Qθ : X × A × X → [0, 1] is the transition probability, f : X × A → Y is

the observation function, r : X × A → R is the bounded reward function and θ ∈ Θ denotes an unknown
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parameter. Given the current hidden state x ∈ X of the system, and a control action a ∈ A, the probability of

the next state x′ ∈ X is given by Qθ(x, a; x′). At each time step t, one chooses an action At = π(A0:t−1, Y0:t−1)

according to a policy π, and hence observes Yt = f(Xt, At) and receives the reward r(Xt, At). Without loss

of generality, we assume that for all x ∈ X, for all a ∈ A, r(x, a) ≤ 1.

Since we are interested in rewards accumulated over finite but large horizons, we will consider the average

(or long-term) reward criterion defined by

V π
θ = lim

n→∞

1

n
E

π
θ

(

n
∑

t=1

r(Xt, At)

)

,

where π denotes a fixed policy. The notation V π
θ is meant to highlight the fact that the average reward

depends on both the policy π and the actual parameter value θ. For a given parameter value, the optimal

long-term reward is defined as V ∗
θ = supπ V π

θ and π∗
θ denotes the associated optimal policy. We assume that

the dependence of V π
θ and π∗

θ with respect to θ is fully known. In addition, there exists a particular default

policy π0 under which the parameter θ can be consistently estimated.

Given the above, one can partition the parameter space Θ into non-intersecting subsets, Θ =
⋃

i Zi, such

that each policy zone Zi corresponds to a single optimal policy, which we denote by π∗
i . In other words, for

any θ ∈ Zi, V ∗
θ = V

π∗

i

θ . In each policy zone Zi, the corresponding optimal policy π∗
i is assumed to be known

as well as the long-term reward function V
π∗

i

θ for any θ ∈ Θ.

3.2 The Tiling Algorithm (TA)

We denote by θ̂t the parameter estimate obtained after t steps of the exploration policy and by ∆t the

associated confidence region, whose construction will be made more precise below. The principle of the

tiling algorithm is to use the policy zones (Zi)i to determine the length of the exploration phase: basically,

the exploration phase will last until the estimated confidence region ∆t fully enters one of the policy zones. It

turns out however that this naive principle does not allow for a sufficient control of the expected duration of

the exploration phase, and, hence, of the algorithm’s regret. In order to deal with parameter values located

close to the borders of policy zones, one needs to introduce additional frontier zones (Fj(n))j that will shrink
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at a suitable rate with the time horizon n. Let

Tn = inf{t ≥ 1 : ∃i, ∆t ⊂ Zi or ∃j, ∆t ⊂ Fj(n)} (4)

denote the random instant where the exploration terminates. Note that the frontier zones (Fj(n))j depends

on n. Indeed, the larger n the smaller the frontier zones can be in order to balance the length of the

exploration phase and the loss due to the possible choice of a suboptimal policy.

Z
1

Z
2

Z
3

F
3

F
1

F
2

F
4

Figure 3: Tiling of the parameter space for an example with three distinct optimal policy zones.

In Figure 3, we represent the tiling of the parameter space for an hypothetical example with three distinct

optimal policy zones. In this case, there are four frontier zones: one between each pair of policy zones (F1(n),

F2(n) and F3(n)) and another (F4(n)) for the intersection of all the policy zones. In the following, we shall

assume that there exists only finitely many distinct frontier and policy zones.

The tiling algorithm consists in using the default exploratory policy π0 until the occurrence of the stopping

time Tn, according to (4). From Tn onward, the algorithm then selects a policy to use during the remaining

time as follows: if at the end of the exploration phase, the confidence region is fully included in a policy

zone Zi, then the selected policy is π∗
i ; otherwise, the confidence region is included in a frontier zone Fj(n)

and the selected policy is any optimal policy π∗
k compatible with the frontier zone Fj(n).An optimal policy

π∗
k is said to be compatible with the frontier zone Fj(n) if the intersection between the policy zone Zk and

the frontier zone is non empty. In the example of Figure 3, for instance, π∗
1 and π∗

2 are compatible with the
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frontier zone F1(n), while all the optimal policies (π∗
i )i=1,2,3 are compatible with the central frontier zone

F4(n). If the exploration terminates in a frontier zone, then one basically does not have enough statistical

evidence to favor a particular optimal policy and the tiling algorithm simply selects one of the optimal

policies compatible with the frontier zone. Hence, the purpose of frontier zones is to guarantee that the

exploration phase will stop even for parameter values for which discriminating between several neighboring

optimal policies is challenging. Of course, in practice, there may be other considerations that suggest to

select one compatible policy rather than another but the general regret bound below simply assumes that

any compatible policy is selected at the termination of the exploration phase.

3.3 Performance Analysis

To evaluate the performance of this algorithm, we will consider the regret, for the prescribed time horizon

n, defined as the difference between the expected cumulated reward obtained under the optimal policy and

the one obtained following the algorithm,

Rn(θ∗) = E
π∗

θ∗

θ∗

[

n
∑

t=1

r(Xt, At)

]

− E
TA
θ∗

[

n
∑

t=1

r(Xt, At)

]

, (5)

where θ∗ denotes the unknown parameter value. To obtain bounds for Rn(θ∗) that do not depend on θ∗, we

will need the following assumptions.

Assumption 1. The confidence region ∆t is constructed so that there exists constants c1, c
′
1, nmin ∈ R+ such

that, for all θ ∈ Θ, for all n ≥ nmin, for all t ≤ n, Pθ

(

θ ∈ ∆t, δ(∆t) ≤ c1

√
log n√

t

)

≥ 1 − c′1 exp{− 1
3 log n} ,

where δ(∆t) = sup{‖θ − θ′‖∞, θ, θ′ ∈ ∆t} is the diameter of the confidence region.

Assumption 2. Given a size ǫ(n), one may construct the frontier zones (Fj(n))j such that there exists

constants c2, c
′
2 ∈ R+ for which

• δ(∆t) ≤ c2ǫ(n) implies that there exists either i such that ∆t ⊂ Zi or j such that ∆t ⊂ Fj(n),

• if θ ∈ Fj(n), there exists θ′ ∈ Zi such that ‖θ − θ′‖∞ ≤ c′2ǫ(n), for all policy zones Zi compatible with

Fj(n) (i.e., such that Zi

⋂

Fj(n) 6= ∅).
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Assumption 3. For all i, there exists di ∈ R+ such that for all θ, θ′ ∈ Θ, |V π∗

i

θ − V
π∗

i

θ′ | ≤ di‖θ − θ′‖∞ .

Assumption 1 pertains to the construction of the confidence region and may usually be met by standard

applications of the Hoeffding inequality. The constant 1/3 is meant to match the worst-case rate given in

Theorem 1 below. Assumption 2 formalizes the idea that the frontier zones should allow any confidence

region of diameter less than ǫ(n) to be fully included either in an original policy zone or in a frontier zone,

while at the same time ensuring that, locally, the size of the frontier is of order ǫ(n). The applicability of the

tiling algorithm crucially depends on the construction of these frontiers. Finally, Assumption 3 is a standard

regularity condition (Lipschitz continuity) which is usually met in most applications. The performance of

the tiling approach is given by the following theorem, which is proved in Appendix A.

Theorem 1. Under assumptions 1, 2 and 3, and for all n ≥ nmin, the duration of the exploration phase is

bounded, in expectation, by

Eθ∗(Tn) ≤ c
log n

ǫ2(n)
, (6)

and the regret by

Rn(θ∗) ≤ Eθ∗(Tn) + c′nǫ(n) + c′′n exp{−1

3
log n} , (7)

where c = (c1/c2)
2, c′ = c′2 maxi,k(di + dk) and c′′ = c′1. The minimal worst-case regret is obtained when

selecting ǫ(n) of the order of (log n/n)1/3, which yields the bound Rn(θ∗) ≤ C(log n)1/3 n2/3 for some constant

C.

The duration bound in (6) follows from the observation that exploration is guaranteed to terminate only

when the confidence region defined by Assumption 1 reaches a size which is of the order of the diameter of

the frontier, that is, ǫ(n). The second term in the right-hand side of (7) corresponds to the maximal regret if

the exploration terminates in a frontier zone. The rate (log n)1/3n2/3 is obtained when balancing these two

terms (Eθ∗(Tn) and c′nǫ(n)). A closer examination of the proof in Appendix A shows that if one can ensure

that the exploration indeed terminates in one of the policy regions Zi, then the regret may be bounded by

an expression similar to (7) but without the c′nǫ(n) term. In this case, by using a constant strictly larger

than 1—instead of 1/3—in Assumption 1, one can obtain logarithmic regret bounds. To do so, one however

need to introduce additional constraints to guarantee that exploration terminates into a policy region rather
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than in a frontier. These constraints typically take the form of an assumed sufficient margin between the

actual parameter value θ∗ and the borders of the associated policy zone. This is formalized in Theorem 2

which is proved in Appendix B. First, introduce an alternative of Assumption 1.

Assumption 4. The confidence region ∆t is constructed so that there exists constants c1, c
′
1, nmin ∈ R+,

x > 1 such that, for all θ ∈ Θ, for all n ≥ nmin, for all t ≤ n, Pθ

(

θ ∈ ∆t, δ(∆t) ≤ c1

√
x√
t

)

≥ 1−c′1 exp{−2x} .

Theorem 2. Consider θ∗ in a policy zone Z such that there exists κ for which minθ/∈Z ‖θ∗ − θ‖∞ > κ.

Under assumption 4, the regret is bounded by Rn(θ∗) ≤ C(κ) log(n) + C′(κ) for all n ≥ nmin and for some

constants C(κ) and C′(κ) which decrease with κ.

4 Application to Channel Access

In the following, we consider two specific instances of the opportunistic channel access model introduced in

Section 2. First, we study the single channel case which is an interesting illustration of the tiling algorithm.

Indeed, in this model, there are a lot of different policy zones and both the optimal policy and the long-term

reward can be explicitly computed in each of them. In addition, the one channel model plays a crucial role

in determining the Whittle index policy. Next, we apply the tiling algorithm to a N channel model with

stochastically identical channels.

4.1 One Channel Model

Consider a single channel with bandwidth B = 1. At each time, the secondary user can choose to sense the

channel hoping to receive a reward equal to 1 if the channel is idle and taking the risk of receiving no reward

if the channel is occupied. He can also decide to not observe the channel and then to receive a reward equal

to 0 ≤ λ ≤ 1.

4.1.1 Optimal policies, long-term rewards and policy zones

Studying the form of the optimal policy as a function of θ = (α, β) brings to light several optimal policy

zones. In each zone, the optimal policy is different and is characterized by the pair (k0, k1) which defines
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how long the secondary user needs to wait (i.e. not observe the channel) before observing the channel again

depending on the outcome of the last observation. Denote by π∗
(k0,k1)

the policy which consists in waiting

k0−1 (resp. k1−1) time slots before observing the channel again if, last time the channel was sensed, it was

occupied (resp. idle), and by Z(k0,k1) the corresponding policy zone. Let π∗
∞ be the policy which consists

in never observing the channel; this policy is optimal when α and β are such that the probability that the

channel is idle is always lower than λ. We represent in Figure 4 the policy zones.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 4: The optimal policy regions in the one channel model with λ = 0.3.

The long-term reward of each policy can be exactly computed:

V
π∗

(1,1)

α,β =
α

1 − β + α
,

V
π∗

(1,2)

α,β = α
1 + λ

1 + α + β(α − β)
,

V
π∗

(k0,1)

α,β =
(k0 − 1)(1 − β)λ + 1 pk0,0

α,β

k0(1 − β) + pk0,0
α,β

, for k0 ≥ 2,

V
π∗

∞

α,β = λ .
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4.1.2 Applying the tiling algorithm

Applying the tiling algorithm to this model is not straightforward as there are an infinity of policy zones.

We introduce border zones between Z(1,1), Z(2,1), Z(1,2), Z∞ as shown in Figure 4. Moreover, to address

the problem of the infinity of zones, we propose to aggregate the policy zones when α < λ and β > λ. For

example, we aggregate all the zones Z(k0,1) with 2 ≤ k0 ≤ l and the non-observation zone Z∞ with the zones

Z(k0,1) such that k0 ≥ l′, where l′ ≤ l are variables to be tuned according to the time horizon n. Thus,

Theorem 1 still applies.

Recall that the tiling algorithm consists in learning the parameter (α, β) until the estimated confidence

region fully enters either one of the policy zones or one of the frontier zones. The exploration policy, denoted

by π0 in Section 3, consists in always sensing the channel. At time t, the estimated parameter is given by

α̂t =
N0,1

t

N0
t

and β̂t =
N1,1

t

N1
t

, (8)

where N0
t (resp. N1

t ) is the number of visits to 0 (resp. 1) until time t and N0,1
t (resp. N1,1

t ) is the number

of visits to 0 (resp. 1) followed by a visit to 1 until time t.

In order to verify that this model satisfies the conditions of Theorem 1, we need to make an irreducibility

assumption on the Markov chain.

Assumption 5. There exists η such that (α, β) ∈ Θ = [η, 1 − η]2.

This condition ensures that, during the time horizon n, the Markov chain visits the two states sufficiently

often to estimate the parameter (α, β). We define the confidence region as the rectangle

∆t =

[

α̂t ±
√

log n

6N0
t

]

×
[

β̂t ±
√

log n

6N1
t

]

. (9)

To prove that the regret of the tiling algorithm in a single channel model is bounded, we need to verify

the three assumptions of Theorem 1. First, it is shown in appendix C that Assumption 1 holds. Secondly,

except when α < λ and β > λ, Assumption 2 is obviously satisfied, since the confidence region and the policy

and frontier zones are all rectangles (see Fig. 4). Let ǫ(n) be half of the smallest width of the frontier zones.
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Additionally, when α < λ and β > λ, if the center frontier zone is large enough, the aggregation of the zones

can be done such that the second condition holds. Finally, for all optimal policy, the long-term reward is a

Lipschitz continuous function of (α, β) for α, β ∈ [η, 1 − η], so the third condition is also satisfied.

4.1.3 Experimental results

As suggested by Theorems 1– 2, the length of the exploration phase following the tiling algorithm depends

on the value of the true parameter (α∗, β∗). In addition, for a fixed value of (α∗, β∗), the length of the

exploration varies from one run to another, depending on the size of the confidence region. To illustrate

these effects, we consider two different value of the parameters: (α∗, β∗) = (0.8, 0.05) which is included in

the policy zone Z(1,2) and far from any frontier zone, and, (α∗, β∗) = (0.8, 0.2) which lies in the frontier

zone between Z(1,1) and Z(1,2) and is close to the border of the frontier zone. The corresponding empirical

distributions of the length of the exploration phase are represented in Figure 5. Remark that the shape of

these two distributions are quite different and that the empirical mean of the length of the exploration phase

is lower for a parameter which is far from any frontier zone than for a parameter which is close to the border

of a frontier zone.

In Figure 6, we compare the cumulated regrets RTA
n of the tiling algorithm to the regrets RDL

n (lexpl) of

an algorithm with a deterministic length of exploration phase lexpl. Both algorithms are run with (α∗, β∗) =

(0.8, 0.05). We use two values of lexpl: one lower (lexpl = 20) and the other larger (lexpl = 300) than the

average length of the exploration phase following the tiling algorithm which ranges between 40 and 150

for this value of the parameter (see Fig. 5). The algorithms are run four times independently and every

cumulated regret are represented in Figure 6. Note that, (α∗, β∗) being in the interior of a policy zone

(i.e. not in a frontier zone), the regret of the tiling algorithm is null during the exploitation phase since

the optimal policy for the true parameter is used. Similarly, when the deterministic length lexpl of the

exploration phase is sufficiently large, the estimation of the parameter is quite precise, therefore the regret

during the exploitation phase is null. On the other hand, too large a value of lexpl increases the regret during

the exploration phase: we oberve in Figure 6 that the regret RDL
n (lexpl) with lexpl = 300 is larger than RTA

n .

When the deterministic length of the exploration phase is smaller than the average length of the exploration

phase following the tiling algorithm, either the parameter is estimated precisely enough and then RDL
n (lexpl)

14
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Figure 5: Distribution of the length of the exploration phase following the tiling algorithm for (α∗, β∗) =
(0.8, 0.05) and for (α∗, β∗) = (0.8, 0.2).
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Figure 6: Comparison of the cumulated regret of the tiling algorithm (shaped markers) and an algorithm
with a deterministic length of exploration phase equal to 20 (dashed line) or equal to 300 (solid line) for
(α∗, β∗) = (0.8, 0.05)
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is smaller than RTA
n , or, the estimated value is too far away from the actual value and the policy followed

during the exploitation phase is not the optimal one. In the latter case, the regret is not null during the

exploitation phase and RDL
n (lexpl) is noticeably large. This can be observed in Figure 6: in three of the four

runs, the cumulated regret RD
n L(lexpl) with lexpl = 20 (dashed line) are small, whereas in the remaining run

it sharply and constantly increases.

4.2 Stochastically Identical Channels Case

In this section, consider a full channel allocation model where all the N channels have equal bandwidth

B = 1 and are stochastically identical in terms of primary usage, i.e. all the channels have the same

transition probabilities: ∀i ∈ {1, . . . , N} , αi = α , βi = β . In addition, let λ = 0.

4.2.1 Optimal policies, long-term rewards and policy zones

Under these assumptions, the near optimal Whittle’s index policy has been shown to be equivalent to the

myopic policy (see [8]) which consists in selecting the channels to be sensed according to the expected one-

step reward: At = argmaxa∈A

∑N
i=1 a(i)p

k(i),y(i)
α,β given that channel i has not been observed for k(i) time

slots and the last observation was y(i). Recall that A denote the set of N -dimensional vectors with M

components equal to 1 and N − M equal to 0. Following this policy, the secondary user senses the M

channels that have the highest probabilities p
k(i),y(i)
α,β to be free.

The resulting policy depends only on whether the system is positively correlated (α ≤ β) or negatively

correlated (β ≤ α) (see [8] for details). To explain an important difference between the positively and

negatively correlated cases, we represent in Figure 7 the probability p
k(j),y(j)
α,β that the j-th channel is idle

for y(j) = 1 and y(j) = 0 as a function of k(j), in the two cases. We observe that, for all k(j) ≥ 1, for all

y(j) ∈ {0, 1},














p1,0
α,β = α ≤ p

k(j),y(j)
α,β ≤ β = p1,1

α,β if α ≤ β ,

p1,1
α,β = β ≤ p

k(j),y(j)
α,β ≤ α = p1,0

α,β if β ≤ α .

(10)

Then, in the positively correlated case, according to equation (10), if a channel i has just been observed

to be idle, i.e. k(i) = 1, y(i) = 1, the optimal action is to observe it once more since the channel has the
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highest (or equal) probability to be free: for all j 6= i, p
k(i),y(i)
α,β ≥ p

k(j),y(j)
α,β . On the contrary, if a channel has

just been observed to be occupied, i.e. k(i) = 1, y(i) = 0, it is optimal to not observe it since the channel

has the lowest probability to be free. When the system is negatively correlated, the policy is reversed.

Let π+ be the policy in the positively correlated case and π− the policy in the negatively correlated

one. The long-term reward of policies π+ and π− can not be computed exactly. However, one may use the

1 2 3 4 5 6 7 8 9 1011121314151617181920
β

ν1

α

β ≤ α

1 2 3 4 5 6 7 8 9 1011121314151617181920
α

ν1

β

α ≤ β

Figure 7: Probabilities p
k(j),y(j)
α,β that the j-th channel is idle for y(j) = 1 (solid line) and y(j) = 0 (dashed

line) as a function of k(j), in the positively (top) and the negatively (bottom) correlated cases.

approach of [16] to compute an approximation of V
π+

α,β and V
π−

α,β and obtain:















V
π+

α,β ≈ M ν1

1−β+ν1
,

V
π−

α,β ≈ M α
1−ν1+α .

(11)

4.2.2 Applying the tiling algorithm

The secondary user thus needs to distinguish between values of the parameter that lead to positive or negative

one-step correlations in the chain. Knowing which of these two alternatives applies is sufficient to determine

the optimal policy. Let Z+ and Z− be the policy zones corresponding to these two optimal policies π+ and

π− (see Figure 8). Between these zones, we introduce a frontier zone F (n) = {(α, β), |α − β| ≤ ǫ(n)}.

The estimation of the parameter (α, β) and the confidence region are similar to the one channel case

(see Section 4.1). The Assumption 1 of Theorem 1 is thus satisfied. Moreover, given the simple geometry
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Figure 8: Policy zones and frontier for the N stochastically identical channels model.

of the frontier zone, Assumption 2 is easily verified. Indeed, any confidence rectangle whose length is less

than ǫ(n)/2 is either included in the frontier zone or in one of the policy zones. Moreover, for any point in

the frontier zone, there exists a point which is at a distance less than ǫ(n) and is also in the frontier zone

but belongs to the other policy zone. Finally, the approximations of the long-term rewards V
π+

α,β and V
π−

α,β

defined in (11) are Lipschitz functions, and hence the third condition of Theorem 1 is satisfied.

4.2.3 Experimental Results

To illustrate the performance of the approach, we ran the tiling algorithm for a grid of values of (α∗, β∗)

regularly covering the set [η, 1 − η], with η = 0.01. For each value of the parameter, 10 Monte Carlo

replications of the data were processed. The time horizon is n = 10, 000 and the width ǫ(n) of the frontier

zone is taken equal to 0.15. The resulting cumulated regret has an empirical distribution which does not vary

much with the actual value of the parameter and is, on average, smaller than 90. However, it may be observed

that the average length of the exploration phase Tn, represented in Figure 9, depends on the value of (α∗, β∗).

First observe that Tn is quite large for (α∗, β∗) close to the frontier zone and small otherwise. Indeed, when

the actual parameter is far from the policy frontier, the exploration phase runs until the confidence region

is included in the corresponding policy zone, which is achieved very rapidly. On the contrary, when the true

parameter is inside the frontier zone, the exploration phase lasts longer. Remark that for parameter values
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that sit exactly on the policy frontier both policies are indeed equivalent. This observation is captured, to

some extent, by the algorithm as the maximal durations of the exploration phase do not occur exactly on the

policy frontier. The second important observation is that the exploration phase is the longest when (α∗, β∗)

is close to (0, 0) or (1, 1). Actually, when (α∗, β∗) is around (0, 0) (resp. (1, 1)), the channel is really often

busy (resp. idle) and hence it is difficult to estimate β (resp. α).

α*

β*
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Figure 9: Length of the exploration phase for the tiling algorithm for different values of (α∗, β∗).

The later effect is partially predicted by the asymptotic approach of [9] who used the Central Limit

Theorem to show that the length of the exploration phase, for a channel with transition probabilities (α∗, β∗),

has to be equal to

lexpl(α
∗, β∗, δ, PC) =

(Φ−1(PC+1
2 ))2

δ2
(1 − α∗)(

1

α∗ +
1

1 − β∗ ) (12)

in order to guarantee that α is properly estimated (with a similar result holding for β). In (12) Φ stands for the

standard normal cumulative distribution function and δ and PC are values such that PC = P(|α̂−α∗| < δα∗).

This formula rightly suggests that when α∗ is very small, there are very few observed transitions from the

busy to the idle state and hence that estimating α is a difficult task. However, it can be seen on Figure 9

that with the tiling algorithm, the length of the exploration phase is actually longer when both α and β are

very small but is not particularly long when α is small and β is close to one (upper left corner in Figure 9).

Indeed in the latter case, the channel state is very persistent, which imply few observed transitions and,
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correlatively, that estimating either α or β would necessitate many observation. On the other hand, in

this case the channel is strongly positively correlated and even a few observations suffice to decide that the

appropriate policy is π+ rather than π−.

5 Conclusion

The tiling algorithm is a model-based reinforcement learning algorithm applicable to opportunistic channel

access. This algorithm is meant to adequately balance exploration and exploitation by adaptively monitoring

the duration of the exploration phase so as to guarantee a (log n)1/3 n2/3 worst-case regret bounds for a pre-

specified finite horizon n. Furthermore, it has been shown in Theorem 2 that in large regions of the parameter

space, the regret can indeed be guaranteed to be logarithmic. In numerical experiments on the single channel

and stochastically identical channels models, it has been observed that the tiling algorithm is indeed able

to adapt the length of the exploration phase, depending on the sequence of observations. Furthermore, we

observed in the stochastically identical model that the algorithm was able to interrupt the exploration phase

rapidly in cases where the nature of the optimal policy is rather obvious.

For the future, the tiling algorithm promises as well a high potential for other applications for example

in wireless communications. Concerning the opportunistic channel access, the algorithm as it stands is not

able to handle the general N channel model presented Section 2 (with stochastically non-identical channels).

However, another interesting prospective work would be to adapt our approach such that its main principles

apply to the general model.

A Appendix: Proof of Theorem 1

The confidence zone is such that, at the end of the exploration phase, Pθ∗

(

θ∗ ∈ ∆t , δ(∆t) ≤ c1

√
log n/

√
t
)

≥

1 − c′1 exp{− 1
3 log n} . At the end of the exploration phase, if the true parameter θ∗ is in the confidence

region, there are two possibilities: either the confidence zone ∆t is included in a policy zone Zi or it is

included in a frontier zone Fj(n). If the confidence zone is in a policy region, the regret is equal to the

sum of the duration of the exploration phase and of the loss corresponding to the case where the confidence
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region is violated: Rn(θ∗) = Eθ∗(Tn) + c′1n exp{− 1
3 log n} . If the confidence zone is in a frontier region

Fj(n), an additional term of the regret is the loss due to the fact that the policy selected at the end of the

exploration phase is not necessarily the optimal one for the true parameter θ∗. Let π∗
i denote the optimal

policy for θ∗ and π∗
k the selected policy. Note that Zi and Zk are compatible with Fj(n). The loss is

V
π∗

i

θ∗ − V
π∗

k

θ∗ = (V
π∗

i

θ∗ − V
π∗

i

θ ) + (V
π∗

k

θ − V
π∗

k

θ∗ ) + (V
π∗

i

θ − V
π∗

k

θ ) , where θ ∈ Zk

⋂

Fj(n). The last term is negative

since π∗
k is the optimal policy for θ. The two other terms can be bounded using Assumption 3. Then,

|V π∗

i

θ∗ − V
π∗

k

θ∗ | ≤ (di + dk)‖θ∗ − θ‖∞ . According to Assumption 2, one can choose θ such that ‖θ∗ − θ‖∞ <

c′2ǫ(n) for which Rn(θ∗) ≤ Eθ∗(Tn) + nc′ǫ(n) + c′1n exp{− 1
3 log n} , where c′ = c′2 maxi,k(di + dk) .

The maximal regret is obtained when the confidence region belongs to a frontier zone. According to

Assumptions 1 and 2, if t satisfies c1(log n/t)1/2 < c2ǫ(n) then t ≥ Tn, with large probability. Therefore,

Eθ∗(Tn) ≤ (c2
1 log n)/(c2ǫ(n))2. The regret is then bounded by

max
θ∗

Rn(θ∗) ≤ c2
1 log n

c2
2ǫ

2(n)
+ nc′ǫ(n) + c′1n exp{−1

3
log n} ,

which is minimized for ǫ(n) =
(

2c2
1 log n

c2
2c′ n

)1/3

.

B Appendix: Proof of Theorem 2

The condition minθ/∈Z |θ∗ − θ| > κ means that the distance between θ∗ and any border of the policy zone

Z is larger than κ. Hence, as soon as δ(∆t) ≤ κ, the confidence region ∆t is included in the policy zone

Z. The regret of the tiling algorithm is then equal to Rn(θ∗) = Eθ∗(Tn) + c′1n exp{−2x} . According to

Assumption 4, if t satisfies c1(x/t)1/2 < κ then t ≥ Tn with large probability. Therefore, Eθ∗(Tn) ≤ c1x/κ2

and the regret is bounded by Rn(θ∗) = c1x
κ2 + c′1n exp{−2x} , which is minimized for x =

log(2c′1nκ2/c2
1)

2 . For

this value of x, we have Rn(θ∗) =
c2
1

2κ2 (log(n) + log(2c′1κ
2/c2

1) + 1) .
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C Appendix: Confidence interval for Markov Chains

In this appendix, we prove that the confidence region ∆t defined in equation (9) satisfies Assumption 1.

First, remark that the event {δ(∆t) ≤ c1

√
log n√

t
} = {N0

t ≥ cηt
2 , N1

t ≥ cηt
2 } for c1 = 2/

√
3cη. Hence, using

the Hoeffding inequality, we have P(α,β)

(

(α, β) /∈ ∆t, δ(∆t) ≤ c1

√
log n√

t

)

≤ 4 exp{− 1
3 log n} . Moreover, we

need to bound the probability P

(

δ(∆t) > c1

√
log n√

t

)

. We apply Theorem 2 of [3] to bound P
(

N1
t < cηt

2

)

. To

do so, remark that infα,β ν1 = η and that the minoration constant 1 − |β − α| is lower-bounded by 2η. We

then have

P

(

N1
t < c

ηt

2

)

≤ P
(

N1
t − ν1t < −(1 − c/2)ν1t

)

≤ exp{−4η2(t2η(1 − c/2)− 1/η)2

2t
} ≤ exp{−1

3
log(n)} ,

where the last inequality holds for t ≥ tn
def
= (8/3 log(n)η−4(2 − c)−2)1/3. Similarly, we can show that, for

t ≥ tn, P(N0
t < cηt

2 ) ≤ exp{− 1
3 log(n)} . Hence, for all t ≥ tn, P

(

δ(∆t) > c1

√
log n√

t

)

≤ 2 exp{− 1
3 log(n)} . In

addition, for all t < tn, c1

√

log n
t > c1

√

log n
tn

≥ 1 , for n ≥ exp{3× 2−3/2c3/2(2 − c)−1η−1/2} def
= nmin. Then,

for t < tn and n ≥ nmin, the event {δ(∆t) ≤ c1

√
log n√

t
} is always verified. To conclude, we have

P(α,β)

(

(α, β) ∈ ∆t, δ(∆t) ≤ c1

√
log n√

t

)

≥ 1 − P(α,β)

(

δ(∆t) > c1

√
log n√

t

)

− P(α,β)

(

(α, β) /∈ ∆t, δ(∆t) ≤ c1

√
log n√

t

)

≥ 1 − 6 exp{−1

3
log(n)} .
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