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On Fibonacci knots

P. -V. Koseleff, D. Pecker

August 2, 2009

Abstract

We show that the Conway polynomials of Fibonacci links are Fibonacci polynomials modulo
2. We deduce that, when n 6≡ 0 (mod 4) and (n, j) 6= (3, 3), the Fibonacci knot F

(n)
j is not a

Lissajous knot.
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1 Introduction

Fibonacci knots (or links) were defined by J. C. Turner ([11]) as rational knots with Conway notation

C(1, 1, . . . , 1). He also considered the generalized Fibonacci knots F
(n)
j = C(n, n, . . . , n), where n is

a fixed integer and the sequence (n, . . . , n) has length j.

In this paper we determine the Conway and Alexander polynomials modulo 2 of Fibonacci knots.
We show that the Conway polynomial of a generalized Fibonacci knot is a Fibonacci polynomial
modulo 2.

As an application, we show that if n 6≡ 0 (mod 4) and (n, j) 6= (3, 3) the Fibonacci knot F
(n)
j is

not a Lissajous knot.

Our results are obtained by continued fraction expansions.

2 Conway notation and Fibonacci knots

The Conway notation (J. H. Conway, [3]) is particularly convenient for the important class of rational
(or two-bridge) knots. The Conway normal form C(a1, a2, ..., am) of a rational knot (or link), is best
explained by the following figure. The number of twists is denoted by the integer |ai|, and the sign
of ai is defined as follows: if i is odd, then the right twist is positive, if i is even, then the right twist
is negative. On Fig. 1 the ai are positive (the a1 first twists are right twists).

The rational links are classified by their Schubert fractions

α

β
= a1 +

1

a2 +
1

a3 +
1

· · · +
1

am

= [a1, . . . , am], α > 0. (1)

1
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Figure 1: Conway’s normal forms, m odd, m even

Two rational links of fractions
α

β
and

α′

β′
are equivalent if and only if α = α′ and β′ ≡ β±1(mod α).

The integer α is the determinant of the link, it is odd for a knot, and even for a two-component link.

The following result is a useful consequence of the continued fraction description of rational links
(see [4] p. 207).

Theorem 1. Any rational link has a Conway normal form C(2a1, 2a2, . . . , 2am).

The Fibonacci knots (or links) are defined by their Conway notation Fj = C(1, 1, . . . , 1), where

j is the number of crossings. The Schubert fraction of Fj is
Fj+1

Fj
, and its determinant is the

Fibonacci number Fj+1. It is the reason why J. C. Turner named these knots Fibonacci knots. He

also introduced the generalized Fibonacci knots F
(n)
j = C(n, n, . . . n), where n is a fixed integer.

We first observe

Proposition 2. F
(n)
j is a knot if and only if n ≡ 0 (mod 2) and j ≡ 0 (mod 2) or n 6≡ 0 (mod2)

and j 6≡ 2 (mod3).

Proof. Let us consider the Möbius transformation P (z) = [n, z] = n+
1

z
. It is convenient to consider

its matrix notation P =
(

n 1
1 0

)

. Let
α

β
= [n, . . . , n] = P j(∞), it is also

( α

β

)

= P j
(

1
0

)

.

If n ≡ 1 (mod 2) then P ≡
(

1 1
1 0

)

(mod 2), P 2 ≡
(

0 1
1 1

)

(mod 2), P 3 ≡ 1l (mod 2). We deduce

that α ≡ β ≡ 1 (mod 2) when j ≡ 1 (mod3), α ≡ 0, β ≡ 1 (mod 2) when j ≡ 2 (mod3) and
α ≡ 1, β ≡ 0 (mod 2) when j ≡ 0 (mod3). The case n ≡ 0 (mod 2) is similar. 2



Fibonacci Knots 3

F
(1)
3 F

(1)
4 F

(2)
1

F
(2)
2 F

(2)
3 F

(3)
1

F
(3)
2 F

(3)
3

Figure 2: Some Fibonacci knots and links

3 The Conway and Alexander polynomials

The Alexander polynomial, discovered in 1928, is one of the most famous invariant of knots. J. H.
Conway discovered an easy way to calculate it. He introduced the “Skein relations” which relate the
polynomial of a link K to the polynomials of links obtained by changing one crossing of K.

The following result is a beautiful application of his algorithm.

Theorem 3 ([4]). Let K = C(2a1, 2a2, . . . , 2am) be a rational knot (or link).
The Conway polynomial of K is

∇K(z) = ( 1 0 )
(
−a1z 1

1 0

)(
a2z 1
1 0

)

· · ·
(

(−1)mamz 1
1 0

)(
1
0

)

The Alexander polynomial of K is

∆K(t) = ∇K

(
t1/2 − t−1/2

)
.

Let us consider a simple example.

Example 4 (The torus links). The torus link T(2, m) has Conway normal form C(m) = F
(m)
1 .

It is the link of fraction
m

1
or

m

1 − m
. We have the continued fraction (of length m − 1)

m

1 − m
= [−2, 2, . . . , (−1)m−1 · 2].

Hence, the Conway polynomial is

∇(z) = ( 1 0 )
(

z 1
1 0

)m−1 (
1
0

)

.
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It is well known that
(

z 1
1 0

)m

=

(
fm+1(z) fm(z)
fm(z) fm−1(z)

)

where fm(z) are the Fibonacci polynomials defined by f0(z) = 0, f1(z) = 1, fm+1(z) = zfm(z) +
fm−1(z) ([12]). We conclude that the Conway polynomial of T(2, m) is the Fibonacci polynomial
fm(z) (see also [6]). If m = 2k + 1 (i.e. T(2, m) is a knot) we obtain the Alexander polynomial

∆(t) = f2k+1

(
t1/2 − t−1/2

)
= (tk + t−k) − (tk−1 + tk−1) + · · · + (−1)k.

The recently introduced Lissajous knots ([2, 5, 10, 4]) are non singular Lissajous space curves. We
will show that in many cases, Fibonacci knots are not Lissajous knots. Let us first recall the following

Theorem 5 ([5, 10]). If K is a rational Lissajous knot then ∆K(t) ≡ 1 (mod 2).

Consequently, we see that a non trivial torus knot is never a Lissajous knot.

Moreover, Theorem 3 provides many examples of knots which are not Lissajous knots.

Corollary 6. Let bi ≡ 2 (mod 4), m > 1. The Conway polynomial of C(b1, . . . , bm) is equivalent to
fm+1(z) (mod 2).

Corollary 7. If n ≡ 2 (mod4), the modulo 2 Conway polynomial of F
(n)
j is fj+1(z).

Hence these knots are not Lissajous knots by Theorem 5.

The following result is an immediate consequence of Theorem 3.

Corollary 8. If n ≡ 0 (mod4), the modulo 2 Conway polynomial of F
(n)
j is 0 if j is odd, and 1 if

j is even.

It is not known whether the knot F
(4)
2 = C(4, 4) is Lissajous or not (see [1]).

4 The modulo 2 Conway polynomial of Fibonacci knots

We shall now study the knots F
(n)
j , where n = 2k + 1 is an odd integer.

Lemma 9. Let n = 2k + 1. We have the identities

[n, n, x] = [n + 1,−2, 2, . . . ,−2, 2
︸ ︷︷ ︸

2k

,−(1 + x)] (2)

[n, n, n, z] = [n + 1,−2, 2, . . . ,−2, 2
︸ ︷︷ ︸

2k

,−(n + 1),−z]. (3)

Proof. Let us prove the first formula. We shall use matrix notations for Möbius transformations. Let

G(u) = [−2, 2, u] =
3u + 2

−2u − 1
. Its matrix is G =

(
3 2
−2 −1

)

, and consequently we get by induction

Gk =
(

1 + 2k 2k

−2k 1 − 2k

)

=
(

n n − 1
1 − n 2 − n

)

. (4)
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Let

M(x) = [n + 1,−2, 2, . . . ,−2, 2,−(1 + x)], L(u) = [n + 1, u], T (x) = −x − 1. (5)

The corresponding matrices are

L =
(

n + 1 1
1 0

)

, T =
(

1 1
0 −1

)

, M = LGkT. (6)

Consequently

M =
(

n + 1 1
1 0

) (
n n − 1

1 − n 2 − n

)(
1 1
0 −1

)

=

(

n2 + 1 n

n 1

)

=
(

n 1
1 0

)2

, (7)

that is M(x) = [n, n, x] which proves the first identity. If we substitute x = [n, z] in Formula (2),
we obtain the second identity (3). 2

Corollary 10. Let n = 2k + 1. We have the continued fractions

[n, n] = [n + 1,−2, 2, . . . ,−2, 2
︸ ︷︷ ︸

2k

], [n, n, n] = [n + 1,−2, 2, . . . ,−2, 2
︸ ︷︷ ︸

2k

,−(n + 1)].

Let us denote [n]j = [n, . . . , n
︸ ︷︷ ︸

j

]. If j 6≡ 1 (mod 3), we get the continued fractions

[n]j+3 = [n + 1,−2, 2, . . . ,−2, 2
︸ ︷︷ ︸

2k

,−(n + 1),−[n]j ].

When j ≡ 1 (mod3), there is no continued fraction expansion of [n]j with even quotients, by Prop.

2. In this case, we shall get a continued fraction expansion for
α

β − α
, which is another fraction of the

same knot. Let s be the Möbius transformation defined by s(x) =
x

1 − x
. We have s(

α

β
) =

α

β − α
.

Proposition 11. Let n = 2k + 1. We have the continued fractions

s([n]1) = s(n) =
n

1 − n
= [−2, 2, . . .− 2, 2

︸ ︷︷ ︸

2k

], n 6= 1, (8)

s([n]j+3) = [−2, 2, . . . ,−2, 2
︸ ︷︷ ︸

2k

,−(n + 1),−(n + 1),−s([n]j)] (9)

.

Proof. The first formula has already been proved. Let us prove the second formula. We shall use

the Möbius maps G(x) = [−2, 2, x] =
3x + 2

−2x − 1
, Q(x) = [−(n + 1), x], R(x) = −x corresponding to

G =
(

3 2
−2 −1

)

, Q =
(
−(n + 1) 1

1 0

)

, R =
(

1 0
0 −1

)

.
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Let us define the Möbius transformation H = Gk · Q2 · R. We obtain, using Form. (4)

H =

(

n3 + n2 + 2n + 1 n2 + 1
−n3 − n n − n2 − 1

)

. (10)

Let S be a matrix corresponding to the Möbius map s. We have

S−1HS =
(

1 0
1 1

)

H
(

1 0
−1 1

)

=

(

n3 + 2n n2 + 1
n2 + 1 n

)

=
(

n 1
1 0

)3

,

and then

S
(

n 1
1 0

)3

= HS.

This means that s
(
[n, n, n, x]

)
= h ◦ s(x), which proves our formula. 2

Remark 12. By considering the case n = 1 where h(x) = [−2,−2,−x], we obtain the following
interesting continued fractions of length 2m:

F3m+2

F3m
= [2, 2,−2,−2, . . . , (−1)m−1 · 2, (−1)m−1 · 2]

Using the corollary 10 we obtain similarly

F3m+1

F3m
= [2,−2,−2, 2, 2, . . . , (−1)m−1 · 2, (−1)m−1 · 2, (−1)m · 2]

of length 2m and
F3m+3

F3m+2
= [2,−

F3m+2

F3m
] of length 2m + 1.

Of course, these fractions correspond to Fibonacci knots (or links). They are not Lissajous knots
because of corollary 6.

It is straightforward to calculate the Conway polynomials of our Fibonacci knots, using Prop. 11.

Theorem 13. Let us denote by ∇
(n)
j (z) the modulo 2 Conway polynomial of the Fibonacci link

F
(n)
j . We have ∇

(n)
j (z) = fN (z) where

{
If n ≡ 1 (mod4), N = ⌊ j+2

3 ⌋(n − 2) + j + 1,

If n ≡ 3 (mod4), N = ⌊ j+2
3 ⌋(n + 2) − (j + 1).

(11)

Corollary 14. If n 6≡ 0 (mod4) and (n, j) 6= (3, 3), the Fibonacci link F
(n)
j is not a Lissajous knot.

It is not known whether the knot F
(3)
3 = C(3, 3, 3) is a Lissajous knot ([1]).

Question 15. It would be interesting to study the wider classes of knots defined by their Conway
notation C(±n,±n, . . .± n).

If n = 1 we obtain all the rational knots ([8, 9]).
If n = 2 we obtain the important class of rational fibered knots (see [7]).

In general, we obtain knots with fractions
α

β
such that (α, β) ≡ (0,±1) or (±1, 0) (modn).

Acknowledgements: We would like to thank Pr. C. Lamm for having suggested this problem to
us.
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