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Singular ordinary differential equations

homogeneous of degree 0 near a codimension 2 set

Didier Bresch 1, Benôıt Desjardins 2, Emmanuel Grenier 3

Abstract
This note deals with an example of class of ordinary differential equations

which are singular near a codimension 2 set, with an homogeneous singularity,
of degree 0. Under some structural assumptions, we prove that for almost all
initial data there exists a unique global solution and study the evolution of the
Lebesgue measure of a transported set of initial data.
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and uniqueness
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1 Introduction

This note deals with a simple example of a class of ordinary differential
equations which are singular on a manifold of codimension 2, the singularity
being homogeneous of degree 0 near this singularity.

Let H be an Hilbert space. Let Π denotes the orthogonal projection on a
given plane P . Let xh = Πx and let xv = x−Πx. Note that x = xh + xv. By a
slight abuse of notation we shall say that x = (xh, xv), xh and xv referring to
the ”horizontal” and ”vertical” components of x. We then identify the plane P
with C by choosing arbitrarily a basis on P . This allows to use polar coordinates
on P and thus to define the modulus r and argument θ of xh, and to use the
notation xh = r exp(iθ).

Let φ be a smooth function defined on H × S1 (S1 being the unit circle).
Then

ẋ = φ
(
x,

xh
|xh|

)
(1)

is a dynamical system, singular on P⊥, orthogonal of P , which is of codimension
2. Moreover, this system is homogeneous of degree 0 in any direction orthogonal
to P⊥.

Under some assumptions on φ, we show global existence and uniqueness
of solution for almost every initial data. Note that we only take care of the
behavior of t 7→ x(t) near P⊥ and by a slight abuse of language we shall say
that a solution is global if it does not reach the singularity P⊥ in finite time.
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2 Motivation

The toy model (1) mimics phenomena occurring in the low Mach number
limit problem for non-isentropic flows in a periodic box for instance. Such flows
are described through a velocity field u, a density ρ implicitly given by a state
law depending on the entropy S and the pressure p, see [4]). After some change
of variables, namely introducing q defined by p = p̄eεq with p a prescribed
constant and ε the low Mach number, the adimensionnalized system reads

a(∂tq + u · ∇q) +
1
ε

divu = 0, (2)

r(∂tu+ u · ∇u) +
1
ε
∇p = 0, (3)

∂tS + u · ∇S = 0, (4)

where a and r are two smooth functions of S and ε q. The singular limit consists
in letting the Mach number ε go to 0. In the ill prepared-data case, namely
when the initial data do not satisfy the condition

div u0 = 0, ∇p0 = 0. (5)

an oscillatory limit with changing eigenvalues occurs. Indeed the eigenvalues
and the spectrum of the singular operator A where

A =
( 0 a−1div
r−1∇ 0

)
. (6)

will depend on the solution itself. This leads to complex problem, since eigen-
values may cross. The wave equation, related to the operator A, may also be
written in this case

ε∂ttψ − div (S−1∇ψ) = 0 (7)

where S is the entropy quantity, see [4] for more details.
In the very special case of only one spatial dimension, the limit can be both

calculated completely and justified, see [4]. In the multi-dimensional case the
formal calculation of the extra term in the limit, which once again involves the
spectral decomposition of the fast operator, assumes that the spectrum of that
fast operator is simple and non-resonant, see [3] for the viscous case and [4]
for the inviscid one. For certain finite-dimension al truncations of the equations
those assumptions can be shown to be generic and to ensure convergence to the
limit equations. This has been done in the paper [4].

The main difficulty in the general study is to prove, after defining appropriate
infinite dimension measures, that for almost all initial data, the limit flow does
not meet double eigenvalues and crosses the resonance set transversally. Diffi-
culties occur since the flow is singular across the resonant set which may be
shown to define a codimension 2 set. This explain the necessity to study ODEs
of the form (1). Our result will be used to treat oscillatory limits with changing
eigenvalues and particularly the low Mach number limit in a forthcoming paper
[2]. Note that another type of singular ordinary differential equation occuring
in fluid mechanics has been studied recently, see for instance [1].
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3 Setup and main result

3.1 Notations.

Let us first introduce some notations. We define ψ(xh, xv, θ) as the argument
of Πφ

(
(xh, xv), exp(iθ)

)
, and ψ̃(xh, xv, θ) its modulus in such a way that

Πφ
(

(xh, xv), exp(iθ)
)

= ψ̃(xh, xv, θ) exp
(
iψ(xh, xv, θ)

)
.

Structural properties. We will assume that there exists an integer N0 > 0 and
N0 smooth functions of xv, Θ1(xh, xv), . . ., ΘN0(xh, xv), satisfying the following
properties :

(H1) For all x = (xh, xv) ∈ H, the equation in θ

ψ(xh, xv, θ) ∈ θ + πZ,

has exactly N0 solutions Θ1(xh, xv) . . .ΘN0(xh, xv).

(H2) For every j, the following sign condition holds for all x = (xh, xv) ∈ H

∂θψ(xh, xv,Θj(xh, xv)) < 1.

Note that this implies that the solutions Θj are all simple.

(H3) ψ̃ does not vanish.

Note that (H1) implies that
{

(τ exp(iΘj(0, xv)), xv), τ > 0
}

is a trajectory
for

ẋh = Πφ
(

(0, xv),
xh
‖xh‖

)
. (8)

This trajectory goes to the singularity or leaves it, depending on its orientation.
In particular for some initial data we reach the singularity in finite time. The
flow is not defined everywhere and we can only get almost everywhere results.

3.2 Main result and consequences

The main result of this paper is :

Theorem 3.1 Stable and unstable manifolds.
Let us assume that (H1), (H2) and (H3) hold true. Let x0 ∈ P⊥ and let ρ > 0.
There exists a finite number of manifolds Vk, of codimension 1, with boundary
Σ, such that :

– For any initial data x1 in one of the manifolds Vk, the corresponding
solution of (9) reaches Σ in finite time (in the past or in the future).

– For any initial data x1 in B(x0, ρ) outside all these manifold Vk, the cor-
responding solution of (9) reaches the boundary of B(x0, ρ) before Σ.

3



With this result one can define the flow Ψ(t) of this equation, flow which
is defined everywhere except on the manifolds Vk. Let A be some set of initial
data. We now want to bound the measure of Ψ(t)A in terms of the measure of
A. This of course depends on the measure of H, which is not canonical. In order
to fix the ideas we will restrict ourselves to a finite dimensional space H, with
the Lebesgue measure µ, in order to prove

Theorem 3.2 Control of the divergence.
Let x0 ∈ P⊥. Let ρ > 0. There exists a constant C0(t) such that for any borelian
set A of H,

µ
(

Ψ(t)(A ∩B(x0, ρ))
)
≤ C0(t)µ(A ∩B(x0, ρ)),

for any t > 0.

The outline of the paper is as follows. First we study the simplified equation

ẋ = φ
( xh
|xh|

)
(9)

and then extend it by perturbation arguments to equations of the general
form (1). More precisely, in Section 4, we will study trajectories near the singu-
lar set. The last section concerns measure type estimate of a transported set by
the flow which is defined everywhere except on the manifolds Vk of codimension
one.

4 Study of systems of the form (9)

We first prove Theorem 2.1 in the particular case of systems of the form
(9). Note that (9) is a two dimensional dynamical system, which takes places in
xh + P . Changing the notations, (9) is of the form

ẏ = φ
( y

‖y‖

)
where y ∈ C. First we turn to polar coordinates, define y = r exp(iθ) and make
the change of time defined by dτ/dt = 1/r to get

dr

dτ
= rψ̃(θ) cos(ψ(θ)− θ) (10)

dθ

dτ
= ψ̃(θ) sin(ψ(θ)− θ). (11)

Note that (11) does not involve r, which greatly simplifies the analysis of (9).
Note also that ψ̃ is always positive. Therefore the dynamics of (11) is given by
Assumption (H1). There exists N0 fixed points Θj(xv) which are stable provided

(ψ′(Θj)− 1) cos(ψ(Θj)−Θj) < 0
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and unstable if (ψ′(Θj)− 1) cos(ψ(Θj)−Θj) > 0 (the null case being ruled out
by (H2)).

Moreover the Θj are the only fixed points of (11) and the dynamics of solu-
tions t 7→ θ(t) of (11) is very simple : t 7→ θ(t) goes in a monotonic way from
some Θj(xv) (unstable equilibrium, limit value as τ goes to −∞) to Θj−1(xv)
or Θj+1(xv) as τ goes to +∞ (stable equilibria). All the solutions of (11) are
global in the τ variable and go from an unstable Θj to a close stable one.

It then remains to solve (10). The behavior depends on the sign of

ψ̃(θ) cos(ψ(θ)− θ).

As ψ̃(θ) > 0 and as ψ′(Θj) < 1, ψ̃(θ) cos(ψ(θ)− θ) is positive if Θj is stable and
negative if Θj is unstable.

Therefore solutions of (9) are global (except if θ constantly equals some of
the Θj where the solution goes to the singularity in finite time in the future or
in the past), and are asymptotic in +∞ to some stable Θj and in −∞ to some
instable Θj .

The phase portrait can be described as follows :
– There exists N0 particular solutions which are straight lines, going to or

coming from the origin in finite positive or negative times.
– All the other trajectories are global in time and are asymptotic to two of

the particular solutions as time goes to +∞ or −∞.
Theorem 2.1 is then straightforward. �

Note that Hypothesis (H2) is crucial. If we assume ψ′(Θ′) > 1, then the
conclusion is completely changed : all the trajectories come from the singularity
and go back to the singularity in finite time, except for θ = Θj . In this case,
almost all the trajectories blow up in finite time.

5 Trajectories near the singular set

In this section we will describe the behavior of solutions near the singular
set. Let x0 = (0, x0

v) be a point of P⊥. Locally the geometry of the flow is
described by the angles Θj(x0

v) which split the space into angular sectors

Ωj = {Θj(x0
v) < θ < Θj+1(x0

v)}.

If there were no xh dependence of the flow, the angles Ωj would be invariant
under the flow as in the previous section. This is not the case here and we have
to be more precise in the spatial description.

5.1 Domain decomposition.

Let α > 0 and η > 0 be small. Then by continuity there exists angles θ+j
and θ−j such that ∣∣∣ψ̃(xh, xv, θ) sin(ψ(xh, xv, θ)− θ)

∣∣∣ ≥ α (12)
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when |xh|+ |xv − x0
v| < 2η and Θj(x0

v) < θ+j < θ < θ−j+1 < Θj+1(x0
v).

Let us now introduce the following sets, for ε chosen later on with ε < η :

Ωj(ε, η) =
{

(xh, xv, θ), | |xh| < ε, |xv − x0
v| < η, θ−j < θ < θ+j

}
,

Σj(ε, η) =
{

(xh, xv, θ), | |xh| < ε, |xv − x0
v| < η, θ+j < θ < θ−j+1

}
,

and
Ωv(ε, η) =

{
(xh, xv, θ), | |xh| < ε, |xv − x0

v| < η
}
.

Note that Ωv(ε, η) is the union of the Ωj(ε, η) and Σj(ε, η) and of their bounda-
ries. The Ωj(ε, η) will be the neighborhood of the stable and unstable manifolds.

5.2 Study of the trajectory.

Let us assume to fix the ideas that Θj is unstable and Θj+1 is stable (the
discussion is similar if the stabilities are interchanged). Let x(t) be a trajectory
with x(0) ∈ Σj(ε, η/2). We claim

Claim : If ε is small enough, the trajectory x(t) is contained in Ωj(η, η) for
t < t− and is contained in Ωj+1(η, η) for t > t+. Moreover, for |t| large enough,
it exits Ωv(η).

Proof of the claim : Let x(t) be a solution of (1), such that x(0) = (xh(0), xv(0))
with xh(0) = r(0) exp(iθ(0)). Using polar coordinates and introducing again the
change of time variable, we get

ẋv = r(1−Π)φ
(

(xh, xv),
xh
‖xh‖

)
, (13)

with
ṙ = rψ̃(xh, xv, θ) cos(ψ(xh, xv, θ)− θ) (14)

θ̇ = ψ̃(xh, xv, θ) sin(ψ(xh, xv, θ)− θ). (15)

Let ]a, b[ be the maximal time interval containing 0 such that x(t) ∈ Ωv(η)
for t ∈]a, b[. By definition of θj and θj+1, θ(t) is increasing as long as it be-
longs to Ωv(η, η)−Ωj(η, η)−Ωj+1(η, η). Let ]a1, b1[ the maximum time interval
containing 0 such that θj < θ(t) < θj+1. Of course a ≤ a1 < b1 ≤ b.

If a < a1 then for t = a1, x(t) ∈ Ωj ∩ Ωv and therefore x(t) ∈ Ωj ∩ Ωv for
any a < t < a1. Similarly, if b > b1 then for any b1 < t < b, x(t) ∈ Ωj+1 ∩ Ωv.

Note that, using (15) and (12), we can bound b1 − a1, by

b1 − a1 ≤
θ3 − θ2
α

. (16)

This implies that b1 and −a1 are less than (θ3 − θ2)/α Moreover

d

dτ
log r = ψ̃(xh, xv, θ) cos(ψ(xh, xv, θ)− θ) (17)
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Note that on Ωv, ψ̃ is bounded, by some constant C0. Hence for a1 < τ < b1,
integrating (17) with respect to τ and using (16), we get

exp(−C0α
−1(θ3 − θ2)) ≤ r(τ)

R0(x)
≤ exp(C0α

−1(θ3 − θ2)). (18)

Therefore if
ε <

η

1 + 2C0
exp(−2C0α

−1(θ3 − θ2)), (19)

r(τ) remains smaller than η for a1 < τ < b1. Hence the solution can not leave
Ωv at τ = a1 or τ = b1 at the boundary |xh| = η.

Now using (13), we see that as, using (18)–(19), r(τ) remains smaller than
η/2C0, the trajectory can not leave Ωv at its horizontal boundary. Therefore
the trajectory goes from Ωj(η) to Ωj+1(η), which ends the proof of the claim.

Bounds on r(t) : Let us go back to the genuine time t. On Ωj(η) and Ωj+1(η),
provided α is small enough, | cos(ψ(xh, xv, θ)− θ)| is larger than 1/2. Therefore

d

dt
|xh(t)|2 = 2r(t)ṙ(t)

is bounded away from 0 by r(t) min ψ̃/2. Therefore, as long as r(t) remains in
Ωv, for t > b1 we have

r(b1) + γ1(t− b1) ≤ r(t) ≤ r(b1) + γ2(t− b1)

for some non negative constants γ1, γ2. A similar result is true for t < a1.

Dynamics on Ωj : As ṙ > 0 we change time to get

ẋv =
r

cos(ψ(xh, xv, θ)− θ)
(1−Π)φ

(
(xh, xv),

xh
‖xh‖

)
, (20)

ṙ = r, (21)

θ̇ = tan(ψ(xh, xv, θ)− θ). (22)

Note that (20,21,22) is a standard dynamical system, studied near the equi-
librium set {(xv, 0,Θj)|xv ∈ P⊥} which appears to be unstable. It therefore
admits an unstable manifold, which is precisely the manifold Vj .

6 Measure of a transported set

This section is divided in three parts. The first one concerns a control of
the integral of the divergence along a trajectory x(t) passing through a point
x0 in terms of its minimum distance R0(x) to the singularity. The second part
concerns the local intergrability of log(R−1

0 ) that will be used in the third part
to prove Theorem 2.2 through the bound established in the first part.
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Control of the divergence. Let us first bound the divergence of our vector field.
This divergence D equals

D =
1
r

(
cos(ψ(xh, xv, θ)− θ)(∂θψ − 1)ψ̃ + ∂θψ̃ sin((ψ(xh, xv, θ)− θ)

)
+D1

where D1 is a sum of terms which are bounded as r goes to 0. If α and η are
small enough (see the domain decomposition part for their definitions), the sine
is nearly 0 and much smaller than the cosine, hence D has the sign of cos(Θj−θ)
and, as ∂θψ 6= 1 and ψ̃ is bounded away from 0, D is bounded in modulus by

|D| ≤ c0
2r

(23)

provided α is small enough.
Let us now evaluate the integral of the divergence along a trajectory. Let

x(t) with t1 < t < t2 be a part of trajectory included in Ωj+1. Note that r(t) is
increasing and

r(t) ≥ r(t1) + C0(t− t1)

for some constant C0 depending only on ψ̃. Therefore,∫ t2

t1

1
r(t)

dt ≤
∫ t2

t1

1
r(t1) + C0(t− t1)

dt =
1
C0

log
(r(t1) + C0(t2 − t1)

r(t1)

)
(24)

≤ 1
C0

log
( η

R0(x)

)
since r(t2) + C0(t2 − t1) ≤ η. A similar result is true for parts of trajectories
included in Ωj . Note that the integral behaves like log(1/R0(x)).
Local integrability and minimum distance to the singularity set. It remains to
provide a local integrability property related to log(R−1

0 ), where R−1
0 denotes the

minimum distance between the singularity and a trajectory x(t) passing trough
x0. Let us look at the formulation (13,14,15), and let us study a trajectory
x(t). Up to a shift in time, we may assume that x(t) reaches R0 at t = 0. Let
us study x(t) when t becomes negative and large. First x(t) enters Ωj(ε, η) at
some time t1 < 0 with |t1| = O(1) as we consider sequences of trajectories with
corresponding R0 which go to 0.

For t < t1, when d(x(t), P⊥) = δ (δ being fixed) then, using (14) and integra-
ting from 0 to t, t is of order C1 log(δ/R0). Since the trajectory x(t) approaches
Vj with an exponential speed, we get that d(x(t), Vj) is of order C2(R0/δ)γ for
some positive constants C2 and γ.

Therefore the measure of

{x0 ∈ Ωj(ε, η)|d(x(t), P⊥) = δ, the trajectory x(t) passes at a distance smaller than r0}

is of order C3(r0/δ)γ for some positive constants C3 and γ. Thus

µ
(
x : R0(x) ≤ r0 and d(x, P⊥) = δ

)
≤ C(r0/δ)γ .
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Hence log(R−1
0 ) is locally integrable.

Bound of the measure of a transported set. Let F (t0, t1) denotes the resolvent
of the flow, which is defined outside the manifolds Vj , and thus defined almost
everywhere. Let x0 ∈ P⊥. Let ρ > 0, then for any measurable set A,

µ
(
F (t0, t1)(A ∩B(x0, ρ)

)
= µ(A) exp

(∫ t1

t0

∫
F (t0,τ)(A∩B(x0,ρ))

D(τ, x)dτdx
)

= µ(A ∩B(x0, ρ)) exp
(∫

A∩B(x0,ρ)

∫ t1

t0

D(τ, F (t0, τ)x)dτdx
)

≤ µ(A ∩B(x0, ρ)) exp
(
C−1

0

∫
A∩B(x0,ρ)

log(ηR−1
0 (x))dx

)
≤ Cµ(A ∩B(x0, ρ))

for some constant C since log(R−1
0 ) is locally integrable. This ends the proof of

Theorem 2.2. �
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Références

[1] S. Bianchini, L.V. Spinolo. Invariant manifolds for a singular ordinary
differential equations. Submitted (2008).

[2] D. Bresch, B. Desjardins, E. Grenier. Oscillatory Limits with Chan-
ging Eigenvalues. In preparation (2009).

[3] D. Bresch, B. Desjardins, E. Grenier, C.–K. Lin. Low Mach number
limit of viscous polytropic flows : formal asymptotics in the periodic case.
Stud. Appl. Math. 109 (2002), no. 2, 125–149.

[4] G. Métivier, S. Schochet. Averaging theorems for conservative systems
and the weakly compressible Euler equations. J. Differential Equations 187
(2003), no. 1, 106–183.

9


