N

N

A Component Model for Transmission and Processing of
Synchronized Multimedia Data Flows

Emmanuel Bouix, Philippe Roose, Marc Dalmau, Franck Luthon

» To cite this version:

Emmanuel Bouix, Philippe Roose, Marc Dalmau, Franck Luthon. A Component Model for Trans-
mission and Processing of Synchronized Multimedia Data Flows. 1st International Conference on
Distributed Frameworks for Multimedia Applications (DFMA 2005), Feb 2005, Besancon, France.
pp.45-53, 10.1109/DFMA.2005.2 . hal-00408567

HAL Id: hal-00408567
https://hal.science/hal-00408567

Submitted on 1 Sep 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00408567
https://hal.archives-ouvertes.fr

A Component Model for transmission and processing of Synchronized
Multimedia Data Flows

Emmanuel Bouix, Philippe Roose, Marc Dalmau, Franck Luthon
LIUPPA — IUT, Computer Science Dept.
Chateau Neuf — Place Paul Bert 64100 Bayonne — France

{bouix, roose, luthon}@iutbayonne.univ-pau.fr, dalmau@ieee.org

Abstract

Our research deals with distributed multimedia
applications built on sofiware components. Currently,
multimedia data are omnipresent on the Internet. However,
this network is not designed to support and transmit
multimedia data. In this perspective, it is necessary to
introduce quality of service management in this kind of
applications. In this paper, we are particularly interested in
the inter-flow synchronization (e.g. audio and image flows of
a video). We develop a component model in order to tackle
the synchronization between multimedia flows from the
source (e.g. media capture) to the destination (e.g. media
player). This model is named OSAGAIA™ and is made of two
entities. The first one is called elementary processor. It is
used as the runtime environment (component container) for
multimedia components. The second one is called conduit. It
is used to transport synchronous multimedia flows between
elementary processors. So, distributed applications are
composed of multimedia components (within containers)
connected by multimedia flows (within conduits). We are
working on a distributed prototype which validates the
synchronization algorithms that we use. It is implemented
with Java language using JMF (Java Media Framework)
API and TCP/IP as network protocol.

1. Introduction

Our work deals with distributed multimedia
applications through the Internet. These applications
require a high flexibility to provide a correct Quality of
Service (QoS). They need to adapt themselves in real-
time to user’s requirements and to the environment on
which they are running [I]. Moreover, these
requirements can evolve during runtime and these
applications must be dynamically adapted to the new
requirements. To achieve this flexibility, we choose a
software component approach [2] in order to implement
multimedia applications. By adding, removing or
replacing components in real-time, the application can
be adapted according to QoS requirements.

" OSAGAIA means software component in Basque

Language

We propose a software architecture for distributed
multimedia applications [3] which is divided in two
parts: an application and a runtime platform. The
application part is composed of distributed components
connected to each other by multimedia data flows. The
runtime platform deals with supervision: it detects
critical situations and try to solve them by adapting the
composition of the application to the new QoS criteria.

In this paper, we are interested in problems induced
by the processing and manipulation of multimedia data
flows. We present the OSAGAIA model which solves
inter-flow synchronization by associating a time-stamp
to each sample of each multimedia flow.

Section 2 presents an overview of the context and
motivations of this research. Section 3 describes the
OSAGAIA Multimedia Component Model by
discussing all its elements. Section 4 presents how
OSAGAIA solves problems described in section 2.
Section 5 describes the dynamic configuration and
reconfiguration process used by the runtime platform in
order to keep acceptable QoS-levels. Section 6 presents
a concrete implementation of OSAGAIA and Section 7
presents our conclusions and future work.

2. Context and Motivation

During these last years, software component
paradigm has emerged in the software industry. The
development of an application consists in the selection
and assembly of pre-existing software components.
Indeed, current software component models, e.g. EIB
[4], COM [5], Fractal [6], etc., allow developers to
design and implement applications. These models
provide some non-functional properties such as
persistence, transaction or security but, there is a lack
when the interest is focused on a particular domain
such as multimedia. For example, when handling
multimedia data, one needs to take into account some
important characteristics like synchronization between
multimedia flows, QoS management, etc. In this way,
non-functional properties provided by some models
need to be extended by developers to integrate
multimedia data characteristics. However, an extension

Flows are
synchronous

of CCM (Corba Component Model) is currently
specified by the OMG [7]. This specification will have
to address keypoints as topologies for flows, flow
description and typing, QoS, etc.

To explain what is the inter-flow synchronization
problem, we will take the example of TV news
showing a speaker in front of a street background using
two video cameras and two microphones (one for the
speaker, one for the street). This application
implements both bluescreen imaging and audio mixing.
Bluescreen imaging is a technique which starts by
filming a subject (the speaker) in front of a uniform
monochromatic background (e.g. blue or green). Then,
a compositing process replaces the selected
background hue in the image with another background
image (the street). Audio mixing technique allows to
mix two audio flows in order to provide a single one.
This configuration (shown in “Fig. 1”) uses two
processing components. The first one implements
compositing process and the second one audio mixing
function in order to present a composite audio signal to
the user. On the same machine, we connect four
capture devices: two video cameras for image capture,
two microphones for audio capture. A complete video
flow is composed of the audio flow and the image flow.
At capture time, all flows are synchronous. When
implementing this configuration with an existing
model, e.g. EJB [4], COM [5], Fractal [6], the major
problem is the loss of synchronization between flows
since some of them are treated by different
components. This problem is known as inter-flow
desynchronization.

delay a
Image Flow 1
ﬂg—'— Tmage Flow
Compositing process >
: Flows are
% Audio Flow | » desynchronized

L) Kt Audio Flow
o PR N inkil

I

. Image Flow 2 delay 8
Fig. 1 Example of configuration.
Audio Flow 2

Indeed, the two provided flows will no longer be
synchronized like they were at the origin. This kind of
problem is due to temporal relationships that exist
between several flows (e.g. the sound and the image of
a video). The flows of this configuration go across
processing components in their path from source to
destination accumulating different temporal delays (O
and 0) as shown in “Fig. 1”. In a complex application,
the difference between temporal delays which affect
related flows may be important and probably not
acceptable by end-users because it affects the semantic
of the data. In order to solve this problem, we propose
the OSAGAIA model which keeps the synchronization

between flows using temporal dependencies. The
solution is implemented as a non-functional property
[18]. A non-functional property is a concern
independent from the business logic.

Researches in the multimedia domain try to take in
consideration the characteristics of multimedia data.
Exposito in his PhD [8], proposes to design a new QoS
oriented transport protocol aimed at providing a large
set of transport mechanisms to efficiently satisfy
applications requirements using available resources and
network services. Yavatkar presents a new transport
protocol called Multi-Flow Conversation Protocol
(MCP) [9] that provides two communication
abstractions. The first one provides a token based
mechanism for concurrency control among participants
of a multipoint connection. The second one includes a
novel communication abstraction called multi-flow
conversation to allow temporal synchronization among
traffic over multiple, independent flows. Demeure [10]
describes a specification technique and a middleware to
support distributed multimedia applications. Temporal
constraints are specified independently from the
application itself and from a dataflow graph that
describes multimedia systems.

The originality of our work is to link the two
domains: we try to consider the characteristics of
multimedia data in order to develop a component
model which includes these as non-functional
properties. We will now describe the OSAGAIA model
which allows the transport of multimedia flows taking
into account the synchronization that may exist
between several flows even if some are delayed by
processing. Next section describes this model and the
mechanism that we are using to support inter-flow
synchronization.

3. OSAGAIA Multimedia Components
Model

The OSAGAIA model is made of two entities which
take care of inter-flow synchronization. The first one is
the conduit that allows the transport of synchronous
multimedia flows within the application. The conduit
can be distributed through the Internet. The second one
is the Elementary Processor (EP) that provides a
runtime environment for a Business Component (BC).
It keeps synchronization between processed and non-
processed flows. The BC encapsulates the multimedia
processing, i.e. the functional implementation [18]
(functional properties). For example, a video capture
BC implements only the necessary mechanism to
provide the capture.

We present in the following section the multimedia
flow characteristics and the synchronization mechanism
used in this model.

3.1. The Multimedia Flows

3.1.1. Definitions. Multimedia applications handle
several types of representation media such as images,
sound, sub-title text, etc. The representation media is
the type of data which defines the nature of the
information as described in its coded format [11], e.g.
MIJPEG, MPEG, MID], etc. [12]

These data are called multimedia flows since they
consist in a continuous sequence of finite size samples
which have strict temporal dependencies. For example,
an MJPEG flow is made of images with a frames rate
of 25 images per second. Temporal dependencies may
exist not only between samples of a same flow, but also
between samples of different flows, e.g. between the
images and the sound of a video.

Multimedia flows are voluminous (especially video)
causing transmission bandwidth problems, so QoS
management is necessary.

These applications handle multimedia flows and
information flows too (e.g. events, text, messages, etc.),
but this last kind of flow is not detailed in this paper.

3.1.2. Inter-Flow Synchronization Mechanism. In
order to implement a synchronization mechanism, we
use time-stamping of samples on each flow at
acquisition or creation time. This mechanism is
induced by the previous definitions [13].

“Fig. 2” shows the principle of this mechanism. At
creation (here capture), a time-stamp is linked to each
sample of each flow. Thus, we can transfer for each
flow an information quantity which corresponds to a
same time interval. For example, to transfer image and
sound flow, for each image we transfer the audio
samples associated to time-stamps equal or inferior to
current image time-stamp.

Fig. 2 Time-stamping of an image
flow. A time-stamp is linked to
each image of this flow.

/ sample
- - _ ﬁ Images Flow

| |

time-stamp
“synchronous slice”. The
represents the temporal

We call that a
“synchronous slice”

dependencies between samples of several synchronous
multimedia flows.

The couple formed by a sample and a time-stamp is
called a Temporal Unit (TU).

3.1.3. Input/Output connections: the Ports. The
conduit and the EP use input/output ports to allow
connections between them. Each has a couple of ports
for each multimedia flow, e.g. if a conduit contains two
flows then each flow will have an input and an output
port. In the same way, if a component provides two
flows then it will have two output ports. The ports
export and import the required and provided data [14].
They can be compared to the pins of an electronic
component.

The port is the structural unit of connection between
the conduit and the EP. More precisely, it is used as a
connectable element on the two elements of our model.
“Fig. 3” describes the way to connect this two
elements. The input conduit provides into its ports the
data to be processed by the BC running inside the EP
and conversely, the EP provides data to be transported
by the output conduit. It should be noted that
connection between EP and conduit can be performed
with several conduits. Indeed, an EP can process
several flows present in several conduits.

'Elementary
Processor

Input Conduit

HH

Output Conduit
T -

i‘

Input Conduit
T

A
3

Ports

Fig. 3 Way to connect a Conduit and an EP in OSAGAIA.

A port accepts TUs as input or provides TUs as
output. These are the required or provided data for the
multimedia component, e.g. a component whose task is
to process images requires images as input and
provides processed images as output. A port can
contain as many TU as necessary to constitute the
“synchronous slice”. Thus, a group of ports will
contain a “synchronous slice”. This technique is known
as dynamic buffering because the size of ports can
evolve during runtime. Their size is adapted to the size
of the “synchronous slice” transferred at a given time.

3.2. The Business Component (BC)

In OSAGAIA, a BC implements a particular media
processing. The BC represents the functional
implementation of our model. For example, the “Fig.
1” configuration will have BCs for image capture,

Reading of TU

Processing

Writing of TU

audio capture, compositing process and audio mixing.
The BC needs to be executed in a container named the
EP which will be described in section 3.4.

The behavior of a BC is defined in terms of
provided and/or required data. We distinguish three
kinds of behavior:

e the first one only provides data. This kind of
BC is known as capture component (e.g. audio
capture component) ;

e the second one requires and provides data. This
kind of BC is known as processing component
(e.g. audio mixing component) ;

e the third one only requires data. This BC is
known as rendering component (e.g. audio
rendering component).

The BC is data driven, that means it needs data in

order to apply its processing.

“Fig. 4” describes the generic structure of a BC.

ut = pe lireUniteTemporelle(this, mimConduit, numFluz),
UniteTernporelle ut2 = (UniteTemporelle) ut. clone();

Image image = ((Imagelcon) w2 valDonnees()). getlmage();
int = = image, getWidth(f);

ini y = image getHeight(f).

int masguel] = new int[z * v,

PizelGrabber pg = new PzelGrabher(image, 0, 0, 2, ¥, masgque, 0, 2);
try

£

g grabPiels),
catch (IntermuptedException i€)
i

System. err. printlng
"ERROR. Interruplion during processing."y,
}

for (int j=0; <y * x, j++)
{

Color coul = new Color{masgque[j]);
masguelf] = (255 << 24) | (255 - coul getRed() << 16} |
(255 - coul getGreen() << &) | (255 - coul getBlue()),
)
Imagelcon i = new Imagelcon(f createlmagelnew MemorylmageSource(x, v,
masque, 0, 207,

utZ:affecterDonness(il);

pe. ecrireUniteT erporelle(0, 1, w2y,

Fig. 4 General way to implement a BC (here, processing is a
transformation on the grey-levels applied on each image of a flow).

First the BC must get data in order to run its
processing. That is why, it initially executes a reading
in an input port of the EP in order to have one or more
TU to process. Then, it applies on data (i.e. part of TU)
its own processing and writes the processed data in an
output port of the EP.

The life cycle of a BC has four states which are
Configured, Connectable, Connected and
Disconnectable. On one hand, the first two states
represent an activity where BC does not operate
(initialized and ready to start). On the other hand, the
two other states represent an activity where the BC
applies its processing. This life cycle [23] allows the
runtime platform to dynamically reconfigure
multimedia application by adding, removing or

replacing a BC by another one. So, it is necessary for
the platform to know the activity of all the BCs which
are used by the application at a given time. Thus, the
platform can add, remove or replace a BC without
disturbing the execution of the application.

3.3. The Conduit

We will now highlight the conduit which is the
element used for multimedia flow transmission. Its
major functionality is to transport synchronous
multimedia flows. If several flows are put together in
the same conduit, then these flows will be kept
synchronous.

The conduit has input/output ports in order to allow
its connection to EPs (see section 3.1.3). Each flow has
a couple of ports (input and output). Each input port
(respectively output) is connected to a buffer which
stores the TUs before transport. The buffers are
implemented with a queue data structure.

“Fig. 5” describes the path of the data within the
conduit. A client/server approach is used to transfer
TUs towards the output buffers for each flow. This
mechanism can be implemented as well in the same
machine or across the network. The synchronous
transfer is performed with synchronous slices by using
the time stamps linked to each sample at capture or
creation time (see section 3.1.2). First, we look for the
TU with the maximum time stamp in each multimedia
flow of the conduit. This time stamp becomes the
current time stamp. Then, for each flow, we transfer
into corresponding output ports, all the TUs with time
stamps lower or equal to the current one. After that, we
get in output ports what we have called a “synchronous
slice”. It should be noted that each writing in output
ports is signaled by an event used by the EP.

Conduity

/ Output Bufes =
Process (1 Flow) .
. Server 'owmnuﬁg . .
L]

Network (TCP/TP)

Synchronous Transfer

Fig. 5 Internal structure of the conduit with the path of data.

When applications are distributed through the
Internet, the conduit allows network transfers. This is
why the conduit encapsulates the TCP/IP [16] network
protocol used for remote communication. In this case,
flows are also transmitted in a synchronous way by
using time-stamps of each sample and the
“synchronous slice” is rebuilt by the receptor. “Fig. 57
shows an example of distributed conduit.

The conduit has a Control Unit (CU) which allows it
to communicate with the runtime platform. Indeed, the
conduit is also supervised by the platform. So, the CU
reports various information on the behavior of the
conduit, this information can be interpreted by the
runtime platform for future reconfigurations. This
evaluate a quantitative QoS-level, e.g. the filling rate of
buffers for each flow. Overflow in some input buffer
(respectively emptying of some output buffer) means
that the rate of the network is low (respectively that
some BCs are not suited).

3.4. The Elementary Processor (EP)

Now, we come to describe the EP and its internal
functioning. The EP is a container for the BC. It gives
some non-functional properties for a correct execution
of the BC (functional properties) and of the whole
application. We call it EP because its internal
architecture has common points with a Von Neumann
processor architecture [17]. The EP is composed of an
Input Unit (IU), an Output Unit (OU) and a Control
Unit (CU) as shown in “Fig. 6”. All these units
implement non-functional concerns [18] of the
OSAGAIA model. The EP is an element supervisable
by the runtime platform which can dynamically
reconfigure the application (add, remove or replace

EPs) in real-time according to QoS requirements.

Processed Flow Unprocessed Flow

\

*, Multimedia Containes \

- Input Output 1: Input Ports
an (oU)

Control Unit (CU)

Supervision States

WA W

Fig. 6 Internal architecture of an EP.

As explained in section 3.1.3, the EP has a couple of
input and output ports for each multimedia flow
entering or outgoing. Like BCs, some can have only
input or output ports, e.g. EPs that encapsulate capture
or rendering BCs (see section 3.2). Each port is linked
respectively to the IU or the OU. These units are
interfaces between BC and multimedia flows. They
contain methods used by the BC in order to read
(respectively write) in the input (respectively output)
ports. An introspection method allows accessing to the
properties of the multimedia flows (e.g. the data type).

The CU manages the other entities of the EP. This
unit communicates with events and specific methods as

EE o gConﬂuﬂ

we shall see in details later. CU also manages the data
circulation within the EP. The BC behavior is
controlled by CU through its methods init(), start() and
stop().

The BC processes one ore more multimedia flows.
In order to preserve synchronization between processed
and non-processed multimedia flows, the PE is
connected to the conduits transmitting the flows which
can be processed. In this way, all data flows of the
conduits circulate within the EP. The IU knows, by an
event sent by the conduit, when new input information
is present. In fact this new input always constitutes a
“synchronous slice”. Thus, when the BC requests a
reading operation, the corresponding TUs are sent to it.
During processing, IU stores the entiere “synchronous
slice” corresponding to the TUs processed by the BC.
When processing is achieved, the BC puts the results
into the corresponding output ports via the OU. It
requests another reading operation and the 1U transfers
to OU, the TUs of other synchronous flows stored
previously. By this way, a new “synchronous slice” is
now available in output ports of the EP.

“Fig. 7” is a sequence diagram that describes the
event communication implemented between the
different entities of the EP and the conduit using UML
formalism [19]. This diagram details the case of an EP
with only one conduit connected to its input and to its
output in order to simplify explanation. For EP with
several conduits connected to its input or to its output,
the functioning is exactly the same. When data are
written into the output ports of a conduit, an event is
sent to the input ports of EP directly connected to this
conduit (1). During this time, BC is in a work state and
will need TUs in order to process them (2). So, a
reading operation is performed. This operation initiates
a transfer between output ports of the conduits and
input ports of the EP (3) and (4). Then, TUs are
available for the BC (5), so the BC receives the TUs
requested in (2) and it can perform its processing on
these TUs. During this processing time, input unit
transfers to output unit the TUs corresponding to the
same time interval than the processed TUs (6). For
example, if processing is performed on one image, the
IU transfers all sound samples which time stamp is
lower or equal to the image time stamp. When BC has
finished its processing, it can write produced TUs into
the corresponding output ports (7). To do this, it uses a
writing method of the OutputUnit. Then the BC needs
TUs again in order to process them, so it performs
another reading operation (8). After this second
operation, TUs stored in Output Unit are transferred
into output ports of the EP (10) and so a “synchronous
slice” is constructed. These writing operations are

Cutput Port Ingt Port

Cutpt Unit Output Port Input Fort

} 1 : Writing Ports Event |
i —
‘ 3+ Transfer Order |

= [

| 4+ Symchronous Stice Transfer |

5 ¢ TUs availshle

h 4

I}
Elementary Processor

7 - Writing TlIs Processed

o ‘cumpm Synchronous Slice T*Msfex

| 10 : Writing Ports Event
g |

Conduit

Fig. 7 Sequence diagram showing interactions between entities which compose the elements of the model.

signaled by a writing port event to the conduit
connected at the right side of the EP (11).

The “Fig. 8” shows an example of the synchronous
transfer of TUs inside the PE “synchronous slice” by
“synchronous slice”.

Synchronous
Transfer ’k

: .
S EETTrETT oo B

Input Ports Output Ports

Fig. 8 Synchronous Slice Transfer.

4. Applying OSAGALIA to an application

In this section, we present how OSAGAIA solves
the problems described in section 2. We apply
OSAGAIA to a TV news application.

When we apply OSAGAIA to this application, each
component is encapsulated into an EP. The multimedia
flows are encapsulated within a conduit in order to
keep their synchronization. This is shown on “Fig. 9.

Multimedia Flow

.

.
==

.

oo "\ p
&J Conduit Ann—pmcessed flow

Port
Fig.9 A TV news application with OSAGAIA.

When the two image flows are processed by the first
component of the configuration (Compositing process),
the two audio flows pass within the EP synchronously
with the provided flow by the BC. In the output of this
first EP, a conduit is connected with three data flows
inside: the image flow provided by the compositing
process and the two audio flows. In the same way, the
image flow passes within the second EP synchronously

process Aundio Mixing

’

v

Processed flow

with processed audio flows. Thus, as output of the
application, we obtain a video composed of two
synchronous flows: image flow plus audio flow.

5. Dynamic Configuration/Reconfiguration

The internal structure of a multimedia application
may be adapted to the QoS requirements defined by
both users and runtime environment [22]. We define in
this section how dynamic configurations or
reconfigurations are performed in our system.

Dynamic configuration is known as the ability for an
application to be customized according to both the
characteristics of the runtime environment and to the
requirements of end-users. Dynamic reconfiguration is
the ability for an application to be changed on-the-fly,
i.e. to be able to change its internal components and
configuration parameters to adapt to both changes of
the runtime environment and to the requirements of
end-users. For simplicity, the term dynamic
configuration may be used to denote both dynamic
configuration and dynamic reconfiguration [21] [15].

We remind some principles about the configuration
of an application with this model in order to understand
how dynamic configurations are performed. Between
two EPs, there is as much conduits connected as data
flows processed by BC. For example, “Fig. 6 shows a
BC which processes three flows. This three flows are in
different conduits that is why three conduits are
connected at the input of this EP, i.e. a conduit is
connected between two EPs if and only if one at least
of its flows is processed by the right EP.

A configuration consists in two operations which are
the adding and the removing of a BC. Adding or
removing a BC reduces to adding or removing the EP
that encapsulates it. The replacing operation is not
considered here because a replacing consists in a
removing and then an adding. In addition to these
operations on EP, the runtime platform should also
performs operations on the conduits: in cases of
dynamic configuration, it is indeed necessary to
connect and disconnect the conduit concerned. All
these operations both on EP and on conduit are

performed by the runtime platform according to

application description graphs showing old and new

configuration [1].

We detail now how adding components is
performed. First, the platform detects a QoS violation
in the configuration which is running and decides to
add a BC. Then, it performs the following five actions :
e (1) the place where to insert the new EP

(containing the BC) is identified ;

* (2) the platform disconnects the conduits at this
place ;

e (3) it adds the new EP and connects the
disconnected conduits (action (2)) at its input ;

* (4) then, it creates the necessary conduits in order
to connect the output of the added EP to the rest of
the configuration ;

e (5) the conduits created in action (4) are now
connected to the new EP.

We detail now how a removing of components is
performed. First, at a given time, the platform decides
[22] that a component must be removed from the
application. Then, it performs the following five
actions :

* (1) the platform determines which BC must be
removed ;

e (2) the platform disconnects all the conduits in
input and output of the EP which contains the
concerned BC;

e (3) the platform removes the conduits that were
connected at the output of this EP ;

* (4) the EP is now removed from the application ;

e (5) the conduits that were connected at input of the
removed EP are now connected in input of others
EP according to description graphs.

These two operations can require flow duplication
in certain cases. For example, a data flow must be
connect to several EP. So, it is necessary to propose a
solution to address this kind of problem. Two solutions
are possible:

* to use a special component which receives at
input one conduit and provides at its output n
conduits which are exactly the same than the
input data flow;

e to allow to connect a conduit to several EPs, i.e.
a conduit can transport data flows towards
many destinations (EPs).

For our application model, we choose the first
solution because it is necessary to distinguish all the
conduits and data flows which circulate within the
application. For example, if we want to connect the
same conduit with two EPs: one located on the same
machine and the other on a remote machine, we must

have two conduits in order to perform correctly this
operation.

6. Prototype with

OSAGAIA

implementation

We will now describe a prototype of this kind of
application. The aim of this implementation is to test
model coherence and development of multimedia
applications. Moreover, this prototype must validate
the algorithms and mechanisms used to keep
synchronization between the multimedia flows. This
synchronization must be kept at two levels :

e first, during the transport of multimedia flows
within the application even through the
network;

e secondly, during the processing of a multimedia
flow.

The prototype is shown in “Fig. 10”. This prototype

is implemented with Java/JMF API [20]. JMF is an
API for management of time-based media into Java

applications.

Images Capture First Processing

kel o] e

Second Processing Display

‘ Start/Stop Processing Choice Processing Choice Start/Stop

Interface

Fig. 10 Architecture of the prototype.

Moreover, it allows to capture, handle, process and
render multimedia data flows. For the moment, the
network protocol we use is a communication by socket
with TCP[16].

This application is composed of four components.
We can distinguish a capture component, two
processing components and a rendering component.
The capture component provides an image flow
captured by a video camera. We use several processing
components, for example one which reduces the initial
image flow, an other which implements a negative
transformation on the grey-levels image, etc. We can
choose between these processings with a drop-down
list on the interface. This choice can be performed at
each side of the network. Finally, the last component is
used to display the two flows of this configuration. This
component provides two players in order to display
each flow on one player. These players allow us to
control that the two flows are synchronous like they
were at capture time.

The interface simulates in a manual way the
behavior of the runtime platform. With this interface

we can start and stop the capture, start and stop the
display and dynamically change the two processing
components.

The principle of this prototype is easy to understand.
The video camera provides image flow. Then, this flow
is duplicated in order to obtain two image flows. We
apply processing only on the first flow like shown in
“Fig. 10” and the second image flow is not processed.
This allows us to see that the two flows are
synchronous during the path from capture to display
including network transfer within the prototype, even if
only the first one has been processed.

7. Conclusions and Future Work

Currently, complexity of the development of
software is increasing. In addition to handle a large
amount of various data, applications are actually
distributed through the Internet. In the past,
applications used to be built with textual data and fixed
images. Now, these data (discrete data) are mixed with
animated images and sound samples. These
applications are known as multimedia.

The software components approach is a solution for
the development of this kind of applications. Many
component models are developed in both research and
industry. These models allow development of software
components in order to compose (composition is a
property of the software components approach)
applications. These models enable to take into account
what is called non-functional properties. These
properties are known as services given by the model.
Thus, a developer of applications can only concentrate
on the development of software components by using
the provided services. Services are for example
transaction, persistence, security, etc.

When we are interested by multimedia domain these
non-functional properties are not sufficient. They must
be extended in order to consider the characteristics of
multimedia data. That is why, we propose a component
model which proposes to integrate some non-functional
properties about multimedia. We solve the problem of
inter-flow synchronization that arises when one
considers temporal constraints between different
multimedia flows (e.g. images and sound of a video). In
this article, we propose algorithms and principles of
inter-flow synchronization. Principles used by
OSAGAIA are based on the time-stamping of each
sample of each multimedia flow. This temporal
constraint is an absolute constraint because each
sample is linked with a unique time stamp.

This principle is used in the two elements of
OSAGAIA : the conduit and the EP. Each element

takes into consideration the synchronization that may
exist between several flows. The conduit is used to
transport multimedia flows in synchronous way. It can
be distributed through the network. It is the distribution
unit of our model. The EP is a runtime environment for
a BC. It implements the mechanisms in order to handle
multimedia data, i.e. the non-functional properties. The
BC implements the functional properties, i.e. the
multimedia processing. In this way our model provides
a clear separation between non-functional and
functional properties.

We develop a prototype that wvalidates the
mechanisms used in this model. This application uses
Java and JMF API and implements a simple distributed
application. We simulate the runtime platform with an
interface to change dynamically processing
components.

In this article, we concentrated on multimedia flows.
We must specify others types of flows (e.g. events,
text, messages, etc.) which are continuous too but not
regular in order to integrate this kind of data into our
model. That means integrating asynchronous data flows
and mixing them with synchronous ones in order to
keep temporal relationship between them.

We also want to complete the prototype in order to
use others network protocols like RTP for example
[24]. This will permit us to collect performance
measures allowing to compare various implementation
solutions.

8. Acknowledgements

This research is supported by the Conseil Régional
d’Aquitaine (Aquitaine Regional Council - France).

9. References

[1] Laplace S., Dalmau M., Roose P., “A formal method for
assening quality of service in distributed multimedia
applications™, 16" International Conference on Software &
Systems Engineering and their applications ICSSEA’03,
Paris, France, December 2-4 2003.

[2] Szyperski C., Component Software — Beyond Object-
Oriented Programming, New-York, Addison-Wesley
Publishing Co., 1999.

[3] Roose P., Dalmau M., Luthon F., “A distributed
Architecture for Cooperative and Adaptive Multimedia
Applications”, 26th International Computer Software and
Applications Conference COMPSAC’02, IEEE Computer
Society Press, ISBN: 0-7965-1727-7, Oxford, England,
August 26-29 2002, pp. 444-449.

[4] Sun Microsystems, Enterprise Java Beans Specification
2.1 Final Release, 2003.
http://java.sun.com/products/ejb/docs.html

[5] Microsoft Corporation, COM Component Object Model
Specification 0.9, October 1999.
http://www.microsoft.com/com/resources/comdocs.asp

[6] Bruneton E., Coupaye T., Stefani J-B., The Fractal
Component Model 2.0-3, February 2004.

[7] OMG, Streams for CORBA Components, Request For
Proposal, OMG document, 2003. http://www.omg.org/cgi-
bin/doc?mars/2003-06-11

[8] Exposito E., Specification and implementation of a QoS
oriented transport protocol for multimedia applications, PhD
Thesis, Institut National Polytechnique de Toulouse,
December 17" 2003.

[9] Yavatkar R., “MCP: A Protocol for Coordination and
Temporal Synchronization in Multimedia Collaborative
Applications”, In Proceedings of IEEE 12" International
Conference on Distributed Computing Systems ICDCS’92,
Yokohama, Japan, June 9-12 1992.

[10] Demeure 1., Leboucher L., Rivierre N., Singhoff F.,
“Modéle et plate-forme pour le support d’applications
multimédias réparties”, 1°° Conférence Frangaise sur les
Systemes d’Exploitation CFSE’99, Rennes, France, June 8-
11 1999.

[11] ISO/IEC JTC1/SC29/WG12, Coding of audio, picture,
multimedia and hypermedia information, MHEG Working
Group S.5, June 1999.

[12] Luther Arch C., Principles of digital audio and video,
Boston, The Artech House audiovisual library, 1997.

[13] Hafid A., von Bochmann G., Dssouli R., “Distributed
Multimedia Application and Quality of Service: A Review”,
Electronic Journal on Networks and Distributed Processing,
n°6, 1998.

[14] Paradinas P., Etat de I’art des modeles de composants,
Projet Cesure RNRT n°98, 2000.

[15] Layaida O., Atallah S-B.,, Hagimont D.,
“Reconfiguration-based QoS Management in Multimedia
Streaming Applications”, In Proceedings of the 30"
IEEE/EUROMICRO Conference, Rennes, France, 2004.

[16] Comer D., Internetworking With TCP/IP — Volume 1:
Principles Protocols, and Architecture, Prentice Hall, 2000.
[17] Godfrey M-D., Hendry D-F., “The Computer as von
Neumann Planned It”, /EEE Annals of the History of
Computing, vol. 15, n° 1, p. 11-21, January-March 1993.
[18] Villalobos J., Components Federation: a Software
Architecture for Composing by Coordination, PhD Thesis,
Université Joseph Fourier de Grenoble, July 15" 2003.

[19] OMG, Unified Modeling Language Specification, OMG
document, March 2003.
http://www.omg.org/technology/documents/formal/uml.htm
[20] Sun Microsystems, Java Media Framework API Guide,
November 1999. http://java.sun.com/products/java-
media/jmf/2.1.1/guide/

[21] Kon F., Campbell R., Nahrstedt K., “Using Dynamic
Configuration to Manage A Scalable Multimedia
Distribution System”, Computer Communication Journal
(Special Issue on QoS-Sensitive Distributed Systems and
Applications), Vol. 24, pp. 105-123, Elsevier Science
Publisher, January 2001.

[22] Roose P., Dalmau M., Luthon F., Laplace S., “Gestion
de la Qualité de Service par Reconfiguration Dynamique
dans les Applications Interactives Multimédia”, Journées
ALP (GDR du CNRS) — ACM/SIGOPS — Systémes a
composants adaptables et extensibles, Ed. INRIA, ISBN: 2-
7261-1229-3-17, Grenoble, France, October 17-18 2002.

[23] Bouix E., Un mode¢le de composants multimédia adapté
a la circulation des flux de données — Synchronisation des
flux par conduits, Mémoire de DEA, UFR Sciences et
Techniques de 1’Universit¢ du Maine, Le Mans, France,
September 2003.

[24] Schulzrinne H., Casner S., Frederick R., Jacobson V.,
RTP: A Transport Protocol for Real-Time Applications, RFC
1889, 1996.

