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ABSTRACT. The linear properties (polarization, dispersion, damping) of the three low frequency ion modes :
fast and slow compressional (or magnetosonic), and shear Alfvén, are studied for frequencies lower than the
proton gyrofrequency. It is shown that a two-fluid theory is sufficient for obtaining most of the results. including
first order finite Larmor radius effects. The key point is the closure of the system of fluid equations : the adiabatic
laws currently used are critically discussed ; in particular it is shown that the concept of polytropic index
() has to be ruled out. In order to bridge the gap between two-fluid and kinetic theories we point out where
kinetic effects have to be introduced to complete the two-fluid calculations. The results are compared with fully
kinetic ones, obtained from a numerical computation. The methods presented here are relevant for a wide range
of phenomena in collisionless plasmas, since many structures can be constructed from the studied three linear
modes, wave-like ones as well as stationary ones (e.g. weak discontinuities).

Key words : finite Larmor radius, kinetic Alfvén wave, MHD. two-fluid theory, polytropic indexes,

ULF waves.
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1. INTRODUCTION

In many key regions of the ionized terrestrial environ-
ment and other collisionless space plasmas, an intense
electromagnetic activity can be observed in the fre-
quency range from zero up to ion gyrofrequency and
above. A large amount of literature has been devoted
to these observations of ULF fluctuations as well in
the magnetosphere (Southwood, 1981) as in the
magnetosheath (Moustaizis eral., 1986) or the solar
wind (Barnes, 1979) or near other planets (Dessler,
1983). When the amplitudes of these oscillations are
not too large, the first work of the experimenter
generally consists in trying to fit this experimental
spectrum with the set of linear modes that can
theoretically propagate in this medium.

From elementary cold plasma theory (Quémada,
1968), it is known that three low frequency modes can
propagate. They carry three different kinds of infor-
mation : parallel compressions for the slow
(magnetosonic) mode, perpendicular velocity shears
for the shear (Alfvén) mode and perpendicular com-
pressions for the fast (magnetosonic) mode. Neverthe-
less these elementary theoretical solutions cannot be
expected to precisely fit the data when the frequency
is not negligible compared to the ion gyrofrequency,
or when the wavelength is not infinitely larger than
the ion Larmor radius and electron skin depth. The
comparison must be done in such cases with more

refined theories. The most difficult effects are those
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related to temperature and most of the analytical
works in this field are based upon some classical
expansions in finite Larmor radii (Chew et al., 1956 ;
Mac Mahon, 1965 ; Rutherford and Frieman, 1968).
A great amount of work has been done about this
topic, in particular concerning the modified shear
Alfvén wave (re-named « Kinetic » Alfvén wave in
these conditions) by Hasegawa (see Hasegawa and
Uberoi. 1982, for an overview), Goertz (1983 and
1984) and other authors. The kinetic methods gener-
ally used in these works are very powerful, but rather
cumbersome, so that the authors. to get analytical
calculations and tractable results, have been led to
limit themselves to particular cases : for instance, the
low beta case, with quasi-perpendicular propagation
(cos’ 8 < B <1) is frequently met. Out of such
particular cases, the calculation appears to be very
difficult, while in fluid methods a general calculation
is possible. The experimental results can also be
directly compared with complefe kinetic ones obtained
by numerical computation ; this can be done for
instance thanks to program WHAMP, kindly provided
to us by K. Ronnmark (Ronnmark. 1982 and 1983).
This program (Waves in Homogeneous Anisotropic
Multicomponent Plasma) solves the full dispersion
relation (for real wave number and complex fre-
quency) and calculates the polarization of linear
electromagnetic waves in a magnetized plasma. The
dielectric tensor is derived using the kinetic theory of
homogeneous plasmas with various distribution func-
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tions (for the present study we used only maxwellian
distributions). Nevertheless as this numerical method

does not allow us to understand how each parameter

and each physical phenomenon play a role in the final
results, analytical calculation remains necessary. Thus
both methods are complementary, since the numerical
one enables to check the analytical one and to qualify
the approximations made.

As the departures of the low frequency modes from
the MHD results are often weak, it can be suspected
that it is no use changing drastically the method. We
show that these departures can be correctly accounted
for by using a complete two-fluid method, i.e. by
removing the approximations that reduce it to MHD.
In this way, we follow the example of Southwood and
Hughes (1983), who spoke of the so-called kinetic
Alfvén wave in fluid terms in a review untitled
« Theory of Hydromagnetic waves in the Magneto-
sphere ». The present two-fluid theory is based on a
system of two basic equations (section 2.2) which
happens not to be closed because of the pressure
terms. So a third equation is needed, giving the
pressures as functions of velocities. This closure
equation in the MHD frame and the concept of
polytropic index are critically discussed in section 2.3,
and afterwards two different closure equations are
proposed. First, (section 2.4) the electrons are as-
sumed isothermal and the ions adiabatic (ion heat flux
divergence free). Second, (section 2.5) electron and
ion heat fluxes are deduced from Vlasov equation
through approximations of the same kind as Mac
Mahon’s expansion (1965). We would like to em-
phasize that we use here a two-fluid theory although it
is sometimes believed that this procedure only holds
for collisional plasmas. Indeed these two-fluid equa-
tions are derived from Vlasov equation through
BBGKY hierarchy : neither these equations nor the
following approximations depend on the collisions. In
section 2.5, we precise the link between this theory
and the kinetic one. by pointing out where the kinetic
effects must be introduced to complete the two-fluid
method. It allows us to show where the imaginary part
of the frequency comes in, and thus to obtain the
damping, which is of course not possible from the
pure two-fluid theory. From this general method it is
possible to infer many particular results needed by the
experimenter : dispersion, damping and polarization
(without the usual @ priori assumption of the existence
of a perpendicular electrostatic potential). In sec-
tion 3, we give some such examples concerning the so-
called « kinetic» Alfvén wave and the two com-
pressional modes, for which our results are compared
to those of the literature and to numerical com-
putations. Finally, some other topics in which the
explained theory might be relevant are also suggested.

2. DERIVATION - OF THE PROPAGATION
EQUATION )

1) Notations

As we will have to write 3 x3 matrices whose
elements are rather long expressions, we will use the
following condensed notations :
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F=wj/o, frequency normalized to the
ion gyrofrequency.

K=kV,fo, wave vector modulus nor-
malized to the ratio of the
ion gyrofrequency to the Alf-

_ vén velocity.

6 = (B, k) wave vector angle with refer-
ence to the static magnetic
field.

s =sin 6

¢=c0s6

I =k/k , longitudinal unit vector.

Bie=xT; /M;V: jon or electron kinetic

pressure normalized to mag-
netic pressure.

ion or electron thermal vel-

ocity.

B =M/[M, mass ratio. o

u tensor defined by u x -7 =
uxv.

The coordinate system is defined by the unit vectors :
z, along the static magnetic field, €, along the perpen-
dicular component of the wave vector k, and €, as
third coordinate. In this system, the components of
the longitudinal unit vector are: / = (s, 0, ¢).

In the present linear theory perturbed quantities are
indicated by superscripts 1 (for instance T, is the
perturbation of ion velocity). Unperturbed quantities
are without any index (for instance B is the static
magnetic field).

2) Basic two-fluid equations

We will use two basic equations, the classical hydrody-
namic equation and the Maxwell-Faraday law in
which the electric field is expressed in terms of ion
velocity and pressure. through the ion momentum
equation :

p 971 /9t = (Vx B /ug)x B—V- (7, +P})
Vx[-T'xB+m/eét)/ot+V -pl/ne] =
= —9B"/ar.

The first one can be rewritten, after Fourier trans-
form, and in dimensionless notations :

%/V,=K/FID,-BYB+B,1-5./p.+B:T-5./pi]

(1)
where
. _ —c 0 s
D,=le,-T-eI=| 0 -c 0},
0 0 0

1 being the unit tensor.

The unperturbed pressures p, and p, are supposed to
be isotropic and of the form p, ; = n« T, ; T. We have
also substituted V x B~/u, for the current density

7', which means that the displacement current is
neglected. This assumption is equivalent to the quasi
neutrality hypothesis (n, = n;) which is always used
for the Alfvén wave (see Hasegawa and Uberoi,
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1982) ; it proves to be valid as long as corrective terms
of the order of V/c” can be neglected.

We have made another assumption in (1) by replacing
7' (fluid velocity) by T; (ion velocity), which means we
have neglected the electron inertia terms. They can be
obtained if needed by using :

T =T —pn/neVxBYp,.

The only consecutive change in (1) is the

modification of D, into :

_ _ — —c —iFpc s

D¥ =D, + iFulx = |iFpuc - —iFus|.
0 iFus 0

The insertion of these new terms, of order i Fu, does
not introduce any difficulty in its principle, and they
are known to lead to corrective terms in
K’ p (= k*c*/w},) in the dispersion relation. As we
want to focus on the more difficult problem of the
temperature effects, and for the sake of simplicity, we
shall not include them in the present paper. It means
that our results will be valid only when K* u < 1, and
since we will keep terms in KZ,B, . and K?c? we will
implicitely assume c?, Bi.®n.

The second basic equation (Maxwell-Faraday law)
rewrites, after the same handling as for (1) :

B'/B=K/F[D,-7/V,+iKB,Tx (T-p}/p)] ()

where -

e _ e —-C iFc 0

D,=¢,I—¢,-1I-iFix=|-iFc -c iFs]|.
s —iFs 0

It must be noticed that the term 7 x (7 - p}) is not

generally equa] to zero as long as the pressure
perturbation p; cannot be assumed scalar.

For beginning to solve the system of equations (1),
(2), B! can be eliminated, which gives :

D,-%/V,=F/K[B.T-p[p.+B. U, T-5/p)]
(3)
where
D.=F/K’I-D,-D,=
F}/K*-1 iF 0
=| -iFc® F)/K*-c iFsc
0 0 F/K?
and
U, =1+iKYFD, -Ix =
1 iK*/F 0
= |-iK*/F 1 iK?sc/F |.
0 0 1

The remaining “ork is to closc the system by finding
the expression of p; and p,. This will be done in the
next sections with different assumptions. In all cases
the results will be written in the same general form :
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—l/VA (4)

T [Va-

This is always possible, thanks to linearity and it is
convenient since we only need the pressure gradients.
The three next sections will thus be devoted to

different estimations of the two new tensors P, and

}Z’i. The system being so closed, the final solution will
take the form of the following propagation equation
for ion velocity :

D-T/V,=0

where

DabD B P -U=p;U0-P.

The tensor U, comes from the expression of T versus
Ui : 7. = T — j'/ne, which, after some handling can be

written in the form T, = ﬁ, -T', where:
UL T-ikyYFA-T1)x
x [ x-i(KYF)B.P,.

It should be noticed that K?/F being first order in K
and F, we will have U, = U, = I in the zero frequency
limit. )

The dispersion equation is thus obtained as
Det (.{:)) =0, and the polarizations of T} will be the
corresponding non trivial solutions of (5).

3) Connexion with classical MHD treatment

Two kinds of approximations have to be made to
reduce the preceding equations to the classical MHD
treatment. We first have to take the zero frequency
limit (w < w,) of the basic equations (1) and (2). and
second to use the classical MHD closure equation.
The first assumption reduces the « cold part » of the

propagation matrix D, to :

F?/K*—1 0 0
Dg= 0 FYK'-& 0
0 0 F°/K-

Results obtained later will be compared to this simple
cold plasma result for which each solution corresponds
to one term of the diagonal : F = K (fast mode) has a
velocity polarization along x, F = Kc¢ (shear mode)
along y, and F = 0 (the slow mode does not propagate
in cold plasma) along z.

The second assumption consists in using the following
closure equation for each species :

;il.z/p = yi_c(n:;.e/n)}:

which yields, thanks to the equation of continuity :

(6)

_ a s 0 sc
I_Ji.e= 'YE.eIT: Y0 0 O
lsc 0 &

where v, . are called the polytropic indexes.
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So that the final MHD propagation matrix writes :

_ FY/R*-1-=gs 0 — Bsc
D 0 F/K*— & 0
— Bsc 0 F’/K* - B¢?

where B8 = ¥; B; + 7. B..

It can be seen on this result that the fast and slow
modes become coupled through B, while the shear
mode remains unchanged in these approximations.
However, it must be noticed that the name « adiabatic
laws » for equations (6) is not correct in a magneto-
plasma. As we will see in next section, a true adiabatic

hypothesis (V-0'=0, where O is the heat flux)
would not give this kind of result, except if B were

zero, i.e. if the medium were isotropic (and then
y = 5/3).

4) Closure equations of fluid type

In this section, instead of using the closure equations
(6). we consider more physical assumptions: we
assume the electrons are isothermal and the ions
adiabatic. It will be shown, in the next section. that
the very major part of the results about the low
frequency modes can be accurately found viaz this
correct two-fluid theory and that the corresponding
assumptions for phase velocity and frequency are :
(1) the parallel phase velocity is slow compared to the
electron thermal velocity, and fast compared to the
ion thermal velocity :

Vi < ""/kl < V:kr (?)

255~ Fi(d, 514 +-d )
P,=| iF(d,s/2+d,c)
O =Fi) %

The quantities
dy=1/(1-F°) and d,=1/(1-F/3)

show that poles at first and second gyroharmonics
appear, as long as they can be approached without
violating condition (8). The zero frequency limit of
this result is to be noticed :

_ 252 0 sc
sc 0 3¢

This limit, which can be directly obtained from (9) in a
very simple way, can also be reached by other
methods, in particular by writing (p,/nB)' = 0. as
suggested by Krall and Trivelpiece (1973) from con-
sideration of invariant conservation. But the most
important point we would like to emphasize is that
this limit cannot be obtained from any method
involving polytropic indexes since even the more
sophisticated « double adiabatic » law (see for instance

(ii) the frequency is not too close to the ion gyrohar-
monics @ = Nw_ (N integer) :

IN-F| >k Vi/wg - @®)

These hypotheses correspond to ions free from both
Cerenkov and cyclotron resonances.
Under these conditions, P, has actually the form (6),

with y, = 1, but P, is still to be determined. To find
out the correct expression of the adiabatic law, giving

P . versus T components, we have to write one more
equation of the BBGKY hierarchy (Buneman, 1961) :

a(p;/n) /ot + p;/n{Vi;} 7" +
+ {@y x @i/n)}>" +V-0'n =0
which writes :
PUlpu = ViF (&% B/} ™ = K/ [t/
+T-E}/VA?+T.61/(E_ V‘*i" ' )
In these equations, {?} ™ stands for the sum of

tensor 7 and its transposed, and the unperturbed
pressure p; is assumed to be scalar.

In this section V - Q' is taken equal to zero {adiabatic
hyvpothesis) : equation (9) thus directly provides the
law we were looking for, without any assumption
about the form of the result, and without any ad hoc
¥, coefficient, contrary to the MHD procedure. The
result is found through a six equations system (since
p' is symmetric), and it writes :

—iF(d,s* /2 +d,c®) (1- F%dy)sc

—Fe(ds /4 wdie)
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iFd, sc
3¢- Fstd,

(10)
—1Fd; sc

Buneman. 1961 ; Krall and Trivelpiece, 1973) pro-
vides in this case :

¥ i s2 0 Y, ¢
= 0 0 0
yisc 0 7y ¢’

which cannot fit our result, whatever y, and vy, are.
Moreover. all terms of order F (and K) or more.
which do exist in equation (10) are never taken into
account in usual fluid theories, although theyv modify
the modes, in particular by coupling the shzar mode
with the compressional ones. In our opinion. the usual
disregard of these terms is the reason why such
theories are generally considered as unable of correct-
ly accounting for finite Larmor radii corrections.

5) Closure equations of kinetic type

Let us consider now a last kind of closure of the two-
fluid system, which is a generalization of the preceding
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one : the closure equation is solved with an estimation
of V.Q' found with a kinetic method, instead of

V. Q' =0 in the above section. It will allow us to get
the departures from the preceding results when the
hypotheses (7) and (8) are no longer verified. Further-
more, it will also enable us to obtain the imaginary
parts of the results (damping, for a maxwellian
distribution), and to specify where they get in, by
comparing the obtained matrices with the above fluid
ones. We start from the linearized Vlasov equation,
whose general solution can be found in Krall and
Trivelpiece (1973). To get tractable results, we first
expand this solution at zeroth order in k, p (the
validity of this expansion will have to be questioned
for each particular result, and if other expansions are
needed for further simplifications, we will have to
ensure that they are consistent with this one). This
expanded solution writes :

1 2
F®s EYirP
1 =—4af/a 1 -=-F | -
k,V, /o, \ v vl
- av St il ) VR W
af/ ¢[(oos¢+ S )VA+5111¢VA}
(11)

where f (resp. f7) is the distribution function of
variable V at zeroth order (resp. first order), T is the
fluid speed, F = w/w_, F¥*=(0 — kj V})/o_and ¢ is
the azimuthal angle of V, around B. The electric field

which appears in Vlasov equation has been expressed
in term of velocity and pressure components, through
the momentum equation. In this section, the calcula-
tion being valid as well for ions and electrons, Fand K
will be normalized to w, or w, depending on the
considered species. The heat flux perturbation

G'=m [ (-9 -0)T -0 r7IP &V
can thus be obtained through integrations of f” upon

Vy, V, and ¢. When these integrations are perfor-
med, 20 of the 27 components of Q' are found to be
zero, and the remaining 7 components have only two
distinct values (all components whose indices differ
only by a permutation are equal) :
QL/pVa= (a' —1)v;/V,— (a« = 1) x
x (F/K)T-p'/p-& + (a —1)(2s/c)v;/V 4
Q5/pVa=(a"=3)5;/V,— (a'—1) x
x (F/K)T-p'/p-€ + (a' = 1)(s/c) vz/V 4
Q2= Q0 (12)

where the coefficients a, a’, a " contain the Fried and
Conte function (Fried and Conte, 1961) when the
unperturbed distribution function is specified to be
maxwellian :

@ =—£Z(£)
@' =28a-1) - E=0/(2kV,).
a" =2 et =1) .

Let us notice that so many components of Q' are zero
because, at zeroth order in k, p, the only pole
appearing in equation (11) is the Cerenkov one (no
cyclotron resonance). It can be checked here that for
¢;>1 and £,<1 (as in the above section) ions are

adiabatic (Q' = 0) and electrons are not :

a;~a/~1, a/~3 forions

a,~a,~a]~2¢2~0 for electrons.

This point underlines that the adiabatic hypothesis
depends on the existence of resonant particles and not
of a thermodynamical equilibrium that would assume
collisions.

In the general case, using result (12), V- Q' can be
easily determined. from which the solution of (9) can
be inferred. This is again done through a 6-equation
system, but much more cumbersome. Nevertheless,
the procedure is straightforward, and the result can be

found. The general expression of the P components
are given is appendix I. This matrix is not a priori
easily tractable. but thanks to this general result, we
will be able to particularize it in any needed range of
parameters and thus simplify it with well controlled
approximations. Examples of such treatments are
given in next section.

3. ION WAVES IN LOW FREQUENCY LIMIT

We will now show how the general results can be
particularized for the low frequency modes (F <1).
In the case of the shear Alfvén wave we shall
emphasize that the pressure gradients obtained in
section 2.4 are sufficient to get the first order finite
Larmor radius results. We shall then check that the
kinetic closure of section 2.5 gives the same real part
of the frequency (in the same conditions) and also the

imaginary part.

1) Expansion of the general result

We will make the expansion with respect to K,
assuming F is the same order of magnitude as K
(i.e. w/k = O(V,)). Taking also into account the
form of the propagation matrix :

d, iFd, d

_— — l) Iz
D=D.~|iFd, -F%d, iFd,
d, iFd, d,

we will expand all corrective terms dij- to zeroth order,
and it will be sufficient to get corrections to second
order for the shear Alfvén mode. Meanwhile, the
compressional modes will only be analysed at zeroth
order. With these expansions, the different matrices
appearing in (5) greatly simplify (main lines of the
calculation are reported to appendix II), and the
resulting propagztion matrix is :
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F*[K*-1

2

[

-s’B.(1+a,)+B;(1+a,)]

KI
iF|1+B,.5 —

2
€

2

)

€

KZ (.‘2
FZ

iF[—c +% (1—3c Zsza,-(l -

)

2

Sl

FZ/KZ_CZ_ﬁ

K¢t
FZ

—SC(ﬂ! + Br)

iFsc [,B,(

where G = a"/a'.

Bi
2

F
: [1—9(‘2—452(

I
(I_Ge)+;:)+

—SC(ﬁ‘ -+ BI)

j . s
2¢;

iFsc[l —,6,-|:

il

i
a,-'

K' c”

I8

FZ/KZ—CZ(BrGe+ 18:' G,-)

(13)

The simpler form of (13) corresponding to the usual case of intermediate B (£, < 1, £, > 1) must also be retained :

F/K*—1—s%B.+2B;)

B;

iF[l +% ¢! +c3)]

KZ (.‘2

—SC(ﬁe -

Bi)

i Sl

5 (1~3cz—252(1—

)

- )]

—sc(B.+ B;)

This result can be obtained by setting @, = p /£2 =
r/a.=0,G.=1,e;=a;=1,1/£=0,G,=3in
the preceding result, or by deriving it directly from the
two-fluid treatment of section 2.4. The very major
part of the results are contained in this matrix (14) in
case of intermediate B, except the estimation of the
damping, since the imaginary parts stand in coeffi-
cients a, « and G of (13).

2) Shear Alfvén wave for intermediate B

The case B; <1 and B,> M,/M,— is one of the most

frequently met in the literature (Hasegawa and Chen,
1975 ; Hasegawa and Uberoi, 1982 ; Goertz, 1983.
1984 ; Southwood and Hughes, 1983). In this case
matrix (14) which is directly obtainable from two-fluid
theory, is sufficient to derive the dispersion and
polarization of the shear Alfvén mode. To get these
results at order K% F/Kc can be replaced by its value
at zeroth order in all coefficients d;; This value is 1,
since when K = 0 the shear Alfvén mode is stnctl)
decoupled of compressional mode$ and its dispersion
relation is F = Kc. If we further simplify by expanding
also to first order in B; and B,, which is consistent

Fz/Kz—cz_ﬁ,.%'(l -9¢%) iFsc[l - B; (1 +2

iFscB,;

(14)
=K e
FZ

)]

F’/K*-c*(B.+3B;)

with the reduction of (13) into (14), equating the
determinant of this matrix to zero provides :

F2=K2c*(1 + A, K®)
where A4, = (B, — c?)/s*+3/4 B, 5.

This dispersion equation calls for comments :

(15)

(1) Its validity is limited : the above procedure, con-
sisting in an expansion around the zero frequency
mode F = Kc, is only valid when |4, K’<1
(i.e. K*< s%/c?), excluding quasi parallel propa-
gation.

(ii) The curvature of the dispersion curve can change,
as A, can change its sign. The curvature is upward
when the propagation is perpendlcular but it becomes
downward as soon as ¢ /s > 3/4 B, s+ B,. This can
be checked on figure 1, where the shear Alfvén
dispersion curve is displayed for various 6 angles. The
agreement between the above simple analytical for-
mula, which predicts an inversion of curvature for
6 ~79°, and the numerical result (6 = 81°) is rather
good. Let us notice that the knowledge of the
curvature of the linear dispersion relation happens to
be important for nonlinear calculations (wave coupl-
ing. existence of solitons...).
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-?L\J/mn
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. j - KVihi
- 1 [-L}l:'l

Figure 1

Shear Alfvén dispersion relation for various propagation angles 6.
The solid lines are analvtical results, compared 10 numerical ones
(crosses) and to the cold plasma and low frequency approximation
(dashed line), in the following conditions : B,= 7.7 x 107° and
B; = 3.9 x 107>, Changes in the curvature and in the polarization
sense are to be noticed - R stands for right-handed, L for lefi-handed
and LIN for linear polarization.

(iii) It is interesting to notice that it is not necessary to
solve the fully kinetic problem to find out the
« kinetic » correction, due to the coupling of the shear
Alfvén mode with the compressional ones.

We can compare our result to the one given by
Hasegawa and Uberoi (1982) for the case of quasi-
perpendicular propagation (c?< 8 < 1). In this case,
our result writes :

F2/K*c*=1+(B, +3/4 B K2

which is exactly the same as theirs, since K, = K in
this limit. '
We can also compare our result with a result from
Bilichenko er al. (1984) who show a change in the
curvature of the shear Alfvén mode for 8, = ¢’in the
case of cold ions (B; = 0) ; this property also results
obviously from equation (15).

As we have equated the determinant of matrix (14) to
zero, we can look for the corresponding T; solutions,
that is for the polarization of the ion velocity perturba-
tion in the shear Alfvén mode. Knowing this velocity,
many interesting points can be deduced : the electric
field and the polarization of the wave, the components
of the fields which are parallel to the equilibrium
magnetic field (z-components) and the density fluctu-
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Table 1
Description of the shear Alfvén wave

E, E, B, n
E_ E, B, ng
() | —id49 x 1073 |— 14 x 1073 - i24 x 1072
el s -3 -3 P -2 B:
(2} - 156 x 10 — 15 x 10 —i27 x 10 —11==
BO

(1) Numerical results.
(2) Analytical results in the following cenditions : §, = 0.028,

g‘o*: 0.085 and (B, k) = 79, for F = 0.059 which implies kV /o, =
LU

ation associated to the wave. We will compare our
analytical results to those of program WHAMP,
except for the density which is pot numerically
calculated. The comparison is made in table 1, at one
point of the dispersion relation.

After a little handling and taking into account the fact
that F ~ K¢, we find :

U 0= iKc/sZ[l - B.—B;
G}Z/U}}‘ = I‘I</S[ﬁf: ok 381' 62] .

Of course, we find again that 7; is nearly polarized
along y, that is perpendicular to both the static
magnetic field and the wave vector ; but we also see
that, as soon as K is not zero, a paralle] component
appears together with a left-handed perpendicular
component (since B,, B; < 1).

A more surprising result occurs when the polarization
is calculated for the electromagnetic fields : deducing
the components of the electric field from (16), it
arises

3 gt
2

] (16)

Vs :
E)El= - = (1 —iKevy[v}) =

- - [cz—ﬁ,—ﬁf‘“
5” 2

iy
This result shows that the electric field perturbation is

left-handed when 2> B, + B, 3'7‘

]. (17)

, as it is well-

~ known in cold plasma theory, but is right-handed in

the opposite case, in particular in quasi perpendicular
propagation. It is worth noticing that in this last case,
the perturbations of electromagnetic fields and veloci-
ty are rotating in opposite senses. Bilichenko er al.
(1984) have already found such a change of polariza-
tion in the case when B; = 0. In this situation the
change of curvature of the dispersion relation and the
change of polarization happen for the same (B, k)
angle defined by ¢? = B,. From our result it appears
that when the ions are hot these changes happen
respectively for ¢>~ B, + 3/4 B; and ¢*~ B, + 312 B;.
We have compared these results 1o the numerical
kinetic ones (see fig. 1) : the change of polarization is
expected for 8 —75° and it happens for 6 ~ 77",
which is again fairly good (in fact the agreement
becomes less good for smaller B values).
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For the parallel component we find :

(18)

which means that this paralle]l component is only due
to electron temperature. This result is identical to
those set down by Hasegawa (1976) and Southwood
and Hughes (1983).

At last we will give two results concerning the
compressibility of the shear Alfvén mode, which can
be derived in the same way :

E}[El=-K*2B,

2
fK/s(cz—,e,»BI-S;c )B;/B (19)

iK/s(1-32B,s°)B/B.

The first terms in these compressional effects are due
to ion inertia, so that they exist even in a cold plasma ;
this reminds us that this mode is never purely torsional
when K # 0. Nevertheless, the other terms, due to
temperature, happen to have an unlike sign, and thus
might diminish the compressional effects.

B!/B

n'/n

1

3) Shear Alfvén damping

The preceding calculation was made from pure two-
fluid theory (matrix (14)). Let us generalize it by using
matrix (13) obtained from the Kkinetic closure. It
allows one to see the corrections which must be made
in the real part of the dispersion relation when the
hypothesis « intermediate beta » is not fulfilled, but
we will not present here the corresponding results
since they can take different forms depending on
which of the conditions B; <1 or B,>M,/M, is
violated. So we will use equation (13) only to deter-
mine the damping rate of the wave in the same
« intermediate beta » case as above. In these con-
ditions, the dispersion equation (15) keeps the same
form but with a slightly different constant A, :

Ag=1/s’[B(l ' a,—s*1 -G, + n/a))) -]+
= B.[345 - (1 - a;)c?/s%]. (20)

Taking into account the exponential decrease of the
imaginary part of a; with £;, the damping of the shear
Alfvén wave is proved to be almost entirely due to
electrons, through coefficients @, and G,. (The imagi-
nary part of u /e, can also be neglected since it is
smaller by a factor B, than these ones). It is interesting
to note that both coefficients arise in the calculation of

U,, which introduces the difference of velocity be-
tween electrons and ions. It corresponds to the well-
known idea that Landau damping originates in the
motion of electrons in the parallel electric field.

Referring to definitions of «, and G,, we find that

Ima,=ImG,=—i/7n/(2B.)
so that the damping has the simple expression :

4 4
ImF/Re F = - KESZ-:‘: VB2, ()

These results agree with numerical ones (fig. 3).
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Figure 2

Real part of the frequency versus wave number, for the three modes.
Analytical results (solid line) are compared 10 numerical ones
(crosses) in the following conditions : B, = 0.028, B, = 0.085 and
(B, k) =19
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Figure 3

Imaginary part of the frequency versus real part, in the same
conditions as in figure 2. Analyviical results (solid line) are compared
to numerical ones (crosses).

4) Compressional modes

We present now a last example of what can be done in
the frame of the same theory. At zeroth order in
K?, the dispersion equation of fast and slow modes are
easily obtained :

F?/K*=c*(G; B; + G.B,) Slow

F/K*=1+s[(1+a;)B;+ (1 +a,)B,] Fast.

These implicit equations (e, ; and G, ; depend on the
unknown F /K) provide both real and imaginary parts
of the solution. In the fluid case, which corresponds to
situations where £,> 1 and £, <1 (but notice that
these conditions are not verified for the same values
of B, . for each mode), these results write :

F[K*=c*(3B,+B,)  Slow
F’/K*=1+5(2B; + B,) Fast.
These results can be conside.red as identical to MHD
ones, provided that the v coefficients of this theory

are allowed to be different depending on the mode
v, =1 in both cases, but y; = 3 for slow mode and
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v; = 2 for fast mode. However, if we consider the
same range of parameters as for the shear Alfvén
mode (intermediate B case), the preceding fluid
inequalities are not always verified for the com-
pressional modes. Indeed, we have to consider the
more realistic assumptions :

(i) Slow mode : ¢£,<1 but & ~ 1.

The dispersion equation thus becomes :

F*/K*= cX(G; B; + B.) - (23)
It can be checked that this equation can be put in the
very convenient form : Z'(§;) = 2 T,/T} where Z' is
the derivative of the Fried and Conte function (Fried
and Conte, 1961). From the solution £; of
equation (23), the result can be drawn:

Re F = K¢[B; Re G, + B,]*?
ImF/ReF =12ImG; B,/(Re G; B; + B,) -

These solutions are plotted in figures 2 and 3, and the
comparison with numerical results is shown. The
agreement can be considered as good for results at
zeroth order in K> A point which is worth noticing is
that in this example, where we have chosen 7, =
3T, the slow compressional mode is drastically
damped by ions. The study of equation (23) confirms
that if we lessen 7, / T, the damping increases, reaching
40 % if T, = T;. These results, about the absorption of
the slow mode, although quite well-known, remind us
that a MHD dispersion relation containing the slow
mode solution but not its damping, must not be used
for plasmas where 7, <7,. We thus provide an
alternative simple dispersion equation which could be
used in these conditions. We think that this would be
of interest, for instance, for the study of the mag-
netopause Kelvin-Helmoltz instability where such
modes are supposed to exist (Southwood, 1968 ; Pu
and Kivelson, 1983).

(ii) Fast mode : €;> 1, but £, ~ 1.

In these conditions equation (19) leads to :

1+s5%(2 B; 12 3
Re F = K| — ( B:+:88) = BBKCE(
1— ps?/e? i
1mF/ReF=_\/'”’ Bes"§iexp— &

2 14528, +B.(1+2¢))
(24)

The damping is of course linked to electrons in this
case. The agreement with numerical results (figs. 2
and 3) is quite good in spite of the poor expansion
made.

4. CONCLUSION

The purpose of our study was to obtain theoretical
results for the low frequency ion modes that could be
easily compared with experimental data. That implied
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we could not make a priori assumptions concerning
the wave itself such as its polarization or its propaga-
tion direction, since these assumptions may be difficult
to verify in experimental situations. We have achieved
this program thanks to a theoretical procedure of a
two-fluid type : it allowed us to get the first order
Larmor radius effects without the usual kinetic cal-
culation, and also to obtain the damping of the modes
when completed by a kinetic closure. The main results
presented here concern the « kinetic » Alfvén wave,
in particular : (i) the curvature of the dispersion
relation may change and thus the parallel phase
velocity may be sub-Alfvénic or super-Alfvénic, de-
pending on the plasma temperature and propagation
angle ; (ii) although the wave has a linear polarization
for very low frequencies, when @ # 0 it has a circular
component which is not always left-handed (as in cold
plasma). Some results have also been inferred from
the same procedure for the dispersion and the damp-
ing of the compressional modes.

Beyond the results summarized above, we expect that
this paper might also be considered as a tool and allow
to infer many other results that could be needed for
interpreting experimental observations. For that pur-
pose we have tried to present the theoretical pro-
cedure as clearly and systematically as possible. For
instance, the study of the compressional mode proper-
ties could be carried on further just by changing the
expansion orders in the general matrices ; a tempera-
ture anisotropy could also be introduced in the same
frame, to investigate magnetosheath waves (Rodgers
et al., 1984) and possible mirror modes (Hasegawa,
1975), etc. Let us outline that a good knowledge of
the linear ion modes is also interesting for other
studies, non linear ones (knowledge of the dispersion
relation curvature) or weak discontinuities theory :
the fast and slow compressional modes can give rise to
fast and slow shocks, and the shear Alfvén mode to
rotational discontinuities (the coupling between slow
and shear modes in the degenerate case of purely
perpendicular propagation giving rise to tangential
discontinuities). A two-fluid theory of the type pre-
sented above could thus be useful for studying the role
of the «gyroviscous stress » in the magnetopause
equilibrium as suggested by Staciewicz (1986).
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APPENDIX I

COMPLETE EXPRESSION OF TENSOR P
P is defined by:
I-5'/p=K/FP-%/V,

and calculated when 5‘ is taken at zeroth order in
k. p.
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We use the condensed notations :

c=cos @,
F-‘—“’/ch" K=kVA/mu-,

E=0/(V2KVy), a=-£Z(),
a'=28(a—1), a"=2£(a’'-1),
52

* __ P
d; _1/[1 F (1+2§262)],
dy=1/(1 - F*/4).

s=sin@,

Then :
P.=(0+a)s’-

Fls% s car (148 @-1) (141
s 5I+c1(+?(a—))(+2

=

§2

APPENDIX 11

LOW FREQUENCY EXPANSION

Here are some of the intermediate steps of the calculation
defined in section 3.1. (a, a’, a” are defined in section

sl +&,)

iFs®

52
P,,-:sc[]-—del*(l—ﬁ)]
&t
iF zdz 2 1% 53 1
Pg=i S5 rc d; lf?(a—)
dZ 52
2] .2 r
P”.=—F[sz+cd1*(i+m)]
P,, = iFscdf
,df s
sz=SCI_F 7 l-‘r—,(a—l)
(44 c”
P, = —iFscdf/a’
Pzz=anc2/ar_F252diu/a:

of the propagation matrix in the case of the expansion
25and G=a"/a’).

_ r/(2€) sc
P 0 0 0
sC —iFscp/a; G.c*
[ 2.2 1
21 + a.) _irst| K€ ol sc
o F? 2 ¢
P,-U,= 0 0 0
3.2
sc —fFSC[K—Fg—(l Ge)+,u,/oc;] G, c
(1 + @) —f(n 2—‘—,) s
2 i
- : 2 2
P, = %[l+cz+252(a;—1)] ——(1+3c2+252) iFsc
sc —iFsc/a} G ¢’
2 l 2 2 —
51+ ¢ - 1+c—-——-—_) sc
. ot
TP = _2[1-38_252%(1-’(}:')] A B
sc —iFsc/a] G, ¢
2 2 % 2 2 2 \] -
“ahere A:—i 1+362+2—i“_‘21<_-,c 2'1,‘ _Cz+—_—; E
4 = o ¥ 2¢& ]
2.2
and B =iFsc[l+KF§ (G,—l)].
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