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b Université de Rennes

35043 Rennes Cedex, France

c CREST-ENSAI, IRMAR, UEB

Campus de Ker Lann

Rue Blaise Pascal - BP 37203

35172 Bruz Cedex, France

Abstract

The paper presents a multiplicative bias reduction estimator for

nonparametric regression. The approach consists to apply a multi-

plicative bias correction to an over-smooth pilot estimator. We study

the asymptotic properties of the resulting estimate and prove that this

estimate has zero asymptotic bias and the same asymptotic variance

as the local linear estimate. Simulations show that our asymptotic

results are available for modest sample sizes. We also illustrate the

benefit of this new method on nuclear energy spectrum estimation.

Index terms: Nonparametric regression, bias reduction, local linear

estimate.
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1 Introduction

The decay of radioactive isotopes often generates gamma particles whose en-

ergy can be measured using specialized detectors. Typically, these detectors

count the number of particle in various energy bins over short time intervals

such as one to ten minutes. This enables estimation of the energy distribu-

tion of the emitted particles, which is called the energy spectrum. For low or

medium resolution detectors, the spectrum is typically composed of multiple

broad peaks whose location and area characterize the radio-isotope.

Because the actual bin counts are noisy, and the energy spectrum is fairly

smooth, it has been proposed to estimate the energy spectrum using non-

parametric smoothing techniques (Sullivan et al. [2006], Gang et al. [2004]).

However, it is known that many classical smoothers, such as kernel-based

regression smoothers, k-nearest neighbors, and smoothing splines, typically

under-estimate in the peaks and over-estimate in the valleys of the regression

function. See for example Simonoff [1996], Fan and Gijbels [1996], Wand and

Jones [1995], Scott [1992].

This bias degrades isotope identification performance for any algorithm that

includes peak area or ratios of areas (Casson et al. [2006]) and motivates

studying methods to reduce bias at peaks and valleys. There are many

approaches to reducing the bias, but most of them do so at the cost of an

increase in the variance of the estimator. For example, one may chose to

under-smooth the energy spectrum. Under-smoothing will reduce the bias

but will have a tendency of generating spurious peaks. One can also use

higher order smoother, such as local polynomial smoother with a polynomial

of order larger than one. While again this will lead to a smaller bias, the

smoother will have a larger variance. Another approach is to start with a pilot
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smoother and to estimate its bias by smoothing the residuals (Cornillon et al.

[2009], Di Marzio and Taylor [2008]). Subtracting the estimated bias from

the smoother produces a regression smoother with smaller bias and larger

variance. In the context of estimating an energy spectrum, the additive bias

correction and the higher order smoothers have the unfortunate side effect

of possibly generating a non-positive estimate.

An attractive alternative to the linear bias correction is the multiplicative

bias correction pioneered by Linton and Nielsen [1994]. Because the multi-

plicative correction does not alter the sign of the regression function, this type

of correction is particularly well suited for adjusting non-negative regression

functions. Jones et al. [1995] showed that if the true regression function has

four continuous derivatives, then the multiplicative bias reduction is opera-

tionally equivalent to using an order four kernel. And while this does remove

the bias, it also increases the variance.

Although the bias-variance tradeoff for nonparametric smoothers is always

present in finite samples, it is possible to construct smoothers whose asymp-

totic bias converges to zero while keeping the same asymptotic variance.

Hengartner and Matzner-Løber [2009] has exhibited a nonparametric den-

sity estimator based on multiplicative bias correction with that property,

and have shown in simulations that their estimator also enjoyed good finite

sample properties. In this paper, we present such an estimator for nonpara-

metric regression. We emphasize that a major difference between our work

and that of Jones et al. [1995] is that we do not assume that the regression

function has four continuous derivatives.

This paper is organized as follows. Section 2 introduces the notation and de-

fines the estimator. Section 3 gives the asymptotic behavior of the proposed
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estimate. A brief simulation study on finite sample comparison is presented

in section 4. Finally, in section 5, the procedure is applied to estimate the

energy spectrum. The interested reader is referred to the Appendix where

we have gathered the technical proofs.

2 Preliminaries

2.1 Notation.

Let (X1, Y1), . . . , (Xn, Yn) be n independent copies of the pair of random vari-

ables (X, Y ). We suppose that the explanatory variable X ∈ R has probabil-

ity density f and model the dependence of the univariate response variable Y

to the explanatory variable X through the nonparametric regression model

Y = m(X) + ε. (1)

We assume that the regression function m(·) is smooth and that the dis-

turbance ε is a mean zero random variable with finite variance σ2 that is

independent of the covariate X. Consider the linear smoothers for the re-

gression function m(x) which we can write as

m̂(x) =

n∑

j=1

ωj(x; h)Yj,

where the weight function ωj(x; h) depends on a tuning parameter h, that

we think of as the bandwidth.

If the weight functions are such that
∑n

j=1 ωj(x; h) = 1 and
∑n

j=1 ωj(x; h)2 =

(nh)−1τ 2, and if the disturbances satisfy the Lindberg-Feller condition, then

the linear smoother obeys the central limit theorem

√
nh

(

m̂(x) −
n∑

j=1

wj(x; h)m(Xj)

)

−→ N (0, τ 2). (2)
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We can use (2) to construct asymptotic pointwise confidence intervals for the

unknown regression function m(x). But unless the limit of the scaled bias

b(x) = lim
n−→∞

√
nh

(
n∑

j=1

wj(x; h)m(Xj) − m(x)

)
,

which we call the asymptotic bias, is zero, the confidence interval
[
m̂(x) − Z1−α/2

√
nhτ, m̂(x) + Z1−α/2

√
nhτ

]

will not cover asymptotically the true regression function m(x) at the nominal

1 − α level. The construction of valid pointwise 1 − α confidence intervals

for regression smoothers is the another motivation for developing estimators

with zero asymptotic bias.

2.2 Multiplicative bias reduction

Here we present a framework for multiplicative bias reduction. Given a pilot

smoother

m̃n(x) =

n∑

j=1

ωj(x; h0)Yj,

the ratio

Vj =
Yj

m̃n(Xj)

is a noisy estimate of m(Xj)/m̃n(Xj), the inverse relative estimation error of

the smoother m̃n at each of the observations. Smoothing Vj by

α̂n(x) =

n∑

j=1

ωj(x; h1)Vj

yields an estimate for the inverse of the relative estimation error which can

be used as a multiplicative correction of the pilot smoother. This leads to

the (nonlinear) smoother

m̂n(x) = α̂n(x)m̃n(x). (3)
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The estimator (3) was studied for fixed design by Linton and Nielsen [1994]

and further studied by Jones et al. [1995]. In both cases, they assumed that

the regression function had four continuous derivatives, and show an im-

provement in the convergence rate of the corrected estimator. Glad [1998a,b]

proposes to use a parametrically guided local linear smoother and Nadaraya-

Watson smoother by starting with a parametric pilot. She shows that the

resulting estimates improves on the local polynomial estimate as soon as the

pilot captures some of the features of the regression function.

3 Theoretical Analysis of Multiplicative Bias

Reduction

In this section, we will show that the multiplicative smoother has smaller

bias with essentially no cost to the variance, assuming only two derivatives

of the regression function. While the derivation of our results are for local

linear smoothers, the technique used in the proofs can be easily adapted for

other linear smoothers, and the conclusions remain essentially unchanged.

3.1 Assumptions

We make the following assumptions:

1. The regression function is bounded and strictly positive, that is, b ≥
m(x) ≥ a > 0 for all x.

2. The regression function is twice continuously differentiable everywhere.

3. The density of the covariate is strictly positive on the interior of its

support in the sense that f(x) ≥ b(K) > 0 over every compact K
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contained in the support of f .

4. ε has finite fourth moments and has a symmetric distribution around

zero.

5. Given a symmetric probability density K(·), consider the weights ωj(x; h)

associated to the local linear smoother. That is, denote by Kh(·) =

K(·/h)/h the scaled kernel by the bandwidth h and define for k =

0, 1, 2, 3 the sums

Sk(x) ≡ Sk(x; h) =

n∑

j=1

(Xj − x)kKh(Xj − x).

Then

ωj(x; h) =
S2(x; h) − (Xj − x)S1(x; h)

S2(x; h)S0(x; h) − S2
1(x; h)

Kh(Xj − x).

We set

ω0j(x) = ωj(x; h0) and ω1j(x) = ωj(x; h1).

6. The bandwidths h0 and h1 are such that

h0 −→ 0, h1 −→ 0 nh0 −→ ∞, nh3
1 −→ ∞ and

h1

h0
−→ 0.

3.2 A technical aside

The proof of Theorems (3.1) and (3.2) rests on establishing a stochastic

approximation of estimator (3) in which each term can be directly analyzed.

Proposition 3.1. We have

m̂n(x) = µn(x) +

n∑

j=1

ω1j(x)Aj(x) +

n∑

j=1

ω1j(x)Bj(x) +

n∑

j=1

ω1j(x)ξj ,
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where µn(x), conditionally on X1, . . . , Xn is a deterministic function, Aj, Bj

and ξj are random variables. Under condition nh0 → ∞, the remainder ξj

converges to 0 in probability and we have

m̂n(x) = µn(x) +

n∑

j=1

ω1j(x)Aj(x) +

n∑

j=1

ω1j(x)Bj(x) + OP

(
1

nh0

)
.

Remark: A technical difficulty arises because even though ξj may be small

in probability, its expectation may not be small. We resolve this problem by

showing that only needs to modify ξj on a set of vanishingly small probability

to guarantee that its expectation is also small.

Definition Given a sequence of real numbers an, say that a sequence of

random variables ξn = op(an) if for all fixed t > 0,

lim sup
n−→∞

P[|ξn| > tan] = 0.

We will need the following Lemma.

Lemma 3.1. If ξn = op(an), then there exists a sequence of random variables

ξ⋆
n such that

lim sup
n−→∞

P[ξ⋆
n 6= ξn] = 0 and E[ξ⋆

n] = o(an).

We shall use the following notation

E⋆[ξn] = E[ξ⋆
n].

3.3 Main results

We deduce from Proposition 3.1 and Lemma 3.1 the following Theorem.
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Theorem 3.1. Under the assumptions (1)-(6), the estimator m̂n satisfies:

E⋆ (m̂n(x)|X1, . . . , Xn) = µn(x) + Op

(
1

n
√

h0h1

)
+ Op

(
1

nh0

)

and

V⋆(m̂n(x)|X1, . . . , Xn) = σ2
n∑

j=1

w2
1j(x) + Op

(
1

nh0

)
+ op

(
1

nh1

)
.

If the bandwidth h0 of the pilot estimator converges to zero much slower than

h1, then m̂n has the same asymptotic variance as the local linear smoother

of the original data with bandwidth h1. However, for finite samples, the two

step local linear smoother can have a slightly larger variance depending on

the choice of h0. A limited Taylor expansion of µn(x) leads to the following

result.

Theorem 3.2. Under the assumptions (1)-(6), the estimator m̂n satisfies:

E⋆ (m̂n(x)|X1, . . . , Xn) = m(x) + op(h
2
1).

Combining Theorem 3.1 and Theorem 3.2, we conclude that the multiplica-

tive adjustment performs a bias reduction on the pilot estimator without

increasing the asymptotic variance. The asymptotic behavior of the band-

widths h0 and h1 is constrained by assumption 6. However, it is easily seen

that this assumption is satisfied for a large set of values of h0 and h1. For

example, the choice h1 = c1n
−1/5 and h0 = c0n

−α for 0 < α < 1/5 leads to

E⋆ (m̂n(x)|X1, . . . , Xn) − m(x) = op(n
−2/5)

and

V⋆(m̂n(x)|X1, . . . , Xn) = Op

(
n−4/5

)
.
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4 Numerical examples

While the amount of the bias reduction depends on the curvature of the

regression function, a decrease is expected (asymptotically) everywhere, and

this, at no cost to the variance. The simulation study in this section shows

that this asymptotic behavior emerges already at modest sample sizes.

4.1 Local study

To illustrate numerically the possible reduction in the bias and associate in-

crease of the variance achieved by the multiplicative bias correction, consider

estimating the regression function

m(x) = 3 + 3|x|5/2 + x2 + 4 cos(10x)

at x = 0 (see Figure 1).

−1.0 −0.5 0.0 0.5 1.0

0
2

4
6

8

Figure 1: The regression function to be estimated.
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The local linear smoother tends to under-estimate the regression function at

their maximum, and hence, this example will provide a good example. Fur-

thermore, because the second derivative of this regression function is contin-

uous but not differentiable at the origin, the results previously obtained by

Linton and Nielsen [1994] do not apply.

The data are simulated according to the model

Yi = m(Xi) + εi, i = 1, . . . , 100,

where εi are independent N (0, 0.12) variables. We first consider the local

linear estimate with a Gaussian kernel function and we study its performances

over a grid of bandwidths H = [0.005, 0.040]. For the new estimate, the

theory recommends to start with an over-smooth pilot estimate. In this

regard, we take h0 = 0.03 and study the performance of the multiplicative

bias corrected estimate for h1 ∈ H1 = [0.005, 0.060]. In order to explore

the sensitivity of our two stages estimator on h0, we also consider the choice

h0 = 0.008. For such a choice, the pilot estimate clearly under-smoothes the

regression function.

Bias and the variance of each estimate are calculated at x = 0. To do this,

we compute the value of each estimate at x = 0 for 200 samples (Xi, Yi), i =

1, . . . , 100. The same design Xi, i = 1, . . . , 100 is used for each sample. It is

generated according to a uniform distribution over [−1, 1]. The bias at point

x = 0 is estimated by subtracting m(0) at the mean value of the estimate at

x = 0 (the mean value is computed over the 200 replications). Similarly we

estimate the variance at x = 0 by the variance of the values of the estimate

at this point. Figure 2 represents squared bias, variance and mean square

error of each estimate for different values of bandwidth h for the local linear

smoother and h1 for our estimate.
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Figure 2: Mean square error (dotted line), squared bias (solid line) and

variance (dashed line) of the local linear estimate (left) and multiplicative

bias corrected estimate with h0 = 0.03 (center) and h0 = 0.008 (right) at

point x = 0.

The first conclusion is that the corrected estimate has smaller bias than the

local linear estimate provided the pilot estimate over-smoothes the regression

function. Small values of h0 clearly under-smooth the regression function,

whatever the choice of h1. Moreover, it is worth pointing out that our pro-

cedure does not significantly increase the variance. Even if Theorem 3.1

and Theorem 3.2 provide asymptotic results, our simulations show that the

asymptotic behavior of our estimate emerges already at modest sample size.

Finally, due to the bias reduction, we note that our procedure also reduces

the optimal mean square error (see Table 1).
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MSE Bias2 Variance

LLE 3.38 10−3 0.75 10−3 2.63 10−3

MBCE 2.04 10−3 0.24 10−3 1.80 10−3

Table 1: Optimal mean square error (MSE) for the local linear estimate

(LLE) and the multiplicative bias corrected estimate (MBCE) with h0 = 0.03

at point x = 0.

4.2 Global study

This paper does not conduct any theory to select the two bandwidths h0

and h1 in an optimal way. If automatic procedures are needed, they can

be obtained by adjusting traditional automatic selection procedures for the

classical nonparametric estimators (see Burr et al. [2009]). In this part,

we propose to use leave-one-out cross validation to choose both h0 and h1.

We then compare the performance of the selected estimate with the local

polynomial estimate in term of integrated square error.

Hurvich et al. [1998] report a comprehensive numerical study that compares

standard smoothing methods on various test functions. Here, we take the

same setting to compare the local linear estimate with its multiplicative bias

corrected smoother. In each of the examples, we take the Gaussian kernel

K(x) = exp(−x2/2)/
√

2π. We consider the following regression functions

(see Figure 3):

(1) m1(x) = sin(5πx)

(2) m2(x) = sin(15πx)

(3) m3(x) = 1 − 48x + 218x2 − 315x3 + 145x4

(4) m4(x) = 0.3 exp [−64(x − .25)2] + 0.7 exp [−256(x − .75)2]
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and we take a Gaussian error distribution with standard deviation σ = 0.3

for m1, m2, m3 and σ = 0.05 for m4.

0.0 0.2 0.4 0.6 0.8 1.0

4.0
4.5

5.0
5.5

6.0

m1(x)

0.0 0.2 0.4 0.6 0.8 1.0

4.0
4.5

5.0
5.5

6.0

m2(x)

0.0 0.2 0.4 0.6 0.8 1.0

3
4

5
6

m3(x)

0.0 0.2 0.4 0.6 0.8 1.0

5.0
5.2

5.4
5.6

m4(x)

Figure 3: Regression functions to be estimated.

We use a cross validation device to select both h0 and h1. This selection

procedure involves solving minimization problem that necessitate a search

over a finite grid H of bandwidths h0 and h1. Formally, given H, we choose

ĥ0 and ĥ1 such as

(ĥ0, ĥ1) = argmin
(h0,h1)∈H×H

1

n

n∑

i=1

(Yi − m̂i
n(Xi))

2.

Here m̂i
n stands for the corrected local polynomial estimate after deleted the

ith observation. To assess the quality of the selected estimate, we compare

its performances with the local polynomial estimate for which the bandwidth

is again selected by leave-one-out cross validation. The performance of an
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estimator m̂ is measured by the integrated square error

ISE(m̂) =

∫ 1

0

(m(x) − m̂(x))2 dx,

and to avoid the boundary effects, the design X1, . . . , Xn is generated ac-

cording to a uniform distribution over [−0.2, 1.2].

Table 2 presents the median over 100 replications of

• the selected bandwidths;

• the integrated square error;

• the integrated square error of the local linear estimate divided by the

integrated square error of the corrected estimate (RISE).

LLE MBCE

h ISE h0 h1 ISE RISE

m1 0.029 0.021 0.053 0.041 0.017 1.226

m2 0.014 0.092 0.026 0.015 0.078 1.156

m3 0.029 0.021 0.070 0.056 0.012 1.600

m4 0.019 0.0010 0.033 0.024 0.0009 1.135

Table 2: Median over 100 replications of the selected bandwidths and of the

integrated square error of the selected estimates. LLE and MBCE stands for

local linear estimate and multiplicative bias corrected estimate.

We obtain significant ISE reduction. As predicted by Theorem 3.1, the

data-driven procedure chooses h0 bigger than h: the pilot estimate is over-

smoothing the true regression function. Of course, selecting both h0 and h1
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is time consuming and can appear as the price to be paid to improve the

local linear smoother.

The following picture presents, for the regression function m1 with n = 100

and 100 iterations, different estimators on a grid of points. In lines is the

true regression function which is unknown. For every point on a fixed grid,

we plot, side by side, the mean over 100 replications of our estimator at

that point (left side) and on the right side of that point the mean over 100

replications of the local polynomial estimator. Leave-one-out cross validation

is applied to select the bandwidths h0 and h1 for our estimator and the

bandwidth h for the local polynomial estimator. We add also the interquartile

interval in order to see the fluctuations of the different estimators. On this

0.2 0.3 0.4 0.5 0.6 0.7 0.8

9
.0

9
.5

1
0

.0
1

0
.5

1
1

.0

grillex

g
ri
lle

y

Figure 4: The solid curve represents the true regression function, our esti-

mator is in dashed line and local linear smoother is dotted.

example, our estimator reduces the bias by increasing the peak and decreasing
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the valley and the interquartile intervals look similar for both estimator, as

predicted by the theory.

5 Example: Estimation of an energy spec-

trum

The energy spectrum of Ba133 is measured at Los Alamos National Labo-

ratory using a 1024-energy channel Sodium Iodide detector for a one-minute

count time. The calibration of channel to energy is not important in this

context so we consider the one-minute counts versus bin number.

Figure 5 shows the raw counts versus bin number for the first 250 bins,

the smoother histogram using a local linear smoother (dotted line) and the

multiplicative adjusted energy spectrum (dashed line). Observe that the

multiplicative adjusted smoother does indeed fit better the peaks and the

valleys of the data without introducing undue variability on the rest of the

curve. This suggests that the multiplicative adjustment prior to peak height

and area estimation will improve isotope identification performance. Isotope

identification algorithms (see Casson et al. [2006]) in the broadest context

must consider multiple unknown source isotopes, unknown form (gas, liquid,

solid), with unknown shielding between the source and detector, which mod-

ifies spectral shape. Many algorithms rely on peak location, height, and/or

area so the multiplicative adjustment is an appealing data processing step.

Sullivan et al. [2006] report success using wavelet smoothing to locate peaks

but do not consider the impact of smoothing on estimated peak height or

area.
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Figure 5: See text.

6 Proofs

This section is devoted the technical proofs.

6.1 Proof of Proposition 3.1

Write the bias corrected estimator

m̂n(x) =
n∑

j=1

ω1j(x)
m̃n(x)

m̃n(Xj)
Yj =

n∑

j=1

ω1j(x)Rj(x)Yj,

and let us approximate the quantity Rj(x). Define

m̄n(x) =

n∑

j=1

ω0j(x)m(Xj) = E (m̃n(x)|X1, . . . , Xn) ,
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and observe that

Rj(x) =
m̃n(x)

m̃n(Xj)

=
m̄n(x)

m̄n(Xj)
×
(

1 +
m̃n(x) − m̄n(x)

m̄n(x)

)
×
(

1 +
m̃n(Xj) − m̄n(Xj)

m̄n(Xj)

)−1

=
m̄n(x)

m̄n(Xj)
× [1 + ∆n(x)] × 1

1 + ∆n(Xj)
,

where

∆n(x) =
m̃n(x) − m̄n(x)

m̄n(x)
=

∑
l≤n ω0l(x)εl∑

l≤n ω0l(x)m(Xl)
.

Write now Rj(x) as

Rj(x) =
m̄n(x)

m̄n(Xj)
[1 + ∆n(x) − ∆n(Xj) + rj(x, Xj)]

where rj(x, Xj) is a random variable converging to 0 to be define latter on.

Given the last expression and model (1), estimator (3) could be written as

m̂n(x) =
n∑

j=1

ω1j(x)Rj(x)Yj

=

n∑

j=1

ω1j(x)
m̄n(x)

m̄n(Xj)
m(Xj)

+
n∑

j=1

ω1j(x)
m̄n(x)

m̄n(Xj)
[εj + m(Xj) (∆n(x) − ∆n(Xj))]

+

n∑

j=1

ω1j(x)
m̄n(x)

m̄n(Xj)
(∆n(x) − ∆n(Xj)) εj

+
n∑

j=1

ω1j(x)
m̄n(x)

m̄n(Xj)
rj(x, Xj)Yj

=µn(x) +

n∑

j=1

ω1j(x)Aj(x) +

n∑

j=1

ω1j(x)Bj(x) +

n∑

j=1

ω1j(x)ξj.
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which is the first part of the lemma. Under assumption set forth in Section

3.1, the pilot smoother m̃n converges to the true regression function m(x).

Bickel and Rosenblatt [1973] show that this convergence is uniform over

compact sets K contained in the support of the density of the covariate

X. As a result

sup
x∈K

|m̃n(x) − m̄n(x)| ≤ 1

2
.

So a limited expansion of (1 + u)−1 yields for x ∈ K

Rj(x) =
m̄n(x)

m̄n(Xj)

[
1 + ∆n(x) − ∆n(Xj) + Op

(
|∆n(x)∆n(Xj)| + ∆2

n(Xj)
)]

,

thus

ξj = Op

(
|∆n(x)∆n(Xj)| + ∆2

n(Xj)
)
.

Under the stated regularity assumptions, we deduce that

ξj = Op

(
1

nh0

)
.

leading to the announced result. Theorem (3.1) is proved.

6.2 Proof of lemma (3.1)

By definition

lim sup
n−→∞

P[|ξn| > tan] = 0

for all t > 0, so that a triangular array argument shows that there exists an

increasing sequence m = m(k) such that

P

[
|ξn| >

an

k

]
≤ 1

k
for all n ≥ m(k).

For m(k) ≤ n ≤ m(k + 1) − 1, define

ξ⋆
n =





ξn if |ξn| < k−1an

0 otherwise.
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It follows from the construction of ξ⋆
n that for n ∈ (m(k), m(k + 1) − 1),

P[ξn 6= ξ∗n] = P[|ξn| > k−1an] ≤ 1

k
,

which converges to zero as n goes to infinity. Finally set k(n) = sup{k :

m(k) ≤ n}, we obtain

E[|ξ|⋆n] ≤ an

k(n)
= o(an).

6.3 Proof of Theorem (3.1)

Recall that

m̂n(x) = µn(x) +

n∑

j=1

ω1j(x)Aj(x) +

n∑

j=1

ω1j(x)Bj(x) + OP

(
1

nh0

)
.

Focus on the conditional bias, we get

E(µn(x)|X1, . . . , Xn]) = µn(x)

E(Aj(x)|X1, . . . , Xn]) = 0

E(Bj(x)|X1, . . . , Xn]) =
m̄n(x)

m̄n(Xj)
σ2
(ω0j(x)

m̄n(x)
− ω0j(Xj)

m̄n(Xj)

)
.

Since

n∑

j=1

ω1j(x)ω0j(x) ≤

√√√√
n∑

j=1

ω1j(x)2

√√√√
n∑

j=1

ω0j(x)2 = Op

(
1

n
√

h0h1

)
,

we deduce that

E

(
n∑

j=1

ω1j(x)Bj(x)
∣∣∣X1, . . . , Xn

)

= Op

(
1

n
√

h0h1

)
.

This proves the first part of the Theorem.
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For the conditional variance, we use the following expansion of the two stages

estimator

m̂n(x) =

n∑

j=1

ω1j(x)
m̄n(x)

m̄n(Xj)
Yj (1 + [∆n(x) − ∆n(Xj)]) + Op

(
1

nh0

)
.

Using the fact that the residuals have four finite moments and have a sym-

metric distribution around 0, a moment’s thought shows that

V(Yj [∆n(x) − ∆n(Xj)] |X1, . . . , Xn) = Op

(
1

nh0

)

and

Cov(Yj, Yj [∆n(x) − ∆n(Xj)] |X1, . . . , Xn) = Op

(
1

nh0

)
.

Hence

V⋆(m̂n(x)|X1, . . . , Xn) = V

(
n∑

j=1

ω1j(x)
m̄n(x)

m̄n(Xj)
Yj

∣∣∣X1, . . . , Xn

)

+ Op

(
1

nh0

)
.

Observe that the first term on the right hand side of this equality can be

seen as the variance of the two stages estimator with a deterministic pilot

estimator. It follows from Glad [1998a] that

V

(
n∑

j=1

ω1j(x)
m̄n(x)

m̄n(Xj)
Yj

∣∣∣X1, . . . , Xn

)

= σ2

n∑

j=1

ω2
1j(x) + op

(
1

nh1

)
,

which proves the theorem.

6.4 Proof of theorem (3.2)

Recall that

µn(x) =
∑

j≤n

ω1j(x)
m̄n(x)

m̄n(Xj)
m(Xj).
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We consider the limited Taylor expansion of the ratio

m(Xj)

m̄n(Xj)
=

m(x)

m̄n(x)
+ (Xj −x)

(
m(x)

m̄n(x)

)′

+
1

2
(Xj −x)2

(
m(x)

m̄n(x)

)′′

(1+op(1)),

then

µn(x) = m̄n(x)

{
m(x)

m̄n(x)

n∑

j=1

ω1j(x) +

(
m(x)

m̄n(x)

)′ n∑

j=1

(Xj − x)ω1j(x)

+
1

2

(
m(x)

m̄n(x)

)′′ n∑

j=1

(Xj − x)2ω1j(x)(1 + op(1))

}

.

It is easy to verify that

Σ0(x; h1) =

n∑

j=1

ω1j(x) = 1,

Σ1(x; h1) =
n∑

j=1

(Xj − x)ω1j(x) = 0

Σ2(x; h1) =

n∑

j=1

(Xj − x)2ω1j(x) =
S2

2(x; h1) − S3(x; h1)S1(x; h1)

S2(x; h1)S0(x; h1) − S2
1(x; h1)

.

For random designs, we can further approximate (see, e.g., Wand and Jones

[1995])

Sk(x, h1) =





hkσk

Kf(x) + op(h
k) for k even

hk+1σk+1
K f ′(x) + op(h

k+1) for k odd.
,

where σk
K =

∫
ukK(u) du. Therefore

Σ2(x; h1) = h2
1

∫
u2K(u) du + op(h

2
1)

≡ σ2
Kh2

1 + op(h
2
1),

so that we can write µn(x) as

µn(x) =m̄n(x)

{
m(x)

m̄n(x)
+

σ2
Kh2

1

2

(
m(x)

m̄n(x)

)′′

+ op(h
2
1)

}

=m(x) +
σ2

Kh2
1

2
m̄n(x)

(
m(x)

m̄n(x)

)′′

+ op(h
2
1).
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Expression

(
m(x)

m̄n(x)

)′′

=
m̄2

n(x)m′′(x)

m̄3
n(x)

− 2
m̄n(x)m̄′

n(x)m′(x)

m̄3
n(x)

−m(x)m̄n(x)m̄′′
n(x)

m̄3
n(x)

+ 2
m(x)(m̄′

n(x))2

m̄3
n(x)

and applying the usual approximations, we conclude that

(
m(x)

m̄n(x)

)′′

= op(1).

Putting all pieces together, we obtain

E⋆(m̂n(x)|X1, . . . , Xn) − m(x) = op(h
2
1) + Op

(
1

n
√

h0h1

)
+ Op

(
1

nh0

)
.

Since

nh3
1 −→ ∞ and

h1

h0
−→ 0,

we conclude that the bias is of order op(h
2
1).
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