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1. Introduction

Continuum light sources have generated a greataledtention over the past decade: examples
of spectral broadenings as large as a decade le&verbported using optical fibers as nonlinear
and dispersive propagation medium [1]. The areasamdlication of supercontinuum (SC)
sources are widespread, ranging from biology [2] dptical metrology [3]. Optical
telecommunications have also benefited from theeldgwment of continuum light source
technologies [4], for example in the context of el@ngth-division multiplexed systems where a
high number of optical channels can be generatenlgin the spectral slicing of spectrally
broadened picosecond pulses [5-8].

As it is well known, the physical phenomena undagythe spectral evolution of a short
optical pulse in a fiber will significantly diffedepending on the sign of the fiber group-velocity
dispersion (GVD). On the one hand, anomalous disper generates (through soliton
compression and subsequent fission) the broadestrapreported to-date [7]. In this case,
however, spectral broadening is accompanied byivelg high timing and amplitude jitter of
the pulses [9] On the other hand, although optical pulse evoituin a normally dispersive fiber
leads to relatively narrower spectra, in this caseduced spectral ripple and initial pulse jitter
influence are both observed [5, 6, 8]. Hence fraquebroadening using a normally dispersive
fiber appears as an attractive choice wheneveragerate amount of broadening alongside with
good spectral and temporal stability of the oufpuises are targeted [10], for applications such
as optical regeneration [11-13] or pulse tempooahgression [5, 14, 15].

Experimentally, a wide range of normally dispersiters have been successfully tested
for SC generation: for example, dispersion shifiedrs [8] highly nonlinear silica fibers [5,

10], photonic crystal fibers [6], and dispersiorc@asing normally dispersive fibers [16]. New



specialty glasses exhibiting very high values ofmmad dispersion have also been investigated
[13] demonstrating possible benefits of such gessemprove overall power budget and device
footprint. Since in all of the above practical impientations the dispersion, the nonlinear
properties as well as the fiber losses may vary difeerent orders of magnitude, it would be of

high interest if one could develop some general,@ssibly analytical, design guidelines for the
understanding and prediction of the temporal amdtsal properties of the generated pulses.

In the present article, we intend to provide anwamnsto the above demand by
reconsidering through a unified and, as far as m@nk original approach the old problem of
pulse evolution in a normally dispersive opticélefi. It is well known that upon propagation in
the normal GVD regime a short pulse may experiensérong distortion of its temporal shape
(e.g., a flattening of its top) [17]. One of théical phenomena affecting short pulse dynamics in
the normal GVD regime is known as “optical Wave-dddag” (WB), which results from the
temporal overlap of the highly chirped central pafrthe pulse with its un-chirped wings [18].
This phenomenon has long been seen as a deleteffeas which has in general to be avoided
in practice, with the help of parabolic pulse shapior example [19]. Quite surprisingly, we will
point out in this work that the presence of WB neagn turn out to be beneficial in a variety of
applications.

Our paper will be organized as follows. At first wieall describe our model equations
that are based on the standard nonlinear Schradigggeation (NLSE). Next we will review the
different steps that are involved in the developim@na continuum. We will then provide an
original interpretation of how wave-breaking mafeat the evolution (both in the temporal and
spectral domains) of the continuum in the normalDGMgime. Our fine understanding of the

pulse dynamics will lead us to propose simple desiges that enable one to optimize the



continuum development. Indeed, in a next section skeall describe the results of our
experimental frequency broadening studies thatwaitb us to validate the above discussed
analytical trends. Finally, in the last sectionoofr work we will extend our conclusions to the

case where losses or gain contribution are included

2. Numerical model
The longitudinal evolution in an optical fiber dfet complex electric field envelopg/ (z,T) can
be modeled in terms of the generalized NLSE [1,:20]
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where £ is the K-order dispersion coefficient, angr is the nonlinear coefficient.
a>0 (a<0) is the fiber loss(distributed gain)coefficient. R(T) = (1-k) o(T) + fr hg(T)
includes instantaneowd(T) and delayed Ramamk(T) contributions with the fractional Raman
contributionfgr. 1/«y 9/9T is the self-steepening term. is the time coordinate in a frame of

reference that co-propagates with the pulse zahd propagation distance.

In this work, we aim to describe continuum develepi(or the first steps of supercontinuum
dynamics), i.e. when the pulse spectral width igtenorder of a few THz. For such a spectral
width, self-steepening has not found as a detengieiffect. Moreover, assuming a dispersion
flattened fiber, we can neglect higher order disiper terms (third order dispersion will induce
as a first consequence to some spectral asymmgfryZ1]). In normally dispersive fibers,
intrapulse Raman scattering has a reduced impacasitong as the fiber length or initial power

is below stimulated Raman threshold, Raman termatsambe neglected.



In this context, Eq. (1) reduces to the simpliftldSE expression [20] :
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In order to make our results applicable to a walege of experimental situations, it is beneficial

to transform Eg. (2) into the following normalizémm [20]
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whereu, 7 andé are the normalized parameters defined as

u&r)=N U, U(Er) =L, r=1, s=aL, £=-2 @)

HereTy, and Pc represent the characteristic temporal width arak gewer of the initial pulse,
respectively.Lp, L. andN are the dispersion length, the nonlinear lengtth #he “soliton”

order, and are defined as follows

T2 1 L
) Foz’ Ly = N = -2 (5)
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In order to quantitatively characterize the evalntalong the fiber of the field, various
approximate approaches have been recently develdpeehl et al. have used the kurtosis
parameter [22]. Jirauschek al. have based their analysis on the use of an af&&jztwhereas
the analysis of Burgoynet al.or Rosenbergt al.employed the method of moments [24, 25]. In
the present work, we based our investigation oerestte numerical integrations of Eq. (3) by

means of the standard split-step Fourier algorifp@). To grasp a global portrait of the pulse



propagation, we have selected, computed and desphlsyme characteristic parameters that may
conveniently describe the temporal and spectrapgtes of a propagated pulse. Figure 1
illustrates some of these parameters for a typicdput pulse after propagation down the
normally dispersive fiber.

The first key parameters arg, which represents the temporal broadening of sg§defined
as the evolution of the Full temporal Width at Hslldximum (FWHM) of the intensity profile)
and the pulse peak power reduction fa¢tafined as the ratio between the output and tpeatin
peak power) In order to characterize the slope of the pulsegsy we have estimated tig

parameter, which we have defined as follows
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In the above expressiong’, (andr.) are the pulse power (and its associated tempodah) at

—x dB with respect to the peak power value=Q.
We are also interested in characterizing the skiagearticular, the flatness) of the top of
a pulse. To this aim, we develop the pulse intgnzitfile in terms of a Taylor's expansion

centered at the pulse’s mid-point (i.e., Te0)
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In order to estimate the flatness of the pulse shape may introduce the following

dimensionless quantity

Ly ®)




To characterize the pulse evolution in the freqyettmmain, we have estimated the broadening
of its spectral intensity profile. Since we wouikiel to differentiate the evolution of the central
part of the spectrum from the evolution of its véngve have computed both the -3dB and the
-20dB spectral bandwidths. We have also drawn eiapeare to measuring the spectral ripple of
the output pulse by computing corresponding ripiplethe particular spectral range that is
delimitated by the two observed outermost peaksally, the parameter that we have used to
evaluate the frequency confinement of the pulseggneas defined by the ratio between the

energy comprised in the -3dB range and the totiskepenergy, respectively.

3. Wave-breaking

In order to provide a simple physical interpretatad pulse propagation in a normally dispersive
fiber, let us review in this section the developimeh the so-called optical wave-breaking
phenomenon. Indeed, it has been known for a long tthat the combination of normal
dispersion and nonlinearity may lead to dramatitsgudistortions [18, 26]For the sake of
simplicity, we shall neglect in this section thepimat of either loss or gaind= 0 ). In order to
better visualize the effects of WB, we highlight thenefit of the pulse spectrogram that allows a
convenient derivation of both temporal and freqyeewolutions from the same data. This kind
of representation can be experimentally recordganéans of a streak spectrometer for example
[27] or a XFROG device [28]. Other time/frequen@pnesentations are possible, such as the
Wigner representation [29].

In Figure 2 we have plotted the evolution of a pulgth an initial un-chirped sech shape,
i.e. u(0,n) = N sechf), and withN = 40. The initial pulse, which is by definitioratrsform-

limited, is shown in Fig. 2(a). In the first stagefsits propagation, the major physical effect



acting on the pulse of Fig.2 is Self-Phase Modaia{iSPM) [30], which introduces a chirp (or

instantaneous frequency shi@@), that reads as

C,(67) = - & %(u%o,r)). 9)

In the spectral domain, the SPM-induced chirp (&yrtead to a significant frequency
broadening of an optical pulse. Since the resulimgjantaneous frequencies do not spread
monotonically across the pulse temporal profilarghg introduces spectral oscillations at the
pulse’s edges, as shown in Fig. 2(b). Note thathm initial stage of pulse propagation of
Fig.2(b), the interaction of SPM with GVD also chas the initial hyperbolic secant pulse
temporal profile into a parabolic one [26, 31]. @nthe action of normal GVD, the intermediate
pulse sections of Fig. 2(b) where the instantand@megiency attains the maximum or minimum
values propagate at different speeds than thepeotive outer pulse tails. For example, the
leading intermediate section of the pulse (wheeeitistantaneous frequency attains the largest
down-shift) propagates faster than the leadingetdsl. This eventually results in the faster
intermediate section taking over the slower praewgdail, as it can be seen on Fig. 2(c). In the
temporal domain, an overlapping of two pulse conemb®m with different instantaneous
frequencies (also known as WB) entails the appearah a sinusoidal beating between those
frequencies [32]. Such beating in turn creates fieguencies through four-wave mixing
(FWM) in the fiber, as it is clearly visible at tleelges of the spectrum which is shown in Fig.
2(c). We may also point out in Fig. 2(c) that tleewrrence of wave-breaking is accompanied by
an enhancement of the flatness of the central @lathe spectrum. Such spectral region is
associated with a nearly linear distribution of thstantaneous frequency across the pulse. In

other words, if the objective is to achieve a pulg# high spectral flatness, it proves convenient



to propagate the input pulse until WB occurs. Nbtg, since the WB distance can be minimized
by increasing the absolute value of the group vslatispersion, it can be beneficial using a
fiber with a relatively high dispersion value [18] can be further noticed in Fig. 2(c) that the
central part of the pulse spectrum (i.e., Yor 0) results from separate contributions at three
different points in time (i.e ar = -2.5, 0 and 2.5). As a consequence, enhancedsity
oscillations near the center of the pulse spectaarobserved.

Finally, Figure 2(d) shows the evolution of the gmubkfter WB has occurred: the central
part of the spectrum does not broaden anymoreeadistance grows larger. To the contrary, the
pulse has undergone a significant broadening intéhgoral domain. Moreover, the central
section of the pulse is progressively flattenethath the temporal and in the frequency domain.
Note also in Fig. 2(d) that, owing to the normal B\6f the fiber, the newly generated
frequencies in the wings of the spectrum have cetalyl overtaken (or have left behind) the
leading (trailing) edges of the initial pulse. Tékare the overlap among pulse components with

different instantaneous frequencies and the agsociaVM no longer occurs.

4. Temporal evolution

In this section we shall focus in a more systematanner to the description of the temporal
evolution of pulses upon their propagation in anmaly dispersive fiber. To illustrate our
description, we will consider the case of an ihiGaussian pulse(0,7) = N exp(-77 2).

Let us first discuss the evolution of the FWHM tera) width the Gaussian pulses as a
function of the normalized propagation distagceand of the initial poweN. The corresponding
results are shown by means of contour plots in¥@): as it can be seen, at relatively low initial
powers or for short propagation distances the teatppulse broadening is only moderate.

Fig. 3(a) also shows that the higher is the noalig the faster is the temporal pulse



broadening. This results from the strong interachetween nonlinearity and dispersion. In order
to better understand such interaction, it provey kielpful to plot the analytical condition for the
onset of WB as it was derived by Anderssinal [26]. Such condition relates the distarfg,

where WB is first observed, to the soliton orflemas

1
= (10)
" JaexpE3/2)N2- 1
which reduces, in the limit of high N, to the simpéxpression
Ep N = e)(pzﬂ)z constan (11)

The relationship (9) is plotted in Fig. 3(a) aslatey solid line: as it can be seen, Eq.(9) dessribe
the border between two different regions in thN) plane. In the region situated below the
white curve pulse broadening remains moderatecatitig that in this region SPM is the
dominant physical mechanism influencing pulse eivotu Whereas in the region situated above
the white curve the interplay of SPM and GVD leanlsan accelerated temporal broadening.
From a systems point of view, in the case of tel@ooinications signals with a moderate duty
cycle (typically 25 % or 33%)it is crucial to control and limit the temporaloadening of a
signal pulse in order to avoid inter-symbol distors arising from pulse-to-pulse interactions
[33]. Such distortions could be especially deletesiin applications of nonlinear optical fibers to
optical regeneration devices [12].

Next we plotted in Fig. 3(b) the evolution of theal power of the pulse in thé,K )
plane. Since we consider here the propagation éteat energy pulses, pulse peak power and

temporal duration are necessarily linked with eatfer : pulse broadening in time is thus



accompanied by a drop of the peak power. Indeefd,3fb) shows that indeed for points lying at
the threshold defined by Eq. (10), the input peakgr has dropped by a factor of 2.

In order to visualize the evolution of pulse shape, have computed th8 and F
parameters as we have defined them through Ecan@)(8), respectively. The corresponding
results are plotted in Fig. 4(a), and clearly destiate that WB (white line) occurs at the edge of
a significant a pulse steepening region. This ofzgem is in agreement with the results outlined
by Andersoret al.[26], who have used a similar parameter in ordeddtect the wave-breaking
stage. Fig. 4(b) highlights that above the WB thoéd the concavity of the central region of the
pulse is significantly decreased, which is indieatof a strong flattening of the pulse top, as it
was also observed in Fig. 2(d).

Finally, it proves interesting to monitor the evadn of the chirp coefficient ¢ of
Eq.(8), which is numerically obtained by computihg slope of the pulse chirp (i.e., for0).
The corresponding results are illustrated in Fi@).4We can see that the temporal chirp is
maximal in the high-N region, and before the WB besurred. Indeed, before the onset of WB,
the pulse has not been temporally broadened yea Asult, all of the spectral components of
the pulse remain packed in time near the pulseatapO, which results in a large temporal rate
of variation of the pulse intensity, hence a lachep coefficient. After the occurrence of WB,
the pulse significantly broadens in time, so thatinstantaneous frequencies are dispersed, the

pulse top flattens and chirp coefficient decreases.

5. Spectral evolution

Let us concentrate our attention in this sectiorthenspectral evolution of the pulse when SPM

and normal GVD are experienced. As we shall see, dbcurrence of the wave-breaking



phenomenon has a major role in determining thegst@s of the spectral reshaping of a pulse.
We will study at first the evolution in thé&,N) plane of the -3dB spectral width of the pulsee
Fig. 5(a)) As it can be seen, the pulse progressively brmadas spectrum until a maximum
broadening factor is reached. Upon further propagat saturation of the spectral broadening
occurs, until the spectral width eventually decesawith distance. In Fig. 5, we have indicated
with a white solid line the WB distanég,s of Eqs.(9-10), alongside with the empirical foraul
that was proposed by Taccheo et al. [34] for dbsugithe distance where maximum nonlinear

spectral expansion is observed for a Gaussian pulse

& N= 2.1= constan (12)

By comparison with the numerical results of Fig.({)urns out that Eq. (12) describes
the spectral broadening saturation stage with betteuracy than Eqs.(9-10). The connection
between Eq.(11) and the WB effect described in EbE), is nevertheless interesting since it
permits to physically justify to some extend thep@ioal 1/N scaling from Eq. (11). As a matter
of fact, as we will better clarify below, the obsed saturation in the pulse spectral broadening is
closely linked to the presence of WB. We may alstice in Fig. 5(a) the presence of a second
high-spectral broadening region whéde> 10 andé > 0.1 . The corresponding distances are
such that the WB-generated spectral wings grow drighan the -3dB boundary. Similar
behavior will also be observed for initial sechgau(Fig. 6).

Let us now try to provide a physical interpretatafrthe observed spectral saturation. By
using Egs. (7)-(7), we may approximate the SPM-@ediuchirpdC, at the pulse center after the

propagation distancé¢ (Eq. (9))as



5C =& F ‘T‘— r. (13)
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The above equation shows that the chirp is propaatito the peak-powas?, to the flathess

of the pulse, and it is inversely proportional e temporal pulse widtla®,. Therefore, as we
have outlined in the previous section, after theuoence of WB one obtains a decrease of the
peak power of the puld€ig. 3(b)) a broadening of its time widirig. 3(a) and an increase in
its flatnesgFig. 4(b)) As a result, the additional self-phase modulatioy) that is introduced by

the central part of the pulse will tend to decrease

In order to infer what the maximum spectral broadgractually is, we may follow the
simple qualitative reasoning. The chirp that isuced by SPM only for a Gaussian pulse of

amplitudeN and after a propagation lengfhis (given that N> 1) reads as
Cos&,1) = 2 & N2 1 exp(-12), (14)

so that we may qualitatively evaluate the maximadjfiency shift that is induced by self-phase

modulation as

ACE(£) = max(C*(z.7))~ minC,*t.7)) = % £ N e (15)

If we consider that WB occurs after the distafge (see Eq. (11)), we obtain the following
expression for the spectral broadenifgfined as the ratio between the maximum FWHM

spectral width and the initial FWHM spectral widththe pulse)



exp(%j\’z_'”(z) N = 1IN. (16)

As it can be seen in Fig. 5(b), the predictionsnfreq. (16) are in good agreement with the
numerical results, and are also in excellent ages¢mwith the empirical linear growth of the

spectral broadening (i.e., proportional to B)lwhich was proposed in ref. [34].

Let us focus now our attention on the evolutiontlod —20dB spectral width that is
presented in Fig. 5(c). We may notice that in d@se the spectral broadening increases at first
monotonically with distance. After a maximum broaiteg is reached, the spectral width tends to
saturate, albeit at longer distances than the FWsfidctral width. By computing the ratio
between the FWHM spectral width and the -20dB spketidth, we may better understand the
correlation between the evolutions of the two qiti@st This ratio is shown in Fig. 5(d), which
shows that, after the WB occurs, the two widthgltema specific value which is close to two.
Such ratio of spectral widths is directly linkedthwvithe nonlinear process that originates the
build-up of the spectral wings of the pulse. Indeesiwe have seen on Fig. 2(c), the pulse wings
are generated through the FWM interaction occuratig= + 2.5 between the peak frequencies
of the pulse ( with an instantaneous frequency + 5 ) which act as a pump, and the pulse tails
atv = 0 which act as a seed. Note that, given thepsiess the spectrum edges, the peak
frequencies of the pulse are closedtithe half FWHM spectral width. As a result, theginency
of the resulting FWM-generated photons is equat the pulse FWHM spectral width, which

leads to a -20dB spectral width that is nearly énas large as the original FWHM bandwidth.



For practical applications of SC pulses, it is afgeresting to consider the evolution with
distance of the energy which is stored in the etmgart on the pulse spectrum. The impact of
WB on the pulse spectral energy distribution islilgeapparent on the contour plot of Fig. 6(a).
Below the threshold, most of the pulse energy de@u contained within the -3dB bandwidth of
the pulse spectrum. After the onset of WB, a sigaift energy transfer into the pulse spectral
wings is observed [18]. If a main objective of thenerated SC light is to make sure that the
pulse energy is well confined within the centralrtipm of its spectrum, then it would be
beneficial to operate below the WB limit distands. discussed above, the pulse spectral energy
re-distribution from its center towards its wingxors via FWM, where each extreme frequency
of the main spectral region of pulse acts as a puhspthose frequencies get depleted, one
observes a narrowing of the -3dB spectral bandwiadshalready pointed out with reference to
Fig. 5(a).

Finally, let us study the evolution of the spectipple which is observed in the central
region of the pulse spectrum. By examining the $non results that are shown in the contour
plot of Fig. 6(b), we may easily distinguish twastihct regions. Below the WB threshold, the
pulse spectrum exhibits a relatively high-amplitugbple, as it was also previously outlined in
section 3. Once the WB threshold is overcome, pleetsal ripple is dramatically decreased and,
as a result, the spectrum is basically flat. Theeefin situations where the practical target
involves slicing the pulse spectrum for pulse séahaping [35] or for implementing a multi-

wavelength source, it may be beneficial to opeboateond the WB distance.

So far in our analysis we focused our attentiontlmn evolution of a Gaussian initial

pulse. In Refs. [26, 31] it was pointed out thansient states towards WB were dependent on



the initial pulse shape. This is still true for #nwlutions described here. In order to illusttais
point, let us consider the evolution of two otheput pulse shapes, i.e., an hyperbolic secant
pulse and a parabolic pulse (which is definedisd) p = N2 (1 —72)). We show the fraction of
spectral energy which is contained within the -3ohdwidth as a function of N angin
Figs.7(a) and 7(b) for the case of an input hypeabsecant (or sech) or parabolic pulse,
respectively. By comparing the results of Fig.6émd Fig.7(a), one may observe that the
dynamics of a sech pulse and of a Gaussian puksejaalitatively similar. Therefore, the

treatment of Ref. [26] provides the following artadgl prediction for the distancg,, 4 at which

WB is observed with input sech pulses and for INg:
- p_ 1 31
Swbs —\/; NZ+1 —\/; N 7).

By following the same reasoning which led us toligaiavely estimate the spectral broadening

of Gaussian pulses, we may estimate the maximugtirgperoadening for sech pulses as

The above result is plotted as a grey curve on3{ig). The relative error between the analytical
estimation (17) and the corresponding numericallteggrey circles) is within 12.5%, which is
much larger than the small error that is obtaindéth Waussian input pulses. Nevertheless, our
analytical results in Fig.5(b) confirm the numetlichservation that by using an initial sech pulse
one obtains larger spectral broadenings than wiaassian pulse, as it was already empirically
pointed out in Ref. [34] . Furthermore, our presgaatment permits to physically justify the

observed linear scaling of the spectral broadefantpr as a function oN.



On the other hand, Fig. 7(b) which was obtainedttier case of a parabolic initial pulse
shows that in this case the spectral broadeningnrgogs a rather different evolution. Quite
remarkably, for a parabolic input pulse the spégoaver density does not decrease as both N
and¢ grow larger. Indeed, Fig. 7(b) shows that a reédyi high spectral density is maintained at
a high propagation distances. This result is coeersivith the well-known ability of a parabolic
pulse to resist to WB [19, 36], as well as to awitlansfer of energy from the central part of the
pulse spectrum into its spectral wings through FWA4. a matter of fact, the significant
robustness of parabolic pulses with respect to V&8 been used for optimized spectral slicing
applications, where the parabolic intensity profilas obtained by linear pulse shaping with a

superstructure Bragg grating [5].

6. Experiments

The above discussed numerical experiments provislewith general guidelines for the

explanation of the observed temporal and specirahmhics of optical pulses that propagate in a
normally dispersive and nonlinear fiber. In par&yuwe could point out that WB sets a clear
borderline in both the quantitative and qualitatpreperties of the pulse evolution in both time
and frequency domains. Based on our numerical esudve have carried out a systematic
experimental analysis with the purpose to verify alidity of the theoretical general trends that

were discussed in the previous sections.

Our experimental set up is sketched in Fig. 8idh# ps temporal width sech pulses at

1552.5 nm were delivered by a picosecond erbiumeddiber laser operating at the repetition



rate of 22 MHz. The average power of the pulsenth@m the laser was increased by means of
an erbium-doped fiber amplifigEDFA). Amplified spontaneous emission noise was removed
by means of an optical bandpass fif@BPF),whereas an optical variable attenugf®¥A)was
used to control the peak power that was launchexthe optical fiber. Let us note that pulse
amplification by the EDFA was accompanied by SPM, which led to a slight tnalp
compressior{to a resulting temporal FWHM of 3.8 pdloreover, the associated SPM-induced
chirp and spectral broadening led to launching tnansform-limited pulses into the test optical
fiber.

The fiber that was used in our experiments wasrazeoo dispersion shifted fib¢NZ-
DSF, TrueWave fiber by OFSyith the second-order dispersigh = 3.2x 10° ps.m?, the
nonlinear coefficienty= 1.7 W-.km®, and linear lossesr = 0.2 dB.kmi (which led to a
negligible influence of fiber loss in our experingn We used an initial fiber length= 609 m
(corresponding taf = 0.42); next, in order to monitor the output psidor a set of different
propagation distances, we have progressively rettreefiber length by removing 29 m at each
cut. For each specific value of fiber length, weorgled the output spectra for a set of input
powers ranking from 0.4 W to 150 W, i.e., thealues varied from 1 to 20.

These systematic measurements enabled us to drpgvim#heN-£ plane for illustrating
the different spectral properties of the outpusspsl as shown in Fig. 9. Among the resulting set
of 420 spectra, we removed the few experimentahtpowhere the spectral evolution was
affected by the generation of a Raman Stokes wawWE We have also experimentally checked
that the third-order dispersion of the fibeh (= 2 x 10° ps.m™) was not responsible for
significant modifications of the pulse spectrum,,ionly little spectral asymmetry was observed

in our measurements [10, 2More importantly, we experimentally observed tthet symmetry



of the initial pulse was of crucial importance irder to observe a symmetric broadening of the
output spectrum.

The experimental results shown in Fig. 9 demonstaagjood qualitative agreement with
the theoretical trends that were outlined in secBo(compare Fig. 9 (a-c) with Fig. 5(a,c) and
Fig. 6(b), respectively). Indeed, the experimerits-ig. 9(a) confirm the predicted saturation
with fiber distance of the -3dB spectral width bétpulse. Fig. 9(b) shows that the same trend
also holds for the -20dB spectral width. As fatles ripple of the spectrum in the central part of
the pulse is concerned, our experimental resultEigf 9(c) follow the expected trends, and
clearly demonstrate the significance of the wawsaking borderline in separating two well-

distinct pulse propagation regions.

7. Impact of losses and gain

Throughout our previous analysis, we neglectedripact of losses and gain by considerdrg
0. In this section, we intend to lift that restioct and theoretically describe the effects on pulse
dynamics of loss or amplification. Moreover, welspeopose an extension of Eq. (11) by taking
into account a non-zero value @f

We may follow a reasoning similar to that introddid®y Anderson et al [26], which in
the lossless case led us to the conclusions thatifped us to arrive at Eq. (11)n the presence
of 4, the nonlinear chirp which is induced by self-ghasodulation may be estimated as [20,

38]:

Cier) = - TER2EA I (ip o). (19).



Therefore the new limit distance for WB, sy , is obtained from

) 4 expE 3/2)N?

g, o4 9) ! (20).

By introducing the usual effective leng#),,, = (1-exp(-¢,, 9))/5 [20], Eq. (20) can be

rewritten as :

1
4 expE 3/2)N?2

Suo Suvert = (21).

It should be pointed out that Eq. (21) is not siyrtple direct transposition of Eq. (10), as it could

be obtained by replacing,, by ¢,... : as a matter of fact, Eq. (21) involves the paicaf the

distinct quantitiesf,, &, -

We have checked in Fig. 10 the validity of our megd formula (20). In order to
illustrate our approach, we have considered theatimormalized lossed= 200 dB, and gain
o0€=-200 dB. Let us recall that these gain/loss \akre normalized relatively to the dispersion
length. Such values can be typical for picosecamdgs propagating in rare-earth doped fibers
and photonic crystal fibers, respectivelye have plotted on Figs. 10(a) and 10(b) the rnesult
evolution of the temporal slope of the pulse, for tase of an initial Gaussian pulse shape, and
for either a lossy or active fiber, respectivelpeTpredictions given by the analytical formula for
the lossless case (Eg. (9)) are also shown inlBigs a solid white curve. The results of Fig. 10
clearly prove that our formula (20) provides a goedcription of the observed WB borderline in

the presence of either distributed loss or gairthtnlossy case, Fig. 10(a) shows that the WB



limit is shifted towards longer fiber distances.eTtontrary occurs for an active fiber, namely
Fig. 10(b) shows that the WB boundary is shiftedhorter propagation distances.

It is also of great interest to compare the spegrafiles of the pulses as they emerge
from the fiber at precisely the WB distance asipredicted by Eq. (20). The black curves in
Figs. 11(a) and (b) were obtained for an input Giamspulse withN = 40, after propagation until
&, in a lossy or amplifying fiber, respectively. Thengparison of Figs. 11(a) and (b) shows that
amplified pulses develop a broader spectrum thaeatly attenuated pulses. Another point
which is also apparent from the inspection of Eyis that, at distances past the WB borderline

of Eq. (20) (e.g., grey curves obtained at a distardce 1.5 ¢, ), the spectral evolutions in the

lossy and in the active case are rather diffeledeed, Fig. 11 shows that in the case of a lossy
fiber the wings of the pulse spectra remain ratmederate at any distance. This can be
explained by the relatively high attenuation valugon the propagation, loss progressively
decreases the pulse peak power: as a consequdras\wer intra-pulse overlap among different
frequencies occurs, the FWM efficiency has dropjpedramatically low values. Consequently,
only moderate wings development occurs, and th#laigins that are observed in the temporal
profile are mainly due to the simple linear overtdpulse sections with different instantaneous
frequencies [39]. Fig. 11(a) shows another conserpief the presence of linear loss, namely the
central portion of the pulse spectrum remains &llyuundepleted. As a result the pulse spectrum
exhibits the characteristic peaks at its extreraguencies.

Quite to the contrary, in the case of an amplifyiigr the nonlinear interaction during
the intra-pulse overlap of different frequenciesmeanced by gain. As a consequence, the wings
that are the signature of WB develop more strotighn in the lossless case, while the central

portion of the pulse spectrum gets depleted andosmas more quickly. Those qualitative



remarks help us to better understand the diffeexgerimental results that were recently
obtained in a normal, varying dispersion fiber [8)]. Indeed, those experiences have
demonstrated that the shape of the output pulsetrspe shape was remarkably different,
depending upon the relative direction of the pydsgpagation and the dispersion decrease. To
this end, let us recall that a dispersion variatidth distance can be formally linked to the
presence of either gain or loss, depending upometlagive direction of dispersion decrease and
pulse propagation. In fact a dispersion decreaibeg leads to an equivalent gain, whereas a
dispersion increasing fiber can be assimilated tosay fiber. In carrying out the comparison
between the present results and earlier experimegtshould be careful however, that in this
paper and in Fig.11 we compare the evolution irsytoand in active fibers of pulses with
identical values of N. On the other hand, whenaing pulses with the same input peak-power
at the two ends of a varying dispersion fiber, itjeane obtains different values of N to start

with.

Let us finally focus our attention on pulse evalatin amplifying fibers. This topic has
attracted much interest over the past few yearslyndue to the experimental discovery of the
formation of self-similar pulses [19] in media suah erbium or ytterbium doped fibers, Raman
amplifiers [35] or dispersion decreasing fibers][l16deed, it has been shown that any pulse,
whatever its initial shape, asymptotically convergewards a parabolic intensity profile
combined with a linear chirp, and then maintains inape unchanged while undergoing a self-
similar evolution.

In Fig. 12(a) we plotted the evolution with fibength of the temporal width of an initial

Gaussian pulse, for variotsvalues and for a gaid= -200 dB. As it can be seen, in a first stage



of propagation there is hardly any change of thisgptemporal width. Next, after a certain
distance of propagation which decreases as thalimit grows larger, the pulse temporal

broadening increases according to a self-similatutn law which reads as [19, 38] :

1
T,&EN) _ 3 (JanNP (€
7,(6=0) 2@ [ _] eXp(_gj (22).

In this context, it is of interest to display orgFiLl2(a), as we have done on the various
curves associated with each valueNdby means of a full dot, the WB distance as itrisdpcted
by Eq. (20). This permits us to reveal that theevre§ WB appears as the turning point in the

evolution of an initial Gaussian pulse towards synaptotic parabolic pulse.

In order to attain a more precise knowledge oftémeporal evolution of the pulse shape,
we have computed the misfit parameter between tbpagated pulse and its parabolicdit

such misfit may be defined as follows [31]

vz = ([ - o] ar /iyt a (23)

The corresponding results are plotted in Fig. 1,24lmng with the WB distance as a dotted white
curve. In Fig. 12(b) we may clearly see that amahiGaussian pulse approaches a parabolic
shape exactly at the limit distance for WB thatpredicted by Eq. (20), in agreement with
previously demonstrated results and observatiomgedeout in passive fibers [31]. However Fig.

12(b) also shows that, for large valued\pfthe parabolic shape which is attained¢gtcannot

be maintained in further propagation, and the pulsgergoes wave-breaking effects, alongside



with all their classical manifestatior(se., the development of wings in the spectrurpjdra
oscillations of the temporal intensity profile)levertheless, Fig. 12(b) also reveals that soon
thereafter the pulse stably converges towardsfasiseilar solution of the propagation equation,
that is the pulse definitively acquires a parabatiensity profile, as shown by corresponding
low values of theM factor. A similar evolution could already be seerRef. [38] (Fig . 1(b)),

even though at that time no clear interpretatiothsf behaviour was provided.

In summary, the results of the present sectionigeowhat we believe is a significant
insight for a better comprehension of the evolutbarbitrary optical pulses towards a parabolic
state, a topic which has generated widespread nomtehe recent literature [31, 41-43]. From
the results of Fig.12, we may conclude that evetmef temporal width of a propagated pulse
evolves according with the self-similar evolutionagparabolic pulse past the point where WB is
generated, the full shape of this pulse may stdktiltate around its asymptotic state.
Nevertheless, the presence of WB remains an impoianing point in the process of attraction
of the initial pulse towards the parabolic shapelekd, quite surprisingly we have revealed that
although an exactly parabolic pulse is exempt fitbm WB effect [36], yet an arbitrary input
pulse may still experience the WB effect alongeislution towards the asymptotic, stable self-

similar parabolic state.

8. Conclusion
In this article we have carried out a detailed terapand spectral analysis of pulse propagation
in a normally dispersive optical fiber in the prese of Kerr nonlinearity. We have outlined the

crucial role that is played by the wave-breakinée@f in determining the pulse reshaping.



Moreover, we have interpreted the action of wawsking in terms of fundamental physical
intra-pulse interactions. We have revealed that ttiveshold for wave-breaking separates
qualitatively different regimes of pulse reshapimgboth temporal and frequency domains,
which is of great relevance for different practiapgbplications. We have compared and validated
our numerical and analytical predictions with dirsgstematic experimental studies, confirming
that wave-breaking represents a key ingredienhénformation of highly coherent continuum
pulses. Based on simple physical arguments, we Ipaeposed analytical guidelines for
predicting the evolution of the main charactersstwf the optical pulses. Finally, we have
extended our concepts to the case of pulse prapagat a lossy medium, as well as in fiber
amplifiers. In the last case we have pointed oat, thuite surprisingly, a pulse may still undergo

the wave-breaking effect upon its attraction towgaadself-similar parabolic pulse.
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Figures captions

1. Characteristic parameters computed for pulse aigly) in the temporal domain(b) in the

spectral domain.

2. Mixed spectral-temporal representation of theagbtpulse at various propagation lengths.

3. Computed evolution of the temporal propertiesrofial Gaussian pulse vs. its propagation
distance ¢ and N number: (a) Broadening factor of the temporal FWHNk) Peak-power

decrease factor. The solid white curve is the ditall\WWB boundary of Eq. (10).

4. Computed evolution of various pulse propertiés) slopeS (b) parameteF; (c) linear slope
of the temporal chirp coefficient. The analyticatgiction of WB boundary in Eq. (10) is plotted

as solid white line.

5. Computed evolution of the pulse spectral proper{e -3dB spectral broadening factgh)
maximum spectral broadening for Gaussian and setal ipulses. Numerical results are plotted
with black diamonds (Gaussian pulses) or with griegles (sech pulses). The solid lines are the
theoretical results from Eq. (16) (black line, @aussian initial pulses) or Eq. (18) (grey line, fo
initial sech pulses)ic) Evolution of the -20 dB spectral widtfd) Ratio between the -3dB and -

20 dB spectral widths.



6. Computed evolution of the pulse spectral propertiep evolution of the fraction of pulse
energy contained in the central part of its spect(8dB bandwidth)(b) evolution of the pulse

spectral ripple. The solid white curve indicates &malytical WB boundary of Eg. (10).

7. Computed evolution of the energy fraction stomredhie central region of the pulse spectrum,
for a sech pulsé) or for a parabolic puls@); The prediction of Eq. (17) is shown with a black

solid line.

8. Experimental set-up.

9. Experimental maps foKa) the evolution of the -3dB spectral widitly) the -20dB spectral
width; (c) the spectral ripple. Crosses indicate discardéa plaints where Raman scattering was

significant. The analytical predictions from Eq7)hre plotted as a white solid curve.

10. Map showing the computed evolution of temporapslf of the pulse for(a) a lossy fiber
with d= 200 dB;(b) or an amplifying fiber withd = -200 dB. Theoretical borders given by Eq.
(20) for losses and gain are plotted using whithdd or dashed-dotted lines, respectively. The

solid white line represents the lossless case.

11. Computed output spectra of an initially Gaussiase, after propagation in normally
dispersive fiber until the WB distance of Eq. (2®Jack curves) or at 1.5, (grey curves) foN

= 40:(a) case of a lossy fiber(b) case of an amplifying fiber.



12. (a) Computed evolution of the FWHM temporal pulse blier@ng for varioudN values (N =

5, 15, 25 and 35, solid lines, decreasing greyld¢evim black to light grey). Computed
evolutions are compared with the corresponding asytic evolutions as described by Eq. (22)
(dashed lines). Filled round points indicate the iBtance as it is predicted by Eq. (2())

computed evolution of the misfit paramehér
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