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Abstract

Handling the inter-flow synchronization (e.g.
images and sound of a video) in distributed multimedia
applications seems to be fundamental. In this paper,
we propose a new component model, named
OSAGAIA", in order to tackle synchronization between
multimedia flows from the source (e.g. media capture)
to the destination (e.g. media player). This model is
made of two entities. The first one is called
“elementary processor” and is used as a runtime
environment (container) for multimedia components.
The second one is called “conduit” and is used to
transport synchronous multimedia flows within the
application. To ensure the synchronization within both
entities, we sample multimedia flows in order to
constitute temporal units and synchronous slices. We
test this mechanism with a distributed prototype
implemented with Java language using JMF (Java
Media Framework) API and TCP/IP as the network
protocol. This prototype shows that synchronization is
kept between a non-processed and a processed image

flow.
1. Introduction

Our work deals with distributed multimedia
applications through the Internet. Due to network
characteristics, these applications require a high
flexibility to provide and maintain a correct Quality of
Service (QoS). They need to adapt themselves in real-
time to both end-users and runtime environment
requirements [1]. Considering that during runtime these
requirements can evolve, this adaptation must be
managed dynamically. We choose to provide this
flexibility by using software component approach [2].
Thus, by adding, removing or replacing components in
real-time, applications will be adapted according to
these requirements.

" OSAGAIA means software component in Basque
Language

Our previous work proposes a software architecture
for this kind of application [3]. It is divided into two
parts: the application and a runtime platform. The
application part is composed of components connected
to each other by multimedia flows. The runtime
platform has a supervision role: it detects critical
situations and tries to solve them by adapting the
composition of the application to the current
requirements. Both parts are, of course, distributed.

Multimedia applications deal with several types of
data such as images, audio, sub-title text, etc. These
data often exist in the form of continuous flows since
they consist in a continuous sequence of finite size
samples with strict temporal dependencies at two
levels:
¢ Dbetween samples of the same flow (rate): this is

known as Intra-Flow Synchronization ;
¢ Dbetween samples of several flows: this is known as
Inter-Flow Synchronization. [12]
In this paper, we focus only on this last point and
propose a new component model which takes care of
this kind of synchronization. A prototype shows that
this mechanism works well.

2. Context and Motivations

Academic (e.g. Fractal [4]) and commercial (e.g.
EJB [5], COM [6]) component models allow
developers to design and implement applications. Thus,
development consists in the selection and assembly of
pre-existing software components. These models
provide some non-functional properties such as
persistence, transaction or security, etc. However, there
is a lack when the interest is focused on particular
domains. So, these non-functional properties need to be
extended or new models need to be created. For
example, the PECOS model [7] has been developed for
a specific class of embedded systems known as “field
devices”. In this way, specific characteristics of
multimedia need to be considered.

Researches in the multimedia domain try to take in
consideration the characteristics of multimedia data.



The Presentation Processing Engine (PPE) framework
[8] simplifies the development of multimedia
components and enables them to dynamically adapt the
quality of the presentation to the resources in
heterogeneous environments. Exposito in his PhD [9],
proposes to design a new QoS oriented transport
protocol aimed at providing a large set of transport
mechanisms to efficiently satisfy  application
requirements using available resources and network
services. Singhoff [10] defines a data flow graph model
to specify both flows of a multimedia system and
temporal constraints associated to these flows. Then,
several algorithms are provided to translate these
specifications into scheduling information (e.g.
processor allocation).

Our research consists in providing a new component
model for the multimedia domain. This model must
consider the specific characteristics of multimedia data
in order to compose multimedia applications. This
should be achieved in the form of services provided by
the model for  developers  (non-functional
implementation). For example, OSAGAIA model
ensures inter-flow synchronization which means that
developers don’t have to implement this functionality.
Thus, they can focus their development task on the
application (functional implementation). To illustrate
our purpose, we will take the example of a TV news
showing a speaker in front of a street background using
two video cameras and two microphones (one for the
speaker,  one for the street). This application
implements both bluescreen imaging and audio mixing.
Bluescreen imaging is a technique which starts by
filming a subject (the speaker) in front of a uniform
monochromatic background (e.g. blue or green). Then,
a compositing process replaces the selected
background hue in the image with another background
image (the street). Audio mixing technique allows to
mix two audio flows in order to provide one composite
audio signal. Such a configuration (shown in “Fig. 1)
uses four capture devices connected to the same
machine and implements two processing components
(compositing process and audio mixing). At capture
time, all flows are synchronous. When implementing
this application with an existing model, e.g. EIB [5],
the major problem is the loss of synchronization
between flows. Indeed, these flows go across
processing components in their path from source to
destination accumulating different temporal delays (o
and 0) as shown in “Fig. 1”. In a more complex
application, the difference between temporal delays
which affect related flows may be important and
probably not acceptable by end-users because it affects
the semantics of the data. This problem is known as

inter-flow desynchronization. OSAGAIA solves this
problem by implementing it as a non-functional
property [11] (concern independent from the business
logic of the application).
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Figure 1. Example of configuration with existing models

3. OSAGAIA Multimedia Components
Model

The OSAGAIA model is made of two entities which
handle inter-flow synchronization. The first one is the
conduit that allows the transport of synchronous
multimedia flows within the application. It can be
distributed through the Internet. The second one is the
Elementary Processor (EP) that provides a runtime
environment for a Business Component (BC). The BC
encapsulates a particular multimedia processing, i.e.
the functional implementation [11]. For instance, a
video capture BC implements the necessary mechanism
to provide this capture.

3.1. Inter-flow Synchronization Mechanism

Inter-flow synchronization is known as temporal
constraints between several flows (e.g. the sound and
the image of a video). More precisely, these constraints
are defined between the samples of each flow (e.g. one
image corresponds to several sound samples in a
video). So, it seems necessary to identify the samples
of each flow in a unique way. To do this, a time-stamp
is associated to each sample on each flow at acquisition
or creation time. We name this mechanism the flows
time-stamping. The principle is illustrated in “Fig. 2”.
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Figure 2. Time-stamping of an image flow



The real value of this time-stamp is not important
because it will only be used to associate different flow
samples which were created at the same moment. As a
time-stamp, we use the clock system. The couple
formed by a sample and a time-stamp is called a
Temporal Unit (TU).

Thus, we can express the temporal constraints
binding the TUs of several synchronous flows. So, we
can transfer for each flow an information quantity
which corresponds to a same time interval. For
example, to transfer images and sound flows, we can
for each image transfer the audio samples associated to
the time-stamps which are equal or lower to the current
image time-stamp and greater than the time-stamp of
the previous image. Such a set of TUs of different
synchronous flows is called a synchronous slice. Thus,
a succession of synchronous slices constitutes a group
of synchronous flows. They will be group into a
conduit in order to be transported.

3.2. Input/Output Connections: the Ports

To connect both entities of the model, each one
must have at least one port as shown in “Fig. 3”. Ports
are the means by which multimedia flows pass from EP
to Conduit, and conversely. Ports accept TUs as input
or provide TUs as output. Indeed, they are categorized
by the direction of multimedia flows as either Input
ports (which receive flows from previous entity) or
Output ports (which produce flows to next entity). A
group of ports connected to the same conduit will
contain a synchronous slice. Their size is adapted to the
size of the synchronous slice. This technique is known
as dynamic buffering because the size of ports can
evolve during runtime.
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Figure 3. Way to connect Conduits and EP in
OSAGAIA

The port is the structural unit of connection between
both entities of the model (connectable element).
Output ports of one entity can only be connected with
input ports of others ones.

3.3. The Business Component (BC)

BC implements a particular media processing
(functional implementation). For example, the “Fig. 1”
configuration will have BCs for image capture, audio
capture, compositing process and audio mixing. The
BC needs to be executed in a container named EP (see
section 3.5).

The BC is data driven, that means its processing is
linked to incoming data.

We describe now the general way to implement a
BC. First, the BC must get data to process. To do this,
it executes a reading operation in an input port of the
EP (which encapsulates it) in order to get one or more
TUs to process. Then, it can apply on data (i.e. data
part of the TU) its own processing and write the
processed data in an output port of the EP by executing
a writing operation.

Because the runtime platform supervises the
application part by removing/adding components, the
life cycle of the BC [13] is composed of four states. On
one hand, the first two states (Configured and
Connectable) represent an activity where BC does not
operate (initialized and ready to start). On the other
hand, the two other states (Connected and
Disconnectable) represent an activity where the BC
applies its processing. This life cycle allows the
runtime platform to know the activity of all the BCs
which are used by the application at a given time. Thus,
if needed, the platform can add, remove or replace a
BC without disturbing the execution of the whole
application. This is the key point to address QoS
management.

3.4. The Conduit

The conduit is the entity used to transport
synchronous multimedia flows. If several flows are put
together in the same conduit, then these flows will be
kept synchronous.

The conduit has input/output ports in order to allow
its connection to EPs (see section 3.2). Each port is
connected to a buffer which stores the TUs. The buffers
are implemented with a queue data structure.

The “Fig. 4” describes the path of data within the
conduit. When the conduit is distributed, a client/server
approach is used to transfer TUs towards the output
buffers for each flow. In case of a local conduit, a
producer/consumer approach is used. The transfer is
performed with synchronous slices (see section 3.1) by
using the time-stamp linked to each sample. First, we
search for the TU with the maximum time-stamp in
each multimedia flow of the conduit. This time-stamp



becomes the current one. Then, for each flow, we
transfer into corresponding output ports, all the TUs
which time-stamp is lower or equal to the current one.
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Figure 4. Internal structure of the Conduit with the
path of data

Thus, the synchronous slice is reconstituted in output
ports. It should be noted that each writing in output
ports is signaled by an event which can be used by the
connected component.

The conduit encapsulates the network protocol used
for remote communication. The synchronous slice is
rebuilt by the receptor. “Fig. 4” shows an example of a
distributed conduit.

The conduit has a Control Unit (CU) which allows it
to communicate with the runtime platform (not
represented in “Fig. 4”). In reconfiguration cases, the
conduit is supervised by the platform. The CU reports
various information on the behavior of the conduit.
This information is interpreted by the platform for
future reconfigurations. This evaluate a quantitative
QoS-level, e.g. the filling rate of buffers on each flow.
Overflow in some input buffer (respectively emptying
of some output buffer) means that the rate of the
network is low (respectively that some BCs are not
suited).

3.5. The Elementary Processor (EP)

The EP is a container for the BC. It supports non-
functional properties for a correct execution of the BC
(functional properties) and of the whole application.
We call it EP because its internal architecture has
common points with a Von Neumann processor
architecture [15]. The EP is composed of an Input Unit
(IU), an Output Unit (OU) and a Control Unit (CU) as
shown in “Fig. 5”. The EP is supervisable by the
platform (add, remove or replace EPs).

The EP has input/output ports for each multimedia
flow entering or outgoing (see section 3.2). These ports
allow its connection to conduits. Each port is linked
respectively to the IU or the OU. These units are
interfaces between BC and multimedia flows. They
contain methods used by the BC in order to read
(respectively write) in the input (respectively output)

ports. An introspection method allows accessing to the
properties of the multimedia flows (e.g. the data type).
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Figure 5. Internal Structure of the EP

The CU manages all the elements of the EP. This
unit communicates with events and specific methods.
For instance, the BC behavior is controlled by the CU
through its methods init(), start() and stop(). CU also
manages the data circulation within the EP.

The BC processes one or more multimedia flows. In
order to preserve synchronization between processed
and non-processed flows, the EP is connected to the
conduits transmitting the flows which are processed. In
this way, all data flows of the conduits circulate within
the EP. The IU knows, by an event sent by the conduit,
when new input information is present. Thus, when the
BC requests a reading operation, the corresponding
TUs are sent to it. During processing, IU stores the
whole synchronous slice corresponding to the TUs
processed. When processing is achieved, the BC puts
the results into the corresponding output ports via the
OU. Then, new TUs are requested by the BC with a
reading operation. During this time, TUs of the
previous synchronous slice are transfered to the output
ports via the OU. By this way, a new synchronous slice
is now available in the output ports of the EP. It should
be noted that each writing in output ports is signaled by
an event used by the conduit (connected at output of
the EP).

4. Applying the Model

This section shows how OSAGAIA solves the
problems described in section 2. We apply it to a TV
news application (see description in section 2).

On one hand, each component of this application is
now encapsulated into an EP. On the other hand, the
multimedia flows are encapsulated within conduits.
“Fig. 6” shows the configuration with the OSAGAIA
model.

When the two image flows are processed by the first
component of the configuration (compositing process),



the two audio flows pass through the EP synchronously
with the flow provided by the BC. In the output of this
first EP, a conduit is connected with three data flows
inside: the image flow provided by the compositing
process and the two audio flows. In the same way, the
image flow passes within the second EP synchronously
with processed audio flows. Thus, as output of the
application, we obtain a video composed of two
synchronous flows (image flow plus audio flow).

Mulimedia Flow gy P Audio Mixing
. BC
— SN
/ " =
= 2
M '(ﬁldllil Ann—pé;essed flow Processed flow
Port
Figure 6. The TV news application with OSAGAIA
5. Prototype implementation  with

Images Capture

¥

OSAGAIA

We develop a prototype in order to test model
coherence and development of multimedia applications
with OSAGAIA. Moreover, this prototype must
validate the algorithms and mechanisms used to keep
synchronization between several multimedia flows.
This synchronization must be kept at two levels:

¢ first, during the transport of flows within the

application even through the network ;

¢ secondly, during the processing of a flow.

The prototype is shown in “Fig. 77. It is
implemented with Java/JMF API [16]. JMF is used to
manage time-based media into Java applications.

First Processing Second Processing Display

We give the choice to end-users between several
processing components. For instance, one which
reduces the size of the initial image (spatial
subrampling), an other which implements a negative
transformation, etc. These choices can be performed at
each side of the network (“Fig. 7”) with a drop-down
list (“Fig. 8”) on the interface. As we can see in “Fig.
77, one of the two image flows is processed before and
after network transport and the other one is used as a
reference flow. Finally, the last component provides
two video players in order to display the two flows of
this configuration. These players allow to control that
the two flows are displayed in a synchronous way like
they were at capture time.
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Figure 7. Prototype Architecture

Moreover, it allows to capture, handle, process and
render multimedia data flows. For the moment, the
network protocol that we use is a communication by
sockets with TCP [14].

This prototype is composed of four components: a
capture component, two processing components and a
rendering component. As we need to start with two
synchronous flows, the capture component provides
two identical image flows captured by a video camera.

Figure 8. Drop-down list and video players used to
display image flows

The graphic interface simulates the platform
behavior in a manual way. With this interface, we can
start/stop both capture and display and dynamically
change the processing components with the drop-down
list (“Fig. 8”).

The principle of this prototype is easy to understand.
The video camera provides one image flow. This flow
is thereafter duplicated in order to obtain two image
flows. We apply processing only on the first flow like
shown in “Fig. 7”. This allows to verify if the two
flows are synchronous during the path from capture to
display including network transfer within the prototype,
even if only the first one has been processed (“Fig. 87).

6. Conclusions and Future Works

Currently, complexity in the development of
software is increasing. In addition to handle a large
amount of various data, applications are actually
distributed. In the past, applications managed textual
data and fixed images. Now, these data are mixed with
animated images and sound samples.

The software components approach is a good
solution to develop this kind of application. Many



component models are designed in both research and
industry. These models allow development of software
components in order to compose applications. They
enable to take into account what is called non-
functional properties (services given by the model).
Thus, developers can only concentrate on the
development of specialized software components by
using these services.

When we are interested in multimedia domain, these
services are not sufficient. The specific characteristics
of multimedia data have to be taken into account. That
is why we propose a new component model which
considers and maintains the inter-flow synchronization
by time-stamping each sample of each flow and
constituting synchronous slices of data. Thus, the
temporal constraints are considered and respected.

This principle is applied in the two elements which
constitute the OSAGAIA model: the conduit and the
EP. The conduit is used to transport multimedia flows
in a synchronous way. It can be distributed. The EP is
used as a runtime environment for a BC. It implements
mechanisms in order to handle multimedia data, i.e.
non-functional properties. The BC implements a
particular multimedia processing, i.e. functional
properties. In this way, our model provides a clear
separation between non-functional and functional
properties.

A prototype has been developed in order to validate
the mechanisms and principles exposed here. This
configuration uses Java language and JMF API. It is
distributed. We simulate a part of the behavior of the
runtime platform with a graphic interface which allows
for instance to change dynamically some processing
components which is a first step towards QoS
management in multimedia applications.

In this paper, we concentrated our approach on
multimedia flows. However, other kinds of data can
circulate in applications (e.g. events, text, messages,
etc.). So, it is necessary to specify these kind of flows
which seem to be continuous too but not regular. That
means to integrate not regular synchronous data flows
and to mix them with regular ones.

Further work will consist in completing the
prototype by using and testing other network protocols
(RTP, UDP). This will permit us to collect
performance measures allowing to compare various
implementation solutions.
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