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We study the evolution of a pulse propagating in a normally dispersive fiber in presence of 

Kerr nonlinearity. We review the temporal and spectral impact of optical wave-breaking in 

the development of a continuum. Impact of linear losses or gain is also investigated. 
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1. Introduction 

Continuum light sources have generated a great deal of attention over the past decade: examples 

of spectral broadenings as large as a decade have been reported using optical fibers as nonlinear 

and dispersive propagation medium [1]. The areas of application of supercontinuum (SC) 

sources are widespread, ranging from biology [2] to optical metrology [3]. Optical 

telecommunications have also benefited from the development of continuum light source 

technologies [4], for example in the context of wavelength-division multiplexed systems where a 

high number of optical channels can be generated through the spectral slicing of spectrally 

broadened picosecond pulses [5-8]. 

As it is well known, the physical phenomena underlying the spectral evolution of a short 

optical pulse in a fiber will significantly differ, depending on the sign of the fiber group-velocity 

dispersion (GVD). On the one hand, anomalous dispersion generates (through soliton 

compression and subsequent fission) the broadest spectra reported to-date [7]. In this case, 

however, spectral broadening is accompanied by relatively high timing and amplitude jitter of 

the pulses [9] . On the other hand, although optical pulse evolution in a normally dispersive fiber 

leads to relatively narrower spectra, in this case a reduced spectral ripple and initial pulse jitter 

influence are both observed [5, 6, 8]. Hence frequency broadening using a normally dispersive 

fiber appears as an attractive choice whenever a moderate amount of broadening alongside with 

good spectral and temporal stability of the output pulses are targeted [10], for applications such 

as optical regeneration [11-13] or pulse temporal compression [5, 14, 15]. 

Experimentally, a wide range of normally dispersive fibers have been successfully tested 

for SC generation: for example, dispersion shifted fibers [8], highly nonlinear silica fibers [5, 

10], photonic crystal fibers [6], and dispersion decreasing normally dispersive fibers [16]. New 



specialty glasses exhibiting very high values of normal dispersion have also been investigated 

[13] demonstrating possible benefits of such glasses to improve overall power budget and device 

footprint. Since in all of the above practical implementations the dispersion, the nonlinear 

properties as well as the fiber losses may vary over different orders of magnitude, it would be of 

high interest if one could develop some general, and possibly analytical, design guidelines for the 

understanding and prediction of the temporal and spectral properties of the generated pulses. 

In the present article, we intend to provide an answer to the above demand by 

reconsidering through a unified and, as far as we know, original approach the old problem of 

pulse evolution in a normally dispersive optical fiber. It is well known that upon propagation in 

the normal GVD regime a short pulse may experience a strong distortion of its temporal shape 

(e.g., a flattening of its top) [17]. One of the critical phenomena affecting short pulse dynamics in 

the normal GVD regime is known as “optical Wave-Breaking” (WB), which results from the 

temporal overlap of the highly chirped central part of the pulse with its un-chirped wings [18]. 

This phenomenon has long been seen as a deleterious effect which has in general to be avoided 

in practice, with the help of parabolic pulse shaping for example [19]. Quite surprisingly, we will 

point out in this work that the presence of WB may even turn out to be beneficial in a variety of 

applications. 

Our paper will be organized as follows. At first we shall describe our model equations 

that are based on the standard nonlinear Schrödinger Equation (NLSE). Next we will review the 

different steps that are involved in the development of a continuum. We will then provide an 

original interpretation of how wave-breaking may affect the evolution (both in the temporal and 

spectral domains) of the continuum in the normal GVD regime. Our fine understanding of the 

pulse dynamics will lead us to propose simple design rules that enable one to optimize the 



continuum development. Indeed, in a next section we shall describe the results of our 

experimental frequency broadening studies that allowed us to validate the above discussed 

analytical trends. Finally, in the last section of our work we will extend our conclusions to the 

case where losses or gain contribution are included. 

 

2. Numerical model 

The longitudinal evolution in an optical fiber of the complex electric field envelope  ψ (z,T) can 

be modeled in terms of the generalized NLSE [1, 20] : 
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where βk is the kth-order dispersion coefficient, and γ  is the nonlinear coefficient. 

α>0   (α<0)   is the fiber loss (distributed gain) coefficient. R(T) = (1-fR) δΚ(T) + fR hR(T) 

includes instantaneous δΚ(T) and delayed Raman hR(T) contributions with the fractional Raman 

contribution fR. 01/ / Tω ∂ ∂  is the self-steepening term. T  is the time coordinate in a frame of 

reference that co-propagates with the pulse, and z the propagation distance. 

In this work, we aim to describe continuum development (or the first steps of supercontinuum 

dynamics), i.e. when the pulse spectral width is on the order of a few THz. For such a spectral 

width, self-steepening has not found as a determining effect. Moreover, assuming a dispersion 

flattened fiber, we can neglect higher order dispersion terms (third order dispersion will induce 

as a first consequence to some spectral asymmetry [10, 21]). In normally dispersive fibers, 

intrapulse Raman scattering has a reduced impact and as long as the fiber length or initial power 

is below stimulated Raman threshold, Raman term can also be neglected. 



In this context, Eq. (1) reduces to the simplified NLSE expression [20] : 
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In order to make our results applicable to a wide range of experimental situations, it is beneficial 

to transform Eq. (2) into the following normalized form [20]  
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where u, τ  and ξ   are the normalized parameters defined as 
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Here T0  and  PC represent the characteristic temporal width and peak power of the initial pulse, 

respectively. LD, LNL and N  are the dispersion length, the nonlinear length and the “soliton” 

order, and are defined as follows 
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In order to quantitatively characterize the evolution along the fiber of the field u, various 

approximate approaches have been recently developed. Ruehl et al. have used the kurtosis 

parameter [22]. Jirauschek et al. have based their analysis on the use of an ansazt [23], whereas 

the analysis of Burgoyne et al. or Rosenberg et al. employed the method of moments [24, 25]. In 

the present work, we based our investigation on extensive numerical integrations of Eq. (3) by 

means of the standard split-step Fourier algorithm [20]. To grasp a global portrait of the pulse 



propagation, we have selected, computed and displayed some characteristic parameters that may 

conveniently describe the temporal and spectral properties of a propagated pulse. Figure 1 

illustrates some of these parameters for a typical output pulse after propagation down the 

normally dispersive fiber. 

The first key parameters are τ-3, which represents the temporal broadening of a pulse (defined 

as the evolution of the Full temporal Width at Half-Maximum (FWHM) of the intensity profile), 

and the pulse peak power reduction factor (defined as the ratio between the output and the input 

peak power). In order to characterize the slope of the pulse wings, we have estimated the S 

parameter, which we have defined as follows 
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In the above expressions, 2
xu−  (and τ -x) are the pulse power (and its associated temporal width) at 

–x dB with respect to the peak power value at τ=0. 

We are also interested in characterizing the shape (in particular, the flatness) of the top of 

a pulse. To this aim, we develop the pulse intensity profile in terms of a Taylor’s expansion 

centered at the pulse’s mid-point (i.e., for τ=0) 
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In order to estimate the flatness of the pulse shape, we may introduce the following 

dimensionless quantity 
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To characterize the pulse evolution in the frequency domain, we have estimated the broadening 

of its spectral intensity profile. Since we would like to differentiate the evolution of the central 

part of the spectrum from the evolution of its wings, we have computed both the -3dB and the     

-20dB spectral bandwidths. We have also drawn a special care to measuring the spectral ripple of 

the output pulse by computing corresponding ripple in the particular spectral range that is 

delimitated by the two observed outermost peaks. Finally, the parameter that we have used to 

evaluate the frequency confinement of the pulse energy was defined by the ratio between the 

energy comprised in the -3dB range and the total pulse energy, respectively. 

 

 

3. Wave-breaking 

In order to provide a simple physical interpretation of pulse propagation in a normally dispersive 

fiber, let us review in this section the development of the so-called optical wave-breaking 

phenomenon. Indeed, it has been known for a long time that the combination of normal 

dispersion and nonlinearity may lead to dramatic pulse distortions [18, 26]. For the sake of 

simplicity, we shall neglect in this section the impact of either loss or gain ( δ = 0 ). In order to 

better visualize the effects of WB, we highlight the benefit of the pulse spectrogram that allows a 

convenient derivation of both temporal and frequency evolutions from the same data. This kind 

of representation can be experimentally recorded, by means of a streak spectrometer for example 

[27] or a XFROG device [28]. Other time/frequency representations are possible, such as the 

Wigner representation [29]. 

In Figure 2 we have plotted the evolution of a pulse with an initial un-chirped sech shape, 

i.e. u(0,τ) = N sech(τ),  and with N = 40. The initial pulse, which is by definition transform-

limited, is shown in Fig. 2(a). In the first stages of its propagation, the major physical effect 



acting on the pulse of Fig.2 is Self-Phase Modulation (SPM) [30], which introduces a chirp (or 

instantaneous frequency shift) Cnl  that reads as 
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In the spectral domain, the SPM-induced chirp (8) may lead to a significant frequency 

broadening of an optical pulse. Since the resulting instantaneous frequencies do not spread 

monotonically across the pulse temporal profile, chirping introduces spectral oscillations at the 

pulse’s edges, as shown in Fig. 2(b). Note that in the initial stage of pulse propagation of 

Fig.2(b), the interaction of SPM with GVD also changes the initial hyperbolic secant pulse 

temporal profile into a parabolic one [26, 31]. Under the action of normal GVD, the intermediate 

pulse sections of Fig. 2(b) where the instantaneous frequency attains the maximum or minimum 

values propagate at different speeds than their respective outer pulse tails. For example, the 

leading intermediate section of the pulse (where the instantaneous frequency attains the largest 

down-shift) propagates faster than the leading pulse tail. This eventually results in the faster 

intermediate section taking over the slower preceding tail, as it can be seen on Fig. 2(c). In the 

temporal domain, an overlapping of two pulse components with different instantaneous 

frequencies (also known as WB) entails the appearance of a sinusoidal beating between those 

frequencies [32]. Such beating in turn creates new frequencies through four-wave mixing 

(FWM) in the fiber, as it is clearly visible at the edges of the spectrum which is shown in Fig. 

2(c). We may also point out in Fig. 2(c) that the occurrence of wave-breaking is accompanied by 

an enhancement of the flatness of the central part of the spectrum. Such spectral region is 

associated with a nearly linear distribution of the instantaneous frequency across the pulse. In 

other words, if the objective is to achieve a pulse with high spectral flatness, it proves convenient 



to propagate the input pulse until WB occurs. Note that, since the WB distance can be minimized 

by increasing the absolute value of the group velocity dispersion, it can be beneficial using a 

fiber with a relatively high dispersion value [13]. It can be further noticed in Fig. 2(c) that the 

central part of the pulse spectrum (i.e., for ν = 0) results from separate contributions at three 

different points in time (i.e at τ = -2.5, 0 and 2.5). As a consequence, enhanced intensity 

oscillations near the center of the pulse spectrum are observed.  

Finally, Figure 2(d) shows the evolution of the pulse after WB has occurred: the central 

part of the spectrum does not broaden anymore as the distance grows larger. To the contrary, the 

pulse has undergone a significant broadening in the temporal domain. Moreover, the central 

section of the pulse is progressively flattened in both the temporal and in the frequency domain. 

Note also in Fig. 2(d) that, owing to the normal GVD of the fiber, the newly generated 

frequencies in the wings of the spectrum have completely overtaken (or have left behind) the 

leading (trailing) edges of the initial pulse. Therefore the overlap among pulse components with 

different instantaneous frequencies and the associated FWM no longer occurs. 

4. Temporal evolution 

In this section we shall focus in a more systematic manner to the description of the temporal 

evolution of pulses upon their propagation in a normally dispersive fiber. To illustrate our 

description, we will consider the case of an initial Gaussian pulse u(0,τ) = N exp(- τ 2/ 2). 

Let us first discuss the evolution of the FWHM temporal width the Gaussian pulses as a 

function of the normalized propagation distance ξ   and of the initial power N. The corresponding 

results are shown by means of contour plots in Fig. 3(a): as it can be seen, at relatively low initial 

powers or for short propagation distances the temporal pulse broadening is only moderate. 

Fig. 3(a) also shows that the higher is the nonlinearity, the faster is the temporal pulse 



broadening. This results from the strong interaction between nonlinearity and dispersion. In order 

to better understand such interaction, it proves very helpful to plot the analytical condition for the 

onset of WB as it was derived by Anderson et al  [26]. Such condition relates the distance ξwb, 

where WB is first observed, to the soliton order N  as 
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which reduces, in the limit of high N, to the simpler expression 
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The relationship (9) is plotted in Fig. 3(a) as a white solid line: as it can be seen, Eq.(9) describes 

the border between two different regions in the (ξ,N) plane. In the region situated below the 

white curve pulse broadening remains moderate, indicating that in this region SPM is the 

dominant physical mechanism influencing pulse evolution. Whereas in the region situated above 

the white curve the interplay of SPM and GVD leads to an accelerated temporal broadening. 

From a systems point of view, in the case of telecommunications signals with a moderate duty 

cycle (typically 25 % or 33%), it is crucial to control and limit the temporal broadening of a 

signal pulse in order to avoid inter-symbol distortions arising from pulse-to-pulse interactions 

[33]. Such distortions could be especially deleterious in applications of nonlinear optical fibers to 

optical regeneration devices [12]. 

Next we plotted in Fig. 3(b) the evolution of the peak power of the pulse in the (ξ,N) 

plane. Since we consider here the propagation of constant energy pulses, pulse peak power and 

temporal duration are necessarily linked with each other : pulse broadening in time is thus  



accompanied by a drop of the peak power. Indeed, Fig. 3(b) shows that indeed for points lying at 

the threshold defined by Eq. (10), the input peak power has dropped by a factor of 2. 

In order to visualize the evolution of pulse shape, we have computed the S and F 

parameters as we have defined them through Eq. (6) and (8), respectively. The corresponding 

results are plotted in Fig. 4(a), and clearly demonstrate that WB (white line) occurs at the edge of 

a significant a pulse steepening region. This observation is in agreement with the results outlined 

by Anderson et al. [26], who have used a similar parameter in order to detect the wave-breaking 

stage. Fig. 4(b) highlights that above the WB threshold the concavity of the central region of the 

pulse is significantly decreased, which is indicative of a strong flattening of the pulse top, as it 

was also observed in Fig. 2(d). 

Finally, it proves interesting to monitor the evolution of the chirp coefficient Cnl of 

Eq.(8), which is numerically obtained by computing the slope of the pulse chirp (i.e., for τ=0). 

The corresponding results are illustrated in Fig. 4(c). We can see that the temporal chirp is 

maximal in the high-N region, and before the WB has occurred. Indeed, before the onset of WB, 

the pulse has not been temporally broadened yet. As a result, all of the spectral components of 

the pulse remain packed in time near the pulse top at τ=0, which results in a large temporal rate 

of variation of the pulse intensity, hence a large chirp coefficient. After the occurrence of WB, 

the pulse significantly broadens in time, so that its instantaneous frequencies are dispersed, the 

pulse top flattens and chirp coefficient decreases. 

 

5. Spectral evolution 

Let us concentrate our attention in this section on the spectral evolution of the pulse when SPM 

and normal GVD are experienced. As we shall see, the occurrence of the wave-breaking 



phenomenon has a major role in determining the properties of the spectral reshaping of a pulse. 

We will study at first the evolution in the (ξ,N) plane of the -3dB spectral width of the pulse (see 

Fig. 5(a)). As it can be seen, the pulse progressively broadens its spectrum until a maximum 

broadening factor is reached. Upon further propagation, a saturation of the spectral broadening 

occurs, until the spectral width eventually decreases with distance. In Fig. 5, we have indicated 

with a white solid line the WB distance ξWB of Eqs.(9-10), alongside with the empirical formula 

that was proposed by Taccheo et al. [34] for describing the distance where maximum nonlinear 

spectral expansion is observed for a Gaussian pulse 

 2.1N constantξ ==  (12) 

By comparison with the numerical results of Fig.(5), it turns out that Eq. (12) describes 

the spectral broadening saturation stage with better accuracy than Eqs.(9-10). The connection 

between Eq.(11) and the WB effect described in Eqs. (11), is nevertheless interesting since it 

permits to physically justify to some extend the empirical 1/N scaling from Eq. (11). As a matter 

of fact, as we will better clarify below, the observed saturation in the pulse spectral broadening is 

closely linked to the presence of WB. We may also notice in Fig. 5(a) the presence of a second 

high-spectral broadening region where N ≫  10 and ξ > 0.1 . The corresponding distances are 

such that the WB-generated spectral wings grow higher than the -3dB boundary. Similar 

behavior will also be observed for initial sech pulse (Fig. 6). 

Let us now try to provide a physical interpretation of the observed spectral saturation. By 

using Eqs. (7)-(7), we may approximate the SPM-induced chirp δCnl at the pulse center after the 

propagation distance δξ  (Eq. (9)) as 
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The above equation shows that the chirp is proportional to the peak-power 20u , to the flatness F 

of the pulse, and it is inversely proportional to the temporal pulse width 23τ − . Therefore, as we 

have outlined in the previous section, after the occurrence of WB one obtains a decrease of the 

peak power of the pulse (Fig. 3(b)), a broadening of its time width (Fig. 3(a), and an increase in 

its flatness (Fig. 4(b)). As a result, the additional self-phase modulation δCnl that is introduced by 

the central part of the pulse will tend to decrease. 

 

In order to infer what the maximum spectral broadening actually is, we may follow the 

simple qualitative reasoning. The chirp that is induced by SPM only for a Gaussian pulse of 

amplitude N and after a propagation length ξ  is  (given that  N ≫  1) reads as 

 ( )2 2( , ,) 2 expGauss
nlC Nξ ξτ τ τ−=  (14) 

so that we may qualitatively evaluate the maximal frequency shift that is induced by self-phase 

modulation  as 
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If we consider that WB occurs after the distance ξwb (see Eq. (11)), we obtain the following 

expression for the spectral broadening (defined as the ratio between the maximum FWHM 

spectral width and the initial FWHM spectral width of the pulse) : 
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As it can be seen in Fig. 5(b), the predictions from Eq. (16) are in good agreement with the 

numerical results, and are also in excellent agreement with the empirical linear growth of the 

spectral broadening (i.e., proportional to 1.1 N) which was proposed in ref. [34]. 

 

Let us focus now our attention on the evolution of the –20dB spectral width that is 

presented in Fig. 5(c). We may notice that in this case the spectral broadening increases at first 

monotonically with distance. After a maximum broadening is reached, the spectral width tends to 

saturate, albeit at longer distances than the FWHM spectral width. By computing the ratio 

between the FWHM spectral width and the -20dB spectral width, we may better understand the 

correlation between the evolutions of the two quantities. This ratio is shown in Fig. 5(d), which 

shows that, after the WB occurs, the two widths tend to a specific value which is close to two. 

Such ratio of spectral widths is directly linked with the nonlinear process that originates the 

build-up of the spectral wings of the pulse. Indeed, as we have seen on Fig. 2(c), the pulse wings 

are generated through the FWM interaction occurring at τ = ± 2.5 between the peak frequencies 

of the pulse ( with an instantaneous frequency   ν = ± 5 ) which act as a pump, and the pulse tails 

at ν = 0 which act as a seed. Note that, given the sharpness the spectrum edges, the peak 

frequencies of the pulse are close to  ± the half FWHM spectral width. As a result, the frequency 

of the resulting FWM-generated photons is equal to ± the pulse FWHM spectral width, which 

leads to a -20dB spectral width that is nearly twice as large as the original FWHM bandwidth. 

 



For practical applications of SC pulses, it is also interesting to consider the evolution with 

distance of the energy which is stored in the central part on the pulse spectrum. The impact of 

WB on the pulse spectral energy distribution is readily apparent on the contour plot of Fig. 6(a). 

Below the threshold, most of the pulse energy is indeed contained within the -3dB bandwidth of 

the pulse spectrum. After the onset of WB, a significant energy transfer into the pulse spectral 

wings is observed [18]. If a main objective of the generated SC light is to make sure that the 

pulse energy is well confined within the central portion of its spectrum, then it would be 

beneficial to operate below the WB limit distance. As discussed above, the pulse spectral energy 

re-distribution from its center towards its wings occurs via FWM, where each extreme frequency 

of the main spectral region of pulse acts as a pump. As those frequencies get depleted, one 

observes a narrowing of the -3dB spectral bandwidth, as already pointed out with reference to 

Fig. 5(a). 

Finally, let us study the evolution of the spectral ripple which is observed in the central 

region of the pulse spectrum. By examining the simulation results that are shown in the contour 

plot of Fig. 6(b), we may easily distinguish two distinct regions. Below the WB threshold, the 

pulse spectrum exhibits a relatively high-amplitude ripple, as it was also previously outlined in 

section 3. Once the WB threshold is overcome, the spectral ripple is dramatically decreased and, 

as a result, the spectrum is basically flat. Therefore, in situations where the practical target 

involves slicing the pulse spectrum for pulse spectral shaping [35] or for implementing a multi-

wavelength source, it may be beneficial to operate beyond the WB distance. 

 

So far in our analysis we focused our attention on the evolution of a Gaussian initial 

pulse. In Refs. [26, 31] it was pointed out that transient states towards WB were dependent on 



the initial pulse shape. This is still true for the evolutions described here. In order to illustrate this 

point, let us consider the evolution of two other input pulse shapes, i.e., an hyperbolic secant 

pulse and a parabolic pulse (which is defined as |u(τ,0) |2  = N 2 (1 – τ 2)). We show the fraction of 

spectral energy which is contained within the -3dB bandwidth as a function of N and ξ in 

Figs.7(a) and 7(b) for the case of an input hyperbolic secant (or sech) or parabolic pulse, 

respectively. By comparing the results of Fig.6(a) and Fig.7(a), one may observe that the 

dynamics of a sech pulse and of a Gaussian pulse are qualitatively similar. Therefore, the 

treatment of Ref. [26] provides the following analytical prediction for the distance wb Sξ  at which 

WB is observed with input sech pulses and for high N’s : 
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By following the same reasoning which led us to qualitatively estimate the spectral broadening 

of Gaussian pulses, we may estimate the maximum spectral broadening for sech pulses as 
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The above result is plotted as a grey curve on Fig. 5(b). The relative error between the analytical 

estimation (17) and the corresponding numerical results (grey circles) is within 12.5%, which is 

much larger than the small error that is obtained with Gaussian input pulses. Nevertheless, our 

analytical results in Fig.5(b) confirm the numerical observation that by using an initial sech pulse 

one obtains larger spectral broadenings than with a Gaussian pulse, as it was already empirically 

pointed out in Ref. [34] . Furthermore, our present treatment permits to physically justify the 

observed linear scaling of the spectral  broadening factor as a function of  N. 



 

On the other hand, Fig. 7(b) which was obtained for the case of a parabolic initial pulse 

shows that in this case the spectral broadening undergoes a rather different evolution. Quite 

remarkably, for a parabolic input pulse the spectral power density does not decrease as both N 

and ξ grow larger. Indeed, Fig. 7(b) shows that a relatively high spectral density is maintained at 

a high propagation distances. This result is consistent with the well-known ability of a parabolic 

pulse to resist to WB [19, 36], as well as to avoid a transfer of energy from the central part of the 

pulse spectrum into its spectral wings through FWM. As a matter of fact, the significant 

robustness of parabolic pulses with respect to WB has been used for optimized spectral slicing 

applications, where the parabolic intensity profile was obtained by linear pulse shaping with a 

superstructure Bragg grating [5]. 

 

6. Experiments 

The above discussed numerical experiments provide us with general guidelines for the 

explanation of the observed temporal and spectral dynamics of optical pulses that propagate in a 

normally dispersive and nonlinear fiber. In particular, we could point out that WB sets a clear 

borderline in both the quantitative and qualitative properties of the pulse evolution in both time 

and frequency domains. Based on our numerical studies, we have carried out a systematic 

experimental analysis with the purpose to verify the validity of the theoretical general trends that 

were discussed in the previous sections. 

 

Our experimental set up is sketched in Fig. 8. Initial 4 ps temporal width sech pulses at 

1552.5 nm were delivered by a picosecond erbium-doped fiber laser operating at the repetition 



rate of 22 MHz. The average power of the pulse train from the laser was increased by means of 

an erbium-doped fiber amplifier (EDFA). Amplified spontaneous emission noise was removed 

by means of an optical bandpass filter (OBPF), whereas an optical variable attenuator (OVA) was 

used to control the peak power that was launched into the optical fiber. Let us note that pulse 

amplification by the EDFA was accompanied by SPM, which led to a slight temporal 

compression (to a resulting temporal FWHM of 3.8 ps). Moreover, the associated SPM-induced 

chirp and spectral broadening led to launching non-transform-limited pulses into the test optical 

fiber. 

The fiber that was used in our experiments was a non-zero dispersion shifted fiber (NZ-

DSF, TrueWave fiber by OFS)  with the second-order dispersion β2 = 3.2 x 10-3 ps2.m-1, the 

nonlinear coefficient γ = 1.7 W-1.km-1, and linear losses α = 0.2 dB.km-1 (which led to a 

negligible influence of fiber loss in our experiments). We used an initial fiber length L = 609 m 

(corresponding to ξ = 0.42); next, in order to monitor the output pulses for a set of different 

propagation distances, we have progressively reduced the fiber length by removing 29 m at each 

cut. For each specific value of fiber length, we recorded the output spectra for a set of input 

powers ranking from 0.4 W  to 150 W, i.e., the N values varied from 1 to 20.  

These systematic measurements enabled us to draw maps in the N-ξ plane for illustrating 

the different spectral properties of the output pulses, as shown in Fig. 9. Among the resulting set 

of 420 spectra, we removed the few experimental points where the spectral evolution was 

affected by the generation of a Raman Stokes wave [37]. We have also experimentally checked 

that the third-order dispersion of the fiber (β3 = 2 x 10-5 ps3.m-1) was not responsible for 

significant modifications of the pulse spectrum, i.e., only little spectral asymmetry was observed 

in our measurements [10, 21]. More importantly, we experimentally observed that the symmetry 



of the initial pulse was of crucial importance in order to observe a symmetric broadening of the 

output spectrum.  

The experimental results shown in Fig. 9 demonstrate a good qualitative agreement with 

the theoretical trends that were outlined in section 5 (compare Fig. 9 (a-c) with Fig. 5(a,c) and 

Fig. 6(b), respectively). Indeed, the experiments of Fig. 9(a) confirm the predicted saturation 

with fiber distance of the -3dB spectral width of the pulse. Fig. 9(b) shows that the same trend 

also holds for the -20dB spectral width. As far as the ripple of the spectrum in the central part of 

the pulse is concerned, our experimental results of Fig. 9(c) follow the expected trends, and 

clearly demonstrate the significance of the wave-breaking borderline in separating two well-

distinct pulse propagation regions. 

 

7. Impact of losses and gain 

Throughout our previous analysis, we neglected the impact of losses and gain by considering δ = 

0. In this section, we intend to lift that restriction and theoretically describe the effects on pulse 

dynamics of loss or amplification. Moreover, we shall propose an extension of Eq. (11) by taking 

into account a non-zero value of δ.  

We may follow a reasoning similar to that introduced by Anderson et al [26], which in 

the lossless case led us to the conclusions that permitted us to arrive at Eq. (11) . In the presence 

of δ, the nonlinear chirp which is induced by self-phase modulation may be estimated as  [20, 

38]: 
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δ τ
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− −=  (19). 



Therefore the new limit distance for WB, say '
wbξ , is obtained from 
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By introducing the usual effective length ( )( )' '1 expwbeff wb δ δξ ξ= − −   [20], Eq. (20) can be 

rewritten as :  

 ' '

2
1

4 exp( 3/ 2)wb wbeff N
ξ ξ =

−
 (21). 

It should be pointed out that Eq. (21) is not simply the direct transposition of Eq. (10), as it could 

be obtained by replacing wbξ  by '
wbeffξ  : as a matter of fact, Eq. (21) involves the product of the 

distinct quantities ' '
wb wbeffξ ξ . 

We have checked in Fig. 10 the validity of our proposed formula (20). In order to 

illustrate our approach, we have considered the linear normalized losses δ = 200 dB, and gain 

δ€= -200 dB. Let us recall that these gain/loss values are normalized relatively to the dispersion 

length. Such values can be typical for picosecond pulses propagating in rare-earth doped fibers 

and photonic crystal fibers, respectively. We have plotted on Figs. 10(a) and 10(b) the resulting 

evolution of the temporal slope of the pulse, for the case of an initial Gaussian pulse shape, and 

for either a lossy or active fiber, respectively. The predictions given by the analytical formula for 

the lossless case (Eq. (9)) are also shown in Fig. 10 as a solid white curve. The results of Fig. 10 

clearly prove that our formula (20) provides a good description of the observed WB borderline in 

the presence of either distributed loss or gain. In the lossy case, Fig. 10(a) shows that the WB 



limit is shifted towards longer fiber distances. The contrary occurs for an active fiber, namely 

Fig. 10(b) shows that the WB boundary is shifted to shorter propagation distances. 

It is also of great interest to compare the spectral profiles of the pulses as they emerge 

from the fiber at precisely the WB distance as it is predicted by Eq. (20). The black curves in 

Figs. 11(a) and (b) were obtained for an input Gaussian pulse with N = 40, after propagation until 

'
wbξ in a lossy or amplifying fiber, respectively. The comparison of Figs. 11(a) and (b) shows that 

amplified pulses develop a broader spectrum than linearly attenuated pulses. Another point 

which is also apparent from the inspection of Fig. 11 is that, at distances past the WB borderline 

of Eq. (20)  (e.g., grey curves obtained at a distance ξ = 1.5 '
wbξ ), the spectral evolutions in the 

lossy and in the active case are rather different. Indeed, Fig. 11 shows that in the case of a lossy 

fiber the wings of the pulse spectra remain rather moderate at any distance. This can be 

explained by the relatively high attenuation value: upon the propagation, loss progressively 

decreases the pulse peak power: as a consequence, whenever intra-pulse overlap among different 

frequencies occurs, the FWM efficiency has dropped to dramatically low values. Consequently, 

only moderate wings development occurs, and the oscillations that are observed in the temporal 

profile are mainly due to the simple linear overlap of pulse sections with different instantaneous 

frequencies [39]. Fig. 11(a) shows another consequence of the presence of linear loss, namely the 

central portion of the pulse spectrum remains virtually undepleted. As a result the pulse spectrum 

exhibits the characteristic peaks at its extreme frequencies.  

Quite to the contrary, in the case of an amplifying fiber the nonlinear interaction during 

the intra-pulse overlap of different frequencies is enhanced by gain. As a consequence, the wings 

that are the signature of WB develop more strongly than in the lossless case, while the central 

portion of the pulse spectrum gets depleted and smoothens more quickly. Those qualitative 



remarks help us to better understand the different experimental results that were recently 

obtained in a normal, varying dispersion fiber [16, 40]. Indeed, those experiences have 

demonstrated that the shape of the output pulse spectrum shape was remarkably different, 

depending upon the relative direction of the pulse propagation and the dispersion decrease. To 

this end, let us recall that a dispersion variation with distance can be formally linked to the 

presence of either gain or loss, depending upon the relative direction of dispersion decrease and 

pulse propagation. In fact a dispersion decreasing fiber leads to an equivalent gain, whereas a 

dispersion increasing fiber can be assimilated to a lossy fiber. In carrying out the comparison 

between the present results and earlier experiments, we should be careful however, that in this 

paper and in Fig.11 we compare the evolution in lossy and in active fibers of pulses with 

identical values of N. On the other hand, when injecting pulses with the same input peak-power 

at the two ends of a varying dispersion fiber, clearly one obtains different values of N to start 

with. 

 

Let us finally focus our attention on pulse evolution in amplifying fibers. This topic has 

attracted much interest over the past few years, mainly due to the experimental discovery of the 

formation of self-similar pulses [19] in media such as erbium or ytterbium doped fibers, Raman 

amplifiers [35] or dispersion decreasing fibers [16]. Indeed, it has been shown that any pulse, 

whatever its initial shape, asymptotically converges towards a parabolic intensity profile 

combined with a linear chirp, and then maintains this shape unchanged while undergoing a self-

similar evolution. 

In Fig. 12(a) we plotted the evolution with fiber length of the temporal width of an initial 

Gaussian pulse, for various N values and for a gain δ = -200 dB. As it can be seen, in a first stage 



of propagation there is hardly any change of the pulse temporal width. Next, after a certain 

distance of propagation which decreases as the initial N grows larger, the pulse temporal 

broadening increases according to a self-similar evolution law which reads as  [19, 38] :  
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In this context, it is of interest to display on Fig. 12(a), as we have done on the various 

curves associated with each value of N by means of a full dot, the WB distance as it is predicted 

by Eq. (20). This permits us to reveal that the onset of WB appears as the turning point in the 

evolution of an initial Gaussian pulse towards an asymptotic parabolic pulse. 

 

In order to attain a more precise knowledge of the temporal evolution of the pulse shape, 

we have computed the misfit parameter between the propagated pulse and its parabolic fit p: 

such misfit may be defined as follows [31]  : 

 
2

2 2 42M u p d u dτ τ 
  

= −∫ ∫  (23). 

The corresponding results are plotted in Fig. 12(b), along with the WB distance as a dotted white 

curve. In Fig. 12(b) we may clearly see that an initial Gaussian pulse approaches a parabolic 

shape exactly at the limit distance for WB that is predicted by Eq. (20), in agreement with 

previously demonstrated results and observations carried out in passive fibers [31]. However Fig. 

12(b) also shows that, for large values of N, the parabolic shape which is attained at '
wbξ cannot 

be maintained in further propagation, and the pulse undergoes wave-breaking effects, alongside 



with all their classical manifestations (i.e., the development of wings in the spectrum, rapid 

oscillations of the temporal intensity profile). Nevertheless, Fig. 12(b) also reveals that soon 

thereafter the pulse stably converges towards a self-similar solution of the propagation equation, 

that is the pulse definitively acquires a parabolic intensity profile, as shown by corresponding 

low values of the M factor. A similar evolution could already be seen in Ref. [38] (Fig . 1(b)),  

even though at that time no clear interpretation of this behaviour was provided. 

 

In summary, the results of the present section provide what we believe is a significant 

insight for a better comprehension of the evolution of arbitrary optical pulses towards a parabolic 

state, a topic which has generated widespread concern in the recent literature [31, 41-43]. From 

the results of Fig.12, we may conclude that even if the temporal width of a propagated pulse 

evolves according with the self-similar evolution of a parabolic pulse past the point where WB is 

generated, the full shape of this pulse may still oscillate around its asymptotic state. 

Nevertheless, the presence of WB remains an important turning point in the process of attraction 

of the initial pulse towards the parabolic shape. Indeed, quite surprisingly we have revealed that 

although an exactly parabolic pulse is exempt from the WB effect [36], yet an arbitrary input 

pulse may still experience the WB effect along its evolution towards the asymptotic, stable self-

similar parabolic state. 

 

8. Conclusion 

In this article we have carried out a detailed temporal and spectral analysis of pulse propagation 

in a normally dispersive optical fiber in the presence of Kerr nonlinearity. We have outlined the 

crucial role that is played by the wave-breaking effect in determining the pulse reshaping. 



Moreover, we have interpreted the action of wave-breaking in terms of fundamental physical 

intra-pulse interactions. We have revealed that the threshold for wave-breaking separates 

qualitatively different regimes of pulse reshaping in both temporal and frequency domains, 

which is of great relevance for different practical applications. We have compared and validated 

our numerical and analytical predictions with direct systematic experimental studies, confirming 

that wave-breaking represents a key ingredient in the formation of highly coherent continuum 

pulses. Based on simple physical arguments, we have proposed analytical guidelines for 

predicting the evolution of the main characteristics of the optical pulses. Finally, we have 

extended our concepts to the case of pulse propagation in a lossy medium, as well as in fiber 

amplifiers. In the last case we have pointed out that, quite surprisingly, a pulse may still undergo 

the wave-breaking effect upon its attraction towards a self-similar parabolic pulse. 
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Figures captions 

1. Characteristic parameters computed for pulse analysis (a) in the temporal domain  (b) in the 

spectral domain. 

 

2. Mixed spectral-temporal representation of the optical pulse at various propagation lengths. 

 

3. Computed evolution of the temporal properties of initial Gaussian pulse vs. its propagation 

distance ξ and N number: (a) Broadening factor of the temporal FWHM; (b) Peak-power 

decrease factor. The solid white curve is the analytical WB boundary of Eq. (10). 

 

4. Computed evolution of various pulse properties:  (a) slope S; (b) parameter F; (c) linear slope 

of the temporal chirp coefficient. The analytical prediction of WB boundary in Eq. (10) is plotted 

as solid white line. 

 

5. Computed evolution of the pulse spectral properties: (a) -3dB spectral broadening factor; (b) 

maximum spectral broadening for Gaussian and sech initial pulses. Numerical results are plotted 

with black diamonds (Gaussian pulses) or with grey circles (sech pulses). The solid lines are the 

theoretical results from Eq. (16) (black line, for Gaussian initial pulses) or Eq. (18) (grey line, for 

initial sech pulses); (c) Evolution of the -20 dB spectral width; (d) Ratio between the -3dB and -

20 dB spectral widths. 

 



6. Computed evolution of the pulse spectral properties: (a) evolution of the fraction of pulse 

energy contained in the central part of its spectrum (3dB bandwidth); (b) evolution of the pulse 

spectral ripple. The solid white curve indicates the analytical WB boundary of Eq. (10). 

 

7. Computed evolution of the energy fraction stored in the central region of the pulse spectrum, 

for a sech pulse (a) or for a parabolic pulse (b); The prediction of Eq. (17) is shown with a black 

solid line. 

 

8. Experimental set-up. 

 

9. Experimental maps for: (a) the evolution of the -3dB spectral width; (b) the -20dB spectral 

width; (c) the spectral ripple. Crosses indicate discarded data points where Raman scattering was 

significant. The analytical predictions from Eq. (17) are plotted as a white solid curve. 

 

10. Map showing the computed evolution of temporal slope S of the pulse for: (a) a lossy fiber 

with δ = 200 dB; (b) or an amplifying fiber with δ = -200 dB.  Theoretical borders given by Eq. 

(20) for losses and gain are plotted using white dashed or dashed-dotted lines, respectively. The 

solid white line represents the lossless case. 

 

11. Computed output spectra of an initially Gaussian pulse, after propagation in normally 

dispersive fiber until the WB distance of Eq. (20)  (black curves) or at 1.5 ξwb (grey curves) for N 

= 40: (a) case of a lossy fiber   (b) case of an amplifying fiber. 

 



12. (a) Computed evolution of the FWHM temporal pulse broadening for various N values ( N = 

5, 15, 25 and 35, solid lines, decreasing grey levels from black to light grey). Computed 

evolutions are compared with the corresponding asymptotic evolutions as described by Eq. (22) 

(dashed lines). Filled round points indicate the WB distance as it is predicted by Eq. (20); (b) 

computed evolution of the misfit parameter M. 
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