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Introduction

This paper is concerned with diffusion-reaction equations where the classical diffusion is replaced with a singular integral term. Our aim is somewhat classical: to show that the limit of their solutions after properly rescaling them in time and space exhibit a moving interface. However, we will deal with integral term whose potential is anisotropic, singular and with unbounded support.

Fractional diffusion-reaction equations. We consider for t > 0 and x ∈ R N , N ≥ 2,

∂ t u ε + 1 ε 2 -I ε α u ε + f (u ε ) = 0 (1) 
and

∂ t u ε + 1 ε 2 | ln ε| -I ε 1 u ε + f (u ε ) = 0 ( 2 
)
where I ε α is a singular integral operator depending on a parameter α ∈ (0, 2) and f is a bistable non-linearity. Example 1 (Standing example). The standing example for f and I ε α are

f (u) = u(u 2 -1) and I ε α u = 1 ε α ∆ α 2 u
where ∆ α 2 denotes the fractional Laplacian of the function u. We recall that

∆ α 2 u = (u(x + z) -u(x)) dz |z| N +α
where the singular integral must be undertood in the sense of Cauchy's principal value.

More generally, we will consider singular integral operators of the following form

I ε α u(x) = u(x + εz) -u(x) -εDu(x) • z1 B (εz) J(z)dz (3) 
where B denotes the unit ball and where the function J : R N → R, which will be often referred to as the potential, can be of two types either J(z) = g z |z|

1 |z| N +α or J ∈ L 1 (R N ) ∩ C c (R N ) (4)
with α ∈ [1, 2) and g : S N -1 = {z ∈ R N : |z| = 1} → (0, +∞) continuous and where C c (R N ) denotes the space of continuous functions with bounded support.

The first potential will be referred to as the singular one while the second one will be referred to the regular one. As far as the standing example is concerned, J is singular with g ≡ 1.

Phasefield theory for diffusion-reaction equations. In [START_REF] Chen | Generation and propagation of interfaces for reaction-diffusion equations[END_REF], Chen proved rigourously that the solution of the Allen-Cahn equation [START_REF] Allen | A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[END_REF] generates a front moving with mean curvature as long as the front is regular. Thanks to definition of fronts past singularities [START_REF] Evans | Motion of level sets by mean curvature. I[END_REF][START_REF] Chen | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF], Evans, Soner and the second author [START_REF] Evans | Phase transitions and generalized motion by mean curvature[END_REF] proved that this is still true after the appearence of singularities. Such results are generalized to a large class of bistable non-linearities by Barles, Soner and the second author [START_REF] Barles | Front propagation and phase field theory[END_REF] where a general phasefield theory for reaction-diffusion equations is introduced. In [START_REF] Barles | A new approach to front propagation problems: theory and applications[END_REF][START_REF] Barles | A geometrical approach to front propagation problems in bounded domains with Neumann-type boundary conditions[END_REF], an abstract method is developed in order to deal with more general reaction-diffusion equations and to handle boundary conditions. In particular, non-local reaction-diffusion equations are considered in [START_REF] Barles | A new approach to front propagation problems: theory and applications[END_REF] but integral operators are not singular. As the proofs of the present paper will show it, it is a challenging difficulty to be overcome.

Motivations. Recently, Caffarelli and the second author studied threshold dynamics-type algorithms corresponding to the fractional Laplace operator for α ∈ (0, 2). They proved that after properly rescaling them, they converge to an interface moving by mean curvature in the case α ≥ 1 and to a fractional mean curvature in the case α < 1. Hypersurfaces with zero integral curvature are studied in [START_REF] Caffarelli | Personal communication[END_REF]. See also [START_REF] Imbert | Level set approach for fractional mean curvature flows[END_REF] where the level-set approach [START_REF] Evans | Motion of level sets by mean curvature. I[END_REF][START_REF] Chen | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF] is developed for such a geometric flow.

As far as applications are concerned, two main physical models motivate the present study. The first application we have in mind is dislocation dynamics. Dislocation theory aims at explaining the plastic behaviour of materials by the motion of linear defects in crystals. Peirls-Nabarro models [START_REF] Koslowski | A phasefield theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystal[END_REF] consist in approximating the geometric motion of these defects by non-local diffusionreaction equations such as [START_REF] Barles | A geometrical approach to front propagation problems in bounded domains with Neumann-type boundary conditions[END_REF]. In [START_REF] Forcadel | Existence of solutions for a model describing the dynamics of junctions between dislocations[END_REF], such an approximation is also used and formal expansions are performed. In [START_REF] Garroni | Γ-limit of a phase-field model of dislocations[END_REF][START_REF] Garroni | A variational model for dislocations in the line tension limit[END_REF], Garroni and Müller study a variational model for dislocations that can be viewed as the variational formulation of the stationary version of [START_REF] Barles | A geometrical approach to front propagation problems in bounded domains with Neumann-type boundary conditions[END_REF].

The second application we have in mind is statistical mechanics and more precisely stochastic Ising models. These models were introduced by Kac, Uhlenbeck and Hemmer [START_REF] Kac | On the van der Waals theory of the vapor-liquid equilibrium. I. Discussion of a one-dimensional model[END_REF] (see also [START_REF] Lebowitz | Rigorous treatment of the van der Waals-Maxwell theory of the liquid-vapor transition[END_REF]) to justify the validity of the Van der Waal's phase diagram. The interaction beween particles is described by the Kac potential. A lot of work has been done since then to understand the hydrodynamic limits of such interacting particle systems and it is beyond the scope of this paper to give a complete list of references. However, we can mention the papers by De Masi, Orlandi, Presutti and Triolo [START_REF] De Masi | Motion by curvature by scaling nonlocal evolution equations[END_REF][START_REF]Glauber evolution with the Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics[END_REF][START_REF]Stability of the interface in a model of phase separation[END_REF][START_REF]Glauber evolution with Kac potentials. II. Fluctuations[END_REF][START_REF]Glauber evolution with Kac potentials. III. Spinodal decomposition[END_REF] and Katsoulakis and the second author [START_REF] Katsoulakis | Interacting particle systems and generalized evolution of fronts[END_REF][START_REF]Generalized motion by mean curvature as a macroscopic limit of stochastic Ising models with long range interactions and Glauber dynamics[END_REF][START_REF] Katsoulakis | Stochastic Ising models and anisotropic front propagation[END_REF]. The interested reader is also referred to the monograph of De Masi and Presutti [START_REF] Masi | Mathematical methods for hydrodynamic limits[END_REF] and the book of Spohn [START_REF] Spohn | Large scale dynamics of interacting particles[END_REF]. In the papers we mentioned before, hydrodynamic limit of stochastic Ising models with general dynamics are studied. In particular, a mean field equation is derived, see [START_REF]Glauber evolution with the Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics[END_REF]. By many ways, these equations can be viewed as non-local reactiondiffusion equations. The next step is to show that for appropriate scalings the solution of the mean field equation approximates an anisotropic mean curvature motion; see for instance [START_REF] De Masi | Motion by curvature by scaling nonlocal evolution equations[END_REF][START_REF] Katsoulakis | Interacting particle systems and generalized evolution of fronts[END_REF]. Green-Kubo type formulae are provided for the mobility and the diffusion matrix in terms of a standing wave associated with the mean field equation.

On one hand, the Kac potential is assumed, in most papers, to be regular with a compact support. On the other hand, Lebowitz and Penrose [29, Eq.(1.20b),(1.21a),p.100] consider potentials J that are singular; more precisely, they assume that for small z, the singularity of J is of the form |z| -N -α for α > 0.

Description of the results. Our main result states that, as ε → 0, the solutions u ε of ( 1) and ( 2) can only have two limits: the stable equilibria of the bistable non-linearity f (see Section 2 for definitions). The resulting interface evolves by anisotropic mean curvature; moreover, Green-Kubo-type formulae are obtained: the mobility and the diffusion matrix of the geometric flow are expressed in terms of the standing wave associated with the bi-stable non-linearity; see Eq. ( 22), ( 23) and ( 25) below. Even if the proof follows the classical idea of constructing barriers by using traveling waves, the reader will see that classical arguments fail when extending the barrier away from the front; several new ideas are needed to handle the unboundedness of the support. In order to handle the anisotropy of the potential, we have to use ideas developed by Katsoulakis and the second author [START_REF]Generalized motion by mean curvature as a macroscopic limit of stochastic Ising models with long range interactions and Glauber dynamics[END_REF] and introduce correctors to cancel oscillating terms by averaging them. This implies in particular that anisotropic traveling waves must be considered. But because the integral term involves a singular potential, passing to the limit in averaged oscillating terms is challenging and this constitutes the core of the proof of the convergence theorem.

As the reader will see it when going through the preliminary section or in the statement of the convergence theorem, several assumptions on traveling waves and the linearized traveling wave equation are necessary (if not mandatory). Even if we do not construct such waves and correctors and assume that they exist, the reader can check that the assumptions we make are natural. For instance, the decay estimate ( 13) is expected since its corresponds to the one of the kernel of the fractional Laplacian in the one dimensional space. See also [START_REF] Cabré | Layer solutions in a half-space for boundary reactions[END_REF]. We plan to construct them in a compagnion paper.

As explained above, we will consider two kinds of potentials: singular and regular ones. As far as the singular case is concerned, we distinguish two subcases, depending how singular is the potential at the origin. Since potentials are positively homogeneous in the singular case, potentials in the subcase α = 1 decay as |z| -N -1 when |z| → +∞. This corresponds to the dislocation dynamics model. As the reader can see it, the scaling involves a logarithmic term; this factor is well-known in physics and the interested reader is referred to [START_REF] Brown | The self-stress of dislocations and the shape of extended nodes[END_REF] for instance; see also [START_REF] Da Lio | Convergence of a nonlocal eikonal equation to anisotropic mean curvature motion. Application to dislocation dynamics[END_REF][START_REF] Cabré | Layer solutions in a half-space for boundary reactions[END_REF]. An additional comment about singular and regular potentials concern the Green-Kubo-type formulae. It turns out that these formulae are different in singular and regular cases. However, we give in appendix a formal argument to shed some light on the link between these two formulae.

Additional comments. As the reader can see it, we are not able to deal with the case α < 1 even if, in view of the results of [START_REF] Cabré | Layer solutions in a half-space for boundary reactions[END_REF], we should observe an interface moving with fractional mean curvature (see Section 2 for a definition). In this case, the equation should be rescaled in time as follows

∂ t u ε + 1 ε 1+α -I ε α u ε + f (u ε ) = 0 ( 5 
)
with

I ε α u(x) = u(x + εz) -u(x) g z |z| dz |z| N +α
for some α ∈ (0, 1). The reader can check that we are able to pass to the limit in (the average of) oscillating terms (see Lemma 10 below), which is usually the difficult part of the convergence proof. We are even able to construct a barrier close to the front. But because the diffusion-reaction is non-local, we are stuck with extending the solution away from it. In particular, the very slow decay of the potential at infinity does not permit us to use the new ideas we introduced in the singular case α ≥ 1. This difficulty is unexpected since in [START_REF] Cabré | Layer solutions in a half-space for boundary reactions[END_REF], this case is the easiest one. We hope to find a path toward this result in a future work.

In the one dimensional space, moving interfaces are points. Gonzalez and Monneau [22] considered such a case and proved a result analogous to our main one by taking advantage of the fact that the limit is a (system of) ordinary differential equation(s). In particular, the restriction on the strength of the singularity can be relaxed in this case.

Organization of the article. The first section is devoted to preliminaries. In particular, traveling waves are introduced as well as the linearized traveling wave equation which is the equation satisfied by correctors; see Subsections 2.3 and 2.4. We also introduce the geometric motion by mean curvature (Subsection 2.5) together with its equivalent definition in terms of generalized flows (Subsection 2.6). Our main result is stated in Section 3. In the remaining of this section, we explain how to reduce the proof of this convergence result to the construction of an appropriate barrier (see above). Section 4 is dedicated to this construction. The last section (Section 5) contains to core of the proof of the convergence result: the limit of the average of oscillating terms. Finally, we give in appendix a formal argument to explain the link between the two Green-Kubo formulae obtained in the convergence theorem.

Notation. The Euclidian norm of x ∈ R N is denoted by |x|. The ball of center x and of radius r is denoted by B r (x). We simply write B r for B r (0) and B = B 1 denotes the unit ball. The scalar product of x and y is denoted by x • y. The unit sphere of R N is denoted by S N -1 . The set of symmetric N × N matrices is denoted by S N . The identity matrix (in any dimension) is denoted by I.

Given two real numbers a, b ∈ R, a ∨ b denotes max(a, b) and a ∧ b denotes min(a, b), a + denotes a ∨ 0 and a -denotes -(a ∧ 0). In particular, a ± ≥ 0 and a = a +a -.

Given a set A, 1 A denotes its indicator function that equals 1 in A and 0 outside. The signed distance function d A (x) associated with A equals the distance function to R N \ A if x ∈ A and the opposite of the distance function to A if x / ∈ A. The set of continuous functions f : R N → R with compact support is denoted by C 0 c . Given a family of locally bounded functions f ε : Ω ⊂ R d → R indexed by ε > 0, the relaxed upper and lower limits are defined as follows

lim inf * f ε (x) = lim inf ε→0,y→x f ε (y) and lim sup * f ε (x) = lim sup ε→0,y→x f ε (y) .
If f ε = f for any ε > 0, these relaxed semi-limits coincide with the lower and upper semi-continuous of a locally bounded function f .

For traveling waves q(r, e) and correctors Q(r, e), q and Q denote derivatives with respect to r.

Preliminaries

This section is devoted to the presentation of the assumptions we make about non-linearities, traveling waves and linearized traveling wave equations. We also briefly describe the construction of fronts at stake after rescaling fractional diffusion-reaction equations.

Fractional diffusion-reaction equations

We can write (1), ( 2) and ( 5) as follows

∂ t u ε + 1 εη -I ε α u ε + f (u ε ) = 0 (6) 
with

η =    ε if α > 1 , ε| ln ε| if α = 1 , ε α if α < 1 (7) 
(see Remark 4). We will use later on that the potential J satisfies in the singular case the following properties

      
J is smooth on R N \ {0}, even and non-negative

|J(z)| ≤ CJ |z| N +α J(z) ∼ g z |z| 1 |z| N +α as |z| → +∞ (8) 
with α ∈ (0, 2). We also mention that if α < 1, then

|z| 2 J ε (z) + |∇(|z| 2 J ε (z))| ≤ K(z) ∈ L 1 (B) (9) 
where

J ε (z) = ε -N -α J(ε -1 z).

Bistable non-linearity

We make the following assumptions.

Assumption 1 (Bistable non-linearity). The non-linearity f : R → R is C 1 and such that

• for all h ∈ (0, H), they are constants m ± (h) and m 0 (h) such that

f (m i (h)) = h, i ∈ {0, +, -} and m -(h) < m 0 (h) < m + (h). ( 10 
)
• f > 0 in ( m-, m0 ) and f < 0 in ( m0 , m+ ).

• f ′ ( m± ) > 0 and f ′ ( m0 ) < 0 where m± = m ± (0) and m0 = m 0 (0).

In particular, if h > 0, we have m± ≤ m ± (h) and m0 ≥ m 0 (h) and

|m ± (h) -m± | ≤ C f h . ( 11 
)

Anisotropic traveling wave

In this subsection, we describe the anisotropic traveling waves we will use in the construction of barriers in order to get the main convergence result. In particular, we make precise the decay we expect for such waves. This construction will be achieved in a future work.

Assumption 2 (Anisotropic traveling wave). For h ∈ (0, H), there then exist two continuous functions q : R × S N -1 → R and c : R × S N -1 → R such that q(r, e, h) → m ± (h) as r → ±∞ (the limit being uniform with respect to e ∈ S N -1 ) and c q -I e [q] + f (q) = h [START_REF]Glauber evolution with the Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics[END_REF] where

I e [q] (ξ) =        q(ξ + e • z) -q(ξ) -q(ξ)e • z1 B (z) J(z)dz if α ≥ 1 q(ξ + e • z) -q(ξ) J(z)dz if α < 1
for any e ∈ S N -1 . The traveling wave q is increasing in r and the following estimates hold true for any (r, e) ∈ R ×

S N -1 |q(r, e, h) -m ± (h)| = O 1 |r| 1+α as r → ±∞ (13) sup h>0 { D e q ∞ + D 2 e,e q ∞ } ≤ C q ( 14 
)
for some constant C > 0 and with a limit uniform in e ∈ S N -1 . The function q also satisfies q2 (ξ)dξ → ( q0 ) 2 (ξ)dξ [START_REF]Glauber evolution with Kac potentials. III. Spinodal decomposition[END_REF] as h → 0 and the limit is uniform in e.

The speed c satisfies hc(e, h) > 0 if h = 0 [START_REF] Masi | Mathematical methods for hydrodynamic limits[END_REF] and c(e, h) h → c(e) as h → 0 (17

)
and the previous limit is uniform with respect to e. Moreover, the function c(e) is continuous on S N -1 .

Standing wave. Notice that [START_REF] Evans | Phase transitions and generalized motion by mean curvature[END_REF] implies in particular that c(e, 0) = 0. Hence q(e, 0) is a standing wave. It is denoted by q 0 in the remaing of the paper.

Reduced integral operator. The operator I e does not depend on e if J(z) is radially symmetric, i.e. when J(z) = j(|z|). We illustrate this fact in the next lemma where I e is computed in the case where

J(z) = g(ẑ)|z| -N -α . Lemma 1. Assume that J(z) = g( z |z| ) 1 |z| N +α . Then I e [q](r) = a 11 (e) R (q(ξ + r) -q(ξ)) dξ |ξ| 1+α where a 11 (e) = R N -1 g(1, u) du (1 + |u| 2 ) (N +α)/2
Remark 1. We recognize the fractional Laplacian of order α in the one dimensional space (up to a multiplicative constant).

Linearized traveling wave equation

In this subsection, the linearized traveling wave equation is considered. Loosely speaking, we need to know that the kernel of the linearized operator L reduces to R q and, if f is regular enough, so is the solution Q of LQ(ξ) = P f (ξ, t, x) where P f is the projection of f on the space orthogonal to q. We need in particular to be able to say that Q decays at infinity. Let us be more precise now.

The linearized operator L associated with (12) around a solution q is

LQ = c Q -I e [Q] + f ′ (q) Q. ( 18 
)
Given a smooth function

d : [0, T ] × R N → R, let us consider a(r, e, t, x) = 1 h q(r + d(t, x + εz) -d(t, x) ε , e) -q(r + e • z, e) J(z)dz where h = ε (resp. ε| ln ε|, ε α ) if α > 1 (resp. α = 1, α < 1).
Assumption 3 (The linearized TW equation).

Ker L = Ker (L) * = span q. Moreover, if d : [0, T ] × R N → R is a smooth function, there then exists a continuous solution Q : R × S N -1 × [0, T ] × R N to LQ = P qa(•, e, t, x)
where P q stands for the projection on the space orthogonal to span q. In particular, there exists C Q > 0 such that for any h, e, ξ,

| Q| + |∂ t Q| + |D x Q| + |D e Q| + |D 2 e,e Q| + |D 2 x,x Q| ≤ C Q (19) Q → 0 as r → +∞ ( 20 
)
where C Q does not depend on h, e, t, x and the limit is uniform in h, e, t, x.

Geometric motions

In this subsection, we introduce the geometric motions of fronts at stake when rescaling the fractional diffusion-reaction equations.

It is well-known that singularities can appear on the front in finite time when considering, for instance, the mean curvature motion. We thus classically use the level-set approach to define a front for all times. We recall that this approach consists in looking for a front Γ t under the form {x : u(t, x) = 0} and to derive a PDE satisfied by u.

Anisotropic mean curvature motion. In the case of an anisotropic mean curvature motion, we obtain the following degenerate and singular parabolic equation,

∂ t u = µ Du Tr (I -Du ⊗ Du)A Du D 2 u ( 21 
)
where µ : S N -1 → R + and A : S N -1 → S N are continuous functions and I stands for the N × N identity matrix and e = p |p| . We will see that the function µ (which will be referred to as the mobibility) is given by the following formula

µ(e) = ( q0 ) 2 (ξ, e)dξ -1 . ( 22 
)
As far as the function A is concerned, we distinguish cases. In the singular case and if α > 1, we have for all e ∈ S N -1

A(e) = (q 0 (ξ + z 1 , e) -q 0 (ξ, e)) 2 dz 1 |z 1 | 1+α dξ A g (e) (23) 
with

A g (e) = α(α -1) R N -1 (1, u) ⊗ (1, u)g(1, u) du (1 + |u| 2 ) (N +α)/2 (24) 
(where the space orthogonal to e is identified with

R N -1 ). If α = 1, ( m+ -m-) 2 S N -2 ={z∈S N -1 :z•e=0} θ ⊗ θJ(θ) σ(dθ) . (25) 
In the regular case, we have for all e ∈ S N -1

A(e) = q0 (ξ, e) q0 (ξ + e • z)z ⊗ zJ(z)dz . ( 26 
)
Remark 2. As a matter of fact, in the singular case with α > 1, A's given by ( 23) and ( 26) are the same, at least formally. But it is not even clear that the integral defining A(e) in ( 26) is well defined in the case α > 1. A formal argument is given in Appendix.

Fractional mean curvature motion. A fractional version of this motion can be defined. More precisely, for any α < 1, one can consider the following PDE,

∂ t u = µ Du κ[x, u(t, •)]|Du| ( 27 
)
where µ is defined by (22) and

κ[x, U ] = κ * [x, U ] = 1 {U(x+z)≥U(t,x),e•z≤0} -1 {U(t,x+z)<U(t,x),e•z>0} g z |z| dz |z| N +α .
This can also be written under the general form

κ * [x, U ] = ν{z ∈ R N : U (x + z) ≥ U (t, x), e • z ≤ 0} -ν{z ∈ R N : U (t, x + z) < U (t, x), e • z > 0}
for some non-negative Borel measure ν which is eventually singular. A general theory is developed in [START_REF] Imbert | Level set approach for fractional mean curvature flows[END_REF] to prove that the geometric flow is well defined. The definition of a viscosity solution for [START_REF] Katsoulakis | Stochastic Ising models and anisotropic front propagation[END_REF] implies the use of the following quantity

κ * [x, U ] = ν{z ∈ R N : U (x + z) > U (t, x), e • z < 0} -ν{z ∈ R N : U (t, x + z) ≤ U (t, x), e • z ≥ 0} .
Geometric non-linearities. In the following, we will use the notation: if

α ≥ 1, F (p, X) = -µ(p)Tr Ã(p)X -c(0, p)|p| ( 28 
)
and if α < 1, F (p, X, [φ]) = -µ(p)κ * [x, φ]|p| -c(0, p)|p| (29) 
for p = 0 and p = p/|p|. Since non-linearities F are discontinuous, it is necessary to use the lower and upper semi-continuous envelopes F * and F * of F in order to define viscosity solutions of ( 21). In the case α < 1, we have

F * (p, X, [φ]) = -µ * (p)κ * [x, φ]|p| -c * (0, p)|p| F * (p, X, [φ]) = -µ * (p)κ * [x, φ]|p| -c * (0, p)|p|
with the convention 0 = 0.

Generalized flows

As we explained it above, the level-set approach is necessary in order to define the anisotropic mean curvature motion of a curvature after the onset of singularities. It is proved in [START_REF] Barles | A new approach to front propagation problems: theory and applications[END_REF] (see also [START_REF] Barles | A geometrical approach to front propagation problems in bounded domains with Neumann-type boundary conditions[END_REF]) that this notion of solution is intimately related with the notion of generalized flows of interfaces whose definition is recalled next.

Definition 1 (Generalized flow for [START_REF] Garroni | A variational model for dislocations in the line tension limit[END_REF]). An family Ω = (Ω t ) t>0 (resp. U = (U t ) t>0 ) of open (resp. closed) sets of R N is a generalized super-flow (resp. generalized sub-flow) of ( 21) if for all (t 0 , x 0 ) ∈ (0, +∞) × R N , h > 0, and for all smooth function φ :

(0; +∞) × R N → R such that (i) (Boundedness) There exists r > 0 such that {(t, x) ∈ [t 0 , t 0 + h] × R N : φ(t, x) ≥ 0} ⊂ [t 0 , t 0 + h] × B(x 0 , r), (ii) (Speed) There exists δ φ > 0 such that ∂ t φ + F * (Dφ, D 2 φ) ≤ -δ φ in [t 0 , t 0 + h] × B(x 0 , r) (resp. ∂ t φ + F * (Dφ, D 2 φ) ≥ δ φ in [t 0 , t 0 + h] × B(x 0 , r)), (iii) (Non-degeneracy) Dφ = 0 in {(s, y) ∈ [t 0 , t 0 + h] × B(x 0 , r) : φ(s, y) = 0}, (iv) (Initial condition) {y ∈ B(x 0 , r) : φ(t 0 , y) ≥ 0} ⊂ Ω t0 , (resp. {y ∈ B(x 0 , r) : φ(t 0 , y) ≤ 0} ⊂ R N \ F t0 ), then {y ∈ B(x 0 , r) : φ(t 0 + h, y) > 0} ⊂ Ω t0+h (resp. {y ∈ B(x 0 , r) : φ(t 0 + h, y) < 0} ⊂ R N \ F t0+h ).
Remark 3. Remark that this definition slightly differs from the one introduced in [START_REF] Barles | A new approach to front propagation problems: theory and applications[END_REF]. However, a quick look at the proof of the abstract method from [START_REF] Barles | A new approach to front propagation problems: theory and applications[END_REF] that will be used below should convince the reader that this definition is adequate too.

The convergence result

This section is devoted to statement of the main result of this paper. We also explain why its proof reduces to the construction of an appropriate "barrier" which will be constructed in the next section.

Loosely speaking, we will prove that solutions of the fractional diffusionreaction equation ( 6) approximate, as ε go to 0, the motion of a front moving with a normal speed equal to its mean curvature. Moreover, the results state that the mean curvature motion is anisotropic and that mobilities and diffusion matrices are given by Green-Kubo formulae (see (22), ( 23) and ( 25)).

Statement of the main result

We now state our main result.

Theorem 1 (Convergence result when α ≥ 1). Let J be given by (4) with α ≥ 1 in the singular case and let f be a bistable non-linearity. We suppose that Assumptions 1, 2, 3 are satisfied by f . Let u ε be the unique solution of (1) if α > 1 and of (2) if α = 1 associated with a continuous initial datum

u ε 0 : R N → [ m-, m+ ] defined by u ε 0 (x) = q 0 d 0 (x) ε , Dd 0 (x) ( 30 
)
where q 0 is the standing wave associated with the diffusion-reaction equation and d 0 is the signed distance function to the boundary of a smooth set Ω 0 . Let u be the unique solution of the geometric equation [START_REF] Garroni | A variational model for dislocations in the line tension limit[END_REF] supplemented with the initial condition u(0, x) = d 0 (x), where µ is given by (22) and A is defined in [START_REF]Generalized motion by mean curvature as a macroscopic limit of stochastic Ising models with long range interactions and Glauber dynamics[END_REF] in the regular case and (23), [START_REF] Katsoulakis | Interacting particle systems and generalized evolution of fronts[END_REF] in the singular case.

Then the function u ε satisfies

u ε → m+ in {u > 0} u ε → m-in {u < 0} as ε → 0
where m± denote the stable zeros of f ; moreover both limits are local uniform.

Proof. In order to prove this theorem, we use the abstract method developed in [START_REF] Barles | A new approach to front propagation problems: theory and applications[END_REF] and [START_REF] Barles | A geometrical approach to front propagation problems in bounded domains with Neumann-type boundary conditions[END_REF]. Consider two open sets defined as

Ω 1 = Int{(t, x) ∈ (0, +∞) × R N : lim inf * u ε -m+ η ≥ 0} ⊂ (0, +∞) × R N Ω 2 = Int{(t, x) ∈ (0, +∞) × R N : lim sup * u ε -m- η ≤ 0} ⊂ (0, +∞) × R N
where interior is considered with respect to (0, +∞) × R N . We next define their traces at initial time by considering the lower semicontinuous function χ = 1 Ω 1 -1 (Ω 1 ) c and the upper semi-continuous function χ = 1 (Ω 2 ) c -1 Ω 2 defined on (0, +∞) × R N . They can be extended at t = 0 by setting χ(0, x) = lim inf t→0,y→x χ(t, y) and χ(0, x) = lim sup t→0,y→x χ(t, y). We now define

Ω 1 0 = {x ∈ R N : χ(0, x) = 1} and Ω 2 0 = {x ∈ R N : χ(0, x) = -1} .
The method developed in [START_REF] Barles | A new approach to front propagation problems: theory and applications[END_REF] consists in proving the following propositions.

Proposition 1 (Initial time). The set {x ∈ R N : d 0 (x) > 0} is contained in Ω 1 0 . Similarly, the set {x ∈ R N : d 0 (x) < 0} is contained in Ω 2 0 . Proposition 2 (Propagation). The set Ω 1 (resp. Ω 2 )
defined above is a generalized super-flow (resp. sub-flow) of [START_REF] Garroni | A variational model for dislocations in the line tension limit[END_REF].

The proofs of both propositions are postponed. Applying next [2, Corollary 2.1] (see also [START_REF] Barles | A new approach to front propagation problems: theory and applications[END_REF]Corollary 3.1]), we conclude the proof of Theorem 1.

It remains to prove Propositions 1 and 2. Both rely on the construction of barriers for smooth fronts; in our case, the term "barrier" refers to a sub-or super-solution of the fractional diffusion-reaction equation.

Proofs of Propositions 1 and 2

As we shall see it, proofs of Propositions 1 and 2 reduce to the proof of the following one.

Proposition 3 (Construction of a barrier). Given t 0 > 0 and x 0 ∈ R N , consider a smooth function φ : (0, +∞) × R N → R such that (i), (ii), (iii) from Definition 1 are satisfied. For all β > 0, there exists a sub-solution U ε,β of (1)

if α > 1 and (2) if α = 1 such that U ε,β (t 0 , x) ≤ (m + (-βη) -βη)1 {d(t0,•)≥β} + m -(-βη)1 {d(t0,•)<β} for x ∈ R N
(31) where d(t, x) denotes the signed distance to the set {y : φ(s, y) = 0} which has the same signs as φ and m ± (-βη) are the stable equilibria of f + βη. Moreover, if d(t, x) > -2β, then

lim inf * U ε,β -m+ η (t, x) ≥ -(C f + 2)β ( 32 
)
where C f appears in [START_REF] De Masi | Motion by curvature by scaling nonlocal evolution equations[END_REF].

We first derive Proposition 2 from the construction of the barrier.

Proof of Proposition 2. Let us explain why Proposition 3 together with the comparison principle for (6) yield the desired result. We consider a smooth function φ such that (i)-(iv) hold true. Let d denote the signed distance function to {φ = 0}. We derive from (iv) that

{d(t 0 , •) ≥ 0} ⊂ {φ(t 0 , •) ≥ 0} ⊂ Ω 1 t0 = {lim inf * u ε -m+ η ≥ 0} .
For the sake of clarity, m ± denotes m ± (-βη). And we will do so in the remaining of the paper. Hence

{d(t 0 , •) ≥ β} ⊂ int{lim inf * u ε -m+ η ≥ 0} .
Hence by using (i), we conclude that u ε satisfies on one hand

u ε ≥ m+ -βη ≥ m + -βη in {d(t 0 , •) ≥ β} .
On the other hand, since m-is a trivial solution of the diffusion-reaction equation, we have u ε ≥ m-≥ m -. We thus conclude that u ε satisfies

u ε (t 0 , x) ≥ (m + -βη)1 {d(t0,•)≥β} + m -1 {d(t0,•)<β} for x ∈ R N , (33) 
We now use Proposition 3 in order to get a sub-solution U ε with the desired properties. Combining (31) and (33) yields that U ε ≤ u ε at t = t 0 . We thus conclude by using the comparison principle for (6) that

U ε ≤ u ε on [t 0 , t 0 + h] × R N and (32) implies that lim inf * u ε (t 0 + h, x) -m+ η ≥ -(C f + 2)β
as soon as d(t 0 + h, x) > 2β. Since β is arbitrary, the proof is complete.

We now prove Proposition 1.

Proof of Proposition 1. We only prove the result for Ω 1 0 since the proof for Ω 2 0 is similar. Let x 0 be such that d 0 (x 0 ) =: 2δ > 0. We have to prove that x 0 ∈ Ω 1 0 . In other words, for all (t, x) in a neighbourhood of (0, x 0 ), we would like to prove

lim inf * u ε -m+ η (t, x) ≥ 0 .
In order to get such a result, we construct for any small β > 0 a subsolution U ε,β of ( 6) such that U ε,β (0, x) ≤ u ε (0, x)

and satisfying (32) for some function d(t, x) such that {d > 2β} contains a neighbourhood of (0, x 0 ). There exists r > 0 such that for any x ∈ B(x 0 , r), d 0 (x) ≥ δ > 0. Consider next the smooth function

φ(t, x) = (r -Ct) 2 + -|x -x 0 | 2 .
The associated distance function is given by the following formula

d(t, x) = r -Ct -|x -x 0 | . Remark that {d > 2β} = ∪ t≥0 {t} × B(x 0 , r -Ct -2β).
We claim that (33) holds true with t 0 = 0. Indeed, when d(0, x) ≥ β, we know that d 0 (x) ≥ δ and this implies that u ε (0, x) ≥ m + -βη for ε small enough as showed now

u ε (0, x) ≥ q 0 d 0 (x) ε , Dd 0 (x) ≥ q 0 δ ε , Dd 0 (x) ≥ m+ + o(ε 1+α ) ≥ m + + o(ε 1+α ) ≥ m + -βη .
Notice that (i) and (iii) are satisfied. As far as (ii) is concerned, it is only used in the construction of the barrier in order to get (34) below. We thus have to prove that we can choose C > 0 such that (34) also holds true. The constant C is chosen as follows

C ≥ sup e∈S N -1 (-µ(e)Tr(A(e)) -c(e)) + δ φ 2 
and (34) holds true for γ and h small enough.

Construction of the barrier

This section is devoted to the proof of Proposition 3.

Proof of Proposition 3. The proof proceeds in several steps. We first construct a sub-solution U of the diffusion-reaction equation close to the smooth front and we then extend it to the whole space.

A barrier close to the front. Using (i), (ii) and (iii), we know that there exists γ > 0 such that d is smooth on the set

Q γ = {|d| < γ}
and Dφ(s, x) = 0 on Q γ and

∂ t d ≤ µ(Dd)Tr(A(Dd)D 2 d) - δ φ 2 in Q γ . ( 34 
)
We used the fact that |Dd| = 1 in Q γ which also implies that D 2 dDd = 0 in Q γ . For β ≤ γ/2, we next define a "barrier" as

U (t, x) = q d(t, x) -2β ε , D(t, x), -βh + hQ d(t, x) -2β ε , D(t, x), t, x, -βh -2βh
where h > 0 will be chosen later, q denotes the traveling wave given by Assumption 2; the function D is assumed to be smooth, to coincide with Dd in Q γ and to be such that 1 2 ≤ |D| ≤ 3 2 . Let us point out that we would like to choose D = Dd but this function is not well defined everywhere away from the front and even if we prove that U is a subsolution close to the front, U has to be defined everywhere since the diffusion-reaction equation is not local. As far as the function Q is concerned, it will be chosen later.

Plugging the barrier into the diffusion-reaction equation. In order to prove that the barrier we introduced in the previous step is a sub-solution of the diffusion-reaction equation close to the front, we first plug it into the equation. 

∂ t U + 1 εη {-I ε α U + f (U )} ≤ q(r, e) ε µ(e)Tr(A(e)B) -µ ε āε - δ φ 4 - β ε + 1 ε [LQ(r, e, t, x) -(a ε (r, e, t, x) -q(r, e)µ ε āε )] + (err) ( 35 
)
where r = d(t,x)-2β

ε , e = Dd(t, x), B = D 2 d(t, x), µ ε , āε ∈ R are two real numbers to be chosen later and

a ε (r, e, t, x) = 1 η q(r+ d(t, x + εz) -d(t, x) ε , e)-q(r+e•z, e) J(z)dz . ( 36 
)
As far as error terms are concerned, we have

(err) = 1 εη R[T q ] + 1 ε R[T Q ] + 1 ε - q δ φ 8 -2f ′ (q)β + o(ε -1 ) (37)
and

R[T q ] = q d(t, x + εz) -2β ε , e -q d(t, x + εz) -2β ε , D(t, x + εz) + BD e q(r, e) • εz1 B (εz) J(z)dz, (38) R[T Q ] = Q(r + e • z, e, t, x) -Q d(t, x + εz) -2β ε , D(t, x + εz), t, x + εz + (BD e Q + D x Q) • εz1 B (εz) J(z)dz . ( 39 
)
Proof. We compute the quantity ∂ t U + (εη) -1 {-I ε α U + f (U )}. The fact that q is a traveling wave (see ( 12)) together with a uniform bound on Q with respect to all its variables (we will choose Q below so that it satisfies such a condition) permits to get

f (U ) = f (q) + hf ′ (q)Q -2f ′ (q)βh + O(h 2 ) = -βh + I e [q] -c(e, -βh) q + hf ′ (q)Q -2f ′ (q)βh + O(h 2 ) .
Rearranging terms, we thus obtain, for (t, x)

∈ Q γ , 1 εη {-I ε α U + f (U )} ≤ q ε - c(e, -βh) η (0, Dd) - βh εη -2f ′ (q)β h εη + 1 εη (I e [q] + hf ′ (q)Q -I ε α U ) + O( h 2 εη ) (40) 
We immediately see from this computation and in view of ( 17) that h must be chosen as follows h = η .

We next write

I e [q](r, e) + ηf ′ (q)Q -I ε α U (t, x) = ηT Q + T q (41) 
where

T Q = f ′ (q) Q -I ε α (Q(ε -1 (d -2β), Dd, t, •)) = LQ -c Q + R[T Q ] (42) 
and

T q = I e [q](r) -I ε α [q(ε -1 (d -2β), D)](x)
= q(r + e • z, e)q(r, e)q(r, e)e • z1 B (z) J(z)dz q d(t, x + εz) -2β ε , D(t, x + εz)q(r, e)

q(r, e) e ε + BD e q(r, e) • εz1 B (εz) J(z)dz .

Hence, T q can be written as follows

T q = -ηa ε + R[T q ] . (43) 
We now compute the time derivative of the barrier U . We use (34) in order to get

∂ t U = q ε [∂ t d] + (D e q + ηD e Q) • D(∂ t d) + ηε -1 Q∂ t d + η∂ t Q ≤ q ε µ(e)Tr(A(e)B) - δ φ 2 + (D e q + ηD e Q) • D(∂ t d) + ηε -1 Q∂ t d + η∂ t Q. ( 44 
)
We next combine (40), ( 41), ( 42), ( 43) and (44) to get

∂ t U + 1 εη {-I ε α U + f (U )} ≤ q ε µ(e)Tr(A(e)B) - δ φ 4 - c(e, -βη) η - δ φ 8 - β ε + 1 ε [-a ε + LQ] + (err) with (err) = 1 εη R[T q ] + 1 ε R[T Q ] - c η Q + 1 ε - q δ φ 8 -2f ′ (q)β + (D e q + ηD e Q) • D(∂ t d) + ηε -1 Q∂ t d + η∂ t Q + o(ε -1 ) .
Using ( 17), ( 14) and ( 19), we finally get (35) with the associated error term.

Estimating error terms. In this paragraph, we prove that the right hand side of ( 35) is non-positive. We first construct a corrector Q in order to handle oscillating terms.

Lemma 3 (Choice of the corrector Q). There exist µ ε , āε ∈ R such that there exists

Q satisfying LQ = a ε -qµ ε āε . (45) 
Proof. In view of Proposition 3, it is enough to choose µ ε and āε such that (a ε (ξ)µ ε āε q(ξ)) q(ξ)dξ = 0.

The following choices permit to ensure such a condition µ ε (e) = q2 (ξ, e)dξ and āε (e, t, x) = q(ξ, e)a ε (ξ, e, t, x)dξ = 1 η q(ξ, e) q(ξ + e • z + εW (t, x, z), e)q(ξ + e • z, e) J(z)dξdz

with W (t, x, z) = 1 ε 2 [d(t, x + εz) -d(t, x) -εDd(t, x) • z] .
Remark 4. The choice of h when rescaling fractional diffusion-reaction equations ( 6) is made such that āε has a limit as ε → 0.

The following lemma is the core of the proof of Theorem 1 and its proof is rather involved. This is the reason why we postpone it until Section 5.

Lemma 4 (Uniform convergence of approximate coefficients (I))

. As ε → 0, āε (e, t, x) → tr (A(e)D 2 d(t, x)) and the limit is uniform with respect to (e, t, x) ∈ S N -1 × Q γ .

We next treat error terms appearing in (err).

Lemma 5 (Error terms (err)). We have

R[T q ] = o(ε α ) = o(η) (46) and R[T Q ] = o(1) (47) 
uniformly in (e, t, x) ∈ S N -1 × Q γ and for all r ∈ R and

β ≤ β = β(δ φ ) -q(r) δ φ 8 -2f ′ (q(r))β ≤ 0 . ( 48 
)
Proof. We first prove (46). Through a change of variables, we get

R[T q ] = ε α q d(t, x + z) -2β ε , D(t, x) -q d(t, x + z) -2β ε , D(t, x + z) -BD e q(r, e) • z1 B (z) J ε (z)dz
where J ε (z) = ε -(N +α) J(ε -1 z). By using ( 8) and ( 14), dominated convergence theorem permits to conclude. We next turn to the proof of (47). To prove it, we first write

R[T Q ] = R 1 [T Q ] -R 2 [T Q ] (49) with R 1 [T Q ] = Q(r + e • z, e, t, x) -Q d(t, x + εz) -2β ε , e, t, x J(z)dz , R 2 [T Q ] = Q (r + e • z, D(t, x + εz), t, x + εz) -Q(r + e • z, e, t, x) -(BD e Q + D x Q) • εz1 B (εz) J(z)dz .
As far as R 1 [T Q ] is concerned, we can write for any R > 0

R 1 [T Q ] ≤ Q ∞ 1 2 D 2 d L ∞ (B(x,εR)) ε |z|≤R |z| 2 J(z)dz +2 Q ∞ |z|≥R J(z)dz ≤ C Q ∞ 1 2 D 2 d L ∞ (B(x,εR)) εR 2-α + 2C Q ∞ R -α
where we used (8) to get the second inequality. Choose now R such that εR ≤ 1, R → +∞ and εR 2-α → 0; for instance R = ε -1/2 permits to conclude in this case.

As far as R 2 [T Q ] is concerned, we use once again [START_REF] Chen | Generation and propagation of interfaces for reaction-diffusion equations[END_REF] in order to write

|R 2 [T Q ]| ≤ ε α Q (. . . , D(t, x + z), t, x + z) -Q(. . . , D(t, x), t, x) -(BD e Q + D x Q) • z1 B (z) C J dz |z| N +α ≤ Cε α where C depends on sup h { Q ∞ + D 2 e,e Q ∞ + D 2 x,x Q ∞ }
that is bounded by assumption (see Estimate [START_REF] Forcadel | Existence of solutions for a model describing the dynamics of junctions between dislocations[END_REF]).

It remains to prove (48). It is enough to prove that there exists a constant C tw which does not depend on h and such that for all r ∈ R

q(r) + C tw f ′ (q(r)) ≥ 0 . ( 50 
)
This inequality is trivial when f ′ (q(r)) ≥ 0. Hence, we consider r such that f ′ (q(r)) ≤ 0, that is to say m-< q-≤ q(r) ≤ q+ < m+ for some constants q± which do not depend on h. If r satisfies the previous inequality, we deduce from ( 13) that |r| ≤ R for some constant R which does not depend either on h. Now (50) is clear. It is enough to find an estimate from below for q on [-R, R] which does not depend on h. The proof of the lemma is now complete.

Using Lemmata 3, 4 and 5 we derive from (35) the following inequality

∂ t U + 1 εη {-I ε α U + f (U )} ≤ -β ε + o( 1 ε ) ≤ -β 2ε . ( 51 
)
Extension of the barrier away from the front. The remaining of the construction of the barrier consists in extending the subsolution U we constructed before in order that it is a subsolution in [t 0 , t 0 + h] × B(x 0 , r) (in particular, far from the front). More precisely, we modify U far from the front. Following [START_REF] Barles | A new approach to front propagation problems: theory and applications[END_REF][START_REF] Barles | A geometrical approach to front propagation problems in bounded domains with Neumann-type boundary conditions[END_REF], we proceed in two steps. We first extend it on {d ≤ γ} by m -and then extend it on {d ≥ γ} by m +βη The difficulty is to keep it a subsolution. We do this by truncating properly U . Truncating it from below by m -is easy but truncating it from above by m +βη is more delicate.

Proof. This is a simple consequence of the definition of Ū and of Estimates ( 14) and [START_REF] Forcadel | Existence of solutions for a model describing the dynamics of junctions between dislocations[END_REF].

Definition of U ε,β . We finally define

U ε,β = ψ(d) Ū + (1 -ψ(d))(m + -βη) if d < γ , m + -βη if d ≥ γ
where ψ : R → [0, 1] is a smooth function such that ψ(r) = 1 if r ≤ γ/2, ψ(r) = 0 if r ≥ 3γ/4. We will see below that it is convenient to assume additionally that ψ(5γ/8 + r) = 1ψ(5γ/8r). We deduce from properties of ψ and ( 55) and (56) that

U ε,β = m - in {d ≤ β} (57) U ε,β = m + -βη in {d ≥ 3γ/4} (58) m -≤ U ε,β ≤ m + -βη . ( 59 
)
In particular, (31) is clearly satisfied. We also deduce from (59) and the definitions of Ū and U ε,β that

U ≤ Ū ≤ U ε,β . (60) 
In particular, if

d(t, x) > 2β, then d > 2β in a neighbourhood V of (t, x). In particular, U ε,β ≥ U = m + + o(η) -2βη in V .
Using now [START_REF] De Masi | Motion by curvature by scaling nonlocal evolution equations[END_REF], we deduce that (32) also holds true.

The barrier U ε,β is a subsolution of (6) on [t 0 , t 0 +h]×R N . We distinguish three cases. Consider first a point (t, x) such that d(t, x) < γ/2. In this case, U ε,β (s, y) = Ū(s, y) in a neighbourhood of (t, x) and this implies ∂ t U ε,β (t, x) = ∂ t Ū(t, x) (in the viscosity sense). In order to prove that U ε,β is a subsolution of ( 6) at (t, x) it is enough to prove that I ε α Ū (t, x) ≤ I ε α U ε,β (t, x) since Ū is a subsolution. Such an inequality is a consequence of (60) and the fact that U ε,β (t, x) = Ū (t, x).

Consider next a point (t, x) such that d(t, x) > 3γ/4. In this case, there exists r 0 > 0 such that d(s, y) > 3γ/4 for y ∈ B((t, x), r 0 ). Consequently, U ε,β (s, y) = m +βη for (s, y) ∈ B((t, x), r 0 ). This yields that ∂ t U ε,β (t, x) = 0 (in the viscosity sense) so we have to prove that

f (U ε,β (t, x)) ≤ I ε α (U ε,β )(t, x) .
To get the previous inequality, on one hand, we have

f (U ε,β (t, x)) = f (m + -βη) = f (m + (-βη)) -f ′ (m + -θβη)βη ≤ -βη
and on the other hand,

I ε α (U ε,β )(t, x) = [U ε,β (t, x + εz) -(m + -βη)]J(z)dz = |z|≥r0/ε [U ε,β (t, x + εz) -(m + -βη)]J(z)dz ≥ -C |z|≥r0/ε J(z)dz = -Cε α ≥ -βη
in view of the definition of η. Notice that this argument fails in the case α < 1.

Finally, we consider (t, x)

such that γ/2 ≤ d(t, x) ≤ 3γ/4. It is convenient to introduce ψ d (x) = ψ(d(x)).
Remark that Ū = U in a neighbourhood of (t, x). Hence, we mentioned above that Ū satisfies (51) at (t, x)

∂ t Ū + 1 εη {-I ε α Ū + f ( Ū )} ≤ -β 2ε . ( 61 
)
We use (61) and compute (in the viscosity sense)

∂ t U ε,β + 1 εη f (U ε,β ) -I ε α U ε,β = ψ ′ × (∂ t d) × ( Ū -m + + βη) + ψ d ∂ t Ū + 1 εη f (U ε,β ) - 1 εη I ε α (U ε,β ) ≤ C(ψ) Ū -(m + (-βη) -βη) + 1 εη f (U ε,β ) -ψ d f ( Ū ) + 1 εη ψ d I ε α Ū -I ε α U ε,β -ψ d β 2ε ( 62 
)
where C(ψ) only depends on ψ and γ. We now estimate each term of the right hand side of (62). First, we derive directly from the equality Ū = U and the very definition of U the following lemma Lemma 7. We have Ū = m + -2βη + o(βη). In particular,

Ū -(m + -βη) ≤ 2βη . ( 63 
)
We now estimate the second term of the right hand side of (62).

Lemma 8. f (U ε,β ) -ψ d f ( Ū ) ≤ - 1 2 (1 -ψ d )βη . ( 64 
)
Proof. From Lemma 7, we have

U ε,β = ψ d (m + -2βη + o(βη)) + (1 -ψ d )(m + -βη) = m + -βη -ψ d (1 + o(1))βη .
In particular, U ε,β < m + . Hence,

f (U ε,β ) = f (U ε,β ) -f (m + ) + f (m + ) ≤ -(f ′ ( m+ ) + o(1))(1 + ψ d + o(1))βη -βη ≤ -(f ′ ( m+ ) + 1 + o(1))βη Lemma 7 also implies 0 ≤ U ε,β -Ū = (1 -ψ d )(1 + o(1))βη .
Hence, we obtain

f (U ε,β ) -ψ d f ( Ū ) = (1 -ψ d )f (U ε,β ) + ψ d (f (U ε,β ) -f ( Ū)) ≤ -(1 -ψ d )(f ′ ( m+ ) + 1 + o(1))βη +ψ d (f ′ ( m+ ) + o(1))(1 -ψ d )(1 + o(1))βη ≤ (-1 + o(1))(1 -ψ d )βη ≤ - 1 2 (1 -ψ d )βη .
We now turn to the third term of the right hand side of (62) whose estimate is more delicate. It is given by the following technical lemma. Lemma 9. For any γ 0 > 0, there exists a function O(ε α ) such that

ψ d I ε α Ū -I ε α U ε,β ≤ γ 0 η + O(ε α ) . (65) 
Proof. We would like first to point out that we can forget the time variable in this proof since it plays no role. We first remark that for r 0 = γ/4,

|z| ≤ r 0 ε ⇒ U ε,β (x + εz) = ψ d (x + εz)( Ū (x + εz) -m + + βη) + (m + -βη) .
Indeed, |d(x + εz)d(x)| ≤ r 0 = γ/4 and this implies d(x + εz) ∈ (γ/4, γ). In particular d(x + εz) ≤ γ and (63) holds true.

We next approximate the quantity we are estimating by truncating large z's. Precisely, using the previous remark and the fact that the mass of J outside B r0/ε is O(ε α ), we write

ψ d I ε α Ū -I ε α U ε,β = ψ d J ε Ū -J ε [ψ d ( Ū -m + + βη) + (m + -βη)] + O(ε α ) = ψ d J ε ( Ū -m + + βη) -J ε [ψ d ( Ū -m + + βη)] + O(ε α )
where the operator J ε is defined as follows

J ε ϕ(x) = ε|z|≤r0 [ϕ(x + εz) -ϕ(x) -Dϕ(x) • εz1 B (z)]J(z)dz
and where O(ε α ) only depends on Q ∞ and m± (for ε small enough).

We next use the following equality

J ε (ϕϕ ′ )(x) -ϕ(x)J ε ϕ ′ (x) -ϕ ′ (x)J ε ϕ(x) = ε|z|≤r0 (ϕ(x + εz) -ϕ(x))(ϕ ′ (x + εz) -ϕ ′ (x))J(z)dz
with ϕ = ψ d and ϕ ′ = Ūm + + βη. We obtain

ψ d I ε α Ū -I ε α U ε,β = -( Ū -m + + βη)J ε ψ d - ε|z|≤r0 (ψ d (x + εz) -ψ d (x))( Ū (x + εz) -Ū (x))J(z)dz + O(ε α ) .
Recalling that (63) holds true for |z| ≤ ε -1 r 0 , we write

ψ d I ε α Ū -I ε α U ε,β ≤ 2βη|J ε ψ d (x)| + ε Dψ d L ∞ (B(x,r0)) ε D Ū L ∞ (B(x,r0)) |z|≤ε |z| 2 J(z)dz + ε Dψ d L ∞ (B(x,r0)) 4βη ε≤|z|≤r0ε -1 |z|J(z)dz + O(ε α ) .
We next estimate each term as follows.

|J ε ψ d (x)| ≤ C(ψ d )ε α , |z|≤ε |z| 2 J(z)dz ≤ Cε 2-α , ε≤|z|≤r0ε -1 |z|J(z)dz ≤ Cε 1-α if α > 1 C| ln ε| if α = 1 ≤ 1 ε .
The first estimate is easily obtained by adapting the arguments used above to estimate R

1 [T Q ] and R 2 [T Q ]. Moreover, the constant C(ψ d ) only depends on ψ d ∞ = 1 and D 2 ψ d L ∞ (B(x, r0 
)) . This last quantity only depends on γ and

Dd L ∞ (B(x,r0)) , D 2 d L ∞ (B(x,r0))
. Hence, by using Lemma 6, we have

ψ d I ε α Ū -I ε α U ε,β ≤ C(ηε α + ε 3-α + η) + O(ε α )
(we used that β ≤ 1 for instance). We achieve the proof by choosing ε small enough so that

C(ηε α + ε 3-α + η) ≤ γ 0 .
We now combine (62), ( 64) and (65) to get

∂ t U ε,β + 1 εη f (U ε,β ) -I ε α U ε,β ≤ Cβη -(1 -ψ d ) β 2ε -ψ d β 2ε + γ 0 ε + o( 1 ε ) .
This is where it is convenient to choose ψ such that ψ(5γ/8+r) = 1-ψ(5γ/8-r) since in this case, max(ψ d , 1ψ d ) ≥ 1/2 and we obtain

∂ t U ε,β + 1 εη f (U ε,β ) -I ε α U ε,β ≤ Cβη - β 4ε + γ 0 ε + o 1 ε .
Choosing now γ 0 small enough, we finally get

∂ t U ε,β + 1 εη f (U ε,β ) -I ε α U ε,β ≤ C(ψ)βη - β 8ε .
It is now clear that for ε small enough, U ε,β is a subsolution of ( 6) in [t 0 , t 0 + h] × R N .

Proof of Lemma 4

This section is devoted to the study of the average of oscillating terms. Their behaviour as ε → 0 was given by Lemma 4 whose proof was postponed. We first deal with the singular case with α > 1. We next prove the result in the regular case. We then state the equivalent lemma for the case α < 1 since ideas will be used in the case α = 1. We finally prove Lemma 4 in the case α = 1.

Proof of Lemma 4 in the singular case for α > 1. We first recall the definition of āε and W . For the sake of clarity, we do not write e and h variables of q since they play no role in the present argument.

āε (e, t, x) = q(ξ)a ε (ξ, e, t, x)dξ

= 1 ε q(ξ) q(ξ + e • z + εW (t, x, z)) -q(ξ + e • z) J(z)dξdz with W (t, x, z) = 1 ε 2 [d(t, x + εz) -d(t, x) -εDd(t, x) • z] .
We proceed in several steps.

Step 1: reduction to the study of the singular integral around the origin for quadratic W 's. Let us choose r ε such that we also have (see [START_REF] Chen | Generation and propagation of interfaces for reaction-diffusion equations[END_REF])

1 ε |z|≥rε J(z)dz → 0 as ε → 0 .
For instance we consider r ε = ε -β with β > 1/α. In view of Condition (8), we thus can assume from now on that

J(z) = g(ẑ) 1 |z| N +α .
Since q is bounded, it is therefore enough to study the convergence of b ε (e, t, x)

= |z|≤rε q(ξ) 1 ε q(ξ + e • z + εW (t, x, z), e) -q(ξ + e • z) J(z)dξdz .
For |z| ≤ r ε ,

W (t, x, z) → 1 2 D 2 d(t, x)z • z as ε → 0
as soon as one chooses r ε such that εr ε → 0. Hence we take β

∈ (α -1 , 1). If B denotes 1 2 D 2 d(t, x), we have for |z| ≤ r δ , |W (t, x, z) -Bz • z| ≤ δ|z| 2 .
By using the monotonicity of q, we thus can reduce the study of b ε to the study of

c ε = |z|≤rε q(ξ) 1 ε q(ξ + e • z + εCz • z) -q(ξ + e • z) J(z)dξdz .
Step 2: integrating by parts. By using a system of coordinates where z 1 = e • z and z = (z 1 , z ′ ), we can decompose the matrix C as follows

C = c 1 v * v C ′
Hence, we can write

c ε = |z|≤rε 1 0 q(ξ) q(ξ + z 1 + ετ Cz • z)(Cz • z)J(z 1 , z ′ )dξdz 1 dz ′ dτ = |z|≤rε 1 0 q(ξ) q(ξ + z 1 + ετ Cz • z)(Cz • z)J(z 1 , z ′ )dξdz 1 dz ′ dτ = |z|≤rε 1 0 q(ξ)∂ z1 q(ξ + z 1 + ετ Cz • z) -q(ξ) × Cz • z 1 + 2ετ (c 1 z 1 + v • z ′ ) J(z 1 , z ′ )dξdz 1 dz ′ dτ
We now integrate by parts with respect to z 1 .

c ε = - |z|≤rε 1 0 q(ξ) q(ξ + z 1 + ετ Cz • z) ×∂ z1 Cz • z 1 + 2ετ (c 1 z 1 + v • z ′ ) J(z 1 , z ′ ) dξdz 1 dz ′ dτ + (BT ) 1 + -(BT ) 1 - with (BT ) 1 ± = |z ′ |≤rε 1 0 q(ξ) q(ξ ± r 2 ε -|z ′ | 2 + ετ C(± r 2 ε -|z ′ | 2 , z ′ ) • (± r 2 ε -|z ′ | 2 , z ′ )) × C(± r 2 ε -|z ′ | 2 , z ′ ) • (± r 2 ε -|z ′ | 2 , z ′ ) 1 + 2ετ (±c 1 r 2 ε -|z ′ | 2 + v • z ′ ) J(± r 2 ε -|z ′ | 2 , z ′ ) dξdz ′ dτ .
We next integrate by parts with respect to ξ.

c ε = |z|≤rε 1 0 q(ξ) q(ξ + z 1 + ετ Cz • z) ×∂ z1 Cz • z 1 + 2ετ (c 1 z 1 + v • z ′ ) J(z 1 , z ′ ) dξdz 1 dz ′ dτ +(BT ) 1 + -(BT ) 1 - = |z|≤rε 1 0 q(ξ)∂ z1 q(ξ + z 1 + ετ Cz • z) -q(ξ) × 1 1 + 2ετ (c 1 z 1 + v • z ′ ) ∂ z1 Cz • z 1 + 2ετ (c 1 z 1 + v • z ′ ) J(z 1 , z ′ ) dξdz 1 dz ′ dτ +(BT ) 1 + -(BT ) 1 -
We finally integrate by parts in z 1 and we get

c ε = d ε + (BT ) 1 + -(BT ) 1 -+ (BT ) 2 + -(BT ) 2 - ( 66 
)
with

d ε = - |z|≤rε 1 0 q(ξ) q(ξ + z 1 + ετ Cz • z) -q(ξ) ×∂ z1 1 1 + 2ετ (c 1 z 1 + v • z ′ ) ∂ z1 Cz • z 1 + 2ετ (c 1 z 1 + v • z ′ ) J(z 1 , z ′ ) dξdz 1 dz ′ dτ (BT ) 2 ± = |z ′ |≤rε 1 0 q(ξ) q(ξ ± r 2 ε -|z ′ | 2 +ετ (± r 2 ε -|z ′ | 2 , z ′ ) • (± r 2 ε -|z ′ | 2 , z ′ )) -q(ξ) × 1 1 + 2ετ (±c 1 r 2 ε -|z ′ | 2 + v • z ′ ) ∂ z1 Cz • z 1 + 2ετ (c 1 (•) + v • z ′ ) J(•, z ′ ) (± r 2 ε -|z ′ | 2 )dξdz ′ dτ .
We now study the limits of all terms in (66).

Step 3: study of boundary terms. We start with (BT ) 1 ± .

|(BT ) 1 ± | ≤ 2(m + (h) -m -(h)) q ∞ g ∞ |z ′ |≤rε 2r 2 ε dz ′ r N +α ε ≤ Cr 1-α ε
and this goes to 0 as ε → 0.

We now turn to (BT ) 2 ± . It is convenient to introduce the function

Γ(τ, z 1 ) = (1 + 2ετ (c 1 z 1 + v • z ′ )) -1 .
Since εr ε → 0 as ε → 0, we deduce that for ε small enough, we have

|Γ(τ, z 1 )| ≤ 2 |∂ z1 Γ(τ, z 1 )| ≤ 8|c 1 |ε |∂ z1 (Γ 2 )(τ, z 1 )| ≤ 32|c 1 |ε |∂ 2 z1,z1 Γ(τ, z 1 )| ≤ 64|c 1 | 2 ε 2 .
We next compute

∂ z1 ((Cz • z)Γ(z 1 )J(z 1 , z ′ )) = 2c 1 z 1 ΓJ + (c 1 z 2 1 + C ′ z ′ • z ′ )(∂ z1 Γ)J + (c 1 z 2 1 + C ′ z ′ • z ′ )Γ∂ z1 J .
Now, since J(z) = g(ẑ)|z| -N -α , we deduce that

|∂ z1 J(z)| ≤ C |z| N +α+1 .
We thus conclude that for |z ′ | ≤ r ε and z 1 such that |z| = r ε , we have

|∂ z1 ((Cz • z)ΓJ)| ≤ C r ε r N +α ε + C εr 2 ε r N +α ε + C r 2 ε r N +α+1 ε ≤ Cr -N -α ε and we get |z ′ |≤rε,z 2 1 +|z ′ | 2 =r 2 ε |∂ z1 ((Cz • z)Γ(τ, z 1 )J(z 1 , z ′ ))|dz ′ ≤ Cr -α ε .
With this inequality in hand, we now derive

G(-Cr ε ) = -Cr -α ε (q(ξ) -q(ξ -Cr ε ))dξ ≤ (BT ) 2 ± ≤ Cr -α ε (q(ξ + Cr ε ) -q(ξ))dξ = G(Cr ε )
where G(r) = (q(ξ + r)q(ξ))dξ .

It is clear that G is Lipschitz continuous and equals 0 at 0. Hence

|(BT ) 2 ± | ≤ Cr 1-α ε .
It thus goes to 0 as ε → 0.

Step 4: study of d ε . In order to study the main term d ε , we first write it as follows

d ε = e ε + R ε with e ε = - |z|≤rε 1 0 q(ξ) q(ξ + z 1 + ετ Cz • z) -q(ξ) ×Γ 2 (τ, z 1 )∂ 2 z1,z1 (Cz • z)J(z 1 , z ′ ) dξdz 1 dz ′ dτ R ε = - |z|≤rε 1 0 q(ξ) q(ξ + z 1 + ετ Cz • z) -q(ξ) × (∂ z1 Γ) 2 + Γ∂ 2 z1,z1 Γ (Cz • z)J(z 1 , z ′ ) +∂ z1 (Γ 2 )∂ z1 (Cz • z)J(z 1 , z ′ ) dξdz 1 dz ′ dτ .
Let us now prove that R ε goes to 0 as ε → 0. We proceed as we did with (BT ) 2 ± . We first estimate the quantity [. . . ] in the definition of R ε . We use the estimates on Γ and its derivatives, together with the estimate of ∂ z1 J. We obtain for |z| ≤ r ε ,

|[. . . ]| ≤ C ε 2 |z| N +α-2 + C ε |z| N +α-1 ≤ Cε |z| N +α-1
since ε|z| ≤ εr ε → 0. By arguing as for (BT ) 2 ± , we conclude that

|R ε | ≤ CεG(Cr ε ) |z|≤rε |z| -N -α+1 dz ≤ C(εr ε )r 1-α ε
and the right hand side of the previous inequality goes to 0 as ε → 0. It remains to study the limit of e ε . By dominated convergence theorem, we obtain that it converges towards

e 0 = - R ξ q(ξ) Rz 1 (q(ξ + z 1 ) -q(ξ)) ×∂ 2 z1,z1 z ′ (Cz • z)g(ẑ) dz ′ (|z 2 1 + |z ′ | 2 ) (N +α)/2 dξdz 1 = - R ξ q(ξ) Rz 1 (q(ξ + z 1 ) -q(ξ))∂ 2 z1,z1 |z 1 | 1-α α(α -1) Tr(A g (e)C) dξdz 1 = - R ξ q(ξ) Rz 1 (q(ξ + z 1 ) -q(ξ)) dz 1 |z 1 | α dξ Tr(A g (e)C) = (q(ξ + z 1 ) -q(ξ)) 2 dz 1 dξ |z 1 | 1+α Tr(A g (e)C)
where A g (e) is defined in [START_REF] Kac | On the van der Waals theory of the vapor-liquid equilibrium. I. Discussion of a one-dimensional model[END_REF]. The proof is now complete.

Proof of Lemma 4 in the regular case. The proof of the lemma in this case is divided into two steps.

Step 1: reduction to the study of the singular integral around the origin for quadratic W 's. As explained in the proof of Lemma 4 for J(z) = g(ẑ)|z| -N -α and α > 1, it is enough to study the convergence of b ε (e, t, x) = |z|≤rε q(ξ)a ε (ξ, e, t, x)dξdz

= |z|≤rε q(ξ) 1 ε q(ξ + e • z + εW (t, x, z), e) -q(ξ + e • z) J(z)dξdz
where we recall that r ε = ε -β with β > 1/α. Remark that there exists C R > 0 such that for any (t, x) ∈ B R and z ∈ B,

|W (t, x, z)| ≤ C W |z| 2 (67) 
and that, for |z| ≤ r ε ,

W (t, x, z) → 1 2 D 2 d(t, x)z • z as ε → 0
as soon as one chooses r ε such that εr ε → 0. We conclude that the integrand of b ε converges towards

1 2 q0 (ξ) q0 (ξ + e • z)(D 2 d(t, x)z • z) J(z) .
This explains why we expect the limit of āε to be given by [START_REF]Generalized motion by mean curvature as a macroscopic limit of stochastic Ising models with long range interactions and Glauber dynamics[END_REF]. We can apply dominated convergence theorem outside the unit ball B. Hence, we reduce the study of the limit of b ε to the one of

c ε (e, t, x) = |z|≤1 q(ξ) 1 ε q(ξ + e • z + εW (t, x, z), e) -q(ξ + e • z) J(z)dξdz .
In order to do so, we introduce

c ± ε = |z|≤1 q(ξ) 1 ε q(ξ + e • z ± εC W |z| 2 , e) -q(ξ + e • z) J(z)dξdz .
We know from (67) and the monotonicity property of q that

c - ε ≤ c ε ≤ c + ε ( 68 
)
and it is thus enough to prove that integrals c ± ε have limits that are uniform with respect to e, t, x to conclude.

Step 2: integrating by parts. Recall that |e| = 1 and let z 1 denote e • z and z = (z 1 , z ′ ). We now write

c + ε (e) = |z|≤1 q(ξ) 1 ε q(ξ + z 1 + εC W z 2 1 + εC W |z ′ | 2 , e) -q(ξ + z 1 ) J(z)dξdz = C W |z|≤1 1 0 q(ξ) q(ξ + z 1 + ετ C W z 2 1 + ετ C W |z ′ | 2 , e) |z| 2 J(z) dξdzdτ = C W 1 0 |z|≤1 q(ξ)∂ z1 q(ξ + z 1 + ετ C W z 2 1 + ετ C W |z ′ | 2 , e) × |z| 2 J(z) 1 + 2ετ C W z 1 dξdτ dz ′ dz 1 .
We next integrate by parts and get

c + ε = d + ε + (BT ) + + (BT ) -. with d + ε = -C W 1 0 |z|≤1 q(ξ)q(ξ + z 1 + ετ C W z 1 + ετ C W |z ′ | 2 , e) ×K(τ, z) dξdτ dz ′ dz 1 (BT ) ± = ±C W 1 0 |z|≤1 q(ξ)q(ξ ± 1 -|z ′ | 2 + ετ C W , e) × J(± 1 -|z ′ | 2 , z ′ ) 1 ± 2ετ C W 1 -|z ′ | 2 where K(τ, z) = ∂ z1 |z| 2 J(z) 1 + 2ετ C W z 1 = ∂ z1 (|z| 2 J(z)) 1 + 2ετ C W z 1 -2ετ C W |z| 2 J(z) (1 + 2ετ C W z 1 ) 2 .

After remarking that for

J ∈ L 1 ∩ C 0 c , we have |K(τ, z)| ≤ C(|z| 2 J(z) + |∇(|z| 2 J(z))|) ∈ L 1 (B) ,
it is clear that we can apply dominated convergence theorem in each integral. The proof is now complete.

In the case α < 1, the ansatz used to treat the case α ≥ 1 yield oscillating terms with the following form.

a ε (ζ, s, y) = 1 ε α q(ζ + φ(s, y + εz) -φ(s, y) ε ) -q(ζ + e • z) dz |z| N +α .
Their average is thus defined as follows āε (s, y) = a ε (r, s, y) q(r)dr .

Even if we are not able (yet!) to treat the case α < 1, we think this can be of interest to explain what is the limit of the average as ε → 0 in order to justify our conjecture about the limit we expect in the case α < 1. Another reason for including such a result is that its proof shares ideas with the one corresponding one for the case α = 1.

Lemma 10 (Uniform convergence of approximate coefficients (II)). Consider a smooth function

d : (0, +∞) × R N → R such that |Dd(t, x)| = 1. Then, as ε → 0, āε (e, t, x) → κ[x, d(t, •)]
and the limit is uniform with respect to (e, t, x) ∈ S N -1 × Q γ .

Proof of Lemma 10. In the case α < 1, we first make a change of variables as follows āε (e, t, x) = q(ξ)a ε (ξ, e, t, x)dξ

= 1 ε α q(ξ) q(ξ + d(t, x + εz) -d(t, x) ε , e) -q(ξ + e • z) J(z)dξdz = q(ξ) q(ξ + d(t, x + z) -d(t, x) ε , e) -q(ξ + e • z ε ) J ε (z)dξdz with J ε (z) = 1 ε N +α J z ε .
Step 1: reduction to the study of the singular integral around the origin for quadratic W 's. Remark next that it is easy to pass to the limit in the integrand; indeed,

q(ξ + d(t, x + z) -d(t, x) ε , e) -q(ξ + e • z ε ) → ( m+ -m-) 1 (d(t,x+•)>d(t,x),e•(•)<0) -1 (d(t,x+•)<d(t,x),e•(•)>0)
and

J ε (z) → g( z |z| ) 1 |z| N +α .
The difficulty is to deal with the singular measure. Hence, it is enough to study, as in the case α = 1,

c + ε = R ξ |z|≤δ q(ξ) q(ξ + z 1 + C W z 2 1 + C W |z ′ | 2 ε , e) -q(ξ + z 1 ε ) ×J ε (z 1 , z ′ )dξdz ′ dz 1 = C W R ξ |z|≤δ 1 0 q(ξ) q(ξ + z 1 + C W τ z 2 1 + C W τ |z ′ | 2 ε , e) × |z| 2 ε J ε (z 1 , z ′ )dξdzdτ = C W R ξ |z|≤δ 1 0 q(ξ)∂ z1 q(ξ + z 1 + C W τ z 2 1 + C W τ |z ′ | 2 ε , e) × |z| 2 1 + 2C W τ z 1 J ε (z)dξdzdτ where z = z 1 e + z ′ .
Step 2: integrating by parts. By integrating by parts, we obtain

c + ε = d + ε + (BT ) + + (BT ) - where d + ε = -C W R ξ |z|≤δ 1 0 q(ξ)q(ξ + z 1 + C W τ z 2 1 + C W τ |z ′ | 2 ε , e) ×L ε (τ, z)dξdzdτ (BT ) ± = ±C W R ξ |z ′ |≤δ 1 0 q(ξ)q(ξ + ± δ 2 -|z ′ | 2 + C W τ δ 2 ε , e) ×δ 2 J ε (± δ 2 -|z ′ | 2 , z ′ )dz ′ dξdτ with L ε (τ, z) = ∂ z1 |z| 2 J ε (z) 1 + 2C W τ z 1 = ∂ z1 (|z| 2 J ε (z)) 1 + 2C W τ z 1 -2C W τ |z| 2 J ε (z) (1 + 2C W τ z 1 ) 2 . Condition (9) ensures that |L ε (τ, z)| ≤ CK(z) ∈ L 1 (B)
and dominated convergence can be used to prove the convergence of d + ε . As far as boundary terms are concerned, we use [START_REF] Chen | Generation and propagation of interfaces for reaction-diffusion equations[END_REF] to get a constant C > 0 such that

J ε (z) ≤ C |z| N +α and this implies J ε (± δ 2 -|z ′ | 2 , z ′ ) ≤ C δ N +α .
Hence, dominated convergence can be applied to boundary terms too. The proof is now complete.

Proof of Lemma 4 in the singular case for α = 1. The proof is divided in several steps.

Step 1: reduction to the study of the singular integral around the origin for quadratic W 's. Let us fix δ > 0. There exists r δ > 0 such that for any z ∈ B r δ , |d(t, x + z)d(t, x) -Dd(t, x) • z -

1 2 D 2 d(t, x)z • z| ≤ δ|z| 2 .
Consequently, for z such that |z| ≤ r δ ε -1 =: R ε , we have

|W (t, x, z) - 1 2 Bz • z| ≤ δ|z| 2 . ( 69 
)
We remark next that It is therefore enough to study the convergence of b ε = 1 ε| ln ε| 1≤|z|≤Rε q(ξ)[q(ξ + e • z + εW (t, x, z))q(ξ + e • z)]J(z)dzdξ .

By using (69) together with the monotonicity of q, it is even enough to study the convergence of c ε = 1 ε| ln ε| 1≤|z|≤Rε q(ξ)[q(ξ + z 1 + εc 1 z 2 1 + εC ′ z ′ • z ′ )q(ξ + e • z)]J(z)dzdξ for any (N -1)×(N -1) symmetric matrix C and any constant c 1 ∈ R. Precisely, we next prove that, as ε → 0,

c ε → 2( m+ -m-) 2 S N -2 g(θ) C ′ θ • θ σ(dθ)
where g appears in (8).

Step 2: change of variables and domain decomposition. We now introduce the function F q defined as follows F q (a) = q(ξ)q(ξ + a)dξ .

We remark that F q is bounded, non-decreasing, Lipschitz continuous and sastisfies F q (a) → m+ ( m+m-) as a → +∞ m-( m+m-) as a → -∞ and

F ′ q ∞ ≤ q2 (ξ)dξ 1/2
.

We now rewrite c ε with this new function

c ε = 1 ε| ln ε| 1≤|z|≤Rε F q (z 1 + εc 1 z 2 1 + εC ′ z ′ • z ′ ) -F q (z 1 ) J(z)dz
Through the change of variables z ′ = ε -1 rθ and z 1 = ε -1 rt 1 , we get

c ε = 1 | ln ε| θ∈S N -2 dσ(θ) r δ 0 dr r 2 ε 2 r -2 ≤1+t 2 1 ≤r 2 δ r -2 dt 1 × F q r ε (t 1 + rc 1 t 2 1 + rC ′ θ • θ) -F q r ε t 1 g (t 1 , θ) t 2 1 + 1 1 (1 + t 2 1 ) (N +1)/2 .
Without loss of generality, we assumed here for simplicity that J(z) = g(z/|z|)|z| -N -1

(see [START_REF] Chen | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF]). We next cut it into two pieces as follows

c ε = d ε + R 1 ε with d ε = 1 | ln ε| θ∈S N -2 dσ(θ) r δ Θε dr r 2 ε 2 r -2 ≤1+t 2 1 ≤r 2 δ r -2 dt 1
× F q (. . . ) -F q (. . . ) g(. . . × F q (. . . ) -F q (. . . ) g(. . . ) 1 (1 + t 2 1 ) (N +1)/2

for some Θ > 0 to be fixed later.

Step 3: study of R 1 ε . We now use the fact that F q is Lispchitz continuous in order to get, for Θ large enough, F q (. . . ) -F q (. . . ) g(. . . ) 1 (1 + t 2 1 ) (N +1)/2 .

|R 1 ε | ≤ g ∞ F ′ q ∞ (|c 1 | + |C ′ |)|S N -2 | 1 | ln ε|
We now study the limit of the integrand of d ε . In view of the limits of F q (a) when a → ±∞, this limit is not 0 if t 1 satisfies t 1 ≥ 0 t 1 + c 1 rt 2 1 + rc θ ≤ 0 or t 1 ≤ 0 t 1 + c 1 rt 2 1 + rc θ ≥ 0 where c θ = C ′ θ • θ. This is equivalent to 0 ≤ t 1 ≤ T 1 (r) or

t 1 ≤ -1 2c1r (1 + √ 1 -4c 1 c θ r 2 ) ≃ -1 c1r or -c θ r ≤ t 1 ≤ 0 with T 1 (r) = 1 2c 1 r
( 1 -4c 1 c θ r 2 -1) ≃ -c θ r .

We use now the fact that |t 1 | ≤ r 2 δ r -2 -1 to get 0 ≤ t 1 ≤ T 1 (r) or T 1 (r) ≤ t 1 ≤ 0 .

We next cut d ε into pieces as follows × F q (. . . ) -F q (. . . ) g(. . . × F q (. . . ) -F q (. . . ) g(. . . ) 1 (1 + t 2 1 ) (N +1)/2 .

d ε = e + ε + e - ε +
Step 5: study of e ± ε . Since r ≤ r δ and r δ very small, we can replace e ± ε with

f ± ε = 1 | ln ε| θ∈S N -2 dσ(θ) r δ Θε dr r 2 0≤±t1≤|T1(r)| dz 1 × F q r ε (t 1 + rc 1 t 2 1 + rC ′ θ • θ) -F q r ε t 1 g(0, θ) = 1 | ln ε| θ∈S N -2 dσ(θ) r δ Θε dr r 0≤±z1≤r -1 |T1(r)| dz 1 × F q 1 ε (z 1 + rc 1 z 2 1 + r 2 C ′ θ • θ) -F q z 1 ε g(0, θ)
Now it is easy to conclude that

f ± ε → θ∈S N -2
((c θ ) + + (c θ ) -)g(0, θ)dσ(θ)(F q 0 (+∞) -F q 0 (-∞))

= ( m+m-) 2 θ∈S N -2

(Cθ • θ)g(0, θ)dσ(θ) .

It remains to prove that R 2 ε converges towards 0.

Step 6: study of R 2 ε . By the study we made in Step 4, we conclude that the integrand of R 2 ε converges towards 0. To dominate convergence, we simply write

|R 2 ε | ≤ 1 | ln ε| |S N -2 | r δ Θε dr r |z1|≥|c θ |/2 2 F q ∞ 1 (1 + t 2 1 ) (N +1)/2 ≤ |S N -2 | ln(r δ ) + | ln ε| | ln ε| |z1|≥|c θ |/2 2 F q ∞ 1 (1 + t 2 1 ) (N +1)/2 .
The proof of the lemma is now complete.

A Link between [START_REF] Imbert | Level set approach for fractional mean curvature flows[END_REF] and [START_REF]Generalized motion by mean curvature as a macroscopic limit of stochastic Ising models with long range interactions and Glauber dynamics[END_REF] In this section, we explain the link between the two first formulae in ( 23) and ( 26) by giving a formal argument.

Lemma 2 .

 2 If h = η and β ≤ β (depending only on δ φ ), then the function U satisfies the following inequality in Q γ

|z|≤1 |z| 2 J

 2 (z)dz = O(1) = o(| ln ε|) , |z|≥Rε J(z)dz = O(ε) = o(ε| ln ε|) .

  (εε N -1 ) ≤ C δ | ln ε| . Hence R 1 ε → 0 as ε → 0 .Step 4: study of d ε . First, we rewrite d ε (for Θ ≥ 1 large enough) as followsd ε = 1 | ln ε| θ∈S N -2 dσ(θ)
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Upper estimates for U . We start by estimating from above the "barrier" function U we constructed before. We claim that the following inequalities hold true

We first justify (52). In view of the definition of U , we use ( 13) and [START_REF] Garroni | Γ-limit of a phase-field model of dislocations[END_REF], in order to get

We next justify (53) by adapting an argument from [START_REF] Barles | A new approach to front propagation problems: theory and applications[END_REF]. First, [START_REF] Garroni | Γ-limit of a phase-field model of dislocations[END_REF] implies that there exists c > 0 which does not depend on h such that we have for |r| ≥ c |Q(r, e, t, x)| ≤ β .

Next, we claim that there exists ν(c) > 0 such that we have for |r| ≤ c

In the other case, |d(t, x) -2β| ≤ εc, then

Definition of Ū . We define for (t, x)

From ( 52) and (53), we get

On one hand, a classical argument implies that Ū is a subsolution of (6) on Q γ = {-γ ≤ d ≤ γ} since it is the maximum of two subsolutions. On the other hand, (52) implies that Ū (t, x) = m -on {d ≤ -γ/3}. Thus Ū is a subsolution on {d ≤ γ}.

We also shed light on the fact that Ū satisfies (51) at points of Q γ where Ū = U . This will be used later on. We will also need the following lemma.

Lemma 6 (Gradient estimate for the barrier).

There exists C > 0 such that for all (t, x) ∈ [t 0 , t 0 + h] × R N and all ε > small enough,

then this equation can be written as follows

Hence, A(e) = KA g (e) with

By integrating by parts in z 1 and ξ and z 1 successively, we obtain

dz 1 (q 0 (ξ + z 1 )q 0 (ξ) -q0 (ξ)z 1 )|z 1 | -α = q 0 (ξ)(-∆) (α-1)/2 [q 0 ](ξ)dξ = (q 0 (ξ + z 1 )q 0 (ξ)) 2 dz 1 |z 1 | α dξ .