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A stochastic system of particles is considered in which the sizes of the particles increase by successive binary mergers with the constraint that each coagulation event involves a particle with minimal size. Convergence of a suitably renormalised version of this process to a deterministic hydrodynamical limit is shown and the time evolution of the minimal size is studied for both deterministic and stochastic models.

Introduction

Coagulation models describe the evolution of a population of particles increasing their sizes by successive binary mergers, the state of each particle being fully determined by its size. Well-known examples of such models are the Smoluchowski coagulation equation [START_REF] Smoluchowski | Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen[END_REF][START_REF] Smoluchowski | Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen[END_REF] and its stochastic counterpart, the Marcus-Lushnikov process [START_REF] Lushnikov | Coagulation in finite systems[END_REF][START_REF] Marcus | Stochastic coalescence[END_REF], and both have been extensively studied in recent years (see [START_REF] Aldous | Deterministic and stochastic models for coalescence (aggregation, coagulation) : a review of the mean-field theory for probabilists[END_REF][START_REF] Bertoin | Random Fragmentation and Coagulation Processes[END_REF][START_REF] Ph | On coalescence equations and related models[END_REF][START_REF] Leyvraz | Scaling theory and exactly solved models in the kinetics of irreversible aggregation[END_REF][START_REF] Norris | Smoluchowski's coagulation equation: uniqueness, nonuniqueness and a hydrodynamical limit for the stochastic coalescent[END_REF][START_REF] Wattis | An introduction to mathematical models of coagulation-fragmentation processes: a deterministic mean-field approach[END_REF] and the references therein). Another class of coagulation models has also received some interest, the main feature of these models being that the particles with the smallest size play a more important role than the others. A first example are the Becker-Döring equations: in that case, the (normalized) sizes of the particles range in the set of positive integers and a particle can only modify its size by gaining or shedding a particle with unit size [START_REF] Ball | The Becker-Döring cluster equations : basic properties and asymptotic behaviour of solutions[END_REF]. Another example are the min-driven coagulation equations: given a positive integer k, at each step of the process, a particle with the smallest size ℓ is chosen and broken into k daughter particles with size ℓ/k, which are then pasted to other particles chosen at random in the population with equal probability [START_REF] Carr | Self-similarity in a cut-and-paste model of coarsening[END_REF][START_REF] Derrida | Scale-invariant regimes in one-dimensional models of growing and coalescing droplets[END_REF][START_REF] Th | Convergence results for a coarsening model using global linearization[END_REF][START_REF] Menon | Dynamics and self-similarity in min-driven clustering[END_REF].

In this paper, we focus on the min-driven coagulation equation with k = 1 (that is, there is no break-up of the particle of minimal size) but relax the assumption of deposition with equal probability. More specifically, the coalescence mechanism we are interested in is the following: consider an initial configuration X = (Xi) i≥1 of particles, Xi denoting the number of particles of size i ≥ 1, and define the minimal size ℓX of X as the smallest integer i ≥ 1 for which Xi > 0 (that is, X ℓ X > 0 and Xi = 0 for i ∈ {1, . . . , ℓX -1} if ℓX > 1). We pick a particle of size ℓX, choose at random another particle of size j ≥ ℓX according to a certain law, and merge the two particles to form a particle of size ℓX + j. The system of particles thus jumps from the state X to the state Y = (Yi) i≥1 given by Y k = X k if k ∈ {ℓX , j, ℓX + j} and

Y ℓ X = X ℓ X -1 , Yj = Xj -1 , Y ℓ X +j = X ℓ X +j + 1 if j > ℓX , Y ℓ X = X ℓ X -2 , Y 2ℓ X = X 2ℓ X + 1 if j = ℓX ,
Observe that no matter is lost during this event. It remains to specify the probability of this jump to take place: instead of assuming it to be uniform and independent of the sizes of the particles involved in the coalescence event as in [START_REF] Derrida | Scale-invariant regimes in one-dimensional models of growing and coalescing droplets[END_REF], we consider the more general case where the jump from the state X to the state Y occurs at a rate K(ℓX , j), the coagulation kernel K being a positive and symmetric function defined in (N \ {0}) 2 .

A more precise description of the stochastic process is to be found in the next section, where a renormalized version of this process is also introduced. We will show that, as the total mass diverges to infinity, the renormalized process converges towards a deterministic limit which solves a countably infinite system of ordinary differential equations (Theorem 1.3). The convergence holds true provided the coagulation kernel K(i, j) does not increase too fast as i, j → ∞, a typical example being (1.1) K(i, j) = φ(i) ∧ φ(j) , i, j ≥ 1 , for some positive and non-decreasing function φ .

Well-posedness of the system solved by the deterministic limit is also investigated (Theorem 1.1) and reveals an interesting phenomenon, namely the possibility that the minimal size becomes infinite in finite time according to the growth of K (Theorem 1.4). Such a property also shows up for the stochastic min-driven coagulation process in a suitable sense (Theorem 1.5). It is worth pointing out that coagulation kernels K of the form (1.1) play a special role here.

The stochastic min-driven coagulation process

We now describe more precisely the stochastic min-driven coagulation process to be studied in this paper. It is somehow reminiscent of the Marcus-Lushnikov process [START_REF] Lushnikov | Coagulation in finite systems[END_REF][START_REF] Marcus | Stochastic coalescence[END_REF] (which is related to the Smoluchowski coagulation equation). As in this process, two particles are chosen at random according to a certain law and merged but there is here an additional constraint; namely, one of the particles involved in the coalescence event has to be of minimal size among all particles in the system. To be more precise, we fix some positive integer N and an initial condition

X N 0 = (X N i,0 ) i≥1 ∈ ℓ 1 N such that (1.2) ∞ X i=1 i X N i,0 = N ,
where X N i,0 is the number of particles of size i ≥ 1 and ℓ 1 N denotes the space of summable nonnegative and integervalued sequences (1.3) ℓ 1 N := ˘X0 = (Xi,0) i≥1 ∈ ℓ 1 (N \ {0}) : Xi,0 ∈ N for all i ≥ 1 ¯.

We next consider a time-dependent random variable X N (t) = (X N i (t)) i≥1 which encodes the state of the process at time t starting from the configuration X N 0 , its i th -component X N i (t) standing for the number of particles of size i ≥ 1 at time t ≥ 0. We assume that X N (0) = X N 0 , so that N is equal to the total mass initially present in the system. The process (X N (t)) t≥0 evolves then as a Markov process with the following transition rules: if, at a time t, the process is in the state X N (t) = X = (Xi) i≥1 with minimal size ℓX ≥ 1 (that is, X ℓ X > 0 and Xi = 0 for 1 ≤ i ≤ ℓX -1 if ℓX > 1), only a given particle among the X ℓ X particles of minimal size ℓX can coalesce with another particle and this coagulation event occurs at the rate K(ℓX , j), where j ≥ ℓX is the size of the second particle involved in the coagulation. Mathematically, this means that the process jumps f rom the state X N (t) = X to a state of the form

Y = (0, . . . , 0, X ℓ X -1, X ℓ X +1 , . . . , Xj -1, . . . , X ℓ X +j + 1, . . .) with rate K(ℓX , j)Xj
for some j > ℓX or to the state

Z = (0, . . . , 0, X ℓ X -2, X ℓ X +1 , . . . , X 2ℓ X + 1, . . .) with rate K(ℓX , ℓX )(X ℓ X -1) .
Equivalently, this means that the process waits an exponential time of parameter

λX := 0 @ ∞ X j=ℓ X K(ℓX , j)Xj 1 A -K(ℓX , ℓX)
and then jumps to the state Y with probability K(ℓX , j)Xj /λX for j > ℓX and to the state Z with probability K(ℓX , ℓX )(X ℓ X -1)/λX . Observe that, as X ℓ X could be equal to 1 or 2, there might be no particle of size ℓX after this jump and the minimal size thus increases. In addition, we obviously have

∞ X i=1 i Yi = ∞ X i=1 i Zi = ∞ X i=1 i Xi ,
so that the total mass contained in the system of particles does not change during the jumps. Consequently,

(1.4) ∞ X i=1 i X N i (t) = ∞ X i=1 i X N i,0 = N for all t ≥ 0 .
As already mentioned, one aim of this paper is to prove that, under some assumptions on the coagulation kernel K and the initial data (X N 0 ) N≥1 , a suitably renormalised version of the stochastic process converges to a deterministic limit as N tends to infinity. More precisely, we introduce XN := X N /N and, for further use, list some properties of this process. Owing to the above construction, the generator L N = (L N k ) k≥1 of this renormalised process reads

(L N k f )(ξ) = N 0 @ ∞ X j=ℓ ξ K(ℓ ξ , j) ξj h f k " ξ + e ℓ ξ +j N - e ℓ ξ N - ej N " -f k (ξ) i 1 A (1.5) -K(ℓ ξ , ℓ ξ ) h f k " ξ + e 2ℓ ξ N -2 e ℓ ξ N " -f k (ξ) i , where f = (f k ) k≥1 : ℓ 1 (N \ {0}) → ℓ 1 (N \ {0}
) and (ei) i≥1 denotes the canonical basis of ℓ 1 (N \ {0}). Moreover, the quadratic variation

Q N = (Q N k ) k≥1 of the martingale f ( XN (t)) - Z t 0 (L N f )( XN (s))ds is (Q N k f )(ξ) = N 0 @ ∞ X j=ℓ ξ K(ℓ ξ , j) ξj h f k " ξ + e ℓ ξ +j N - e ℓ ξ N - ej N " -f k (ξ) i 2 1 A (1.6) -K(ℓ ξ , ℓ ξ ) » f k " ξ + e 2ℓ ξ N - 2e ℓ ξ N « -f k (ξ) -2 .
Let β(ξ) be the drift of the process XN when it is in state ξ, so that

β(ξ) := X ξ ′ =ξ q(ξ, ξ ′ ) (ξ ′ -ξ) ,
where q(ξ, ξ ′ ) is the jump rate from ξ to ξ ′ . Taking f = id in (1.5) leads to the following formula for the drift (1.7)

8 > > > > > > > > > > > > > < > > > > > > > > > > > > > : βj (ξ) := 0 if 1 ≤ j ≤ ℓ ξ -1 , βℓ ξ (ξ) := - ∞ X j=ℓ ξ +1 K(ℓ ξ , j) ξj -2 K(ℓ ξ , ℓ ξ ) ξ ℓ ξ + 2 N K(ℓ ξ , ℓ ξ ) , βj (ξ) := K(ℓ ξ , j -ℓ ξ ) ξ j-ℓ ξ -K(ℓ ξ , j) ξj if j ≥ ℓ ξ + 1, j = 2ℓ ξ , β2ℓ ξ (ξ) := K(ℓ ξ , ℓ ξ ) " ξ ℓ ξ - 1 N « -K(ℓ ξ , 2ℓ ξ ) ξ 2ℓ ξ .
We also define

(1.8) α(ξ) := X ξ ′ =ξ q(ξ, ξ ′ ) ξ ′ -ξ 2 2 = ∞ X j=1 X ξ ′ =ξ q(ξ, ξ ′ ) ˛ξ′ j -ξj ˛2 .
It can be written in the form

α(ξ) = ∞ X j=1 αj(ξ) ,
where αj is obtained by taking f (ξ) = ξjej in (1.6), so that (1.9)

8 > > > > > > > > > > > > > > < > > > > > > > > > > > > > > : αj(ξ) := 0 if 1 ≤ j ≤ ℓ ξ -1 , αℓ ξ (ξ) := 1 N ∞ X j=ℓ ξ +1 K(ℓ ξ , j) ξj + 4 N K(ℓ ξ , ℓ ξ ) ξ ℓ ξ - 4 N 2 K(ℓ ξ , ℓ ξ ) , αj(ξ) := 1 N K(ℓ ξ , j -ℓ ξ ) ξ j-ℓ ξ + 1 N K(ℓ ξ , j) ξj if j ≥ ℓ ξ + 1, j = 2ℓ ξ , α2ℓ ξ (ξ) := 1 N K(ℓ ξ , ℓ ξ ) " ξ ℓ ξ - 1 N « + 1 N K(ℓ ξ , 2ℓ ξ ) ξ 2ℓ ξ .

Main results

For p ∈ [1, ∞), let ℓ p be the Banach space of p-summable real-valued sequences

ℓ p := 8 < : x = (xi) i≥1 : x p := ∞ X i=1 |xi| p ! 1/p < ∞ 9 = ;
.

We next define the space X1,1 of real-valued sequences with finite first moment by

(1.10) X1,1 := ( x = (xi) i≥1 : x 1,1 := ∞ X i=1 i |xi| < ∞ ) ,
which is a Banach space for the norm . 1,1 , and its positive cone

X + 1,1 := {x = (xi) i≥1 ∈ X1,1 : xi ≥ 0 for i ≥ 1} .
For m ≥ 2, let X1,m be the subspace of X1,1 of sequences having their m -1 first components equal to zero, namely

(1.11) X1,m := {x = (xi) i≥1 ∈ X1,1 : xi = 0 for i ∈ {1, . . . , m -1}} ,
and X + 1,m := X1,m ∩ X + 1,1 . We assume that there is κ > 0 such that (1.12) 0 ≤ K(i, j) = K(j, i) ≤ κ i j , i, j ≥ 1 , and δi := inf j≥i {K(i, j)} > 0 for i ≥ 1 .

Next, for i ≥ 1, we define the function b

(i) = " b (i) j " j≥1 on X1,1 by (1.13) 8 > > > < > > > : b (i) j (x) := 0 if 1 ≤ j ≤ i -1 , b (i) i (x) := -2 K(i, i) xi - ∞ X j=i+1 K(i, j) xj , b (i) j (x) := K(j -i, i) xj-i -K(i, j) xj if j ≥ i + 1 .
Let us point out here that b (i) (x) is closely related to the drift β(x) defined by (1.7) for x ∈ X1,i.

Consider an initial condition x0 = (xi,0) i≥1 such that

(1.14) x0 ∈ X + 1,1 with x1,0 > 0 and x0 1,1 = 1 .
Theorem 1.1. Assume that the coagulation kernel K and the initial condition x0 satisfy (1.12) and (1.14), respectively. There is a unique pair of functions (ℓ, x) fulfilling the following properties: (i) there is an increasing sequence of times (ti) i≥0 with t0 = 0 such that ℓ(t) := i for t ∈ [ti-1, ti) and i ≥ 1 .

We define

(1.15) t∞ := sup i≥0 ti = lim i→∞ ti ∈ (0, ∞] . (ii) x = (xi) i≥1 ∈ C([0, t∞); X1,1) satisfies x(0) = x0, (1.16) x(t) ∈ X + 1,ℓ(t) \ X 1,ℓ(t)+1 for t ∈ [0, t∞) ,
and solves

(1.17) dx dt (t) = b (ℓ(t)) (x(t)) for t ∈ [0, t∞) \ {ti : i ≥ 0} .
In addition,

(1.18) xj(t) > 0 for t ∈ (ti-1, ti] and j ≥ i + 1

and

(1.19) x(t) 1,1 = x0 1,1 = 1 for t ∈ [0, t∞) .
In other words, for each i ≥ 1, x(t) ∈ X + 1,i and xi(t) > 0 for t ∈ [ti-1, ti) and dx(t)/dt = b (i) (x(t)) for t ∈ (ti-1, ti). Given t ∈ [0, t∞), Theorem 1.1 asserts that x(t) ∈ X + 1,ℓ(t) with x ℓ(t) (t) > 0, so that ℓ(t) is the minimal size of the particles at time t.

Remark 1.2. The assumption x0 1,1 = 1 is actually not restrictive: indeed, given x0 ∈ X + 1,1 such that x1,0 > 0, the initial condition x0 = x0/ x0 1,1 fulfils (1.14). If x denotes the corresponding solution to (1.17) with minimal size ℓ and x := x0 1,1x, it is straightforward to check that the pair (ℓ, x) satisfies all the requirements of Theorem 1.1 except (1.19) which has to be replaced by x(t) 1,1 = x0 1,1 for t ∈ [0, t∞).

We now turn to the connection between the deterministic and stochastic models and establish the following convergence result.

Theorem 1.3. Let K and x0 be a coagulation kernel and a deterministic initial condition satisfying (1.12) and (1.14), respectively. Consider a sequence (X N 0 ) N≥1 of stochastic initial configurations in ℓ 1 N satisfying (1.2) which are close to x0 in the following sense:

(1.20) P "' ' ' ' 1 N X N 0 -x0 ' ' ' ' 1 > 1 N 1/4 « ≤ 1 N 1/4 .
Assume further that, for any i ≥ 0, there is κi > 0 such that

(1.21) K(i, j) ≤ κi , j ≥ i , and κ∞ := sup n κi i o < ∞ .
Let x be the corresponding solution to (1.17) with maximal existence time t∞ defined by (1.15) and, for N ≥ 1, X N the Markov process starting from X N 0 defined in Section 1.1. Then for all t ∈ (0, t∞) there exist constants C(t), D(t) > 0 such that for N large enough :

P " sup 0≤s≤t ' ' ' ' 1 N X N (s) -x(s) ' ' ' ' 1 ≥ D(t) N 1/4 « ≤ C(t) N 1/4 .
We next turn to the life span of the deterministic and stochastic min-driven coagulation models and investigate the possible values of t∞ as well as the behaviour of the time T X 0 after which the stochastic min-driven coagulation process X starting from X0 ∈ ℓ 1 N (ℓ 1 N being defined in (1.3)) no longer evolves, that is, (1.22)

T X 0 := inf {t ≥ 0 : X(t) 1 = 1} .
We first establish that, according to the growth of the coagulation kernel K, t∞ is finite or infinite. Note that, in the former case, this means that the minimal size ℓ blows up in finite time.

Theorem 1.4. Consider an initial condition x0 satisfying (1.14) and let x be the corresponding solution to the mindriven coagulation equations given in Theorem 1.1 defined on [0, t∞), t∞ being defined in (1.15). (i) If K(i, j) ≤ (ln (i + 1) ∧ ln (j + 1)) /(4A0) for i, j ≥ 1 and some A0 > 0 then t∞ = ∞.

(ii) If K(i, j) ≥ a0 (ln(i + 1) ∧ ln(j + 1)) 1+α for i, j ≥ 1 and some a0 > 0 and α > 0, then t∞ < ∞.

A more precise result is available for the stochastic min-driven coagulation process under a stronger structural assumption on the coagulation kernel.

Theorem 1.5. Assume that the coagulation kernel K is of the form

(1.23) K(i, j) = φ(i) ∧ φ(j)
where φ is a positive increasing function.

Then

sup X 0 ∈ℓ 1 N E(T X 0 ) < ∞ if and only if ∞ X i=1 1 iφ(i) < ∞ , the space ℓ 1 N being defined in (1.3).
The above two results provide conditions on the coagulation kernel K which guarantee that, in a finite time, some mass escapes to infinity, or forms a giant particle, of the order of the system. This is the behaviour known as gelation for the Smoluchowski coagulation equation and the Marcus-Lushnikov process, and is known to occur when the coagulation kernel K satisfies K(i, j) ≥ c(ij) λ/2 for some λ ∈ (1, 2] [START_REF] Escobedo | Gelation in coagulation and fragmentation models[END_REF][START_REF] Jeon | Existence of gelling solutions for coagulation-fragmentation equations[END_REF]. We observe that the growth required on the coagulation kernel is much weaker for the min-driven coagulation models. In fact the behaviour we have shown is more extreme than gelation, in that all the mass goes to infinity or joins the giant particle. A similar phenomenon has been called as complete gelation in the context of the Marcus-Lushnikov process, and is known to occur instantaneously, as N → ∞, whenever K(i, j) ≥ ij(log(i + 1) log(j + 1)) α and α > 1 [START_REF] Jeon | Spouge's conjecture on complete and instantaneous gelation[END_REF].

The deterministic min-driven coagulation equation

In this section, we investigate the well-posedness of the min-driven coagulation equation (1.17). It is clearly an infinite system of ordinary differential equations which is linear on the time intervals where the minimal size ℓ is constant. We will thus first study the well-posedness for this reduced system, assuming the coefficients to be bounded in a first step to be able to apply the Cauchy-Lipschitz theorem and relaxing this assumption afterwards by a compactness method. We also pay attention to the first vanishing time of the first component which was initially positive. The proof of Theorem 1.1 is then performed by an induction argument.

An auxiliary infinite system of differential equations

Consider i ≥ 1 and a sequence (aj) j≥1 of real numbers satisfying

(2.1) 0 < aj ≤ A j , j ≥ 1 ,
for some A > 0. We define the function F = (Fj ) j≥1 on X1,1 by (2.2)

8 > > > < > > > : Fj (y) := 0 if 1 ≤ j ≤ i -1 , Fi(y) := -ai yi - ∞ X j=i aj yj , Fj (y) := aj-i yj-i -aj yj if j ≥ i + 1
for y ∈ X1,1. Note that (2.1) ensures that F (y) ∈ ℓ 1 for y ∈ X1,1 and that F (y) ∈ X1,i.

Proposition 2.1. Consider a sequence (aj) j≥1 satisfying (2.1) and an initial condition y0 = (yj,0) j≥1 ∈ X1,i. There is a unique solution y ∈ C([0, ∞); X1,i) to the Cauchy problem

(2.3) dy dt = F (y) , y(0) = y0 .
Moreover, for each t > 0, y and dy/dt belong to L ∞ (0, t; X1,i) and L ∞ (0, t; ℓ 1 ), respectively, and

(2.4) ∞ X j=i j yj(t) = ∞ X j=i j yj,0 .
We first consider the case of a bounded sequence (aj) j≥1 .

Lemma 2.2. Consider a sequence (aj) j≥1 satisfying

(2.5) 0 < aj ≤ A0 , j ≥ 1 ,
for some A0 > 0 and an initial condition y0 = (yj,0) j≥1 ∈ X1,i. Then there is a unique solution y ∈ C([0, ∞); X1,i) to the Cauchy problem (2.3) and

(2.6) ∞ X j=i j yj(t) = ∞ X j=i j yj,0 , t ≥ 0 .
Proof. It readily follows from (2.2) and (2.5) that, given y ∈ X1,i and ŷ ∈ X1,i, we have

(2.7) F (y) -F (ŷ) 1,1 ≤ 4A0 y -ŷ 1,1 ,
while the first i -1 components of F (y) vanish. Therefore, F is a Lipschitz continuous map from X1,i to X1,i and the Cauchy-Lipschitz theorem guarantees the existence and uniqueness of a solution y ∈ C([0, ∞); X1,i) to (2.3).

Next, let (gj) j≥1 is a sequence of real numbers satisfying 0 ≤ gj ≤ G j for j ≥ 1 and some G > 0. We deduce from (2.3), (2.5), and the summability properties of y that

(2.8) d dt ∞ X j=i gj yj(t) = ∞ X j=i (gi+j -gi -gj) aj yj (t) , t ≥ 0 .
In particular, the choice gj = j, j ≥ 1, gives (2.6).

Proof of Proposition 2.1. For m ≥ 1 and j ≥ 1, we put a m j := aj ∧ m. Since the sequence (a m j ) j≥1 is bounded, it follows from Lemma 2.2 that there is a unique solution y m = (y m j ) j≥1 ∈ C([0, ∞); X1,i) to the Cauchy problem

dy m i dt = -a m i y m i - ∞ X j=i a m j y m j , (2.9)
dy m j dt = a m j-i y m j-i -a m j y m j , j ≥ i + 1 , (2.10)
with initial condition y m (0) = y0. Introducing σ m j := sign(y m j ), we infer from (2.1), (2.9), and (2.10) that

d dt y m 1,1 = ∞ X j=i j σ m j dy m j dt = -i a m i |y m i | - ∞ X j=i i a m j σ m i y m j + ∞ X j=2i j a m j-i σ m j y m j-i - ∞ X j=i+1 j a m j |y m j | = ∞ X j=i `(i + j) σ m i+j σ m j -i σ m i σ m j -j ´am j |y m j | ≤ 2i ∞ X j=i a m j |y m j | ≤ 2Ai y m 1,1 , hence (2.11) y m (t) 1,1 ≤ y0 1,1 e 2Ait , t ≥ 0 .
It next readily follows from (2.1), (2.9), and (2.10) that

˛dy m i dt ˛≤ Ai |y m i | + A y m 1,1 , ˛dy m j dt ˛≤ A(j -i) |y m j-i | + Aj |y m j | , j ≥ i + 1 ,
and thus

(2.12)

∞ X j=i ˛dy m j dt (t) ˛≤ 3A y m (t) 1,1 ≤ 3A y0 1,1 e 2Ait , t ≥ 0 by (2.11).
Now, for all j ≥ 1 and T > 0, the sequence of functions (y m j ) N≥1 is bounded in W 1,∞ (0, T ) by (2.11) and (2.12) and thus relatively compact in C([0, T ]) by the Arzelà-Ascoli theorem. Consequently, there are a subsequence (m k ) k≥1 , m k → ∞, and a sequence of functions y = (yj) j≥1 such that (2.13) lim

k→∞ sup t∈[0,T ]
˛ym k j (t) -yj (t) ˛= 0 for j ≥ 1 and T > 0 .

If j ≥ i + 1, it is straightforward to deduce from (2.10) and (2.13) that yj actually belongs to C 1 ([0, ∞)) and solves

(2.14) dyj dt = aj-i yj-i -aj yj , yj (0) = yj,0 .
In addition, (2.11) and (2.13) imply that y(t) ∈ X1,i for all t ≥ 0 and satisfies

(2.15) y(t) 1,1 ≤ y0 1,1 e 2Ait , t ≥ 0 .
Passing to the limit in (2.9) is more difficult because of the infinite series in its right-hand side. For that purpose, we need an additional estimate to control the tail of the series which we derive now: we first recall that, since y0 ∈ X1,1, a refined version of the de la Vallée-Poussin theorem ensures that there is a nonnegative and non-decreasing convex

function ζ ∈ C ∞ ([0, ∞)) such that ζ(0) = 0, ζ ′ is a concave function, (2.16) lim r→∞ ζ(r) r = ∞ , and ∞ X j=i ζ(j) |yj,0| < ∞ ,
see [START_REF] Dellacherie | Probabilités et Potentiel, Chaps. I and IV[END_REF][START_REF] Châu-Hoàn | Etude de la classe des opérateurs m-accrétifs de L 1 (Ω) et accrétifs dans L ∞ (Ω), Thèse de 3ème cycle[END_REF]. We infer from (2.1), (2.9), (2.10), and the properties of ζ that

d dt ∞ X j=i ζ(j) |y m j | = ∞ X j=i `ζ(i + j) sign(y m i+j ) sign(y m j ) -ζ(i) sign(y m i ) sign(y m j ) -ζ(j) ´am j |y m j | ≤ ∞ X j=i (ζ(i + j) + ζ(i) -ζ(j)) a m j |y m j | ≤ ∞ X j=i "Z j 0 Z i 0 ζ ′′ (r + s) dsdr + 2 ζ(i) « a m j |y m j | ≤ ∞ X j=i "Z j 0 i ζ ′′ (r) dr + 2 ζ(i) « a m j |y m j | ≤ ∞ X j=i `i ζ ′ (j) + 2 ζ(i) ´am j |y m j | ≤ 2A ζ(i) y m 1,1 + Ai ∞ X j=i j ζ ′ (j) |y m j | .
Owing to the concavity of ζ ′ , we have j ζ ′ (j) ≤ 2 ζ(j) for j ≥ 1 [START_REF] Ph | The Lifshitz-Slyozov equation with encounters[END_REF]Lemma A.1]. Inserting this estimate in the previous inequality and using (2.11), we end up with

d dt ∞ X j=i ζ(j) |y m j (t)| ≤ 2Ai ∞ X j=i ζ(j) |y m j (t)| + 2A ζ(i) y0 1,1 e 2Ait , t ≥ 0 ,
and thus

(2.17) 

∞ X j=i ζ(j) |y m j (t)| ≤ ∞ X j=i ζ(j) |yj,0| + 2A ζ(i) y0
∞ X j=i ζ(j) |yj (t)| ≤ ∞ X j=i ζ(j) |yj,0| + 2A ζ(i) y0 1,1 t ! e 2Ait , t ≥ 0 .
Notice next that, thanks to the superlinearity (2.16) of ζ, the estimates (2.17) and (2.18) provide us with a control of the tail of the series P j y m j and P j yj which does not depend on m. More precisely, we infer from (2.17), (2.18), and the convexity of ζ that, for T > 0, t ∈ [0, T ], and

J ≥ 2i, (y m k -y)(t) 1,1 ≤ J -1 X j=i j ˛(y m k j -yj)(t) ˛+ ∞ X j=J j `|y m k j (t)| + |yj (t)| ≤ J -1 X j=i j ˛(y m k j -yj)(t) ˛+ J ζ(J) ∞ X j=J ζ(j) `|y m k j (t)| + |yj (t)| ≤ J -1 X j=i j ˛(y m k j -yj)(t) ˛+ 2J ζ(J) ∞ X j=i ζ(j) |yj,0| + 2A ζ(i) y0 1,1 T ! e 2AiT .
Owing to (2.13), we may pass to the limit as k → ∞ in the previous inequality to deduce that lim sup

k→∞ sup t∈[0,T ] (y m k -y)(t) 1,1 ≤ 2J ζ(J) ∞ X j=i ζ(j) |yj,0| + 2A ζ(i) y0 1,1 T ! e 2AiT .
We next use (2.16) to let J → ∞ in the previous inequality and conclude that

(2.19) lim k→∞ sup t∈[0,T ] (y m k -y)(t) 1,1 = 0 . Recalling (2.1), it is straightforward to deduce from (2.19) that lim k→∞ sup t∈[0,T ] ˛∞ X j=i a m k j y m k j (t) - ∞ X j=i aj yj (t) ˛= 0
for all T > 0, from which we conclude that yi belongs to C 1 ([0, ∞)) and solves

(2.20) dyi dt = -ai yj - ∞ X j=i aj yj , yi(0) = yi,0 .
Another consequence of (2. [START_REF] Norris | Smoluchowski's coagulation equation: uniqueness, nonuniqueness and a hydrodynamical limit for the stochastic coalescent[END_REF]) is that y ∈ C([0, ∞); X1,i) and is thus locally bounded in X1,1. This property in turn provides the boundedness of dy/dt in ℓ 1 , the proof being similar to that of (2.12). We finally use once more (2.19) to deduce from (2.6) (satisfied by y m k thanks to Lemma 2.2) that (2.4) holds true. We have thus established the existence part of Proposition 2.1.

As for uniqueness, if y and ŷ are two solutions to the Cauchy problem (2.3), a computation similar to that leading to (2.11) gives y(t)ŷ(t) 1,1 ≤ y(0)ŷ(0) 1,1 e 2Ait = 0 for t ≥ 0. Consequently, y = ŷ and the uniqueness assertion of Proposition 2.1 is proved.

Remark 2.3. In fact, the derivation of (2.17) is formal as the series P ζ(j)y m j is not known to converge a priori (recall that ζ(j) is superlinear by (2.16)). It can be justified rigorously by using classical truncation arguments. More specifically, for R ≥ 1, define ζR

(r) = ζ(r) for r ∈ [0, R] and ζR(r) = ζ(R) + ζ ′ (R)(r -R) for r ≥ R.
Then ζR enjoys the same properties as ζ and the sequence (ζR(j)) j≥1 grows linearly with respect to j. We can then use (2.8) to perform a similar computation as the one above leading to (2.17) and obtain a bound on P ζR(j) y m j which does not depend on R neither on m. The expected result then follows by letting R → ∞ with the help of the Fatou lemma.

We now turn to specific properties of solutions to (2.3) Proof. We define t * := sup {t > 0 : yi(s) > 0 for s ∈ [0, t)} , and first notice that t * > 0 due to the continuity of yi and the positivity (2.21) of yi,0. Clearly, yi fulfils (2.22).

Consider next j ∈ {i + 1, . . . , 2i -1} (if this set is non-empty). Since y(t) ∈ X1,i for t ≥ 0, it follows from (2.3) that, for t ∈ [0, t * ), dyj(t)/dt = -aj yj (t) and thus yj(t) = yj,0 e -a j t ≥ 0. We next deduce from (2.3) that, for t ∈ [0, t * ), dy2i(t)/dt = ai yi(t) -a2i y2i(t) ≥ -a2i y2i(t), whence y2i(t) ≥ y2i,0 e -a 2i t ≥ 0. We next argue in a similar way to prove by induction that yj (t) ≥ 0 for t ∈ [0, t * ) so that y fulfils (2.24).

We now improve the positivity properties of y and prove (2.23) and (2.25). Consider first j ≥ i + 1 for which yj,0 > 0. By (2.3) and (2.24), we have dyj (t)/dt = aj-i yj-i(t) -aj yj (t) ≥ -aj yj(t) for t ∈ [0, t * ), whence yj(t) ≥ yj,0 e -a j t > 0 and (2.25). To prove (2.23), we argue by contradiction and assume that there are k ≥ 2 and t0 ∈ (0, t * ) (or t0 ∈ (0, t * ] if t * < ∞) such that y ki (t0) = 0. We infer from (2.3) and the variation of constants formula that 0 = y ki (t0) = e -a ki t 0 y ki,0 + a (k-1)i Z t 0 0 e -a ki (t 0 -s) y (k-1)i (s) ds .

The non-negativity of y ki,0 and y (k-1)i and the continuity of y (k-1)i then imply that y ki,0 = 0 and y (k-1)i (t) = 0 for t ∈ [0, t0]. At this point, either k = 2 and we have a contradiction with (2.22). Or k > 2 and we proceed by induction to show that y li (t) = 0 for t ∈ [0, t0] and l ∈ {1, . . . , k}, again leading us to a contradiction with (2.22 

" M-1 M0 « = 1 M0 ∞ X j=i " 1 i + j - 1 i - 1 j « aj yj + M-1 M 2 0 ∞ X j=i aj yj = 1 M0 ∞ X j=i " 1 i + j - 1 j + M-1 M0 - 1 i « aj yj .
Observing that

1 i + j ≤ 1 j and M-1 M0 ≤ 1 i ,
we infer from (2.28) that

d dt " M-1 M0 « ≤ δ0 M0 ∞ X j=i " 1 i + j - 1 j + M-1 M0 - 1 i « yj ≤ δ0 M0 ∞ X j=i " 1 i + j - 1 i « yj -M-1 + M-1 M0 M0 ! ≤ - δ0 M0 ∞ X j=i j i(i + j) yj ≤ - δ0 2i M0 ∞ X j=i yj ≤ - δ0 2i .
Consequently, we have

0 ≤ M-1 M0 (t) ≤ M-1 M0 (0) - δ0 2i t
for t ∈ [0, t * ) which implies that t * ≤ (2iM-1(0))/(δ0M0(0)) ≤ 2/δ0 and is thus finite.

Proof of Theorem 1.1

The construction of the functions (ℓ, x) is performed by induction on the minimal size, noticing that x solves an infinite system of ordinary differential equations similar to (2.3) on each time interval where ℓ is constant.

Proof of Theorem 1.1.

Step 1: By (1.12), the sequence (K(1, j)) j≥1 fulfils the assumptions (2.1) (with A = κ) and (2.28) (with δ0 = δ1) while x0 satisfies (2.21) with i = 1. According to Propositions 2.1, 2.4, and 2.5, there is a unique solution x (1) ∈ C([0, ∞); X1,1) to the Cauchy problem

dx (1) dt = b (1) (x (1) ) , x (1) (0) = x0 ,
and there is t1 ∈ (0, ∞) such that

x (1)
1 (t) > 0 for t ∈ [0, t1) and x

(1)

1 (t1) = 0 , x (1) j (t) > 0 for t ∈ (0, t1] and j ≥ 2 , ' ' 'x (1) (t) ' ' ' 1,1 = x0 1,1 for t ∈ [0, t1] .
We then put ℓ(t) := 1 and x(t) := x (1) (t) for t ∈ [0, t1) .

Clearly, x fulfils (1.16), (1.17), and (1.19) for i = 1.

Step 2: Assume now that we have constructed (ℓ, x) up to some time ti for some i ≥ 1. On the one hand, owing to (1.12), the sequence (K(i + 1, j)) j≥1 fulfils the assumptions (2.1) (with A = κ (i + 1)) and (2.28) (with δ0 = δi+1).

On the other hand, the sequence x(ti) belongs to X + 1,i+1 with xj(ti) > 0 for j ≥ i + 1 by (1.18). We are then in a position to apply Propositions 2.1, 2.4, and 2.5 and conclude that there is a unique solution

x (i+1) ∈ C([ti, ∞); X1,i+1) to the Cauchy problem dx (i+1) dt = b (i+1) (x (i+1) ) , x (i+1) (ti) = x(ti) ,
and there is ti+1 ∈ (0, ∞) such that

x (i+1) i+1 (t) > 0 for t ∈ [ti, ti+1) and x (i+1) i+1 (ti+1) = 0 , x (i+1) j (t) > 0 for t ∈ (ti, ti+1] and j ≥ i + 2 , ' ' 'x (i+1) (t) ' ' ' 1,1 = x(ti) 1,1 for t ∈ [ti, ti+1] .
We then put ℓ(t) := i + 1 and x(t

) := x (i+1) (t) for t ∈ [ti, ti+1) .
It is then easy to check that x ∈ C([0, ti+1; X1,1) and fulfils (1.16), (1.17), (1.18), and (1.19) for j ∈ {1, . . . , i + 1}. This completes the induction process and the proof of the existence part of Theorem 1.1.

Step 3: If (ℓ, x) and ( l, x) both satisfy the properties listed in Theorem 1.1, we deduce from Proposition 2.1 that x(t) = x(t) for t ∈ [0, t1 ∧ t1]. In particular, x1 and x1 vanish at the same time t1 ∧ t1 which implies that t1 = t1. We next argue by induction to conclude that ℓ = l and x = x.

Convergence of the stochastic process

In this section, we study the stochastic process introduced in Section 1.1 and prove Theorem 1.3. The proof is performed along the lines of the general scheme developed in [START_REF] Darling | Differential equation approximations for Markov chains[END_REF] with the following main differences: the deterministic system of ordinary differential equations (1.17) considered herein has its solutions in an infinite-dimensional vector space and changes when the minimal size ℓ jumps.

Let K be a coagulation kernel satisfying (1.21). We fix an initial condition x0 satisfying (1.14) and let x be the corresponding solution to (1.17). Owing to (1. [START_REF] Norris | Smoluchowski's coagulation equation: uniqueness, nonuniqueness and a hydrodynamical limit for the stochastic coalescent[END_REF]) and (1.21), we may argue as in the proof of Proposition 2.1 to show that, for i ≥ 1,

(3.1) ' ' ' ' dx dt (t) ' ' ' ' 1 ≤ 3κi , t ∈ [ti-1, ti] .
Consider a sequence of random initial data `XN 0 ´N≥1 in ℓ 1 N satisfying (1.2) and (1.20). For each N ≥ 1, X N denotes the Markov process described in Section 1.1 starting from X N 0 and XN := X N /N its renormalized version. To prove Theorem 1.3, we need to introduce some specific times relative to the extinction of some sizes of particle. Let T N 0 = 0 and define (3.2)

T N i := inf{t > T N i-1 : X N i (t) = 0} , σ N i := T N i -T N i-1 , i ≥ 1 .
We also put si := ti -ti-1 for i ≥ 1, the times (ti) i≥0 being defined in Theorem 1.1.

We begin by proving the following proposition. Proposition 3.1. For all I ≥ 0, there exist positive constants C0(I), C0(I) ′ , and an integer N0(I) such that

P sup 0≤t≤T N I || XN (t) -x(t)||1 > C0(I) N 1/4 ! ≤ C0(I) ′ N 1/4
for N ≥ N0(I) .

Two steps are needed to prove Proposition 3.1: we first consider i ≥ 1 and work on the interval [T N i-1 , T N i ], showing that the behaviour at any time t ∈ (T N i-1 , T N i ] only depends on the behaviour at the "initial" time T N i-1

(Proposition 3.2). We then argue by induction on i to prove a "global" convergence result (Proposition 3.3).

Proposition 3.2. For all i ≥ 1 and γ > 0, there exist positive constants C1(γ, i), C1(i) ′ , si ∈ (si, si + 1), ηi, and an integer N1(γ, i) such that

(3.3) x (i) i (ti-1 + si) < 0 , dx (i) i dt (ti-1 + s) ≤ -ηi < 0 for s ∈ [0, si] , P sup 0≤s≤σ N i XN (T N i-1 + s) -x (i) (ti-1 + s) 1 > C1(γ, i) N 1/4 ! ≤ C1(i) ′ N 1/4 + P(Ω c i,γ ) , P " σ N i > si " ≤ C1(i) ′ N 1/4 + P(Ω c i,γ ) , for N ≥ N1(γ, i), where Ωi,γ := n || XN (T N i-1 ) -x(ti-1)||1 ≤ γ N 1/4 o ,
and x (i) : [ti-1, ∞) → X1,1 denotes the solution to the differential equation

(3.4) dx (i) dt (t) = b (i) (x (i) (t)) for t ≥ ti-1 , x (i) (ti-1) = x(ti-1) .
Proof. Fix i ≥ 1 and set x := x (i) to simplify the notation. Recall that x(t) = x (i) (t) for t ∈ [ti-1, ti]. By Section 1.1, we have for 0 ≤ s ≤ σ N i ,

x(ti-1 + s) = x(ti-1)

+ Z s 0 b (i) (x(ti-1 + t)) dt, XN (T N i-1 + s) = XN (Ti-1) + Z s 0 β( XN (T N i-1 + t)) dt + M N s ,
where (M N s ) s≥0 is a

F (i) s -martingale, F (i) s := σ " X T N i-1 +t : t ∈ [0, s]
" , and β is the drift of the process XN defined in (1.7). Subtracting the above two identities, we obtain

XN (T N i-1 + s) -x(ti-1 + s) (3.5) = XN (T N i-1 ) -x(ti-1) + Z s 0 h β( XN (T N i-1 + t)) -b (i) ( XN (T N i-1 + t)) i dt + Z s 0 h b (i) ( XN (T N i-1 + t)) -b (i) (x(ti-1 + t)) i dt + M N s .
We now aim at using the representation formula (3.5) to estimate XN (

T N i-1 + s) -x(ti-1 + s) 1 for s ∈ [0, σ N i ]
. This requires in particular to estimate the martingale term M N s in ℓ 1 . However, a classical way to estimate M N s is to use the Doob inequality which gives an L 2 -bound not suitable for our purposes. To remedy this difficulty, we only use (3.5) for the first d components of XN (T N i-1 + s)x(ti-1 + s), the integer d being suitably chosen, and control the tail of the series by the first moment. More precisely, given d ≥ 1, we introduce the projections p d and q d defined in ℓ 1 by p d (y) := (y1, . . . , y d , 0, . . .) and q d (y) = y -p d (y), y ∈ ℓ 1 . Clearly,

(3.6) p d (y) 1 ≤ √ d p d (y) 2 , y ∈ ℓ 1 ,

and

(3.7)

q d (y) 1 ≤ y 1,1 d , y ∈ X1,1 .
Owing to (3.7) and the boundedness of the first moment of XN and x (see (1.4), (1.19), and Lemma 2.2), we have for s ∈ [0,

σ N i ] XN (T N i-1 + s) -x(ti-1 + s) 1 ≤ p d " XN (T N i-1 + s) -x(ti-1 + s) " 1 + q d " XN (T N i-1 + s) " 1 + q d (x(ti-1 + s)) 1 ≤ p d " XN (T N i-1 + s) -x(ti-1 + s) " 1 + XN (T N i-1 + s) 1,1 d + x(ti-1 + s) 1,1 d ≤ p d " XN (T N i-1 + s) -x(ti-1 + s) " 1 + `1 + x(ti-1) 1,1 e 4κ i s d ≤ p d " XN (T N i-1 + s) -x(ti-1 + s) " 1 + `1 + x0 1,1 e 4κ i s d . (3.8) Since βj -b (i) j = 0 for all j ≥ 1 except for j ∈ {i, 2i} for which βi -b (i) i = 2K(i, i)/N and β2i -b (i) 2i = -K(i, i)/N we have (3.9) β(y) -b (i) (y)||1 ≤ 3K(i, i) N ≤ 3κi N , y ∈ X1,1 ,
by (1.21). Observing next that b (i) is Lipschitz continuous in ℓ 1 with Lipschitz constant 3κi, we infer from (3.5), (3.6), and (3.9) that

p d " XN (T N i-1 + s) -x(ti-1 + s) " 1 ≤ p d " XN (Ti-1) -x(ti-1) " 1 + 3κis N + 3κi Z s 0 XN (T N i-1 + t) -x(ti-1 + t)||1 dt + √ d p d (M N s ) 2.
Combining the above inequality with (3.8) gives

XN (T N i-1 + s) -x(ti-1 + s) 1 ≤ XN (Ti-1) -x(ti-1) 1 + 3κis N + `1 + x0 1,1 e 4κ i s d (3.10) + 3κi Z s 0 XN (T N i-1 + t) -x(ti-1 + t)||1 dt + √ d M N s 2 .
At this point, we fix si ∈ (si, si + 1) and ηi > 0 such that xi(ti-1 + si) < 0 and dxi/dt(ti-1 + s) < -ηi for s ∈ [0, si] (such a pair (si, ηi) exists as xi(ti) = xi(ti-1 + si) = 0 and dxi/dt < 0 in [ti-1, ti] by (2.26)). Let γ > 0 and introduce

Ω ′ i := ( sup s∈[0,s i ∧σ N i ] M N s 2 ≤ 1 N 3/8
) .

Choosing an integer d ∈ (N 1/4 , 2N 1/4 ), we deduce from (3.10) that, in Ωi,γ ∩ Ω ′ i , we have for s

∈ [0, si ∧ σ N i ] XN (T N i-1 + s) -x(ti-1 + s) 1 ≤ γ N 1/4 + 3κis N + `1 + x0 1,1 e 4κ i s Ń 1/4 + 3κi Z s 0 XN (T N i-1 + t) -x(ti-1 + t)||1 dt + √ 2 N 1/4 ≤ γ + C2 N 1/4 e 4κ i s + 3κi Z s 0 XN (T N i-1 + t) -x(ti-1 + t)||1 dt
for some positive constant C2. After integration, we end up with

(3.11) sup s∈[0,s i ∧σ N i ] XN (T N i-1 + s) -x(ti-1 + s) 1 ≤ 5 γ + C2 N 1/4 e 4κ i si ≤ 5 γ + C2 N 1/4 e 4κ i (1+s i ) .
In particular, in

{σ N i > si} ∩ Ωi,γ ∩ Ω ′ i , we have 0 ≤ XN i (T N i-1 + si) ≤ xi(ti-1 + si) + 5 γ + C2 N 1/4 e 4κ i (1+s i ) < 0 for N large enough. Consequently, there is N1(γ, i) such that Ωi,γ ∩ Ω ′ i ⊂ {σ N i ≤ si} for N ≥ N1(γ, i) .
Recalling (3.11), we have thus established that, for N ≥ N1(γ, i),

P sup s∈[0,s i ∧σ N i ] XN (T N i-1 + s) -x(ti-1 + s)||1 ≥ C1(γ, i) N 1/4 ! ≤ P `(Ωi,γ ∩ Ω ′ i ) c (3.12) ≤ P(Ω c i,γ ) + P `Ω′c i ´, and 
(3.13) P " σ N i > si " ≤ P `(Ωi,γ ∩ Ω ′ i ) c ´≤ P(Ω c i,γ ) + P `Ω′c i
´, with C1(γ, i) := 5(γ + C2)e 4κ i (1+s i ) .

To complete the proof, it remains to bound P(Ω ′c i ). By the Doob inequality, we have:

E sup s∈[0,s i ∧σ N i ] M N s 2 2 ! ≤ 4 E " M N si ∧σ N i 2 2 " ≤ 4 E Z si ∧σ N i 0 α " XN (T N i-1 + t) " dt ! ,
where α is defined by (1.8). According to Section 1.1 and (1.21), it is easy to show that, if y ∈ X1,i, we have α(y

) ≤ 5κi y 1/N . Since X N (s) ∈ X1,i for s ∈ [T N i-1 , T N i ] and si < si + 1, we conclude that E sup s∈[0,s i ∧σ N i ] ||M N s || 2 2 ! ≤ C3(i) N .
Therefore, observing that

P `Ω′c i ´= P sup s∈[0,s i ∧σ N i ] ||M N s || 2 2 > 1 N 3/4 ! ,
the Markov inequality yields

P `Ω′c i ´≤ N 3/4 E sup s∈[0,s i ∧σ N i ] ||M N s || 2 2 ! ≤ C3(i) N 1/4 .
Proposition 3.2 then readily follows from (3.12), (3.13), and the above bound with C1(i) ′ := C3(i).

Proposition 3.3. For all i ≥ 1, there exist positive constants ai, bi, and an integer N2(i) such that

(3.14) P " XN (T N i-1 ) -x(ti-1) 1 > bi N 1/4 « ≤ ai N 1/4 for all N ≥ N2(i) .
Proof. We argue by induction on i ≥ 1 and first note that (3.14) holds true for i = 1 with a1 = b1 = 1 by (1.20). Assume next that (3.14) holds true for some i ≥ 1. Setting x := x (i) , the function x (i) being defined in Proposition 3.2, we have

(3.15) XN (T N i ) -x(ti) 1 ≤ XN (T N i ) -x(ti-1 + σ N i )| 1 + x(ti-1 + σ N i ) -x(ti) 1 .
On the one hand, it follows from (3.14) for i and Proposition 3.2 with γ = bi that we have

P " XN (T N i ) -x(ti-1 + σ N i ) 1 > C1(bi, i) N 1/4 « ≤ C1(i) ′ N 1/4 + P " XN (T N i-1 ) -x(ti-1) 1 > bi N 1/4 « ≤ C1(i) ′ + ai N 1/4 (3.16) and (3.17) P(σ N i > si) ≤ C1(i) ′ + ai N 1/4
for N ≥ N1(bi, i) + N2(i), the constant si being defined in (3.3).

On the other hand, if |σ N i -si| > C1(bi, i)/(ηiN 1/4 ), we have either σ N i > si or σ N i ≤ si and we deduce from (3.3) that

|xi(ti-1 + σ N i )| = |xi(ti-1 + σ N i ) -xi(ti-1 + si)| = ˛Z s i σ N i dxi dt (t) dt ˛≥ ηi ˛σN i -si ˛> C1(bi, i) N 1/4 , so that  |σ N i -si| > C1(bi, i) ηiN 1/4 ff ⊂ n σ N i > si o ∪  | XN i (T N i ) -xi(ti-1 + σ N i )| > C1(bi, i) N 1/4 ff since XN i (T N i ) = 0.
We then infer from (3.16), (3.17), and the above inclusion that, for N ≥ N1(bi, i)

+ N2(i), (3.18) 
P " |σ N i -si| > C1(bi, i) ηiN 1/4 « ≤ 2 (C1(i) ′ + ai) N 1/4 .
This estimate now allows us to handle the second term in the right-hand side of (3.15). Indeed, by Proposition 2.1,

if σ N i ≤ si, x(ti-1 + σ N i ) -x(ti) 1 ≤ |σ N i -si| sup t∈[t i-1 ,t i-1 +s i ] ' ' ' ' dx dt (t) ' ' ' ' 1 ≤ C4(i) |σ N i -si| ,
and it follows from (3.17) and (3.18) that, for N ≥ N1(bi, i) + N2(i),

P " x(ti-1 + σ N i ) -x(ti) 1 > C1(bi, i) C4(i) ηiN 1/4 « ≤ P " σ N i > si " + P " |σ N i -si| > C1(bi, i) ηiN 1/4 « ≤ 3 (C1(i) ′ + ai) N 1/4 . (3.19) Setting (3.20) ai+1 := 4 (ai + C ′ 1 (i)) , bi+1 := 2 (1 + C4(i)) C1(bi, i) ηi , N2(i + 1) := N1(bi, i) + N2(i) ,
we infer from (3.15), (3.16), and (3.19) that, for N ≥ N2(i + 1),

P " XN (T N i ) -x(ti) 1 > bi+1 N 1/4 « ≤ P " XN (T N i ) -x(ti-1 + σ N i ) 1 > C1(bi, i) N 1/4 « + P " x(ti-1 + σ N i ) -x(ti) 1 > C1(bi, i) C4(i) ηiN 1/4 « ≤ ai+1 N 1/4 ,
which completes the proof.

Corollary 3.4. For all i ≥ 1, there are positive constants Ai, Bi, and an integer N3(i) such that

P " |T N i -ti| > Bi N 1/4 « ≤ Ai N 1/4 for N ≥ N3(i) .
Proof. Recalling (3.18) and (3.20), we have

P " |σ N i -si| > bi+1 N 1/4 « ≤ ai+1 N 1/4 for N ≥ N2(i + 1)
and i ≥ 1. Fix i ≥ 1 and put

N3(i) := max 1≤j≤i N2(j + 1) , Ai := i X j=1 aj+1 , Bi := i X j=1 bj+1 .
As

T N i -ti = i X j=1 (σ N j -sj) ,
we have

P " |T N i -ti| > Bi N 1/4 « ≤ i X j=1 P " |σ N j -sj| > bj+1 N 1/4 « ≤ i X j=1 aj+1 N 1/4 = Ai N 1/4
as claimed.

We are now able to prove Proposition 3.1.

Proof of Proposition 3.1. For I ≥ 1, consider

ΛI := I \ i=1 ( sup 0≤s≤σ N i XN (T N i-1 + s) -x (i) (ti-1 + s) 1 ≤ C1(bi, i) N 1/4 and |T N i -ti| ≤ Bi N 1/4 ) , and 
N4(i) := max 1≤i≤I max {N1(bi, i), N2(i), N3(i)} .
According to Proposition 3.2, Proposition 3.3 and Corollary 3.4, we have for N ≥ N4(i)

P (Λ c I ) ≤ I X i=1 P sup s∈[0,σ N i ] XN (T N i-1 + s) -x (i) (ti-1 + s) 1 > C1(bi, i) N 1/4 ! + I X i=1 P " |T N i -ti| > Bi N 1/4 « ≤ I X i=1 " P " XN (T N i-1 ) -x (i) (ti-1) 1 > bi N 1/4 « + C1(i) ′ N 1/4 « + I X i=1 Ai N 1/4 ≤ I X i=1 ai + C1(i) ′ + Ai N 1/4 (3.21) P(Λ c I ) ≤ C5(I) N 1/4 .
Consider now t ≥ 0. In ΛI ∩ {T N I ≥ t}, there are i ∈ {1, . . . , I -1}, and s ∈ [0, σ N i ) such that t = T N i-1 + s and

T N i-1 + s ≤ T N i-1 + σ N i = T N i -ti + ti ≤ t -I + Bi N 1/4 ≤ ϑI := min  1 + tI , tI + t∞ 2 ff , (3.22) ti-1 + s ≤ ti-1 + σ N i = ti-1 -T N i-1 + T N i -ti + ti ≤ tI + 2Bi N 1/4 ≤ ϑI (3.23)
for N ≥ N5(I) large enough. Consequently, recalling that x (i) is defined in Proposition 3.2, it follows from (3.1) that, in ΛI ∩ {T N I ≥ t}

XN (t) -x(t) 1 ≤ XN (T N i-1 + s) -x (i) (ti-1 + s) 1 + x (i) (ti-1 + s) -x(ti-1 + s) 1 + x(ti-1 + s) -x(T N i-1 + s) 1 ≤ C1(bi, i) N 1/4 + x (i) (ti-1 + s) -x(ti-1 + s) 1 + |T N i-1 -ti-1| sup t∈[0,ϑ I ] ' ' ' ' dx dt (t) ' ' ' ' 1 ≤ C6(I) N 1/4 + x (i) (ti-1 + s) -x(ti-1 + s) 1 (3.24)
for N ≥ N5(I). Now, since 0 ≤ s < σ N i in ΛI ∩ {T N I ≥ t}, we have the following alternative:

(a) either s ≤ si and

x (i) (ti-1 + s) = x(ti-1 + s), (b) 
or si < s < σ N i and, for N ≥ N5(I), we infer from Proposition 2.1, (3.1), (3.23), and the identity x (i) (ti) = x(ti) that

x (i) (ti-1 + s) -x(ti-1 + s) 1 ≤ x (i) (ti-1 + s) -x (i) (ti) 1 + x(ti) -x(ti-1 + s) 1 ≤ |s -si| sup t∈[0,ϑ I ] ' ' ' ' dx (i) dt (t) ' ' ' ' 1 + sup t∈[0,ϑ I ] ' ' ' ' dx dt (t) ' ' ' ' 1 ! ≤ C7(I) |σ N i -si| ≤ C7(I) " |T N i -ti| + |T N i-1 -ti-1| " ≤ C8(I) N 1/4 .
Combining (3.24) and the above analysis, we conclude that, in ΛI ∩ {T N I ≥ t},

XN (t) -x(t) 1 ≤ C9(I) N 1/4
for N ≥ N5(I) and thus ΛI ⊂ ( sup

0≤t≤T N I || XN (t) -x(t)||1 ≤ C9(I) N 1/4
) .

Proposition 3.1 then follows from (3.21) and the above set inclusion.

Proof of Theorem 1.3. Let t ∈ (0, t∞). There exists I ≥ 1 such that t < tI . Clearly, 4 Deterministic maximal existence time

 sup 0≤s≤t XN (s) -x(s) 1 > C0(I) N 1/4 ff ⊂ ( sup 0≤s≤T N I XN (s) -x(s) 1 > C0(I) N 1/4

Global existence

Proof of Theorem 1.4 (i). Recall that we assume that there exists A0 > 0 such that for all i, j ≥ 1, K(i, j) ≤ ln (i + 1) ∧ ln (j + 1) 4A0 .

For t ∈ [0, t∞) and i ≥ 1, we define For i ≥ 1 and t ∈ (ti-1, ti), we infer from the upper bound on K and (2.8) that

0 = dM0 dt (t) + ∞ X j=i K(i, j) xj(t) ≤ dM0 dt (t) + φi M0(t) .
Integrating with respect to time and using the time continuity of x in X1,1 gives M0(ti) e φ i t i ≥ M0(ti-1) e φ i t i-1 = M0(ti-1) e φ i-1 t i-1 e (φ i -φ i-1 )t i-1 .

Arguing by induction, we conclude that

M0(ti) e φ i t i ≥ M0(0) i-1 Y j=1 e (φ j+1 -φ j )t j , i ≥ 2 .
By (1.19) we have

M0(ti) ≤ 1 i ∞ X j=i j xj(ti) = 1 i , i ≥ 2 .
Combining the above two estimates gives

1 i e φ i t i ≥ M0(0) i-1 Y j=1 e (φ j+1 -φ j )t j φi ti ≥ ln i + i-1 X j=1 (φj+1 -φj )tj + ln (M0(0)) , i ≥ 2 ti ≥ 4A0 ln i ln (i + 1) + 1 ln (i + 1) i-1 X j=1 ln " j + 2 j + 1 « tj + 4A0 ln (i + 1) ln (M0(0)) . (4.1)
In particular, for I ≥ 2 and i > I, we infer from (4.1) and the monotonicity of (tj) j≥1 that ti ≥ 4A0 ln i ln (i + 1)

+ 1 ln (i + 1) i-1 X j=I ln " j + 2 j + 1 « tI + 1 ln (i + 1) I-1 X j=1 ln " j + 2 j + 1 « t1 + 4A0 ln (i + 1)
ln (M0(0))

≥ 4A0 ln i ln (i + 1) + ln (i + 1)ln (I + 1) ln (i + 1) tI + ln (I + 1)ln 2 ln (i + 1) t1 + 4A0 ln (i + 1) ln (M0(0)) .

Assume now for contradiction that t∞ < ∞. We may let i → ∞ in the previous inequality to conclude that t∞ ≥ 4A0 + tI for all I ≥ 2. Letting I → ∞ then implies that t∞ ≥ 4A0 + t∞ and a contradiction. Therefore, t∞ = ∞.

Finite time blow-up of the minimal size

We actually establish a stronger version of the second assertion of Theorem 1.4. Proposition 4.1. Consider a coagulation kernel K and an initial condition x0 satisfying (1.12) and (1.14), respectively. Let x be the corresponding solution to the min-driven coagulation equations given in Theorem 1.1 defined on [0, t∞), t∞ being defined in (1.15). Assume further that there exist a non-decreasing sequence (φj) j≥1 of nonnegative real numbers, a non-increasing sequence (ψj ) j≥1 of nonnegative real numbers, and ε > 0 such that (4.2) K(i, j) ≥ φi and φi (ψi -ψi+j) ≥ ε for j ≥ i ≥ 1 .

Then t∞ < ∞.

Proof. For t ∈ [0, t∞), define

M0(t) := ∞ X j=1 xj(t) and M ψ (t) := ∞ X j=1 ψj xj(t) .
Given i ≥ 1 and t ∈ (ti-1, ti), it follows from (1.17) and (2.8) that

d dt " M ψ M0 « = 1 M0 ∞ X j=i (ψi+j -ψi -ψj ) K(i, j) xj + M ψ M 2 0 ∞ X j=i K(i, j) xj = 1 M0 ∞ X j=i (ψi+j -ψj + M ψ M0 -ψi) K(i, j) xj .
Owing to the monotonicity of (ψj) j≥1 , we have ψi+j ≤ ψj and M ψ M0 ≤ ψi , j ≥ i , so that (4.2) entails that

(ψi+j -ψj + M ψ M0 -ψi) K(i, j) ≤ (ψi+j -ψj + M ψ M0 -ψi) φi , j ≥ i .
Consequently,

d dt " M ψ M0 « ≤ φi M0 ∞ X j=i (ψi+j -ψj + M ψ M0 -ψi) xj ≤ φi M0 ∞ X j=i ψi+j xj -M ψ + M ψ M0 M0 -ψi M0 ! ≤ 1 M0 ∞ X j=i φi (ψi+j -ψi) xj ≤ -ε . Consequently, " M ψ M0 « (ti) + ε (ti -ti-1) ≤ " M ψ M0 « (ti-1) .
Summing the above inequality with respect to i gives

ε t∞ ≤ lim i→∞ " M ψ M0 « (ti) + ε t∞ ≤ M ψ (0)/M0(0) < ∞
and completes the proof.

Let us now give some examples of sequences (φj) j≥1 which fulfil (4.2).

• if φj = j α for j ≥ 1 and some α > 0, then (4.2) is fulfilled with ψj = j -α , j ≥ 1, and ε = (1 -2 -α ).

• if φj = (ln (j + 1)) 1+α for j ≥ 1 and some α > 0, then (4.2) is fulfilled with ψj = (ln (j + 1)) -α , j ≥ 1, and ε = α 2 -1-α ln (3/2).

In particular, Theorem 1.4 (ii) follows by combining the second example above with Proposition 4.1.

Finite or infinite stochastic time of the last coalescence event

In this section, we study the boundedness or unboundedness of the expectation of the last coalescence time T X 0 defined in (1.22) with respect to the initial condition X0 ∈ ℓ 1 N , the space ℓ 1 N being defined in (1.3), when the coagulation kernel has the special structure (1.23), namely, K(i, j) = φ(i) ∧ φ(j) for some positive increasing function φ .

To this end, we prove some specific properties of the stochastic min-driven coagulation process for this type of kernel. In fact, a crucial argument in the analysis is that this structure allows us to compare the evolution of the process from an arbitrary initial configuration with that starting from monodisperse initial data (that is, initial data of the form nei for n ≥ 1 and i ≥ 1, (ei) i≥1 being the canonical basis of ℓ 1 defined in Section 1.1).

Before going on, we introduce some notations. If Z ∈ ℓ 1 N with Z 1 = n, the vector (S1(Z), . . . , Sn(Z)) ∈ N n denotes the collection of the sizes of the particles encoded by Z sorted in increasing order, that is, (5.1)

Sm(Z) := 1 if 1 ≤ m ≤ Z1 , Sm(Z) := s if 1 + s-1 X j=1 Zj ≤ m ≤ s X j=1 Zj and 2 ≤ s ≤ n . 20 
Next, given an initial condition X0 ∈ ℓ 1 N with n := X0 1, let X be the stochastic min-driven coagulation process starting from X0 in Section 1.1 and recall that T X 0 is defined by

T X 0 = inf{t ≥ 0 : X(t) 1 = 1} .
For i ≥ 1, we also introduce the time

(5.2) T X 0 i := inf{t > 0 : X1(t) = . . . = Xi(t) = 0},
when particles of size smaller or equal than i have disappeared (note that the time T N i defined in (3.2) in Section 3 corresponds to T X N 0 i with the notation introduced in (5.2)). In addition, since X0 contains n particles, the stochastic process X undergoes n -1 coalescence events between t = 0 and T X 0 and we define L(m) to be the minimal size of X after the (m -1) th coalescence event and before the m th coalescence event, 1 ≤ m ≤ n -1. Before the latter event, the rate of coagulation is (n -m)φ(L(m)) since K satisfies K(i, j) = φ(i) ∧ φ(j). Consequently, (5.3)

T X 0 = n-1 X m=1 εm (n -m)φ(L(m))
,

where (εm) 1≤m≤n-1 is a sequence of i.i.d. random variables with law exp(1).

The first step towards the proof of Theorem 1.5 is a monotonicity property.

Lemma 5.1. Let X0 and Y0 be two initial conditions in ℓ 1 N such that X0 1 = Y0 1 and

(5.4)

Sm(Y0) ≤ Sm(X0) for all 1 ≤ m ≤ X0 1 .
Then, we can construct the stochastic min-driven coagulation processes starting from X0 and Y0 on the same probability space such that

T X 0 i ≤ T Y 0 i for all i ≥ 1 and T X 0 ≤ T Y 0 . In particular, for all initial data X0 ∈ ℓ 1 N , T X 0 1 ≤ T X 0 1 e 1 1 and T X 0 ≤ T X 0 1 e 1 .
Proof. Let X and Y denote the stochastic min-driven coagulation processes starting from X0 and Y0, respectively, and define n := X0 1 = Y0 1. Between t = 0 and T X 0 , the process X reaches n different states n X(j) : 1 ≤ j ≤ n -1 o with X(0) = X0 and X(j) 1 = n -j. In other words, X(j) is the state of X after the j th coalescence event and actually denotes X(θj), θj being the time at which the j th coalescence event occurs. Analogously, between t = 0 and T Y 0 , the process Y reaches n different states n Ŷ (j) : 1 ≤ j ≤ n -1 o with Ŷ (0) = Y0 and Ŷ (j) 1 = n -j.

We first prove by induction that we can construct the processes X and Y on the same probability space such that (5.5)

Sm " Ŷ (j) " ≤ Sm " X(j) " , 1 ≤ m ≤ n -j , 1 ≤ j ≤ n -1 .
Owing to (5.4), this inequality is clearly fulfilled for j = 0. Assume now that (5.5) holds true for some j ∈ {0, . . . , n-2} and set S X,j m := Sm " X(j) " and S Y,j m := Sm " Ŷ (j) " , 1 ≤ j ≤ n -i .

Since the coagulation kernel K is of the form (1.23), we may couple the two processes X and Y in such a way that X(j + 1) is obtained by coalescing the particles of sizes S X,j 1 and S X,j k and Ŷ (j + 1) by coalescing the particles of sizes S Y,j 1 and S Y,j k with the same index k chosen in {2, . . . , n -i} with uniform law. Thus,

n Sm " X(j + 1) " : 1 ≤ m ≤ n -j -1 o = n S X,j 2 , . . . , S X,j k-1 , S X,j k+1 , . . . , S X,j n-j o ∪ n S X,j 1 + S X,j k o , n Sm " Ŷ (j + 1) " : 1 ≤ m ≤ n -j -1 o = n S Y,j 2 , . . . , S Y,j k-1 , S Y,j k+1 , . . . , S Y,j n-j o ∪ n S Y,j 1 + S Y,j k o .
At this stage, the inequality (5.5) is not obvious as the reordering of the sizes can be different in X(j +1) and Ŷ (j +1). The situation can be represented as follows:

S Y,j 1 ≤ . . . ≤ S Y,j k-1 ≤ . . . ≤ S Y,j 1 + S Y,j k ≤ . . . ≤ . . . ≤ . . . ≤ S Y,j n-i , S X,j 1 ≤ . . . ≤ S X,j k-1 ≤ . . . ≤ . . . ≤ . . . ≤ S X,j 1 + S X,j k ≤ . . . ≤ S X,j n-i .
Nevertheless, we observe that

Sm " Ŷ (j + 1) " 8 > < > : S Y,j m+1 for 1 ≤ m ≤ k -2 , max n min n S Y,j m+2 , S Y,j 1 + S Y,j k o , S Y,j m+1 o for m ≥ k -1 , and 
Sm " X(j + 1) " 8 > < > : S X,j m+1 for 1 ≤ m ≤ k -2 , max n min n S X,j m+2 , S X,j 1 + S X,j k o , S X,j m+1 o for m ≥ k -1 ,
from which (5.5) for j + 1 readily follows thanks to (5.5) for j.

We next claim that the random number of coalescence events needed to exhaust the particles of size i ≥ 1 is smaller for X than for Y , that is, (5.6) Indeed, we have S1 " Ŷ (j) " ≤ S1 " X(j) " ≤ i for 1 ≤ j ≤ n X 0 i -1 by (5.5).

n X 0 i ≤ n Y 0 i , i ≥ 1 ,
We can now prove the lemma. For i ≥ 1, we have

T X 0 i = n X 0 i X j=1 εj (n -j)φ " S1 " X(j -1)
"" and

T Y 0 i = n Y 0 i X j=1 εj (n -j)φ " S1 " Ŷ (j -1) "" ,
where (ε k ) k≥1 is a sequence of i.i.d. random variables with law exp(1). Concerning T X 0 and T Y 0 , we have The expected result then follows by (5.5), (5.6), and the monotonicity of φ.

T X 0 = n-
We next prove that the expectation of the time T X 0 1 after which all particles of size 1 have disappeared is bounded independently of the initial condition X0 (as soon as X0 = e1). According to Lemma 5.1, it will be sufficient to prove such a bound for monodisperse initial data of the form ne1, n ≥ 2. ) which does not depend on n ≥ 2.

We consider the solution x to the deterministic min-driven coagulation equation (1.17 Introducing the (random) number of coalescence events n1 performed between t = 0 and T ne 1

1

, we have [START_REF] Aldous | Deterministic and stochastic models for coalescence (aggregation, coagulation) : a review of the mean-field theory for probabilists[END_REF] ,

T ne 1 1 = n 1 X m=1 εm (n -m)φ
where (εm) 1≤m≤n-1 is a sequence of i.i.d. random variables with law exp(1). Obviously, n1 ≤ n -1 which gives the bound

T ne 1 1 ≤ 1 φ(1) n-1 X m=1 εm m
.

Since E(εm) = 1 and E(ε 2 m ) = 2 for 1 ≤ m ≤ n, we deduce from (5.8), the Hölder inequality, and the above estimate that The next step is to establish a connection between the early stages of the dynamics of the processes starting from monodisperse initial data. Proof. As in the proof of Lemma 5.1, a coupling can be done between the processes starting from ne1 and nei so that

E (T ne 1 1 ) = E `T ne 1 1 1 [0,B 1 +t 1 ] (T ne 1 1 ) ´+ E `T ne 1 1 1 (B 1 +t 1 ,∞) (T ne 1 1 ) ≤ B1 + t1 + 1 φ(1) n-1 X m=1 1 m E `εm 1 (B 1 +t 1 ,∞) (T ne 1 1 ) ≤ B1 + t1 + 1 φ(1)
T ne 1 1 = n 1 X m=1 εm (n -m)φ(1)
and

T ne i i = n 1 X m=1 εm (n -m)φ(i)
with the same random number of coalescence events n1 and sequence (εm) 1≤m≤n-1 of i.i.d. random variables with law exp(1) for both processes.

Proof of Theorem 1.5. Assume first that

∞ X i=1 1 iφ(i) < ∞ .
Thanks to Lemma 5.1, we just have to show that E(T ne 1 ) is bounded independently of n ≥ 1.

To this end, we fix n ≥ 1. Let us first notice that, if n = 1, then T ne 1 = 0. Assume now that n ≥ 2 and for i ≥ 1, let X be the stochastic min-driven coagulation process starting from nei. Clearly, T ne i j = 0 for 1 ≤ j ≤ i -1 and where (εm) 1≤m≤n-1 is a sequence of i.i.d. random variables with law exp(1). The sequence (L(m)) 1≤m≤n-1 is random but let us notice the bound

L(m) ≤ n n -m + 1 ≤ n n -m , 1 ≤ m ≤ n -1 ,
which follows from the conservation of mass since there remain n -m + 1 particles in the system before the m th coalescence event. Therefore, thanks to the monotonicity of φ, 

E(T ne 1 ) ≥ n-1

  constant C0(I) being defined in Proposition 3.1. Theorem 1.3 then follows from Proposition 3.1 and Corollary 3.4.

  n j ∈ {0, . . . , n -1} : S1 " n j ∈ {0, . . . , n -1} : S1 " Ŷ (j) " ≥ i + 1 o .

Lemma 5 . 2 . 1 = 0 . 1 ≤ T ne 1 1X 0 1 ) ≤ E(T ne 1 1 )

 52101111 There exists C > 0 such that, for any initial condition X0 ∈ ℓ 1 N with X0 = e1,E(T X 0 1 ) ≤ C , the time T X 0 1 being defined in (5.2).Proof. Let n := X0 1 be the initial number of particles. If n = 1 and X0 = e1, then T X 0 So, we assume that n ≥ 2. By Lemma 5.1, we have the stochastic domination T X 0 , and it suffices to obtain an upper bound on E(T ne 1 1

" |T ne 1 1 1 >

 11 ) with monodisperse initial condition x0 = (xi,0) i≥1 given by x1,0 = 1 and xi,0 = 0 for i ≥ 2. It follows from Corollary 3.4 that P 4 , n ≥ N3(1) , from which we deduce that there is C > 0 such that (5.8) P(T ne 1 B1 + t1) ≤ C n 1/4 , n ≥ 2 .

´1/ 2 P (T ne 1 1 > 2 ≤ 8 .

 2128 B1 + t1) 1/B1Since B1 and t1 do not depend on n (actually one has t1 = 1/φ(1)), we have established the expected upper bound from which Lemma 5.2 follows by (5.7).

Lemma 5 . 3 .

 53 For n ≥ 2 and i ≥ 1 we haveT ne i

  and let y be the corresponding solution to the Cauchy problem (2.3). There are t * ∈ (0, ∞] and t * ,1∈ [t * , ∞] such that yi(t) > 0 for t ∈ [0, t* ) and yi(t * ) = 0 , (2.22) y ki (t) > 0 for t ∈ (0, t * ) and k ≥ 2 , (2.23) yj (t) ≥ 0 for t ∈ [0, t * ) and j ≥ i + 1 , (2.24) yj (t) > 0 for t ∈ [0, t * ) if j ≥ i + 1 and yj,0 > 0 ,

			when y0 ∈ X + 1,i .
	Proposition 2.4. Consider a sequence (aj) j≥1 satisfying (2.1), an initial condition y0 = (yj,0) j≥1 ∈ X1,i such that
	(2.21)		y0 ∈ X + 1,i and yi,0 > 0 ,
	(2.25)		
	(2.26)	dyi dt	(t) < 0 for t ∈ [0, t * ,1) ,
	and		
	(2.27)		

y(t) 1,1 = y0 1,1 for t ∈ [0, t * ) .

If t * < ∞, then t * ,1 > t * and the properties (2.23), (2.24), (2.25), and (2.27) also hold true for t = t * .

  ). Finally, since y(t) belongs to X + 1,i for t ∈ [0, t * ), (2.27) readily follows from (2.4). We next turn to the study of the finiteness of the time t * defined in Proposition 2.4. Proposition 2.5. Consider a sequence (aj) j≥1 satisfying (2.1), an initial condition y0 = (yj,0) j≥1 ∈ X1,i satisfying (2.21) and let y be the corresponding solution to the Cauchy problem (2.3). Assume further that there is δ0 > 0 such that If t * ∈ (0, ∞] denotes the time introduced in Proposition 2.4, then t * ∈ (0, ∞).

	and t * ,1 > t * if t * < ∞.						
	(2.28)					0 < δ0 ≤ aj , j ≥ 1 .
	Proof. For t ≥ 0, we put	M0(t) :=	∞ X j=i	yj(t) and M-1(t) :=	∞ X j=i	yj(t) j	.
	By (2.22), M0(t) > 0 for t ∈ [0, t * ) and it follows from (2.8) that
	d						
	dt						
	The property (2.26) now follows from (2.1) and (2.23): indeed, by (2.3) we have
		dyi dt	(t) = -ai yi(t) -	∞ X j=i	aj yj(t) ≤ -a2i y2i(t) < 0
	for t ∈ [0, t * ) (and also for t = t * if t * < ∞,) so that
		t * ,1 := sup		t > 0 :	dyi dt	(s) < 0 for s ∈ [0, t)	ff	≥ t * ,

we define the (random) number n * := X(T ne i i ) 1 of particles in the system at time T ne i i and Y := X(T ne i i ). Notice that Yj = Xj (T ne i i ) = 0 for 1 ≤ j ≤ 2i -1 and the conservation of mass warrants that n * ≤ n/2 as 2i

Moreover, the properties of Y and Lemma 5.1 yield the stochastic domination T Y ≤ T n * e 2i . Since

where, conditionally on Y , T ne i i and T Y are independent, it follows from Lemma 5.3 that (5.9)

Let us now prove by induction on n that the property

holds true for all n ≥ 0, where C is the constant appearing in Lemma 5.2.

It is clear for n = 0 . Considern ≥ 1 and assume P(n -1). For i ≥ 0, it follows from (5.9) and P(n -1) that there is n * ≤ n/2 such that

which proves P(n).

We then infer from Property P(n) for i = 0 that

the convergence of the series P 1/φ(2 i ) being ensured by that of P 1/(iφ(i)) and the monotonicity of φ.

To prove the converse part of Theorem 1.5, we assume that

and show that, for each constant C > 0, there exists a configuration X0 such that E(T X 0 ) ≥ C. More precisely, we will prove that (5.10) lim n→∞ E(T ne 1 ) = ∞.

Indeed, let n ≥ 2. By (5.3), we have

,