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Abstract

This paper is concerned with the identification of switched linear MIMO state-

space systems in a recursive way. Firstly, a structured subspace identification scheme

for linear systems is presented which turns out to have many attractive features. More

precisely, it does not require any singular value decomposition (SVD) but is derived

using orthogonal projection techniques; it allows a computationally appealing imple-

mentation and it is closely related to input-output models identification. Secondly, it

is shown that this method can be implemented on-line to track both the range space of

the extended observability matrix and its dimension and thereby, the system matrices.

Thirdly, by making use of an on-line switching times detection strategy, this method

is applied to blindly identify switched systems and to label the obtained submodels.

Simulation results on noisy data illustrate the abilities and the benefits of the proposed

approach.

Keywords: Subspace methods, multivariable systems identification, recur-

sive methods, linear systems, switched systems, state space models.
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1 Introduction

Hybrid systems are models whose dynamical behavior switches among a certain number of

submodels according to some discrete-event state. The identification of such systems from

input-output data has been attracting a lot of research effort [1, 2, 3]. The main difficulty

in inferring these models from data is related to the fact that the discrete state and the

parameters are highly coupled and are both unavailable.

Most of the existing contributions on the subject deal with the class of Piecewise ARX

models. These models are defined on a polyhedral partition of the regression space, each

submodel being associated to one polyhedron. Hence, the main challenge in the identifica-

tion of this class of systems is to determine the right partition of the regressors. Once this

task is complete, the estimation of the different submodels follows by means of standard

linear regression techniques [4]. To find the regions, it is proposed in [1] to group the

regressors associated with each mode by performing the K-means clustering algorithm in a

special space and then, to compute the parameters of each submodel. The solution in addi-

tion to requiring a knowledge of the system order is suboptimal. In a similar framework, [5]

uses a statistical clustering approach instead and provides a method to derive the number

of submodels from batch data, the orders being assumed to be available a priori. Another

category of methods alternates between assigning the data to submodels and estimating

simultaneously their parameters by using a weights learning technique [6], solving a Mini-

mum Partition into Feasible Subsystems (MIN PFS) problem [7], or resorting to bayesian

learning [8]. In [9], the hybrid system identification problem has been transformed into a

linear or quadratic mixed integer programming problem for which there exist efficient tools

for solving it in an optimal way. Conversely, this algorithm suffers from a high computa-

tional complexity. Another optimal, but deterministic algorithm is the algebraic geometric

approach developed in [3]. Under the assumption that the data are perfect (in the sense

that they are not corrupted by noise), the authors recast the problem into one of computing

and deriving a homogeneous polynomial from which the submodels are deduced without

any iteration [10]. For a comprehensive review of hybrid systems identification methods,

we refer the interested reader to the survey paper [11].

So far, the methods mentioned apply to ARX models with in principle, arbitrary

switches that is, there is no minimum dwell time required between mode changes. How-

ever, it can be noticed that the identification of these kinds of models (ARX with arbitrary

switches) is mostly suboptimal and that optimality comes with some severe restrictions.

By making the assumption of a minimum dwell time, state space models can be regarded as

an alternative to these input-output models, and particularly in the case of multiple inputs

multiple outputs (MIMO) systems. An argument in favor of the state space models is that

many existing analysis methods (control, observer design, fault detection and isolation,

. . . ) rely on them. When the switches are separated by a certain minimum time, subspace

identification, coupled with detection techniques have been shown to be operative in batch

mode. Among others, the references [12], [13], [14], [15] addressed recently this problem in

an off-line context. Notice that in this case, as the state is generally unknown, there is no

available regression vector so that partitioning the regression space (here the state-input
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space) becomes harder. The minimum dwell time is needed precisely to overcome this

challenge.

A major problem of batch data methods for the identification of switched systems is

that the collected data set may not cover all the operating modes. Therefore, all the modes

that are not visited by the system during the collection time of this data, are inevitably

ignored.

In this paper we propose a recursive subspace identification algorithm which realizes on-

line the multiple tasks of estimation, detection and decision. To the best of our knowledge,

there exist only two papers [16] and [17] that address the problem of recursive identification

of switched systems. However, the algorithms developed apply to SISO ARX models. In

the extension of our previous work [18], we focus here on state space models identifica-

tion. Firstly, a structured subspace identification scheme is presented which differs from

the standard approaches in that it does not require any singular values computation. The

key point of our method is to keep control of the state basis in which the system matrices

are to be computed. To this end, we worked out a special transformation which allows

the handling of MIMO systems in a suitable canonical basis. Concretely, the state ob-

servability, initially distributed over all the outputs is encompassed into a single auxiliary

output defined as a combination of all the outputs. An attractive feature of the method is

that it can easily be extended for adaptive rank and subspace tracking. This enables us to

estimate online the submodels of a switched linear MIMO system with possibly different

orders. For this kind of system, each submodel may be slowly time-varying and from a

submodel to another, the order may also change. For this reason, the order is adaptively

identified along with the parameters.

The main focus of the paper is the identification of linear switched MIMO systems.

Before coming properly to this point in Section 4, we briefly formulate in Section 2 the

problem of identifying a single linear system. We also review briefly the principle of sub-

space methods and point out the need of elaborating a recursive method that would be

able to provide the orders and the matrices in a constant basis. In Section 3, a structured

subspace identification strategy, based on the conversion of the MIMO system into a single

output system with the same state sequence, is developed. Section 4 presents the appli-

cation of the new identification scheme to the on-line identification of switched systems

and Section 5 provides simulation results to demonstrate the effectiveness of the scheme.

Section 6 concludes the paper.

2 Identification of a single linear system

In this section and the following section, we present a subspace-based identification method

that will be used in §4 for the recursive estimation of the constituent submodels of a linear

switched system. To begin with, consider a linear system represented by the following

discrete-time stochastic state space model

{

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) + v(t),
(1)

3



where u(t) ∈ R
nu , y(t) ∈ R

ny , x(t) ∈ R
n and v(t) ∈ R

ny are respectively the input, output,

state and output-noise vectors. (A,B,C,D) are the system matrices relatively to a certain

coordinate basis of the state space. It will be assumed that {x(t)}, {u(t)}, {y(t)} and

{v(t)}, t ∈ Z, are all ergodic and (weakly) stationary stochastic processes. The model (1)

is the so-called output-error model [19].

The considered identification problem can be stated as follows. Given realizations {u(t)}Ns

t=1

and {y(t)}Ns

t=1 of the input and output processes generated by a system of the form (1) on

a finite but sufficiently wide time horizon, estimate the minimum dimension n of the state

process and the matrices (A,B,C,D) up to a similarity transformation.

We start by making the following assumptions.

A1. The input process {u(t)} is an ergodic and (weakly) stationary process that is Per-

sistently Exciting of order at least f + n [4], (more simply expressed by {u(t)} is

PE (f + n)) where f > n will be defined later.

A2. The output noise {v(t)} is a zero-mean white noise process and is statistically un-

correlated with the input {u(t)}. More explicitly, for all t, s, E[v(t)v(s)>] = δtsσ
2
vIny

and E[u(t)v(s)>] = 0, where E[ ] denotes the expected value and δ is the Kronecker

delta.

A3. The matrix A of the model (1) is asymptotically stable that is, all its eigenvalues are

strictly inside the unit circle.

A4. The model (1) is minimal that is, (A,B) is reachable and (A,C) is observable.

To begin with the identification procedure, let f > n be an integer and define for any time

index t,

uf (t) =
[

u(t)> · · · u(t+ f − 1)>
]>
∈ R

fnu . (2)

In a similar manner as uf (t), we also define the vectors yf(t) and vf (t). Then we formulate

the data matrices U1,f,N and X1,N as

U1,f,N =
[

uf (1) · · · uf (N)
]

,

X1,N =
[

x(1) · · · x(N)
]

,
(3)

where f and N are user-defined parameters obeying n < f � N . We let Y1,f,N and V1,f,N

be defined similarly to U1,f,N in (3). From the system equations (1), one can, as it is

customary in subspace identification [20], write the following embedded data equation

Y1,f,N = ΓfX1,N +HfU1,f,N + V1,f,N , (4)

where Γf is the extended observability matrix and Hf the block Toeplitz matrix defined
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as

Γf =









C

CA
...

CAf−1









∈ R
fny×n, Hf =









D 0 . . . 0

CB D · · · 0
...

...
...

...

CAf−2B CAf−3B . . . D









∈ R
fny×fnu .

Most of the subspace-based methods [19], [21] proceed by performing first orthogonal or

oblique projection techniques on the data equation (4). Then, the Singular Value Decom-

position (SVD) algorithm is used together with some rank conditions to retrieve both the

system order and the range space of the extended observability matrix Γf in an arbitrary

state space basis. The SVD is known to be numerically reliable but suffers conversely from

a noticeable computational complexity and particularly in the context of recursive identi-

fication [22]. Hence, in order to apply the subspace concept in a recursive framework, it

appears necessary to find some alternative algorithms to the SVD. Some reliable algorithms

have been developed. For example, the IV-PAST method [23], borrowed from [24], has been

introduced to track the observability subspace in a colored noise framework. However, as

pointed out by the author, the state basis of the realization provided by that method may

change during the estimation. The same remark holds also for the algorithm developed in

[25]. But, it is desirable, regarding the case of switched systems, to get all the submodels

in the same basis. Recently, the papers [26, 27] suggested an identification version of the

Propagator Method [28] ordinarily used for subspace tracking in signal array processing.

This latter scheme shares some strong similarities with the structured technique that will

be presented in the next section.

3 Structured identification scheme for one linear model

As an alternative to the conventional subspace identification methods, we present in the

following, a structured subspace identification method which does not require any SVD.

The key idea in this method is to select in advance the state space basis of the model to

be identified. In this way, not only the SVD step can be avoided but also the number of

unknowns to be estimated is significantly reduced.

In order to present clearly the intuition behind our method we shall study first the case

of MISO systems in §3.1 before coming to the case of MIMO systems in §3.2. We defer

the estimation of the system matrices to §3.3 while the order is identified in §3.4. In

the last part of this section (§3.5), we propose an extension of our algorithm to recursive

identification.

3.1 MISO systems

It is well known that the state space matrices (A,B,C,D) are not uniquely determined

since for any nonsingular matrix T , (TAT−1, TB,CT−1,D) explains the input-output

behaviour of the system in (1) as well. Suppose that the system in (1) is an observable

MISO system. Then, the observability matrix Γn = Γn(A,C) with C ∈ R
1×n, is a square
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and nonsingular real matrix. Using this matrix, a similarity transformation can be carried

out by setting x(t)← x̄(t) = Γnx(t). One can then easily show that the resulting dynamics

matrix Ac = ΓnAΓ−1
n is a companion matrix up to a transposition operation and that A

and C have the forms

Ac =









0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

−a0 −a1 · · · −an−1









, (5)

Cc =
[

1 0 · · · 0
]

, (6)

where the ai are the coefficients of the characteristic polynomial pA of A,

pA(z) = det (zI −A) = a0 + a1z + · · · + an−1z
n−1 + zn.

Throughout the paper, we will refer to (5)-(6) as the companion form of the state space

representation.

3.2 MIMO systems

In the case of MIMO systems, the companion form (5)-(6) is no longer so straight to obtain.

However, thanks to certain transformations to be detailed in the following, it is still possible

to describe the system using the canonical companion form. We should however start by

pointing out that A can be put in the form of Ac in (5) if and only if A is nonderogatory1[29].

It may occur that all the poles of the system are observable from a certain (single) output

yj(t). This means that Γn(A, c>j ), with c>j ∈ R
1×n the jth row of C, may have full rank.

The state sequence may then be retrievable from only this output yj(t) similarly to the

case of MISO systems. But this situation is far from always holding for a general MIMO

system since the other outputs are likely to convey some dynamics which may not be visible

from yj(t). One can find in the literature some attempts to directly estimate canonical

state space representations based on Kronecker invariants, observability or controllability

indices [30], [31]. A drawback of such schemes is that the Kronecker invariants are not

always available (since we do not know the system matrices). The idea suggested in this

paper allows to circumvent this inconvenience by recasting the system such that it can be

handled as a single output one.

Consider an auxiliary output constructed as a linear combination of the system outputs

defined as

ya(t) =

ny∑

j=1

γjyj(t), (7)

where the yj(t) are the components of the output vector y(t) and the γj are real nonzero

numbers. When A is nonderogatory, the γj’s can be selected in such a way that the whole

1i.e., a matrix whose characteristic polynomial is equal to its minimal polynomial. Note that A is
nonderogatory is a necessary condition for a MISO system to be observable.
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dynamics of the system are observable from ya(t) only. Then, using only this blended

output and the input measurements, it shall be possible to estimate A, B and linear

combinations of the rows of C and D. Instead of doing so, let us replace just one component

of the output vector (e.g. the first component) by ya(t). The vector y(t) is hence changed

into a vector ȳ(t) that we define to be y(t) with its first entry replaced by ya(t), i.e.,

ȳ(t) = K(γ)y(t), (8)

with

K(γ) =









γ1 γ2 · · · γny

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1









. (9)

Denote the new matrices by C̄ = K(γ)C, D̄ = K(γ)D and Γ̄f = Γf (A, C̄) and H̄f =

Hf (A,B, C̄, D̄). Under this transformation, the data equation (4) can be rewritten as

follows

Ȳ1,f,N = Γ̄fX1,N + H̄fU1,f,N + V̄1,f,N , (10)

where Ȳ1,f,N and V̄1,f,N are the block Hankel matrices of the form (3) constructed respec-

tively from ȳ(t) and v̄(t) = K(γ)v(t).

Recall that the main expectation in this transformation is to reach an output ya(t) ∈
R from which all the poles of the system (1) will be observable. This is equivalent to

requiring Γn(A, c̄>1 ), with c̄>1 = γ>C, γ =
[

γ1 · · · γny

]>

, to have full rank. If this is

true, it will become possible to directly obtain, by setting a state transformation as x̄(t)←
Γn(A, c̄>1 )x(t), the matrices of (1) in canonical form similarly as in the case of MISO

systems. The question is, while Γ(A,C) is unknown, how to find γ1, · · · , γny so as to

achieve this requirement. An answer to this question is given by Proposition 1. Before

stating the proposition, we need some preliminary result.

Lemma 1. Consider two matrices A ∈ R
n×n and C ∈ R

ny×n. Then, there exists γ =
[

γ1 · · · γny

]>
∈ R

ny satisfying rank
(
Γn(A, γ>C)

)
= n if and only if A is nonderogatory

and (A,C) is observable.

Proof. Assume that there is γ ∈ R
ny such that rank

(
Γn(A, γ>C)

)
= n. Then

Γn(A, γ>C)AΓn(A, γ>C)−1

is a matrix that has the companion form (5). Being similar to a companion matrix, we

can conclude from a result in [29, p. 147] that A is nonderogatory. To see that (A,C) is

observable, let us write

Γn(A, γ>C) = GΓn(A,C),

7



where

G =







γ> · · · 0
...

. . .
...

0 · · · γ>






∈ R

n×nny .

With rank
(
Γn(A, γ>C)

)
= rank

(
GΓn(A,C)

)
= n, we have necessarily rank

(
Γn(A,C)

)
=

n because otherwise, we would have by Sylvester’s inequality, rank
(
GΓn(A,C)

)
≤ rank (

Γn(A,C)
)
< n for any γ ∈ R

ny . Therefore, (A,C) is observable.

Conversely, assume that A is nonderogatory and that (A,C) is observable. Then A is

similar to a companion matrix of the form Ac defined in (5) [29]. Therefore, there is a

nonsingular matrix L such that Γn(A,C)L−1 = Γn(Ac, Cc), where Cc = CL−1. Let c′>j
be the jth row of Cc. Denote by lj(z) the polynomial of degree n − 1 whose coefficients

are defined by c′>j as lj(z) = c′j(n)zn−1 + c′j(n − 1)zn−2 + · · · + c′j(1), where c′j(k)

is the k-th entry of c′j. Then, we know by Barnett’s theorem [32, Theorem 1 ] that

deg
{
gcd

(
l1(z), · · · , lny(z), pA(z)

)}
= n− rank

(
Γn(Ac, Cc)

)
, where pA(z) = det(zIn−Ac).

Since rank
(
Γn(Ac, Cc)

)
= n, it follows that2 gcd

(
l1(z), · · · , lny(z), pA(z)

)
= 1. In other

words, the polynomials l1(z), · · · , lny(z), pA(z) are relatively prime. This means that if

we denote by r1, · · · , rn the roots of pA(z), then for any root rj of pA(z), there exists

i ∈ {1, . . . , ny} such that li(rj) 6= 0. Consequently, all the rows L>i of the matrix

L =







L>1
...

L>n







=







l1(r1) · · · lny(r1)
... · · · ...

l1(rn) · · · lny(rn)






∈ R

n×ny

are nonzero. Here, Li =
[

l1(ri) · · · lny(ri)
]>
∈ R

ny . Using again Barnett’s theorem, one

can see that rank
(
Γn(A, γ>C)

)
= rank

(
Γn(Ac, γ

>Cc)
)

= n is equivalent to saying that

γ1l1(z) + · · · + γny lny(z) and pA(z) have no common root, that is, L>i γ 6= 0, i = 1, . . . , n.

The existence of such a γ follows from the fact that all the rows of L are nonzero.

If this were not the case, then for any γ, there would be an i ∈ {1, . . . , n} such that

L>i γ = 0. But this would mean that R
ny ⊂ A , (L1)

⊥ ∪ · · · ∪ (Ln)⊥, where (Li)
⊥ is the

linear hyperplane that is orthogonal to the vector Li and the symbol ∪ refers to sets union

operation. On the other hand, since A is a subset of R
ny , we would have R

ny = A . With

Li 6= 0 for all i, this is impossible. Therefore, we can conclude that there is at least one

γ ∈ R
ny such that rank

(
Γn(A, γ>C)

)
= n.

Proposition 1. Assume that the pair (A,C) of the system in (1) is observable and that the

matrix A is nonderogatory. Let γ =
[

γ1 · · · γny

]>
∈ R

ny be a vector generated randomly

from a uniform distribution. Then, it holds with probability one that

rank
(
Γn(A, γ>C)

)
= n,

where Γn

(
A, γ>C

)
is the observability matrix related to the blended output ya(t).

2gcd refers here to the greatest common divisor, taken here to be a monic polynomial.
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Proof. Let P (γ) = det
(
Γn

(
A, γ>C

))
be the determinant of Γn

(
A, γ>C

)
∈ R

n×n. Then P

is a polynomial with respect to the entries of γ. Consider the set S = {γ ∈ R
ny/P (γ) = 0},

of all γ such that rank(Γn(A, γ>C)) < n. Consider the uniform probability measure

denoted by Pr, to be defined on a σ-algebra R (that includes S) over R
ny . Since (A,C) is

observable and A is nonderogatory, we know from Lemma 1 that there is at least one γ∗ such

that rank
(
Γn(A, γ∗>C)

)
= n and so, P (γ∗) 6= 0; which implies that the polynomial P is not

identically null. Then, S is a proper algebraic set in the probability space (Rny ,R,Pr) that

is of dimension (Hausdorff dimension with respect to the euclidean metric) strictly less than

ny. From the measure theory [33], a subset such as S is known to be a null set. Thus, the

complement of S is of full measure. In other words, the property rank
(
Γn(A, γ>C)

)
= n

holds almost surely, that is, with probability one.

From the previous analysis it follows that either for MISO or for MIMO systems, a

certain canonical companion state space representation can be reached directly from the

identification process. To this purpose, we exhibited in each case a nonsingular matrix T

which can be used to change the state coordinates basis in the equation (4).

Let T = Γn(A, c̄>1 ) and Ii =
[

ei ei+ny · · · ei+(f−1)ny

]

∈ R
fny×f , where ej is the

vector in R
fny which has 1 in its jth entry and 0 anywhere else. We define a permutation

matrix S ∈ R
fny×fny as

S =
[

I1 · · · Iny

]>
∈ R

fny×fny . (11)

Then, by multiplying Γ̄f on the left by S, we obtain the following partition

SΓ̄f =











Γn(A, c̄>1 )

Γf−n(A, c̄>1 )An

Γf (A, c̄>2 )
...

Γf (A, c̄>ny
)











=

[

In

P

]

T, (12)

where the lower part of SΓ̄f has been written as a linear combination PT , with P ∈
R

(fny−n)×n, of the rows of the submatrix T . This is possible because rank
(
SΓ̄f

)
=

rank (T ) = n. Therefore, the identification of Γ̄f requires only the estimation of P.

It turns out that this matrix corresponds to the so-called Propagator defined and utilized

in signal array processing [28] and recently in recursive subspace identification of MISO

systems [26]. From now onwards, we may refer to P as the propagator. Now we are about

to set up the basis in which we would like the system matrices to be retrieved. Recall that

our approach makes it possible to choose this basis.

Realization in a basis determined by S. Given the transformation (8) of system (1),

there are actually different ways to set up the permutation matrix S defined in (11). To

obtain an equation of the form (12), the only requirement to be fulfilled is that the first

n rows of SΓ̄f must be linearly independent. The matrix T will then consist of these n

linearly independent rows. Therefore, the choice of S determines a certain basis of the
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state. To estimate the range space of the extended observability matrix in such a basis,

one can proceed as follows. From (12), note that the observability matrix is as 3

Γ̄f = S>
(
SΓ̄f

)
= S>

[

In

P

]

T. (13)

By applying a state transformation x(t) ← Tx(t), we get A ← TAT−1 and C̄ ← C̄T−1

so that Γ̄f ← Γ̄fT
−1. This means that T can be dropped from Eq. (13). Therefore, one

can immediately extract the matrices A and C̄ once P is known. This may be done as

traditionally, by exploiting the A-shift invariance property of Γ̄f :

A = (Γ̄↑
f )†Γ̄↓

f and C̄ = Γ̄f (1 : ny, :), (14)

with Γ̄↑
f = Γ̄f (1 : (f − 1)ny, :) , Γ̄↓

f = Γ̄f (ny + 1 : fny, :); the symbol † refers to the

generalized Moore-Penrose inverse.

Realization in companion form. In order to obtain a A-matrix in the companion

form, we consider the partitioning matrix S to be defined as in (11). Starting from Eq.

(12), if we let Ω =
[

In P>
]>

, then we have

Γf (A, c̄>1 ) = Ω (1 : f, :)T, (15)

where Ω(1 : f, :) refers to the first f rows of Ω. A similar transformation x(t) ← Tx(t)

induces A ← TAT−1, C̄ ← C̄T−1 and hence Γf (A, c̄>1 ) ← Γf (A, c̄>1 )T−1. Therefore, we

can drop the matrix T from (15) so that it remains Γf (A, c̄>1 ) = Ω (1 : f, :) in the new

basis. Note now that Ω (2 : n+ 1, :) = Ω (1 : n, :)A = A. Therefore, one can obtain A and

c̄>1 in the companion form (5)-(6) without computing any Moore-Penrose inverse, that is:

A = Ω (2 : n+ 1, :) and c̄>1 =
[

1 0 · · · 0
]

∈ R
1×n. (16)

Similarly, by considering the global matrix SΓf (A, C̄), we also get c̄>j = Ω ((j − 1)f + 1, :),

j = 2, · · · , ny. Finally, the C-matrix of the initial system (1) can be obtained as C =

K(γ)−1C̄.

Thus, an additional attractive feature of the proposed structured identification scheme

is that, contrarily to most of the subspace identification methods, it makes it possible to

avoid computing the pseudo-inverse of Γ̄↑
f as in (14). This is quite comfortable in a recursive

identification context, since the computation of the pseudo-inverse relies generally on the

expensive SVD.

Once the matrices A and C are available in a certain basis, B and D can be estimated

by a linear regression, under the assumption that the system is asymptotically stable (see

e.g [22] for more details).

In the remainder of the paper we will adopt whenever possible, simplified notations as

3Recall that, as a permutation matrix, S satisfies S>S = SS> = I
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Ȳ = Ȳt,f,N , Γ̄ = Γ̄f and so forth. Therefore, Eq. (10) can be re-written simply as

Ȳ = Γ̄X + H̄U + V̄ , (17)

where V̄ has been constructed from v̄(t) = K(γ)v(t).

3.3 Estimation of extended observability matrix

In this subsection, we consider the problem of estimating the matrix P. Inspired by the

Multivariable Output Error State Space (MOESP) class of subspace methods [19], the first

step in the estimation of P consists in eliminating the term H̄U in the data equation (17),

by projecting the whole equation onto the orthogonal complement of the row space of U .

In this objective, let us follow the RQ implementation method [19]. This results in the

following proposition which is indeed similar to the one derived in [34] but with different

assumptions.

Proposition 2. Let the assumptions A1-A4 hold and the A-matrix be nonderogatory. Let

the partitioning matrix S be set as in (11) and the RQ factorization of the input-output

data matrix be given as [

U

Ȳ

]

=

[

R11 0

R21 R22

][

Q1

Q2

]

, (18)

where Ȳ is defined from ȳ(t) = K(γ)y(t) by (3), and γ ∈ R
ny is such that γ>γ = 1 and

T = Γn(A, γ>C) is nonsingular. Then,

lim
N→∞

(
1

N
SR22R

>
22S

>

)

=

[

Σz ΣzP
>

PΣz PΣzP
>

]

+ σ2
vR̄v, (19)

where P ∈ R
(fny−n)×n is the matrix that appears in (12),

Σz = lim
N→∞

(
1

N
ZΠ⊥

UZ
>

)

∈ R
n×n, (20)

Π⊥
U = IN − U>

(
UU>

)−1
U, (21)

Z = TX, and

R̄v =









If γ2If · · · γnyIf

γ2If If · · · 0
...

...
. . .

...

γnyIf 0 · · · If









. (22)

Proof. The proof is reported in Appendix B.

Now, by considering Eq. (19), we introduce the notation

Σ =

[

Σ11 Σ12

Σ21 Σ22

]

= Σ̄ + σ2
vR̄v, (23)

11



where

Σ̄ =

[

Σz ΣzP
>

PΣz PΣzP
>

]

.

Then, P can be estimated by minimizing the following cost function

J (P) = ‖Σ21 −PΣ11‖2F , (24)

whose (suboptimal) solution is given by

P = Σ21Σ
−1
11 . (25)

It should be noticed that the estimate obtained here for P may be biased in the presence

of noise. One way to address this problem may be for example, to use the instrumental

variable method [22]. However, regarding the application in Section 4 to the identification

of switched systems, this may not be efficient since the effect of such a noise decorrelation

technique is mainly asymptotic.

Remark 1.

• It can be seen from Eq. (25) that computing P does not require the computation of

the entire matrix Σ from (23). The knowledge of its first f (or n if it is known) rows

or columns will be enough.

• From (16), one can also notice that not all the matrix P is exploited in the determi-

nation of A and C. Only some ny rows of P need actually to be known.

• From these two observations, it appears that A and C can be extracted, after elimi-

nating some redundancies, from the following data matrices:

¯̄Y =

[

ya,f (t) ya,f (t+ 1) · · · ya,f (t+N − 1)

y2:ny(t) y2:ny(t+ 1) · · · y2:ny(t+N − 1)

]

,

¯̄U =
[

uf (t) uf (t+ 1) · · · uf (t+N − 1)
]

,

where ya,f (t) =
[

ya(t) ya(t+ 1) · · · ya(t+ f − 1)
]>

, ya(t) ∈ R is the blended

output defined in (7) and y2:ny(t) =
[

y2(t) · · · yny(t)
]>

is the 2nd through the

nyth entries of the output vector at time t. This is a remarkable reduction in the

dimension of the data matrices since contrarily to (3) (fny rows) ¯̄Y contains only

f + ny − 1 rows.

3.4 Estimation of the order

In order to conveniently estimate the matrix P by (25), we need to identify the order n of

the system (1). Under some mild assumptions, a procedure for the estimation of the order

is suggested in this subsection. Generally, from the point of view of subspace identification

schemes, the order results almost always from an analysis of the singular values of the
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matrix R22 in (18) for example. Here, we would like to characterize the order without

resorting to the expensive SVD so that an on-line application becomes possible. To this

purpose, we assume that a strict upper bound rmax = f > n of the order is known. Then,

the idea is to exploit the interesting structure of the matrix Σ defined in Eq. (23). An

estimation of the order in a deterministic framework is first discussed before coming to the

more challenging stochastic case which is treated in the last paragraph of this subsection.

3.4.1 Dealing with noise-free data

To proceed, we consider recursively a submatrix of Σ in (23) of the form ∆r = Σ(1 : r, 1 : r),

r running from rmin towards rmax with rmin < n < rmax. In view of (20), we require that

rank(limN→∞
1

N
XΠ⊥

U ) = n which is equivalent, under the assumption that the system (1)

is minimal, to requiring the input process {u(t)} to be PE(f +n) [35] (see also Proposition

4 in Appendix A). This assumption implies that the covariance matrix Σz defined in (20)

is positive definite. Consequently, any square submatrix of the form ∆r = Σz(1 : r, 1 : r)

is also positive definite. In the light of these precisions, ∆r is nonsingular as long as

r ≤ n but becomes singular as soon as r > n. Therefore, the order must satisfy n =

max {r : rank (∆r) = r} . These arguments justify the rank tracking algorithm described

below.

Consider ∆r = Σ̄(1 : r, 1 : r) and let us write

∆r+1 = Σ̄(1 : r + 1, 1 : r + 1) =

[

∆r wr+1

w>
r+1 sr+1

]

,

with wr+1 = Σ̄(:, r+ 1) and sr+1 = Σ̄(r+ 1, r+ 1). By the matrix inversion lemma [36], if

∆r is nonsingular, then ∆r+1 is also nonsingular if and only if

hr+1 = sr+1 − w>
r+1∆

−1
r wr+1 (26)

is nonzero. The reason is that, when ∆−1
r+1 exists, it can be obtained by

∆−1
r+1 = h−1

r+1

[

hr+1∆
−1
r + ϕr+1ϕ

>
r+1 ϕr+1

ϕ>
r+1 1

]

, (27)

where ϕr+1 = −∆−1
r wr+1 ∈ R

r. Hence, to identify the order, a possibility may be to

compute recursively the inverse of ∆r extracted from Σ going from r = rmin towards

r = rmax until the order is detected. If we assume ∆−1
rmin

, with rmin ≥ 1, to be known,

a starting value for r can be taken as r = rmin. We then proceed to the computation of

hr+1; if hr+1 = 0 for some r∗, then ∆r∗+1 is singular and the conclusion n = r∗ is drawn;

conversely, if hr+1 6= 0, the recursion is pursued by computing ∆−1
r+1, and then hr+2 and

so on. The procedure is stopped when it becomes evident that ∆r+1 is singular, i.e., when

hr+1 = 0. To see why, notice from (23) that for r = n, we have wn+1 = ∆nP(1, :)> and
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sn+1 = P(1, :)∆nP(1, :)> . Hence, by the definition (26) of hr+1, we have

hn+1 = sn+1 − w>
n+1∆

−1
n wn+1

= P(1, :)∆nP(1, :)> −P(1, :)∆n∆−1
n ∆nP(1, :)> = 0.

At the end of the loop, one can obtain Σ−1
11 = Σ−1

z
= ∆−1

n and so, P may be computed as

in Eq. (25).

3.4.2 Dealing with noisy data

In the presence of noise, σ2
v in Eq. (23) is no longer null. Therefore, hn+1 will probably

be greater than zero but our method can still be efficiently performed using a convenient

threshold comparison. Naturally, this threshold will depend on the level of the noise that

is acting on the process. It needs also to be related to the system we wish to identify

and hence, has to be computed or adapted somehow, particularly in the case of switched

systems (see §4).

The presence of noise tends to increase all the quantities hr but a gap is still observable in

their values when the iteration process reaches the rank of Σ unless the noise is dominant

compared to the signal. Note that, owing to the assumption that Σz is positive definite and

the Schur complement theorem [36] (the parameter hr+1 is indeed the Schur complement

of ∆r in ∆r+1), we know that hr is a positive scalar for r ≤ n. It follows from (26) that

hr+1 = sr+1 + σ2
v − w>

r+1∆
−1
r

(
Ir + σ2

v∆
−1
r

)−1
wr+1.

If we consider that all the eigenvalues of ∆r are significantly greater than the noise variance,

then the spectral radius of σ2
v∆

−1
r is lower than one. Therefore, by expanding the term in

brackets at the first order we get the following approximation

hr+1 ≈
(

sr+1 − w>
r+1∆

−1
r wr+1

)

+ σ2
v

(

1 + w>
r+1∆

−2
r wr+1

)

,

which is composed of the signal part and the noise contribution. As in the previous

subsection, when r = n, the first term vanishes so that hn+1 ≈ σ2
v

(
1 + ϕ>

n+1ϕn+1

)
, where

ϕr is defined as in (27). Therefore, a threshold can be chosen as

Thres(r) = T0

(

1 + ϕ>
r+1ϕr+1

)

, (28)

where T0 denotes a constant, supposed to be slightly greater than the noise variance σ2
v .

Note that when the order is detected, we can approximate a posteriori the variance of the

noise as:

σ̂2
v ≈

hn+1

1 + ϕ>
n+1ϕn+1

.

3.5 Recursive identification algorithm

In the previous parts, a complete off-line identification scheme has been investigated. From

now on, we are interested in working out an on-line version of this procedure in order (as
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we will see in Section 4) to apply it to the estimation of switched systems. The on-line

version of our algorithm relies indeed on the recursive adaptation of the matrix Σ defined

in (23) using the new data available. At each time instant, Σ is updated first and then, the

procedure described above for identifying both the order and the extended observability

matrix is turned on.

Assume that an RQ factorization of the input-output data matrix in (18) is known at the

instant t = N + f − 1. We would like then to update the R-part of this factorization when

a new column is added to the concatenated input-output data matrix
[

U> Ȳ >
]>

. At

time t+ 1, this matrix can be written as follows

[

√
λ

[

R11(t) 0

R21(t) R22(t)

]

uf (t̄+ 1)

ȳf (t̄+ 1)

]





Q1(t) 0

Q2(t) 0

0 1




 ,

where λ < 1 is a forgetting factor, t̄ = t− f + 1. To bring back the triangular form of the

R-part, [22] suggested the use of an appropriate sequence of Givens rotations [37] gathered

in a matrix G1(t+ 1). By applying this method, we have the following.

[

√
λ

[

R11(t) 0

R21(t) R22(t)

]

uf (t̄+ 1)

ȳf (t̄+ 1)

]

G1(t+ 1) (29)

=

[

R11(t+ 1) 0 0

R21(t+ 1)
√
λR22(t) zf (t+ 1)

]

.

It then turns out that

R22(t+ 1) =
[√

λR22(t) zf (t+ 1)
]

,

and hence

SR22(t+ 1)R>
22(t+ 1)S> = λSR22(t)R

>
22(t)S

> + Szf (t+ 1)z>f (t+ 1)S>. (30)

From (19), it appears that the matrix Σ defined in (23) is a sort of covariance matrix. In

the recursive framework with an exponentially decreasing width of the data window, we

may compute Σ(t+ 1) by dividing the quantity

SR22(t+ 1)R>
22(t+ 1)S> =

t+1∑

k=0

λt+1−kSzf (k)z>f (k)S>

by the sum of the weights, namely α(t+1) = 1+λ+ · · ·+λt+1 = 1−λt+2

1−λ . However, we are

interested here in just extracting the matrix P from the particular structure of the matrix

Σ defined in (23). Therefore, since there is no risk of divergence with λ < 1, we will just

set

Σ(t+ 1) = SR22(t+ 1)R>
22(t+ 1)S>
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so that Eq. (30) becomes

Σ(t+ 1) = λΣ(t) + Szf (t+ 1)z>f (t+ 1)S>. (31)

As already mentioned, it is not required that the matrix Σ(t) is entirely adapted. If the

order might vary, then it is essential to adapt all the first rmax columns or rows. After

that, the procedure described above for the identification of the order, can be run. Two

options are then possible: either a lower bound rmin of the order is known and then ∆−1
rmin

is recursively adapted (using the matrix inversion lemma [36]) together with Σ(t), or this

information is not available and in this case, the procedure is started from r = 1. The

whole algorithm for adaptive subspace and rank tracking is summarized in Algorithm 1.

Algorithm 1 On-line subspace tracking algorithm

• Initialization: set λ, T0, f and initialize Σ(0), ∆−1
rmin

(0).

• For t = 1, . . . ,∞

1. Update the RQ factorization of the data matrix as in Subsection 3.5 and obtain zf (t).

2. Update Σ(t) using (31).

3. Update ∆−1
rmin

(t) using for example the matrix inversion lemma.

4. Compute the order:

– Set r ← rmin

While hr+1 ≥ Thres(r) and r < rmax

Compute ∆−1

r+1(t) by the formula (27);
r ← r + 1;
EndWhile

– n← r;

5. Once the order is known, compute P(t) using the formula (25).

6. Deduce the system matrices as in subsection 3.3.

• EndFor

4 Application to the identification of Switched Linear Sys-

tems (SLS)

In Sections 2 and 3, we have studied the problem of identifying a single linear model from

input-output data in both batch and recursive modes. A new structured subspace identifi-

cation method has been introduced for the estimation of the orders and the parameters of

linear MIMO systems. By requiring fewer parameters to be estimated and providing the

system matrices in a constant and known basis, this method turns out to be appropriate

for a recursive processing of the data.

In this section, we shall extend this method to the identification of Switched Linear

MIMO Systems (SLS). The considered switched system is described by the following state
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space model.
{

x(t+ 1) = Aµt+1,µtx(t) +Bµt+1,µtu(t)

y(t) = Cµtx(t) +Dµtu(t) + v(t),
(32)

where u(t) ∈ R
nu , y(t) ∈ R

ny and x(t) ∈ R
nµt are respectively the input, output and state

vectors. The subscript µt ∈ {1, 2, . . .} refers to the discrete state which is assumed to be

an unknown deterministic sequence; nµt is the dimension of the state process at time t,

Aµt+1,µt ∈ R
nµt+1

×nµt , Bµt+1,µt ∈ R
nµt+1

×nu , Cµt ∈ R
ny×nµt , Dµt ∈ R

ny×nu are the system

matrices at time t and {v(t)} ∈ R
ny stands for a zero-mean white noise process. As in

the case of the linear system (1), the stochastic processes {u(t)}, {x(t)}, {y(t)} and {v(t)}
indexed by the set Z of integers, are assumed to be ergodic and weakly stationary. We also

assume that Assumptions A1-A4 hold for each individual linear subsystem of (32).

The model (32) can loosely be understood as a generalized switched linear system by

analogy with the definition of Generalized Jump Markov Linear Systems (GJMLS) [38].

Here, the occurrences of two consecutive switches are assumed to be reasonably separated

so that rectangular matrices of the form Aµt+1,µt show up rarely. Hence, the A-matrices

are mostly square except at the switching times.

We denote the matrices Aµt+1,µt and Bµt+1,µt respectively by Aµt and Bµt in the case

where the states x(t+ 1) and x(t) are of the same dimension. In this way, for µt = j, we

can more simply use (Aj, Bj , Cj ,Dj) and nj to refer to the matrices and the order of the

jth submodel. But when x(t + 1) and x(t) have different dimensions we may assume the

transition matrices Aµt+1,µt to be for example of the form

Aµt+1,µt = Tµt+1,µtAµt

Bµt+1,µt = Tµt+1,µtBµt ,
(33)

with

Tµt+1,µt =







[

Inµt+1
0
]

, if nµt+1
< nµt ,

[

Inµt

0

]

, if nµt+1
> nµt ,

Inµt
, if nµt+1

= nµt .

(34)

Given observations {u(t)}∞t=1 and {y(t)}∞t=1 of the input and output processes gener-

ated by a model such as (32), we are interested in recursively estimating the parameters
(
Aj , Bj , Cj ,Dj

)
, the number of submodels as well as their orders {nj}j=1,2,.... In order

to achieve properly this task, we make the assumption that whenever the system visits a

discrete state µt, it stays in it during a certain minimum time that we shall throughout the

paper, refer to as the dwell time τdwell. On the other hand, the method to be presented

does not require the number of submodels to be finite nor the orders {nj} to be equal. Fur-

thermore, no constraint other than that of a minimum dwell is imposed on the switching

mechanism.

With the assumption that the system stays long enough in each discrete state, we

propose to apply online the identification method developed above for gradually learning

the parameters of the submodels as they appear. In so doing, the number of submodels
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need not be finite or known. An additional motivation is that, we shall be able to track

possible parameter variation of the constituent submodels of the system. Also, note that

in practice, the minimum dwell time that is expressed in number of samples, is not that

restrictive because too fast commutations may actually result in severe problems of stability.

We propose to apply Algorithm 1 to the identification of the SLS (32). As we will see,

the switching times are detected based on the order estimation algorithm and the estimated

submodels are recorded and labelled using simple classification techniques. We are first

interested in analyzing what happens, when a switch occurs, in the system equations in

terms of the order provided by Algorithm 1.

To proceed, we introduce the notations Γi
q = Γq(Ai, Ci) and H i

q = Hq(Ai, Ci, Bi,Di). Sim-

ilarly, we let Ψi
f = Γf

(
Ai, c̄

>
i

)
∈ R

f×ni , Hi
f = Hf

(
Ai, Bi, c̄

>
i , d̄

>
i

)
∈ R

f×fnu , where c̄>i =

γ>Ci, d̄
>
i = γ>Di and γ is as above, a weight vector that satisfies rank

(
Γn(Ai, γ

>Ci

)
= ni,

i = 1, 2, . . . ,. Let uf (t) and yf (t) be defined as in (2). For easy reference we also define

Ωi
ni

=
[

Ani−1
i Bi · · · AiBi Bi

]

Ri =









ai
0 · · · · · · ai

ni−1

0 ai
0 · · · ai

ni−2
...

...
. . .

...

0 0 · · · ai
0









and Si =









1

ai
ni−1 1 0
...

...
. . .

ai
1 · · · · · · 1









,
(35)

where ai
0, · · · , ai

ni−1 are the coefficients of the characteristic polynomial of Ai. Finally, from

the matrices in (35), we define

Mij =

[
(

RiΨi
ni

+ SiΨj
niTj,iA

ni

i

)

Si
[ (

Ψj
niTj,i −Ψi

ni

)

Ωi
ni

(

Hj
ni −Hi

ni

) ]
]

, (36)

where we recall that Tj,i is the transition matrix (34) from submodel i to submodel j.

Before the switch. Note that the embedded data equation of the form (10) still holds as

long as all the data involved are generated by the same linear submodel. In order to exploit

this fact, consider that only the submodel i has been active on [τ − τdwell, τ − 1], where

τ is a switching time and τdwell is the dwell time. Let the noise process {v(t)} in (32) be

identically null. Since we are interested here in studying the order estimated by Algorithm

1, we will just focus on the MISO model whose input is u(t) and output is the blended

output ya(t). Define ν = τ − τdwell, an integer f that satisfies max(nj) < f � τdwell, and

Xν|t̄ =
[

x(ν) · · · x(t̄)
]

∈ R
ni×(t̄−ν+1), (37)

Uν|t̄,f =
[

uf (ν) · · · uf (t̄)
]

∈ R
fnu×(t̄−ν+1), (38)

Yν|t̄,f =
[

ya,f (ν) · · · ya,f (t̄)
]

∈ R
f×(t̄−ν+1), (39)

where t̄ = t− f +1, t is the current time instant, ya(t) is the blended output defined in (7)

and uf (k) and ya,f (k), k = ν, · · · , t̄, are defined as in (2) from respectively u(t) and ya(t).
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Let now the following assumption of persistency of excitation hold.

Assumption A5: The input signal {u(t)} is persistently exciting of order at least f > ni

(for the submodel i) in the sense that there exists t̄ ∈ [ν, τ − f ] satisfying4

rank
(

[

Xν|t̄

Uν|t̄,f

]

)
= fnu + ni,

From the data matrices (37)-(39), we can write the equation

Yν|t̄,f = Ψi
fXν|t̄ +Hi

fUν|t̄,f , (40)

where t̄ = t − f + 1, and t̄ is assumed to be such that Assumption A5 is fulfilled. By

using the Cayley-Hamilton’s theorem [29], we know that the f −ni last rows of Ψi
f can be

expressed as a linear combination of its first ni rows. Then, by multiplying Eq. (40) on

the right by Π⊥
Uν|t̄,f

Λ
1/2
ν|t̄

, we get

[

Yν|t̄,ni

Yν+ni|t̄+ni,f−ni

]

Π⊥
Uν|t̄,f

Λ
1/2
ν|t̄

=

[

Ini

Pi

]

Z̄ν|t̄, (41)

where Pi is defined by Ψi
f (ni + 1 : f, :) = PiΨi

ni
, Z̄ν|t̄ =

(
Ψi

ni
Xν|t̄Π

⊥
Uν|t̄,f

)
Λ

1/2
ν|t̄

, Π⊥
Uν|t̄,f

is

defined as in (21) and Λν|t̄ = diag
(
λt̄−ν , . . . , λ, 1

)
, with λ the forgetting factor. Note now

that from a theoretical viewpoint, the RQ factorization used in Proposition 2 to implement

the orthogonal projection Π⊥
Uν|t̄,f

is equivalent to multiplying the data equation (40) by

Π⊥
Uν|t̄,f

(see the proof of Proposition 2). Therefore, ∆f (t) can simply be obtained as the

square of (41), that is,

∆f (t) = Σ(t)(1 : f, 1 : f) =
(

Yν|t̄,fΠ⊥
Uν|t̄,f

Λ
1/2
ν|t̄

)(

Yν|t̄,fΠ⊥
Uν|t̄,f

Λ
1/2
ν|t̄

)>

=

[

Z̄ν|t̄Z̄
>
ν|t̄ Z̄ν|t̄Z̄

>
ν|t̄(Pi)>

PiZ̄ν|t̄Z̄
>
ν|t̄ PiZ̄ν|t̄Z̄

>
ν|t̄(Pi)>

]

.

By Assumption A5 and Proposition 4 (see Appendix A), it appears clearly that rank
(
Z̄ν|t̄

)
=

ni. Hence, from the previous equation, we can also see that rank(∆f (t)) = rank(∆ni
(t)) =

ni before the switch occurs.

After the switch. However, when the system switches at time τ from a submodel i to a

submodel j for example, the equation (10) does not hold any longer as there will be in the

Hankel matrix formed by the outputs, data generated by two different submodels. Below,

we give an illustration of the changes affecting the data equation during the transition from

4One can indeed show that when the input is PE(f + ni), this relation holds.
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i to j. With t̄ = τ − f , one can write on a horizon [τ − f, τ + f − 1]

τ − 1,

[

yf (t̄)

−−

]

=

[

Γi
fx(t̄)

−−

]

+

[

H i
fuf (t̄)

−−

]

τ,

[

yf−1(t̄+ 1)

y1(t̄+ f)

]

=

[

Γi
f−1x(t̄+ 1)

Γj
1x(t̄+ f)

]

+

[

H i
f−1uf−1(t̄+ 1)

Hj
1u1(t̄+ f)

]

...
... =

... +
...

τ + f − 2,

[

y1(t̄+ f − 1)

yf−1(t̄+ f)

]

=

[

Γi
1x(t̄+ f − 1)

Γj
f−1x(t̄+ f)

]

+

[

H i
1u1(t̄+ f − 1)

Hj
f−1uf−1(t̄+ f)

]

τ + f − 1,

[

−−
yf (t̄+ f)

]

=

[

−−
Γj

fx(t̄+ f)

]

+

[

−−
Hj

fuf (t̄+ f)

]

,

where we specify that the time indices τ − 1, τ , · · · , τ + f − 1 (first column of the table)

refer respectively to the last times indices of the data vectors yf (t̄), y1(t̄+1), · · · , yf (t̄+f).

It is an intuitive fact that such a transition shall very likely cause Algorithm 1 to

overestimate the order. This is because the mixed data generated by both submodels i

and j (assumed to be distinguishable enough) can no longer be fit to one linear model.

Therefore, the "nice" structure of the matrix Σ that allowed the extraction of the order

is now destroyed. Next, we derive a condition under which the transition (as described

above) induced by the switch in the data equation does not, in principle, modify the order

estimate provided by Algorithm 1.

Proposition 3. Let τ be a switching time at which the system switches from a submodel

i to a submodel j. Let τo = τ − ni, ν = τ − τdwell, where τdwell is the minimum dwell time

and let the noise {v(t)} be identically null in (32). Assume that

- only the submodel i has been active on [ν, τ − 1],

- Assumption A5 holds for a certain t̄ ∈ [ν, τ − f + 1], where f is strictly greater than

all the orders of the system submodels (max(nq) < f � τdwell),

- Assumption A4 holds for each submodel,

- the matrix Aq is nonderogatory for all discrete state value q,

- the weight vector γ is such that rank
(
Ψq

nq

)
= nq for all discrete state value q.

Then, rank (∆ni+1(t)) = rank (∆ni
(t)) = ni for all t ∈ [τ, τ + f ] if and only if

[

x(τo)

u2ni
(τo)

]

∈ null
(
Mij

)
, (42)
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where ∆r(t) is defined as above and Mij is defined as in (36) and x(τo) ∈ R
ni. The

notation null
(
Mij

)
refers here to the null space of Mij .

Proof. Let τo = τ − ni and τ1 = τ + ni. Since we are interested here only in looking at

the rank of ∆ni+1(t), where t ∈ [τ, τ + f ], we can set f = l = ni + 1. Then, consider the

system equations written on [ν, τ1]:

YΠ⊥
U =

[

Yν|τo−1,ni
Yτo|τ−1,ni

Yν+ni|τ−1,1 Yτ |τ1−1,1

]

Π⊥
U

=

[

Ψi
ni
Xν|τo−1 Ψmix

Ψi
l(l, :)Xν|τo−1 ψ>

mix

]

Π⊥
U +

[

Hi
ni
Uν|τo−1,ni

Hmix

Hi
l(l, :)Uν|τo−1,l h>

mix

]

Π⊥
U ,

(43)

where

U = Uν|τ−1,l ∈ R
lnu×(τ−ν), Y = Yν|τ−1,l ∈ R

l×(τ−ν),

ψ>
mix =

[

c̄>j x(τ) c̄>j Ajx(τ) · · · c̄>j A
ni−1
j x(τ)

]

,

h>mix =
[

M j
1u1(τ) M j

2u2(τ) · · · M j
niuni

(τ)
]

,

Ψmix =

[[

Ψi
ni
x(τo)

−−

]

,

[

Ψi
ni

(2 : ni, :)x(τo)

Ψj
1x(τ)

]

, · · · ,
[

Ψi
ni

(ni, :)x(τo)

Ψj
ni−1x(τ)

]]

,

Hmix =

[[

Hi
ni
uni

(τo)

−−

]

,

[

Hi
ni

(2 : ni, :)uni
(τo)

Hj
1u1(τ)

]

, · · · ,
[

Hi
ni

(ni, :)uni
(τo)

Hj
ni−1uni−1(τ)

]]

,

with M j
1 = d̄>j and M j

q =
[

c̄>j A
q−2
j Bj · · · c̄>j Bj d̄>j

]

for q ≥ 2. It is important to notice

that the last vector of the matrix Y in Eq. (43) is constructed from time τ − 1 to time

τ1 − 1.

We first show that the first ni rows of the matrix on the left hand side of (43), namely

YΠ⊥
U , where Y = Yν|τ−1,l, are linearly independent. Assumption 5 is assumed to hold

for some t̄ < τ − f + 1. Then, the data Yν|t̄,l and Uν|t̄,l are generated by a linear model

(namely the submodel i), and we can hence use Proposition 4 to conclude that

[

Yν|t̄,l

Uν|t̄,l

]

has ni + lnu linearly independent columns. By writing

[

Y
U

]

=

[

Yν|t̄,l Yt̄+1|τ−1,l

Uν|t̄,l Ut̄+1|τ−1,l

]

,

it appears clearly that

rank

([

Y
U

])

≥ ni + lnu.

Now by Lemma 2 in [35], we easily get rank
(
YΠ⊥

U

)
≥ ni. Note that this result holds also

for l = ni. Hence the first ni rows of YΠ⊥
U ∈ R

l×(τ−ν) are linearly independent. On the
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other hand, note that5

∆l(τ1 − 1) =
(

YΠ⊥
UΛ

1/2
ν|τ−1

)(

YΠ⊥
UΛ

1/2
ν|τ−1

)>
,

where the forgetting weights matrix Λν|τ−1 defined as above is nonsingular. Hence, since

the square diagonal matrix Λτ−1 is nonsingular, we have rank (∆l(τ1 − 1)) = rank
(
YΠ⊥

U

)
.

Consequently, we will, in the following, study the rank of YΠ⊥
U instead of that of ∆l(τ1−1).

We are now left with proving that the (ni + 1)-th row of YΠ⊥
U (and therefore that of

∆l(τ1−1)) is a linear combination of its first ni rows if and if (42) holds. This is equivalent

to saying that there exists α ∈ R
ni such that

[

Ψi
l(l, :)Xν|τo−1 +Hi

l(l, :)Uν|τo−1,l − α>
(
Ψi

ni
Xν|τo−1 +Hi

ni
Uν|τo−1,ni

)

ψ>
mix + h>mix − α> (Ψmix +Hmix)

]

Π⊥
U = 0

(44)

Consequently, the matrix that multiplies Π⊥
U in (44) can be written as a linear combination

of the rows of U . Let U be partitioned similarly to (43) as U =
[

Uo U1
]

, with Uo =

Uν|τo−1,l. Then there exists an r ∈ R
lnu such that







Ψi
l(l, :)Xν|τo−1 − α>Ψi

ni
Xν|τo−1 +

([

−α>Hi
ni

0
]

+Hi
l(l, :)

)

Uo = r>Uo

ψ>
mix + h>mix − α> (Ψmix +Hmix) = r>U1.

(45)

By using the Cayley-Hamilton theorem, we have Ψi
l(l, :) = c̄>i A

ni

i = −(ai)>Ψi
ni

, where

ai =
[

ai
0 · · · ai

ni−1

]

∈ R
ni is a vector formed with the coefficients of the characteristic

polynomial of Ai. Thanks to this property, the first equation of (45) can be rewritten as

−
(
(ai)> + α>

)
Ψi

ni
Xν|τo−1 +

([

−α>Hi
ni

0
]

+Hi
l(l, :)

)

Uo = r>Uo. (46)

By multiplying this relation by Π⊥
Uo , we get

−
(
(ai)> + α>

)
Ψi

ni
Xν|τo−1Π

⊥
Uo = 0. (47)

Since Ψi
ni
Xν|τo−1Π

⊥
Uo is full row rank, Eq. (47) yields α = −ai. Then, going back to (46),

we can derive r> =
[

(ai)>Hi
ni

0
]

+Hi
l(l, :) because Uo is full row rank (see Assumption

A5). Replacing the expressions of α and r in the second equation of (45), we obtain after

some calculations

Si
(

Ψj
ni
x(τ) + (Hj

ni
−Hi

ni
)uni

(τ)
)

+RiΨi
ni
x(τo)− SiΨi

ni
Ωi

ni
uni

(τo) = 0,

where Ri, Si, Ωi
ni

are given by (35). Finally, note that the state x(τ) can be expressed as

x(τ) = Tji

(
Ani

i x(τo) + Ωi
ni
uni

(τo)
)
.

5We recall that τ1 − 1 is the last time index of the data involved in (43).

22



By substituting this expression in the previous equation, the result the condition (42)

follows.

It is easy to verify that when i = j, the condition (42) is satisfied for any state x(τo),

and any input vector u2ni
(τo). Therefore, for the switches to be detectable on [τ, τ + f ]

by inspecting the rank provided by Algorithm 1, we need to assume that the submodels i

and j are different in a certain sense. More precisely,

Assumption A6: The parameters of the constituent submodels of the switched linear

system (32) and the input sequence {u(t)} are such that for any switch from any submodel

i to any other submodel j, the following holds.

[

x(τo)
> u2ni

(τo)
>
]>

/∈ null
(
Mij

)
, (48)

where Mij is defined as in (36) and x(τo) ∈ R
ni , ni being the order of the submodel i.

If Assumption A6 holds for all possible switches, then, according to Proposition 3,

each switch increases the rank of ∆f (t). This means that a change in the dynamics or in

the zeros of the system will then be (rigorously without noise, approximately with noise)

detectable by the algorithm that estimates the order6 since such a change induces a rank

increase in the matrix Γ̄f (see also [12]). Another way to inspect a change may be for

example to keep watch on the variance of the estimates given by the identification process.

A switch can then be recognized in that it shall entail a jump in this variance (see [39] for

details about abrupt changes detection).

Remark 2. Note that the identification of both the system matrices and the discrete state

(switches detection strategy) are based on the blended output ya(t) which is the output of

the MISO system
{

x(t+ 1) = Aµt+1,µtx(t) +Bµt+1,µtu(t)

ya(t) = c̄>µt
x(t) + d̄>µt

u(t),
(49)

where c̄>µt
= γ>Cµt, d̄

>
µt

= γ>Dµt . Therefore, there may arise a problem of distinguisha-

bility of the submodels. To see this, consider for example two modes i and j with matrices

(Ai, Bi, Ci,Di) and (Aj , Bj, Cj ,Dj) in the original system (32) with Ai = Aj, Bi = Bj and

Ci 6= Cj and Di 6= Dj . Then in (49), these modes are described by (Ai, Bi, γ
>Ci, γ

>Di)

and (Aj , Bj , γ
>Cj, γ

>Dj). However, if γ ∈ null(C>
i − C>

j ) ∩ null(D>
i − D>

j ), the modes

i and j that were different in (32) become indistinguishable in (49). Fortunately, by pick-

ing the linear combination weight vector γ at random as suggested by Proposition 1, such

degenerate situations can be avoided almost surely. This fact can be proved by following a

similar procedure as in the proof of Proposition 1.

Managing the transition period is a rather challenging problem. One issue related to

this period is for example the problem of potential state basis change raised in [15]. At each

switching time, the state was computed in order to bring the matrices of all the submodels

in the same basis. By applying our method for the identification of switched systems, this

6even if it is not necessarily followed by an order change
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problem is overcome since the matrices of the submodels that have the same order are

guaranteed to be in the same basis.

When a switch occurs, pursuing the update (with wrong data) will corrupt the obtained

parameters for the submodel i. So, once a switch is detected, the learning of the submodel

i needs to be stopped and the final estimates of its parameters need to be recorded. Then,

Algorithm 1 can be re-initialized with a new submodel. As there may exist some delay δ

between the true switching instant τ and the detected switching time τ̂ , the parameters

obtained at τ̂ − δ are recorded instead. In practice, one does not know δ. Fortunately, we

have shown in Proposition 3 that this delay is theoretically less or equal to f . Therefore,

this presumed delay can be set to verify δ ≥ f .

Let S be the set of submodels that are gradually recorded as they are identified, and

let s be a counter of the number of submodels. We formally denote by M(µt) the currently

active submodel and we define a vectorized form θ(t) of the f +1 first Markov parameters:

θ(t) = vec

([

D(t)>
(
Γf (t)B(t)

)>
]>
)

∈ R
(f+1)nynu ,

where D(t) for example is the matrix D being currently (at time t) estimated and vec is

the vectorization operator. By merging two submodels M(µt) and M(m) we will mean,

replace the parameters of M(µt) by a normalized weighted sum of the parameters of M(µt)

and M(m), i.e. M(µt) ← αM(µt) + (1 − α)M(m) with 0 < α < 1. Let d (M(µt),M(j))

be a distance between the submodels M(µt) and M(j). There are many ways to define

metrics between dynamical systems (see e.g [40]). For the sake of simplicity, we use here the

euclidean distance d (M(µt),M(j)) =

√

(θ(t)− θ(j))> (θ(t)− θ(j)) between the vectors of

Markov parameters of the submodels M(µt) and M(j). Algorithm 2 estimates the orders

and the parameters of each constituent submodel of the switched system (32) while labeling

and classifying the different submodels obtained. We recall that this algorithm operates

under the conditions of Proposition 3 and additionally under the assumption A6.

5 Numerical examples

5.1 Example 1

In order to illustrate the procedure presented above let us consider a numerical simulation.

We consider a switched system resulting from switching among four linear submodels M1,

M2, M3, M4 of order respectively 2, 2, 4, 3.
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Algorithm 2 Switches detection and submodels identification and classification

1. Initialization: set S ← ∅, s← 1 and create a submodel M(µt).

2. Update M(µt) using Algorithm 1 until a switch occurs (detected using Proposition
3).

3. Then record M(µt): S ← S ∪ {M(µt)}, and create a new submodel.

4. When the current estimates of parameters have converged, in the sense that
‖θ(t)− θ(t− 1)‖ < ηoθ(t− 1) for some user-defined threshold ηo > 0 and for some t,
then classify the submodel M(µt) as follows. Let η be a user-specified threshold, and

M(m) = arg min
M(j)∈S

d
(
M(µt),M(j)

)
.

If d
(
M(µt),M(m)

)
< η, then, merge M(µt) and M(m),

If d
(
M(µt),M(m)

)
≥ η, then M(µt) is new and so s← s+ 1.

5. Go to step 2 and keep repeating this procedure.

M1 :







A1 =

[

0.5386 −0.5812

−0.5812 −0.4745

]

, B1 =

[

0.7332 −1.745

0 0.4392

]

C1 =
[

−0 0.57762.102 0
]

D1 =

[

1.432 0

0 0

]

,

M2 :







A2 =

[

0.08754 −0.8488

0.8488 0.08754

]

, B2 =

[

0 −0.9219

0 0

]

C2 =

[

0.6617 −0.6294

0 0.01849

]

, D2 =

[

0 0

0 0.0354

]

,

M3 :







A3 =








−0.3382 −0.3114 0.598 −0.1969

−0.465 −0.5806 −0.1201 0.3968

−0.01017 −0.3989 −0.6035 −0.4613

0.5263 −0.3633 −0.004035 0.06349








, B3 =








−1.445 −0.8587

1.886 −0.9502

0.8409 −0.2533

0.1275 0.9448








C3 =

[

−0.5347 −0.2918 −0.02547 0

1.583 −0.8105 0.838 0.6313

]

, D3 =

[

0 0.61

0.6143 0

]

,

M4 :







A4 =






0.2397 −0.522 −0.4535

−0.522 −0.06531 −0.4436

−0.4535 −0.4436 0.3772




 , B4 =






0 0.5096

2.143 0

−0.8066 −0.6178






C4 =

[

0.3859 1.495 0

1.202 0.4929 −0.2108

]

, D4 =

[

0 0.8659

0.287 0.527

]

.
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The input signal is chosen as a white noise of variance unity. The simulation is run with

an additive output white noise in the proportion of an SNR = 35 dB. The switching times

are 500, 1000, 1500 respectively for the transitions M1 → M2, M2 → M3, and M3 → M4.

Prior to the identification process, we show in Table 5.1 that, when driven by the excitation

input, the model defined above satisfy the assumption A6. Then, we apply Algorithm 1

with the following set of user-defined parameters : f = 7 > maxj (nj), λ = 0.9 so as to

allow a fast convergence while smoothing the parameters estimated; To = 0.1 is supposed

to be slightly greater than the variance σ2
v of the noise; the weights vector γ is drawn at

random.

In Figure 1 are depicted the order estimate and the magnitude of the estimated model

poles versus the time samples. For the readability of this plot, we need to specify that

the subsystem M1 has two real poles; M2 has a pair of complex poles; M3 possesses two

pairs of complex poles; the poles of M4 are composed of three real poles. Estimates are in

dashed line while true parameters are in solid line.

At each switching time we can notice that the estimate of the order increases suddenly up

to f even when there is no change in the order. As a result of a switch, this phenomenon

is attributable to the presence of mixed data (generated by two different submodels) in

the estimation window. The switching times are detected with a relatively small delay

(about f samples at most) in accordance with Proposition 3. The order tracking algorithm

detects quickly the switch by jumping to f but its convergence to the real order of the

next submodel takes a certain time. This is rather understandable since a convergence is

possible only after a certain consistent amount of data has been recorded.

Figure 2 plots the four first Markov Parameters of the model estimated together with that

of the actual system. It turns out that the parameters of both the model and the true

system are well superposed and that the proposed identification scheme yields good results

in the presence of noise. Again, the main interest of this recursive approach is the ability

of labeling the different operating modes as they appear, avoiding thus that certain modes

go undetected as it may occur in the case of batch identification methods for switched

systems.

On the same model given above, and with the same set of tuning parameters, we carried

out a Monte-Carlo simulation of size 100 with different realizations of the input and the

noise processes. In order to give an illustrative insight of the performances, we plotted

in Figure 3 the mean value of the orders and poles estimates obtained then. The results

show clearly on our example that the algorithm detects correctly the orders although the

detected switching times may vary slightly.

To further test the potentialities of our algorithm, we ran it on a switched system whose

Switch M1 →M2 M2 →M3 M3 →M4

M
ij
×

[
x(τo)

u2ni
(τo)

] [
−0.7897
−2.1127

] [
−1.0523
−0.9373

]







4.4441
5.6355
5.5232
1.2509







Table 1: Verification of the assumption A6 for Example 1, driven by a white noise input.
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Figure 1: Estimates of the submodels orders and poles (magnitude) obtained on-line. The vertical
lines indicate the switching times. The top subfigure represents the estimates obtained for the
orders of the submodels. The bottom subfigure represents the magnitude of the submodels poles.

submodels are slowly time-varying. The considered system is composed of the second-order

submodels M1, M2 whose poles are now varying in magnitude. The variations are created

by multiplying the A-matrix of the submodel M1 by 1 − 5.10−2
√
t− t1 and that of the

submodel M2 by 1−10−2
√
t− t2, where t1 = 0 and t2 = 1000. Figure 4 depicts the results

obtained. M1 is active on [0, 1000]; its poles vary slowly in magnitude until they reach

zero. In the meantime, the order decreases from 2 to 1 around 400 and increases when

a pair of poles becomes again detectable. M2 is active on [1000, 2000] with much slower

variations, the order does not change and the estimates follow almost perfectly the true

parameters.

5.2 Example 2

To further test the performance of the proposed method, we consider the simulation exam-

ple utilized in [15]. In that work, the switching times were assumed to be known and the

submodels were assumed to have the same order. Here, neither the switching times, nor the

orders (possibly different from a submodel to another) are known. Another difference with

the method in [15] is that our algorithm works online. The switched system is composed

of four second-order SISO submodels represented by
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Figure 2: Representation of the four first Markov Parameters (MP) of the real system together with
that of the model versus the time samples (a): elements of matrix D ∈ R

ny×nu , (b): CB ∈ R
ny×nu ,

(c): CAB ∈ R
ny×nu , (d): CA2B ∈ R

ny×nu .
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Figure 3: Estimates of the poles and the orders obtained from a Monte-Carlo simulation of size
100.
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Figure 4: Estimates of the poles and the orders of a switched time-varying system.







A1 =

[

0 0.8

−0.8 0.5

]

, B1 =

[

0.4

0

]

,

C1 =
[

1 0
]

, D1 = 0,







A2 =

[

0 0.5

−0.5 0

]

, B2 =

[

1

0.5

]

,

C2 =
[

1 0
]

, D2 = 0,







A3 =

[

0.8 0

0 −0.3

]

, B3 =

[

1

2

]

,

C3 =
[

1 1
]

, D3 = 0,







A4 =

[

0 0.4

−0.4 0

]

, B4 =

[

1

0

]

,

C4 =
[

1 0.5
]

, D4 = 0,

where the B-matrix of the third submodel has been slightly modified to make this latter

submodel reachable that is, compatible with our assumptions. We let the exciting input

have the same statistical properties as in the previous example and the noise be of the

same level. The set of user-defined parameters f, λ, To is taken to be roughly the same

as in Example 1. Then, a Monte-Carlo simulation of size 100 is carried out with different

realizations of the input and the output noise. The results obtained are represented in

Figure 5. One can notice that the orders and the poles of the submodels are correctly

estimated. The switching times are also well detected based on Proposition 3.

6 Conclusion

This work demonstrates the possibility to identify on-line MIMO linear switched systems

in a recursive way using a detection approach. A structured subspace identification scheme

has been conveniently prepared to be applied for blindly identifying online the submodels

orders and parameters. The switching times are easily recognized since they are followed

by an increase in the estimated order. The proposed method may be applied as well to time

invariant systems as to slowly time-varying systems. Obviously, some data are inevitably

lost in this procedure during the switching transition. In comparison with the existing

techniques, the objective here is not so much to fully cluster the data generated by each
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Figure 5: The top subfigure represents the estimates obtained for the orders of the submodels (Ex-
ample 2). The bottom subfigure represents the magnitude of the submodels poles. The estimates
are in dash line while the poles of the true system are in solid. Sometimes only one curve is given
per submodel (magnitude of two complex conjugate poles), sometimes two curves are presented for
the same submodel (magnitudes of two real poles).

submodel but to obtain instead the submodel of the current operating mode and update its

parameters recursively while waiting for any change occurrence. A noteworthy drawback of

the off-line methods for switched linear systems identification is that the data basis which

is used may often be incomplete so that some functioning modes may be ignored. The

scheme proposed here allows to discard this problem but requires unfortunately a certain

dwell time.

Appendix A

We state in this Appendix a useful result that is referred to throughout the paper.

Proposition 4. Assume that the system (1) is reachable and observable and let v(t) be

identically null in (1). Consider the input-output data generated by (1) and construct the

data matrices U = U1,f,N , Y = Y1,f,N and X = X1,N similarly as in (3) with f ≥ n. Then

the following statements are equivalent.

1. rank

([

X

U

])

= n+ fnu.

2. rank(XΠ⊥
U ) = n, where

Π⊥
U = IN − U>(UU>)−1U, (50)

IN being the identity matrix of order N .

3. rank

([

Y

U

])

= n+ fnu.
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4. rank
(
YΠ⊥

U

)
= n.

Since all the signals involved in the data matrices above are assumed to be stochastic, all

rank properties should have been stated in the limits. However, these properties should

also hold as such for a sufficiently large N .

Appendix B: proof of Proposition 2

For easier manipulations, let us omit the matrices subscripts in the equation (10). Then,

we have

Ȳ = Γ̄fX + H̄fU + V̄ .

From the RQ factorization (18), it follows that

Ȳ = R21Q1 +R22Q2 = Γ̄fX + H̄fR11Q1 + V̄ .

Then, multiplying this equation on the left by S and on the right by Q>
2 , one gets

SR22 = SȲ Q>
2 =

[

In

P

]

TXQ>
2 + SV̄ Q>

2 .

since Q1Q
>
2 = 0.

Next, we compute the square of this equation and divide it by N

1

N
SR22R

>
22S

> =

[

In

P

]

1

N
(TX)Q (TX)>

︸ ︷︷ ︸

(I)

[

In

P

]>

+
1

N
SV̄QV̄ >S>

︸ ︷︷ ︸

(II)

+S
1

N

(

Γ̄fXQV̄ > +
(

Γ̄fXQV̄ >
)>
)

︸ ︷︷ ︸

(III)

S>, (51)

where Q = Q>
2 Q2 = I − Q>

1 Q1 = I − U>
(
UU>

)−1
U . Note that the existence of Q is

closely related to the persistency of excitation assumption which states concretely that

UU> is full rank.

The equation (51) can be simplified as follows:

• Firstly, using the expression of Q, (II) can be written as

(II) = S

(

1

N
V̄ V̄ > − 1

N
V̄ U>

(
1

N
UU>

)−1 1

N
UV̄ >

)

S>.

From the independency and ergodicity properties of the process {v̄(t)} and the fact

that it is statistically uncorrelated with {u(t)} (Assumptions A1-A2), the second

term in the parentheses appear to be 0 as N → ∞. Then, it remains only that

(II)→ limN→∞
1
N S

(
V̄ V̄ >

)
S> = σ2

vR̄v with R̄v defined as in (22).
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• Secondly, (III) will be shown to vanish asymptotically. Notice that

1

N
Γ̄fXQV̄ > =

1

N
Γ̄fXV̄

> − Γ̄f
1

N
XU>

(
1

N
UU>

)−1 1

N
UV̄ >. (52)

Note also that we can write V̄ = DKV , where DK is the block diagonal matrix

DK = diag(K(γ), · · · ,K(γ)) ∈ R
fny×fny , with K(γ) defined as in (9). Then

limN→∞

(
1
NUV̄

>
)

= limN→∞

(
1
NUV

>D>
K

)
= E

[
uf (t)vf (t)>

]
D>

K = 0 by Assump-

tion A2. As a consequence, the second term of (52) tends to zero as N →∞.

Now we need to show that the first term in the right hand side of (52) vanishes

asymptotically. To this purpose, we write

1

N
XV̄ > =

1

N

f
∑

t=1

x(t)v̄f (t)> +
1

N

N∑

t=f+1

x(t)v̄f (t)>. (53)

Clearly, limN→∞

(
1
N

∑f
t=1 x(t)v̄f (t)>

)

= 0 since
∑f

t=1 x(t)v̄f (t)> is a fixed quantity.

To see that limN→∞

(
1
N

∑N
t=f+1 x(t)v̄f (t)>

)

= 0, let us use Eq. (1) to write

{

ȳf (t− f) = Γ̄fx(t− f) + H̄fuf (t− f) +DKvf (t− f)

x(t) = Afx(t− f) + Ωfuf (t− f),
(54)

where Ωf =
[

Af−1B · · · AB B
]

. We solve the first equation of (54) for x(t− f)

and obtain

x(t− f) = Γ̄†
f

(
ȳf (t− f)− H̄fuf (t− f)−DKvf (t− f)

)
.

Then, a combination with the second equation of (54) yields

x(t) = Af Γ̄†
f ȳf (t− f) +

(
Ωf −Af Γ̄†

fH̄f

)
uf (t− f)−Af Γ̄†

fDKvf (t− f).

The second term of (53) becomes

1

N

N∑

t=f+1

x(t)v̄f (t)> =Af Γ̄†
fDK

(
1

N

N∑

t=f+1

yf (t− f)vf (t)>
)

D>
K

+
(
Ωf −Af Γ̄†

f H̄f

)
(

1

N

N∑

t=f+1

uf(t− f)vf (t)>
)

D>
K

−Af Γ̄†
fDK

(
1

N

N∑

t=f+1

vf (t− f)vf (t)>
)

D>
K .

(55)

It is a known fact [41] that, under Assumptions A2-A3, the past output vector

yf (t−f) is uncorrelated with the future noise vf (t). As a consequence, the first term

of Eq. (55) vanishes asymptotically. Moreover, by Assumption A2, the two others
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terms of Eq. (55) tends to zero as N →∞. Hence,

lim
N→∞

1

N
XV̄ > = 0 and therefore lim

N→∞
(II) = 0.

• Finally, by using the expression Q = Π⊥
U , we compute (I) simply as

lim
N→∞

(I) = lim
N→∞

1

N
ZΠ⊥

UZ
>, with Z = TX.

These three points put together complete the proof.
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