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A Cellular Analog Network for MRF-based Video
Motion Detection

Franck Luthon and Daniela Dragomirescu, Student Member, IEEE

Abstract— The implementation of a visual motion detec-
tion algorithm on an analog network is presented. The al-
gorithm is based on Markov random field (MRF) model-
ing. Robust motion detection is achieved by using a spa-
tiotemporal neighborhood for modeling pixel interactions.
Not only are the moving edges detected, but also the in-
ner part of moving regions. Moreover, the motion echo is
eliminated. For hardware implementation, the algorithm
is mapped onto a resistive network incorporating, at each
pixel-node, light acquisition and on-chip processing. Ele-
mentary Markov cells are made of resistors and non-linear
current sources driven by observations, derived from lu-
minance information acquired by photoreceptors. Electri-
cal simulations of the cell are reported. Experimental re-
sults with synthetic and real-world image sequences exhibit
the performance of the network. For circuit design, the
switched-current technique is used. The circuit is intended
for submicronic complementary metal-oxide-semiconductor
(CMOS) technology.

Keywords— Image sequences, Markov random fields
(MRF'’s), motion detection, motion chip, smart sensor.

I. INTRODUCTION

HE design of smart sensors for visual motion analysis

is of interest for the following applications: telesurveil-
lance; videoconferencing; videophone; compression; and
computer vision. Motion analysis in image sequences
mainly consists of four stages [1]: detection of temporal
changes; estimation of optical flow or velocity; segmenta-
tion of different moving regions; and interpretation of the
scene content. Here, we focus on robust motion detection.
By robust motion detection we mean a process in between
detection and segmentation of moving areas, i.e., obtention
of a binary field accurately representing the projection (or
mask) of moving objects in the image plane. Assuming a
static camera and little variation of the scene lighting, mo-
tion information is derived from temporal differences in the
intensity function I. To recover complete masks of moving
objects, this basic information must be processed in order
to reduce the influence of acquisition noise, to cancel the
echo of motion, and to fill in the interior of masks (Fig. 1).
For that purpose, a regularization technique is used, based
on Markov random field (MRF) modeling and energy min-
imization via the iterated conditional modes (ICM) relax-
ation algorithm. But computation cost is high and software
implementation is incompatible with real-time processing.
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Fig. 1. Robust motion detection process illustrated by two consecu-
tive images I:—1, I of a synthetic sequence, representing a mobile
rectangle and a static ellipse. (a) Observation: temporal changes.
(b) Binarization: initial binary map. (c) Ideal output: motion
mask.
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Hardware implementation on special-purpose vision cir-
cuits (ASIC’s) gives the best computation and communica-
tion efficiency. The main advantages of analog ASIC’s are
processing speed, low power consumption, small hardware
size, and high pixel density, while the drawbacks are limited
computational precision and flexibility, development times
and financial cost. Two approaches exist for the design
of smart sensors [2]: computational direction and biolog-
ical models. Here, a computational approach is adopted.
Interestingly, however, starting from a mathematical view-
point (i.e., statistical regularization based on MRF) and
mapping the algorithm onto an analog network results in
a circuit which resembles, in many respects, a biologically
inspired cellular neural nonlinear network (CNN) [3].

A brief survey of the literature reveals some interest-
ing points. First, most approaches for motion-chip design
are biologically inspired. They use either gradient-based
schemes or correlation schemes to compute global image
motion [4], [5], [6]. Second, from the application view-
point, a clear distinction should be made between motion
detection, estimation, or segmentation and between static
and mobile camera. Moreover, robustness with respect to
noise and to the number, size, and speed of mobile objects
is of major concern. To our knowledge, no chip exists that
recovers the complete masks of moving regions. Most cir-
cuits either detect moving edges only (motion transitions)
or estimate the global velocity in the image plane. Many
so-called motion chips are based on the detection on excited
cells of positive and negative pulses in temporal derivatives.
They actually compute basic temporal differences [7]. A
few circuits report sparse or dense optical flow, but no seg-
mentation is available (cf. optical flow computation chip
with biological approach [8]). The first instance of a robust
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optical flow computation chip is presented in [2]. A motion
detection-and-estimation algorithm that is an amalgama-
tion of biologically and computationally based models is
implemented on a smart sensor. Third, many authors put
emphasis on the effectiveness of adopting a current-mode
approach (i.e., representing signals as currents instead of
voltages) for the design of building blocks in analog very
large scale integration (VLSI) neural systems, although
they do not agree about the best MOS transistor oper-
ating mode: the subthreshold region (translinear circuits)
[6], linear region [9], or saturation region.

The context in which we place our work is restricted to
robust motion detection (i.e., recovery of moving masks
without velocity estimation) in the case of a static camera.
The algorithm is based on a computational (nonbiologi-
cal) method, and an analog implementation is presented
which uses a current-mode approach. The paper is or-
ganized as follows. Section II presents the mathematical
model used for robust motion detection and the electrical
analogy found for mapping the algorithm onto an analog
network. Section III deals with circuit architecture. In sec-
tion IV, the circuit design for VLSI implementation is de-
tailed. Electrical simulations exhibit the cell behavior. In
section V, the network is simulated and motion detection
results with both synthetic and real-world image sequences
are reported.

II. MRF FRAMEWORK WITH ELECTRICAL MODELING
A. Observations, Labels, and Neighborhood Structure

Motion detection aims at labeling each pixel of a video
sequence according to moving and static areas in con-
secutive images. Usual assumptions are a static cam-
era and almost constant illumination of the scene. Thus,
the raw observation os; at pixel (or site) s = (i,4,t)
is given by temporal changes' in the intensity function
os = |I(%,54,t) — I(i,4,t — 1)| where (4, 5) are the discrete
spatial coordinates of pixel s and ¢ is the discrete time in-
stant. The motion label I, to be given to site s may take
one of the two values

L-{

Let I = {l5,s € S} (respectively o = {0s,s € S}) be one re-
alization of label field L (respectively observation field O)
on image S at time? ¢. The random field L is assumed
to have MRF properties, i.e., a Gibbs distribution and
a neighborhood structure. The spatiotemporal neighbor-
hood 5, of site s is given in Fig. 2.

According to [10], maximizing the a posteriori probabil-
ity of label field realization I, given observation field re-
alization o, is equivalent to minimizing an energy or cost
function U consisting of two terms U = Uy, (1) + U, (0,1).

m = “1”
b=«

if s € moving area,
if s € static background.

1)

IThe absolute value is taken in order to be insensitive to the sign
of contrast between mobile and static regions.

2Whenever needed, a temporal subscript will be explicitly added in
the notations (e.g., 0¢4+1 for observation field o at time ¢ + 1).

P O current pixel s=(i,j,t)
@ neighbors n
1 - O—e binary cliques c

Fig. 2. Spatiotemporal neighborhood 7, with binary cliques
(u,d,e,w,p, f standing respectively for up, down, east, west,
past, and future neighbor).

B. Energy Functions

The model energy U,,(l), embedding a priori modeling
of spatiotemporal interactions between sites, is a regular-
ization term similar to smoothness constraints classically
used to solve ill-posed problems. Let C' be the set of all
binary cliques ¢ = (s,n) constituting the neighborhoods
where n € 5, stands for any neighbor of s, spatial or tem-
poral. Then, U,,(l) is given by
with  V.(ls, 1) = Be(ls — 1),

(2)
Ve(ls,l,) is an elementary potential function defined on
each clique ¢ = (s,n). . stands for a generic parame-
ter that may take one of three positive values §s, 8, and
By depending on the type of clique (spatial, past or future).
These model parameters may be chosen experimentally, or
estimated with an expectation-maximization (EM) algo-
rithm. The expression of V, favors spatiotemporal homo-
geneity since a configuration with two identical neighboring
labels does not increase energy U,,, while U, increases of
a quantity proportional to 8. in the case of two different
labels. Moreover, the quadratic expression in (2) is compat-
ible with electrical implementation, as shown below. More
sophisticated expressions could be used to comply with ro-
bust estimators. Some of them are also implementable in
hardware (e.g., antibump function in [5]).

The attachment energy U, (o,1) is a link-to-data energy,
reflecting the good match (attachment) between labels and
observations. Its expression is given by [11]

Un(l) =) Vells, In)

ceC

Ua(o,l) = 5.5 Y olos = W)L ©
s€S

where ¢? is the observation variance that may be estimated
online or only from the first image pair of the sequence. ¥
is a function of labels, the role of which is to model typical
configurations that may arise in the observation field. For
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motion detection, ¥ may be defined as®

0 if ls=1,=0b (background)
TU(ls) =< a1 >0 it ls=10,=m (motion)
ay>>o i I #p (transition)

(4)
where a7 and s are positive parameters that may be pre-
defined or estimated online [11].

C. Software Energy Minimization via ICM Relazation

The algorithm* flow-chart is given in Fig. 3. Because of

input image 1,

buffer «— o,
l ol

0. —»|binarization binarization l«— 9.

in in

7 1 5 o,

L, ¢ : l ! model parameters
energy minimization [ (3 B B o o)

@@ (ICM relaxation algo.) ’ p v

'Y l«— O? estimate

l

t

v
output label field

Fig. 3. Algorithm block diagram.

the spatiotemporal neighborhood chosen for motion detec-
tion (Fig. 2), three label fields are required for relaxation to
start: past, present and future. Therefore, the algorithm
implies a one image delay since the future image at time
t+1 is required to get the label field corresponding to time
t.

The minimum energy may be computed using either
stochastic relaxation algorithms, like simulated annealing
[10], or deterministic algorithms, such as iterated condi-
tional modes (ICM) [12]. Here, the iterative method ICM
is used because of its lower computation cost. But it is
suboptimal in the sense that it may get stuck in the first
encountered local minimum of the energy function. There-
fore, label field initialization is crucial in order to be sure
to converge to the global minimum. At time ¢ past la-
bel field I;_; is already available as the result of previous

3This expression relies on the basic assumption that an object, when
moving, generates in the image plane high-intensity variations in tran-
sition areas (front and echo areas), and smaller variations in sliding
areas (i.e., inner parts) of moving objects (Fig. 1).

4Compared to the original two-pass algorithm proposed by
Bouthémy [11], the modified algorithm proposed here leads to a one-
pass algorithm, suitable for analog hardware implementation on a
network made of a single processing layer, with the same performance
with regard to the quality of motion detection results.

relaxation. However, present and future label fields must
be initialized. This is done by binarization of observation
fields o4, 0441 (simple comparison to a threshold 8;, or like-
lihood test methods), yielding initial field estimates I, I ;.
Then, ICM relaxation runs over field L and field L at time
t is scanned pixel per pixel. At each site, a local decision
is taken. The label given to a site is the one inducing the
lower energy within its neighborhood. This relaxation it-
erates until convergence is achieved, based on a relative
energy decrease criterion (typically AU/U < 0.01%). The
processing rate is typically of 1 image/s on a Sparc-10 work-
station for images of size 128 x 128.

Instead of software implementation via ICM for finding
the global minimum solution, hardware implementation on
an analog VLSI network is an highly efficient alternative
in achieving real-time processing. The bagic principle con-
sists of allowing an electrical network find the minimum
energy configuration by relaxing to its state of minimal
power dissipation®.

D. Electrical Analogy

The idea of mapping the algorithm on an analog network
stems from a close study of the equation underlying the
state of minimal energy. Let us use the following explicit
notations, corresponding to current pixel s = (4, §,t): 0;; =
0s, lij = ls, pij = lp for past label and f;; = Iy for future
label. Then, denoting K = 1/202, the total energy U may
be rewritten as

U = Zﬂs(lij = liy1,5)* + Bs(lij — lic1 5)?
2,

+8s(lij — lij+1)? + Bs(lij — i j—1)* + Be(lij — fiz)?
+Bp(li; — pij)? + K [0y — T(l3;)]° . (5)

For analog implementation, we must suppose that labels I;;
may take continuous values® in the range b to m (assuming
m > b), instead of binary values in the set {b;m}. The
minimum of U with respect to all [;; corresponds to null
partial derivatives

.. oU
Vl] W =0 & st2li]’ + Bf(l” — f”) + Bp(lz] _p”)
ij
ov
—K o loij = T(lyy)] =0 (6)
ij
where V2l;; = 4lij — g1,y — lic1,y — lij+1 — lLij—1 is a

discrete five-point approximation of the spatial Laplacian
of l;;. Now, an electrical analogy with Kirchhoff’s laws
may be done by identifying each term in (6) to a current
converging to node ij. Labels correspond to electrical po-
tentials and label differences to voltages. Parameters S,

51n contrast to computer implementation for which initialization l?
of the present label field is required, initialization of electrical poten-
tials is not necessary in analog hardware implementation since the
circuit will relax to its state of minimal power dissipation, whatever
its initial conditions are.

8To recover the final binary labels relevant for motion detection,
a simple comparison to a threshold 8,,: applied to these continuous
labels is required.
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represent conductances. The last term in (6) is a current
source depending on observation o;; and on attachment
function W. Its role is similar to the attachment energy
U,(o,1) (i.e., observation fit). Moreover, it should be eas-
ily implemented on an analog circuit (which means that
a linear function of l;; is required for ¥). Bearing these
constraints in mind, and inspired by (4), there are many
possible candidates for ¥. The simplest form would be
U(l;;) = Al;; with A = constant. However, to properly
cancel motion echo, the following expression is proposed:
‘If(l”) = Aij (lij —pij) where Aij = 09 (pij - fl]) — Q1 with
as > a1 > 0. Replacing ¥ and its derivative in (6), and
introducing a leakage capacitance specific of the circuit dy-
namics yields, for all ij,

Blij
ot
with 8, = Bp + KAj;. At electrical equilibrium, the left
member of (7) tends to zero, corresponding to the minimum
energy solution. Thus, this linear system of differential

equations may be solved via an analog resistive network as
implemented below.

C

III. CIRCUIT ARCHITECTURE
A. Elementary Markov Cell

The cell shown in Fig. 4 contains six resistors (four spa-
tial resistors R, two temporal resistors Ry, Rp) and two
voltage-controlled current sources J; and Js. The four re-

liJ+1

L
J,=G0,(f;-py)

s \V;c P
P ij /X/
l ~ GND

i @

Fig. 4. Elementary Markov cell with R; = 1/8s, Ry = 1/8f, Rp =
1/Ba, G1 = Ka1, and Gz = Kas.

sistors R, are connected to the four nearest neighboring
cells. Past and future neighbors are actually not physical
but, rather, are virtual neighbors in the sense that they do
not correspond to actual electrical cells as spatial neigh-
bors do. They only represent side information entering the
physical nodes. Theoretically, resistor R, at least, should
be adjustable since it depends on ¢2 and on ij past and
future labels. In practical implementation, however, one
can choose a fixed value since the temporal dependency of

R, can be compensated with a proper choice of oz and .
Moreover, generator J; is connected to V,./2 in order to
be able to generate current in both directions, depending
on the sign of (f;; — p;;), while J; is connected to V. since
it always injects current into the node (o;; is always > 0).

The elementary cell of Fig. 4 is in charge of a local electri-
cal processing at node ij. After all the required command
voltages (045, fij,pij) are set up onto the cell, one lets the
cell relax. When there is no motion information (0;; = 0),
current sources are inactive and electrical potential ;; is
only influenced by its neighbors (spatiotemporal smooth-
ing due to resistors). When motion information is present
(0i; # 0), current sources are active and a current is in-
jected into (respectively, extracted from) node ij, depend-
ing on the sign of (fi; — p;;), i.e., on the type of transition
(static-to-mobile, mobile-to-static, etc.)”.

Current sources Ji, Jo ensure the good fit to observed
data. Jp is responsible for recovering the inner part of
moving masks, while J; handles transition areas (front and
echo). Let AJ be the sum of currents delivered by the
two sources. Four typical cases may occur®, corresponding,
respectively, to background, interior, echo, and front areas
(Fig. 1).

1. Static-to-static pixel: 0;; =0and p;; = f;; = 0.

Then current sources do not work: AJ = 0.

2. Mobile-to-mobile pixel: o;; small and p;; =1

o With adequate input threshold (6;,low): f;; = 1.
Then generator J; only is active: AJ = G055 > 0.
A small current is injected into node 4j, increasing
slightly its electrical potential. This allows to fill in
the inner part of moving masks.

e With inadequate input threshold (f;, too high):
fi; = 0. Both generators are active: AJ = (G1 —
G2)o;; < 0 since Go > G1. A small current is ex-
tracted from node ij, decreasing slightly its electri-
cal potential. However, since past neighbor is la-
beled as mobile and observation is small, this influ-
ence is not critical and does not break mask homo-
geneity.

3. Mobile-to-static transition: o large and p;; =
1,fi;; = 0. AJ = (G1 — G2)o;; < 0. A large current
is pumped out of the node, decreasing drastically its
electrical potential. This allows to cancel the echo
area.

4. Static-to-mobile transition: o;; large and p;; =
0,fi; =1. AJ = (G1+ G2)o;; > 0. A large current is
pumped into the node, increasing drastically its elec-
trical potential. This allows to enhance the moving
front area.

When steady state is reached after relaxation, the electrical
potential I;; is output to a comparator, giving a binary
value corresponding to the final motion label at pixel ij.
This Markov cell has the desired behavior for recovering the

"(fij — pij) may take only three values: 0, +1 or —1. Indeed, p;;
and f;; take binary values in the set {“0” = GND; “1” = V.} since
they are obtained after thresholding electrical potentials. Hence, we
have (fij — pij) = sgn(fi; — pij)-

8We suppose that motion detection was correctly performed at the
previous instant (i.e., past label p;; has the right value).
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complete motion masks, and it eliminates isolated points
due to acquisition noise, thanks to the resistive smoothing,.
This clearly outperforms a simple frame difference.

B. Complete Cell

The elementary Markov cell needs some circuitry around
it in order to work properly when integrated in a focal
plane network. The complete cell (Fig. 5) must include a
photoreceptor plus the required circuits to compute 055, fij,
and p;; to give the desired binary output, i.e., static or
mobile labeling, and must be interconnected to other cells
and to line and column shift registers (or address decoders)
for outputting results on a video monitor.

light input ® Ly
\/\4 I,(t+1)
It N
clk, 0,(t+1)
A 4
A || Sl
0” —f;lv (IiJ.Sgl’l
S - . . .
ij-1 RS o < . < luﬂ
° SRR e o
Markov cell (ij) ' > T ~ _
J_L Iq | > N pij
1
clk, =
/ I aliiE
4

lx+1.| ® label output

Fig. 5. Complete cell with acquisition (photosensor), preprocess-
ing (computation of 05, f;;), processing (Markov cell relaxation),
and postprocessing (binarization, and memory output latch to
get p;;). The preprocessing stage with the track and hold (T/H)
circuit is depicted inside the white box.

Light intensity at pixel ¢ is acquired continuously by
a photosensor. An analog T/H circuit samples the input
current at a rate corresponding to standard video rate, e.g.,
30 images/s (clock clk;). Observation and future label are
computed by elementary circuits (delay memories, absolute
value of difference, and comparator). This constitutes the
preprocessing stage.

The processing stage (relaxation) is embedded in the
Markov cell itself (dark box in the middle of Fig. 5). Once
command voltages are settled, clock clk, triggers the net-
work relaxation, allowing all Markov cells to relax in par-
allel to their state of minimal power dissipation.

The postprocessing stage consists of a comparator and a
memory output latch. When steady state is reached after
network relaxation, clock clk, triggers output binarization
and storage of final label at the same rate as input sam-
pling. A simple threshold 8,,;, applied on the electrical
potential, gives the desired binary label. The binary out-
put is also stored in memory to give p;; for the next clock

trigger clk,. The timing diagram is given in Fig. 6.

acq pp acq pp
“« > e «—
track hold track| hold
clk;
relaxation relaxation
k. ____| (proo) proc) |
clk, >
output binarization  output binarization
(post) (post)
t At t+1 time
B B EEEE—
Fig. 6. Timing diagram (At = 33ms). acg, pp, proc, and post

stand respectively for acquisition, preprocessing, processing, and
postprocessing.

C. Network Architecture

The network architecture is given in Fig. 7. In addi-
clk, l L L l
clk, —») \ W \
clk | = —

. > N r~
clk, 4 >
‘ ] 1 1 —
L\ \ \ \
to all cells |
] = o ! >
\ \ \ \
\ \ \ \
g = o Y > .
clk, \ I l
shift register
video
video monitor A sequencer

Fig. 7. Network architecture.

tion to clocks clk;, clk,, and clk,, two other clocks, clk,
and clky, are required to trigger the transfers of cell bi-
nary outputs into vertical and horizontal shift registers,
with subsequent serial transmission to a video sequencer
for visualization on a monitor.
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IV. VLSI IMPLEMENTATION
A. Switched-Current Mode for Preprocessing Stage

For hardware implementation, one may choose among
three approaches. The most usual way is to handle infor-
mation as voltages (classical technology using operational
amplifiers (op-amps)). Another choice is the technique of
switched capacitors, where information is represented as
electrical charges. This usually requires linear precision ca-
pacitors fabricated with additional process step over stan-
dard MOS technology.

An attractive alternative for smart-pixel CNN implemen-
tation is to work in current-mode [13]. The technique of
switched currents (SI) is well suited for the preprocessing
stage. The SI-concept was introduced by Hughes et al. [14]
for the design of analog systems in standard MOS technol-
ogy for sampled-data signal processing. Here, the sampling
is temporal, corresponding to standard video rate of 30 im-
ages/s, i.e., At = 33ms between two consecutive images.
The main advantages of SI technique are low-voltage opera-
tion, high speed, no need for precise capacitors or op-amps.

The basic building block of the SI technique is the dy-
namic current mirror, which is controlled by a switching
transistor driven by a clock signal Clk. When Clk is set,
the circuit acts as a classical inverting current amplifier.
When Clk is reset, the circuit has a memory effect. The
output current keeps the value it had at the switching in-
stant. This circuit thus plays the role of a basic current
T/H circuit, i.e., an analog current memory.

A keystone circuit for the SI technique is the analog de-
lay memory (z71). The basic dynamic current mirror can-
not be used as such to implement a delay memory, mainly
because of the switch clock feedthrough effect between sig-
nals and clocks. In order to reduce the influence of clock
feedthrough, a current cancellation mirror is used, based
on the idea of Song et al. [15]. Many other solutions for
improved dynamic current mirrors are reported in the lit-
erature, e.g., [16]. This remains an active field of research.

The circuit in charge of computing observation o;; (¢ +1)
is given in Fig. 8. Its relative complexity (20 transistors)
is due to a design effort made for reducing the dead zone
arising for low output currents. SPICE analysis shows the
behavior of this circuit (Fig. 9). The insensitivity to small
currents is favorable to the processing since it acts as a non-
linear filter applied on observations by lowering the influ-
ence of too small currents that are not significant of actual
intensity changes induced by motion.

Since the observation computed by the AVD circuit is
represented as a current, the input thresholding circuit
(0in) required for computing f;; works in current mode.
Thus, a current comparator is needed for the preprocess-
ing stage. One can use circuits such as the one proposed
in [17], although a simpler circuit was used here.

Fig. 10 reports SPICE simulation of the whole prepro-
cessing stage in the case of a sinusoidal variation of input
light intensity. Electrical signals, corresponding to obser-
vation and future label, are of sufficient quality for our pur-
pose despite the peaks observable on other signals involved

Vool

*4 MPae  MPg

ﬂEIMPE M&f}}k

\/DD

ool

Fig. 8. Circuit schematics of the absolute value of difference

(AVD) circuit. I;jn1 and Ijp2 are the two input currents.
MNigad, MPyooq is the output load where the resulting obser-
vation is available.

module

EEEEEE t de difference et
94/07/15 21:51:17

1.0u
BOO.OHE
500, 0n-

400, 0n"

200.0n"

See 3uswD

-200.0n
~400, 0n-
~600.0n"
~800.0n"

“1.007 " Tiolon ' 'zo/ou 30,0 40,0 S0,0u  EO,0u  7O,0u  BO.0u
0. tine (lim) 100.0u

Fig. 9. SPICE simulation of the AVD circuit. I;n1 and Ijpo are
the two input currents. I,y: is the AVD output current. Note
the dead zone effect arising when current difference is lower than
300nA.

elk,
=

R Y P P PP I P I
EOG, T 00,00 Bia.

00, du

Fig. 10. SPICE simulation of preprocessing stage in the case of a
sinusoidal variation of input current. (a) Clocks clk; and clk,.
(b) Input current Ippoe, undergoing a sinusoidal variation for
simulation purposes, and output of the T/H circuit I;;(t + 1).
(c) Delayed current I;;(t). (d) Output of AVD circuit o;;(t + 1)
and threshold level 8;, used for binarization. (e) Future label

fij-
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in preprocessing stage.

A voltage-controlled current inverter (sgn) is required
to get a signed value of o;;; the sign 0,£1 depending on
(fij — pi;)- It might be implemented either with current
mirrors or op-amps (design not detailed here).

Concerning the photoreceptor, either a phototransistor
or a photodiode may be used [13]. An important issue is
light adaptation [5].

B. Postprocessing Circuitry

The building blocks required for the design of the post-
processing stage work in classical voltage-mode, and have
already been addressed in the literature.

An output thresholding circuit is required to compare the
steady-state electrical potential [;; with a fixed reference
voltage 8,y for binarization after relaxation. This output
comparator working in voltage mode can be implemented
with a classical transductance amplifier followed by a com-
parator (op-amp). An output latch (271) is also required
to get p;;. For outputting binary labels one may choose
among various solutions. Either shift-registers (made of
flip flops), as proposed here, or classical memory address-
decoding (requiring only one transistor at each cell output,
which is less expensive in terms of area) may be used.

C. Markov Cell Design and Simulation

Voltage-controlled current sources J; and Jo may be re-
alized with a single MOS transistor that consumes little
area.

Markov cell resistors (especially R,) should be adjustable
in order to be able to tune model parameters 8. according
to acquisition and lighting conditions. Moreover, floating
resistors are needed, and they should be as symmetric as
possible to get an isotropic behavior. A simple solution
consists in using the channel of a MOS transistor working
in the linear region (Fig. 11). The aspect ratio W/L of

V

DD

T
G MP1

%

b g MN1
MNres {

MN2
< GND

o—e Vpol

Fig. 11. Adjustable and floating MOS resistor. Circuit schematics.
Transistors M P1, M N1, and M N2 constitute the polarization
circuit. M Ny¢s is the floating adjustable resistor.

MN,., must be small enough to have suitable resistances
(typically 100k€2). Therefore, we design snake-like MOS
resistors (cf. layout). The resistor value is adjusted by the
grid potential Vg, which is driven by the command voltage
Vpot. A single polarization circuit can be used for the four

spatial resistors R, in each cell, which spares nine transis-
tors per cell. Electrical simulations (HDL-A simulator®) for
three different polarizations of the resistor circuit are given
in Fig. 12, when Vpg is varied in the range [—0.5V;0.5V].
One obtains nonlinear resistors. Interestingly enough, how-

A ¢ ID(MMRES)_1:1 # ID(MNRES)_2:1 + ID{MNRES)_3:1 (a)
Je-6

[ETRTRIRINTRTRTER T FRTRARTRT IR TRRTRIRI RURIRCRIRI IR RVRRNTR INERTRTRRARTRTRUNINI RURTIRTNT CRTRTRIAT!
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.3 10

+W(R)_1:1 #W{R)_2:1 +W(R)_3:1 (b) M

ITRTRARARTRTARTA ARTRTRTRTA RAERTRIRI RRRTRARIRI R YRARNRTE IRARTRRIRIRTRURNRANI RINTARARTA ARTRIRIRT]
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
v

Fig. 12. Electrical simulation of the adjustable MOS resistor for
three different polarizations Vpe: 2.18V (o); 2.28V (4); 2.38V
(#). Source voltage applied to M Ny, is constant (Vs = 0.5V)
while Vp is varied in the range [0;1V]. (a) Drain current in
transistor M Nyes as a function of Vp. (b) Resistance variation
as a function of Vp.

ever, is the fact that this nonlinearity is favorable for mo-
tion detection, as explained below.

Electrical simulation of the Markov cell is given in
Fig. 13. For these simulations, all command voltages were
computed externally and fed into the cell description-files.
All spatial neighbors were set arbitrarily to potential V,./2
in order to inhibit spatial context so that only the tem-
poral behavior is emphasized. A voltage Vs is used to
represent the observation signal o;; that controls the two
current sources. Current sources are ideal. Fig. 13(a) shows
the current generated by J; as a function of Vi, in the four
cases that can arise: 1) for static-to-mobile pixel (curve x),
current increases; 2) for mobile-to-static pixel (curve +),
current decreases; and 3) in the two other cases, current is
zero. Fig. 13(b) shows the evolution of current J; which
increases linearly with observation. Fig. 13(c) shows the
variation of electrical potential at node ij for a Markov
cell made of ideal resistors!®. Fig. 13(d) shows electrical
simulations obtained for a cell made of resistors designed
with MOS transistors. They are in good agreement with
the theoretical behavior depicted in Fig. 13(c). The nonlin-

9UDL-A and Eldo are modeling and simulation tools, developed
by ANACAD Electrical Engineering Software, for analog and mixed-
signal simulation with VHDL-based language and SPICE syntax.

10Note that for static-to-static transition (curve ¢), the simulation
reports a slightly increasing potential, whereas it should stay con-
stant. This is not a bad behavior of the cell, but only results from the
fact that Vs is linearly increased for simulation purposes. In a real
situation, however, a static pixel gives a null observation V,;; = 0.
Hence, I;; would actually remain constant.
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Fig. 13. Electrical simulation of Markov cell. Curve symbols cor-
respond to the four typical cases: static-to-static (¢); mobile-
to-static (+); mobile-to-mobile (#); and static-to-mobile ().
Observation voltage Vi, = o045 is varied linearly in the range
[0;1V] for simulation purpose. (a) Current generated by J2 as
a function of V. (b) Current generated by Ji. (c) Electri-
cal potential Vout = I;; for a cell made of ideal resistors (Eldo
simulator). (d) Idem, but for a cell made of real MOS resistors
(HDL-A simulator).

earity is particularly visible in the case of static-to-mobile
transition (curve x). But instead of being a drawback, it
acts favorably for enhancing the front area of a moving ob-
ject, which is a very interesting behavior. Indeed, it acts
as a kind of smooth line process [8].

D. Layout and Electrical Characteristics

A layout of the complete cell was designed and a
netlist was extracted, with ES2!! 1.2um CMOS technol-
ogy. The cell contains about 150 transistors. Cell size is
about 220pum x 220um, corresponding to a density of 25
cells/mm?. With a 0.5um technology the size would be
about 150um x 150um. In Fig. 14 one can see the photore-
ceptor (upper left), the six snake-like MOS resistors imple-
menting Ry, Ry, Ry (in dark in the middle), the capacitors
for current analog master-slave delay-memories (in dark at
the bottom), and all the interconnections required (30% of
the whole surface). This layout reveals one major problem
that has yet to be addressed. The fill factor (photosensi-
tive area/total cell size) is only 10%. It is an important
issue since it governs the achievable spatial resolution of

" European Silicon Structures.

Fig. 14. Complete cell layout (ES2 ECPDI12 technology).

the chip.

The power dissipation for a network of size 64 x 64 is
evaluated to be about 150mW. Resistor values are in the
range 100k to 1M Q. The order of magnitude for currents
is about 1uA with V., = 1V. Relaxation duration is typ-
ically less than 1us, so that real-time motion detection is
achievable.

V. EXPERIMENTAL RESULTS

Electrical simulations of the network were performed
with Eldo and HDL-A. Since the complete chip with pho-
toreceptors is not yet fabricated, gray-level images stored in
computer memory are used. Pixels are 8-bit coded. Com-
mand voltages (o0;, fi;) are precomputed externally and
entered into the Markov cell description files. Hence, only
the electrical behavior of network-interconnected Markov
cells is simulated. Concerning parameter setting, thresh-
old values 0;,,80,:, given in the captions, refer to the
256 gray-level dynamic range of images. They are ad-
justed depending on the sequence (lighting conditions,
noise, etc.). For a proper working of the network, the
condition By < R, < R; is required. R; and R; val-
ues are constant for all sequences. Typical values are
R, = 400k, Ry = 200k, Ry = 220kQ). G and G, are
the transconductances of current sources J; and Jy. Their
order of magnitude is ~ 1075 Siemens. An important fea-
ture is the scalability of all parameters, that can be chosen
according to the maximum power dissipation acceptable in
the network.

A synthetic sequence of eight images is shown on the up-
per row of Fig. 15. Image size, and hence network size, is
16 x 16. The sequence contains two dark squares moving
on a noisy background. The squares have a nonuniform
intensity (linear variation of gray level). The second row
represents observation fields where transition areas (front
and echo) are visible. In the inner part of moving objects
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Fig. 15. From top to bottom: (a) Synthetic image sequence. (b)
Sequence of observations. (c) Future label fields. (d) Final
motion masks. (e) Three-dimensional maps of electrical poten-
tials; the dark horizontal plane indicates the output threshold
level 8,4:. Note that observation and future fields are shifted
of one image to the left with respect to image sequence and
mask sequence. Parameter set 8;, = 11,004 = 104, R; =
400k, Ry = 200kQ2, Rp = 206k, G1 = 950.10~8 Siemens, and
G2 = 2015.10~8 Siemens.
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(sliding areas) observations are small but not zero (light
gray barely visible). The coarse estimate of future label
fields (binary maps) is given in third row. Because of a too
high input threshold 6;,,, only transition areas are retained
and inner parts are eliminated. They are restored, how-
ever, by the relaxation process, as shown in the fourth row,
representing the moving masks obtained after thresholding
steady-state electrical potentials of the relaxed network.
The masks are perfectly extracted after the fourth image!2.
The echo is canceled, and the inner part of the magks is
filled in. The lower row shows the three-dimensional maps
of electrical potentials. Nodes having a high electrical po-
tential correspond to mobile pixels, while nodes at a po-
tential near the ground voltage correspond to static pixels.

Five images of a real-world sequence are shown in the up-
per row of Fig. 16. This street sequence contains a white
car moving in a street as seen from the top of a building.
Other cars in the background are parked. This sequence
was acquired with a three-CCD (charge coupled device)
camera (only the 8-bit green component is processed). Im-
age size, and hence network size, is 64 x 64. The second row
shows the observation fields, where echo is clearly visible.
The third row gives the future label fields, with enlarged
masks because of the echo phenomenon. The bottom row
of Fig. 16 gives the moving masks detected by the network
after relaxation. Although the car is moving rapidly (pass-
ing the field of view within eight images) and is poorly-
textured (uniform white roof and hood), it is fairly well
detected.

The circuit is insensitive to contrast: dark or light mov-
ing objects are equally well detected. Other simulations
not reported here prove that the network also detects slow

12The algorithm adapts after a few images since no past information
is available at the beginning of the sequence.

s g s = (L
™ ™ ™ % Tk

Fig. 16. From top to bottom: (a) Street sequence. (b) Sequence of
observations at five time instants. (c) Future label fields. (d)
Final motion masks. Note that observation and future fields are
shifted of one image to the left with respect to image sequence
and mask sequence. Parameter set 8;, = 30,600, = 130, Rs =
400kQ2, Ry = 200kQ), Rp = 216kQ, G1 = 700.10~8 Siemens, and
G2 = 1400.10~8 Siemens.

or fast moving objects, small objects, or objects in noisy
sequences.

VI. DISCUSSION

This article reports the design of a smart sensor for
robust motion detection. Starting from a computational
method, the analog implementation leads to what we call
a cellular analog network (CAN), rather than CNN, in or-
der to emphasis the fact that it is not biologically inspired.
Still, the resulting circuit reveals analogy with biological
neural networks. The proposed chip is a full vision system,
coupling sensor and computation, that recovers accurately
the complete masks of moving objects in the case of a static
camera. The processing proved to be robust in various sit-
uations, such as contrast, noise, speed, number, and size of
moving objects.

The counterpart of this smart low-level processing is a
fill factor that is not yet satisfactory. Therefore, much work
has still to be done, such as further investigation for the
design of all building blocks in the circuit, study of submi-
cronic technological aspects (interconnections, power con-
sumption, surface, delay on clock-lines, etc.), and precise
evaluation and validation of the circuit (influence of all pa-
rameters). Interesting is the fact that, similar to biological
systems, accuracy is not a critical issue. We found that
analog implementation even outperforms computer simu-
lations, both for processing speed and detection quality.
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