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Clifford bundles: a unifying framework for images, vector fields and orthonormal frame fields regularization.

of initial condition I : (x 1 , x 2 ) -→ (I 1 (x 1 , x 2 ), • • • , I n (x 1 , x 2 )) a n-channels image, where f jk are real functions. We refer to [START_REF] Tschumperlé | Vector-valued Image Regularization with PDE's: A Common Framework for Different Applications[END_REF] for an overview on related works. From a geometric viewpoint, the set of right terms, for i = 1 • • • n, may be viewed as a second-order differential operator acting on sections of a vector bundle over a Riemannian manifold called a generalized Laplacian H [START_REF] Berline | Heat Kernels and Dirac Operators[END_REF]. As a consequence, it ensures existence and uniqueness of a kernel K t (x, y, H), called the heat kernel of H, generating the solution of the heat equation

∂I t ∂t + HI t = 0 (1.1)
from a 'convolution' with the initial condition I. A generalized Laplacian H on a vector bundle E over a Riemannian manifold X is determined by three pieces of data: the metric g of the base manifold X that determines the second order part, a connection on E that determines the first order part, and a zero-order operator F that determines the zero order part. For instance, the so-called oriented Laplacians can be viewed as generalized Laplacians [START_REF] Batard | Heat kernels of generalized Laplacians[END_REF]. Similarly, on the vector bundle C ∞ (X, g) of smooth functions on a Riemannian manifold (X, g), there is a canonical generalized Laplacian, the scalar Laplacian, which corresponds to the Laplace-Beltrami operator up to a sign. Considering each component I k of a multichannel image as a function over a well-chosen Riemannian manifold, the heat equation associated to the scalar Laplacian leads to the Beltrami flow of Sochen et al. in the context of image regularization [START_REF] Sochen | A General Framework for Low Level Vision[END_REF], [START_REF] Spira | A Short-time Beltrami Kernel for Smoothing Images and Manifolds[END_REF]. The aim of this paper is to extend the Beltrami flow on C ∞ (X, g) to vector fields and oriented orthonormal frame fields (i.e. SO(n)-valued fields) on (X, g).

Regularization of non-scalar fields such as vector fields and manifold-valued fields has been widely investigated in the last few years. Concerning vector fields, we may refer to [START_REF] Diewald | Anisotropic Diffusion in Vector Field Visualization on Euclidean Domains and Surfaces[END_REF], [START_REF] Tschumperlé | Vector-valued Image Regularization with PDE's: A Common Framework for Different Applications[END_REF], where the smoothing is made through the smoothing of a corresponding multichannel image and where the anisotropy is controlled at each point by the orientation of the vector field. More precisely, an oriented Laplacian is applied on each component of the image. The regularization of SO(n)-valued fields has been treated in [START_REF] Gur | Regularizing Flows over Lie Groups[END_REF] in the context of principal bundles using a geometric flow on the SO(n) group, and in [START_REF] Tschumperlé | Orthonormal vector sets regularization with PDE's and applications[END_REF] using a minimization problem with orthogonal constraints. For n = 2, this is the problem of orientations regularization, treated in [START_REF] Kimmel | Orientation Diffusion or How to Comb a Porcupine?[END_REF], [START_REF] Perona | Orientation Diffusions[END_REF], [START_REF] Tang | Diffusion of General Data on Non-Flat Manifolds via Harmonic Maps Theory: The Direction Diffusion Case[END_REF]. More generally, regularization of symmetric definite positive matrice fields were proposed in [START_REF] Gur | Fast GL(n)-Invariant Framework for Tensors Regularization[END_REF], [START_REF] Pennec | A Riemannian Framework for Tensor Computing[END_REF] and of Stiefel manifolds in [START_REF] Chefd'hotel | Regularizing flows for Constrained Matrix-Valued Images[END_REF], [START_REF] Edelman | The Geometry of Algorithms with Orthogonality Constraints[END_REF], all of them using geometric flows on manifolds.

In [START_REF] Chefd'hotel | Regularizing flows for Constrained Matrix-Valued Images[END_REF], [START_REF] Diewald | Anisotropic Diffusion in Vector Field Visualization on Euclidean Domains and Surfaces[END_REF], [START_REF] Tschumperlé | Vector-valued Image Regularization with PDE's: A Common Framework for Different Applications[END_REF], [START_REF] Tschumperlé | Orthonormal vector sets regularization with PDE's and applications[END_REF], the behaviour of the flow is determined by the field itself. In [START_REF] Edelman | The Geometry of Algorithms with Orthogonality Constraints[END_REF], [START_REF] Gur | Regularizing Flows over Lie Groups[END_REF], [START_REF] Gur | Fast GL(n)-Invariant Framework for Tensors Regularization[END_REF], [START_REF] Pennec | A Riemannian Framework for Tensor Computing[END_REF], it is determined by the choice of a Riemannian metric on the manifold too. In this paper, we make use of an additional geometric structure, called a connexion. Roughly speaking, a connection is a way to differentiate sections of a vector bundle. An example of connexion is the Levi-Cevita connection on the tangent bundle of a Riemannian manifold. By the use of heat equations on vector bundles in this paper, the behaviour of the diffusion is completely determined by the geometry of the vector bundle where the fields are considered as sections. By geometry of vector bundle, we mean a metric on the base manifold and a connection on the vector bundle. More precisely, the metric of the base manifold determines the anisotropy of the diffusion, whereas the connection determines the data averaged by the diffusion by the use of the transport parallel map.

In this paper, we extend the Beltrami flow to vector fields and orthonormal frame fields by extending the Laplace-Beltrami operator to vector fields and generators of orthonormal frame fields, i.e. fields with values in the Lie algebra so(n) of SO(n).

For this, we consider Clifford bundles, that are vector bundles where the fibers are endowed with a Clifford algebra structure. Clifford algebras framework [START_REF] Chevalley | The Algebraic Theory of Spinors and Clifford Algebras[END_REF], [START_REF] Hestenes | Clifford Algebra to Geometric Calculus[END_REF] finds a wide range of applications in computer science [START_REF] Sommer | Geometric Computing with Clifford Algebras[END_REF]. Application of Clifford bundles to image processing was introduced in [START_REF] Batard | A Metric Approach to nD Images Edge Detection with Clifford Algebras[END_REF] where the Di Zenzo's gradient, devoted to multichannel image segmentation, is generalized using covariant derivatives instead of usual derivatives.

We show that Clifford bundles provide a common framework to treat functions, vector fields, orthonormal frame fields and their generators over manifolds. We also give a general method to construct generalized Laplacians on Clifford bundles such that the subsequent heat equation gives a tool to regularize functions, vector fields and orthonormal frame fields. Even though we only treat the case of SO(n)-valued fields in this paper, we expect that the method we propose allows to treat and regularize fields with values in connected components of much more Lie groups. Indeed, a lot of Lie groups and their Lie algebras have representations in Clifford algebras [START_REF] Doran | Lie Groups as Spin Groups[END_REF], [START_REF] Hestenes | Clifford Algebra to Geometric Calculus[END_REF].

This paper is organized as follows. In Section 2, we treat the problem of approximations of heat equations solutions. We discuss both continuous and discrete settings. We treat the particular case of the scalar Laplacian, and relate it with the Laplace-Beltrami operator. In Section 3, we first introduce Clifford bundles, and show that functions, vector fields and generators of orthonormal frame fields can be viewed as sections of a Clifford bundle. Moreover, we show that rotation fields can be lifted to sections of a Clifford bundle called spinor fields. Then, we show how to construct generalized Laplacians leading to functions, vector fields and orthonormal frame fields regularization from connections compatible with metrics of vector bundles. Dealing with particular Clifford bundles, we construct Clifford-Beltrami and Clifford-Hodge operators. In Section 4, we consider base manifolds of dimension 2. We compare diffusions provided by Clifford-Beltrami and Clifford-Hodge flows in the context of image processing with applications to image, 2D vector fields and orientation fields regularization. The first Appendix is devoted to differential geometry of vector bundles. We give definitions of notions used throughtout the paper. In the second one, we introduce heat equations on vector bundles. In the last Appendix, we detail the construction of Clifford algebras and give their main properties. We also explain how orthogonal transformations can be represented in the Clifford algebras context using the spinor group Spin(n).

2. Approximation of generalized heat equations solutions.

2.1. The continuous setting. Generally speaking, for arbitrary base manifold (X, g) and vector bundle E, there is no explicit formula for the heat kernel K t (x, y, H) of a generalized Laplacian H on E. As a consequence, there is no explicit formulae for solutions of the corresponding heat equation.

However, there exist kernels K N t (x, y, H), for N ∈ N, approximating the heat kernel of H on normal neighborhoods of the base manifold, for small t. Based on these results, solutions of generalized heat equations may be approximated for small t by the convolution of the initial condition with such kernels.

In this paper, we approximate the heat kernel of H by the kernel K 0 t (x, y, H) defined by

Å 1 4πt ã m/2 e -d(x,y) 2 /4t Ψ(d(x, y) 2 ) τ (x, y) J(x, y) -1/2
where m is the dimension of the base manifold X, and d stands for the geodesic distance on X related to the Levi-Cevita connection on (T X, g). Ψ is a function such that the term Ψ(d(x, y) 2 ) equals 1 if y is inside a normal neighborhood of x and 0 otherwise. Hence we may assume that y is inside a normal neighborhood of x. The map τ (x, y) is the parallel transport map on E related to the connection ∇ E such that H = ∆ E + F (see Appendix B) along the unique geodesic joining y and x. Indeed, on normal neighborhoods, there is a unique geodesic joining any point to the origin. At last, J are the Jacobians of the coordinates changes from usual coordinates systems
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to normal coordinates systems.

Hence, we approximate the solution e -tH u of the heat equation ∂u t /∂t + Hu t = 0, of initial condition

u 0 = u, at x ∈ X by k 0 t u(x) = (1/4πt) m/2 × X e -d(x,y) 2 /4t Ψ(d(x, y) 2 ) τ (x, y) u(y) J(x, y) -1/2 dy
Remark: Whereas the heat kernel K t (x, y, H) of a generalized Laplacian H is unique, there is no one-one correspondance between H and the kernel K 0 t (x, y, H) approximating its heat kernel. Indeed, K 0 t (x, y, H) only depends of the Riemannian metric g on X and the connection ∇ E on E such that H = ∆ E + F . Then given F 1 a zero-order operator on E and the generalized Laplacian

H 1 = ∆ E + F 1 , we have K 0 t (x, y, H) = K 0 t (x, y, H 1 )
2.2. The discrete setting. For the purpose of applications to image processing, we discretize the computation of k 0 t u. We proceed by discrete convolutions with masks.

Considering the standard Laplacian ∆ on R 2 , the gaussian kernel G t (x, y) is the heat kernel K t (x, y, ∆) of ∆. This means that the solution u t of the heat equation ∂u t /∂t = ∆u t of initial condition u 0 = u is given by the convolution of u with the Gaussian kernel

e -t∆ u(x) = Å 1 4πt ã R 2
e -x-y 2 /4t u(y) dy

The Gaussian kernel has an infinite support and satisfies the property

Å 1 4πt ã R 2 e -x-y 2 /4t dy = 1
In practice, the discrete Gaussian kernel is truncated such that G t ((i, j), (k, l)) = 0 if the pixel (k, l) is outside a given neighborhood N (i,j) of the pixel (i, j) (e.g. 5 × 5 neighborhood), and normalized inside N (i,j) , i.e.

G t ((i, j), (k, l)) = (1/4πt) e -(i,j)-(k,l) 2 /4t N (i,j) (1/4πt) e -(i,j)-(m,n) 2 /4t
Hence, the discrete approximation of e -t∆ u at a pixel (i, j) is given by the discrete convolution of u with such a mask. More precisely, we have (e -t∆ u)(i, j)

(k,l)∈N (i,j) G t ((i, j),(k, l)) u(k, l)
More generally, the kernel

Q t (x, y) = Å 1 4πt ã e -d(x,y) 2 /4t Ψ(d(x, y) 2 ) J(x, y) -1/2
on (X, g) may be viewed as the Riemannian counterpart of the Gaussian kernel on R 2 . Indeed, dealing with normal coordinates around a point x, they take both the form Å 1

4πt

ã e -y 2 /4t
where y are the normal coordinates of y.

Based on this observation, we propose to adapt the above method, devoted to compute a discrete approximation of e -t∆ u on R 2 , in order to compute more generally a discrete approximation of k 0 t u on (X, g) of dimension 2. This generalization requires the construction of discrete geodesic curves and normal neighborhoods.

For this, we use the following definitions and results on differential geometry of manifolds (see Appendix A and [START_REF] Helgason | Differential geometry, Lie groups, and symmetric spaces[END_REF] for more details).

1. Let X be a manifold equipped with a connection ∇ on its tangent bundle T X. The curve γ on X is said to be autoparallel if it satisfies ∇ γ γ = 0.

2. Normal neighborhoods may be characterized as neighborhoods where each point is joined to the origin by a unique autoparallel curve.

3. Dealing with a Riemannian manifold X equipped with the Levi-Cevita connection on its tangent bundle, an autoparallel curve on X is called a geodesic.

Then we construct geodesic curves from (i, j) and a normal neighborhood V (i,j) of (i, j) as follows.

Let us first fix a neighborhood N (i,j) of the pixel (i, j) (e.g. the 5 × 5 neighborhood of (i, j)). For each p, q ∈ {-1, 0, 1} such that (p, q) = (0, 0), we construct the geodesic γ such that γ(0) = (i, j) and γ(0) = (p, q) by solving a discrete counterpart of the parallel transport of γ along γ related to the Levi-Cevita connection on T X. Then, we state that a point (k, l) ∈ N (i,j) belongs to V (i,j) if it belongs to a unique geodesic from (i, j) and if it does not follow a point on this geodesic that belongs to several geodesics from (i, j).

Hence, we truncate Q t ((i, j), (k, l)) in such a way that Q t ((i, j), (k, l)) = 0 if (k, l) is outside V (i,j) , and we normalize it inside V (i,j) , i.e.

Q t ((i, j), (k, l)) = (1/4πt) e -d((i,j)-(k,l)) 2 /4t V (i,j) (1/4πt) e -d((i,j)-(m,n)) 2 /4t
Therefore, the discrete approximation of k 0 t u at a pixel (i, j) is given by the discrete convolution of the map (k, l) -→ τ ((i, j), (k, l)) u(k, l) with a such a mask. More precisely, we have

k 0 t u(i, j) (k,l)∈V (i,j)
Q t ((i, j), (k, l)) τ ((i, j),(k, l))u(k, l)

Remark: Let us consider the operator k 1 t u associated to the kernel K 1 t (x, y, H) approximating the heat kernel of H. In the continuous setting, we have

(k 1 t u)(x) = X K 1 t (x, y, H)u(y)dy = 1 4πt X e -d(x,y) 2 /4t Ψ(d(x, y) 2 ) (τ (x, y) + tΦ 1 (x, y, H)) u(y) J(x, y) -1 2 dy
In the discrete setting, we obtain

k 1 t u(i, j) (k,l)∈V (i,j) Q t ((i, j), (k, l)) [τ ((i, j),(k, l)) + t Φ 1 ((i, j), (k, l), H)] u(k, l)
Considering the neighborhood V i,j := {(i, j)} of the pixel (i, j), we have

k 1 t u(i, j) u(i, j) + t Φ 1 ((i, j), (i, j),H) u(i, j) Moreover, we have Φ 1 ((i, j), (i, j), H) = -J 1/2 • H • J -1/2 ((i, j), (i, j)).
From the property J(x, y) = 1 + O( y 2 ) where y are the normal coordinates of y around x,

(see [START_REF] Berline | Heat Kernels and Dirac Operators[END_REF] Chapter 1), we can assume in the discrete setting that J = 1 near the diagonal. Therefore, it gives Φ 1 ((i, j), (i, j), H) = -H, and

k 1 t u(i, j) u(i, j) -t Hu(i, j) (2.1)
Finally, we obtain the Euler scheme of the PDE ∂u t ∂t + Hu t = 0, u 0 = u 2.3. Example: the scalar/Beltrami Laplacian. The Laplace-Beltrami operator can be viewed as a generalized Laplacian called the scalar Laplacian. Definition 2.1. Let E be a vector bundle of rank 1 over a Riemannian manifold (X, g), endowed with the connection ∇ E = d + ω with ω ≡ 0. The scalar Laplacian is the connection Laplacian on E associated to the connection ∇ E .

In local frames ∂

i := ∂/∂x i of T X and e 1 of E, it is defined by ∆(f e 1 ) = - ij g ij ∂ i ∂ j - k Γ k ij ∂ k f e 1 (2.2)
where f ∈ C ∞ (X), and Γ k ij are the symbols of the Levi-Cevita connection of (T X, g) with respect to the frame ∂ i .

In the following Proposition, we determine the parallel transport map on E related to the connection ∇ E . Proposition 2.2. Let (X, g), E and ∇ E of Definition 2.1, γ be a C 1 curve in X such that γ(0) = y. The parallel transport Y along γ of the vector

Y 0 = Y 1 0 e 1 (y) is Y (t) = Y 1 0 e 1 (γ(t)).
Proof. The parallel transport of Y 0 along γ is the solution

Y (t) = Y 1 (t)e 1 (γ(t)) of the differential equation    ∇ E γ Y (t) = 0 Y (0) = Y 0 (2.3) ∇ E γ Y (t) = ∇ E γ (Y 1 e 1 )(t) = ∂Y 1 ∂t (t) e 1 (γ(t))
Finally, we obtain an ordinary differential equation

     ∂Y 1 ∂t (t) = 0 Y 1 (0) = Y 1 0
from which we deduce the solution of (2.3).

In other words, the parallel transport has no effect on coordinates. As a consequence, the kernel K 0 t (x, y, ∆) equals Å 1 4πt ã m/2 e -d(x,y) 2 /4t Id(x, y) (2.4) on normal neighborhoods of x, where Id(x, y) : E y -→ E x acts as the Identity map on coordinates.

The Laplace-Beltrami operator ∆ g is the differential operator of order 2 acting on smooth functions on a Riemannian manifold (X, g), and defined by

∆ g (f ) = 1 √ g jk ∂ j ( √ gg jk ∂ k f )
Considering the set C ∞ (X) of smooth functions on X as a trivial vector bundle of rank 1 over (X, g) endowed with the connection ∇ E determined by the 1-form ω = 0, we have

∆ g = -∆
This makes the PDE's ∂f /∂t = ∆ g f and ∂f e 1 /∂t + ∆ f e 1 = 0 be equivalent.

The PDE ∂f /∂t = ∆ g f appears in the Beltrami framework in the context of image regularization [START_REF] Sochen | A General Framework for Low Level Vision[END_REF], [START_REF] Spira | A Short-time Beltrami Kernel for Smoothing Images and Manifolds[END_REF]. In [START_REF] Sochen | A General Framework for Low Level Vision[END_REF], the solution is approximated by an Euler scheme of the form (2.1), whereas in [START_REF] Spira | A Short-time Beltrami Kernel for Smoothing Images and Manifolds[END_REF] the solution is approximated by the convolution of the initial condition with a kernel of the form (2.4).

3. Clifford bundles over Riemannian manifolds: a common framework to regularize functions, vector fields, and oriented orthonormal frame fields.

3.1. Clifford bundles: a common framework to treat functions, vector fields and oriented orthonormal frame fields on manifolds. In this section, we show that we can consider functions, vector fields and generators of rotation fields on a manifold X as sections of a trivial Clifford bundle Cl(E, h) over X. Moreover, we can also lift rotation fields to sections of Cl(E, h) called spinor fields. Definition 3.1 (Clifford bundle). Let E be a vector bundle of rank n over a manifold X, and equipped with a metric h. The Clifford bundle Cl(E, h) of (E, h) is the quotient bundle

Cl(E, h) = T (E) I(E, h)
where T (E) is the bundle whose fiber at x ∈ X is the tensor algebra of E x and I(E, h) is the bundle whose fiber at x ∈ X is the two-sided ideal

I(E x , h x ) in T (E x ), generated by elements v ⊗ v + h x (v, v) for v ∈ E x .
We obtain a bundle of rank 2 n over X whose fibers are endowed with a Clifford algebra structure, and the fiberwise multiplication in Cl(E, h) gives an algebra structure to the space Γ(Cl(E, h)) of sections of Cl(E, h).

More precisely, let (e 1 , • • • , e n ) be a local oriented orthonormal frame field of (E, h) on Ω ⊂ X. Then, any section s of Cl(E, h) takes the form

s = s 0 1 + k=1•••n i1<•••<i k s i1•••i k e i1 • • • e i k on Ω, for some functions s 0 , s i1•••i k ∈ C ∞ (Ω).
Example: Let X be a manifold of dimension m endowed with a metric g on its tangent bundle T X. The couple (T X, g) induces a Clifford bundle Cl(T X, g) over X of rank 2 m . The graduation on Clifford algebras carry over Clifford bundles. We denote by Γ

(Cl(E, h) k ) the set of sections s of Cl(E, h) such that s(x) is a k-vector ∀x ∈ X.
Let x ∈ X. From the embeddings of R and E x into the Clifford algebra Cl(E x , h(x)), both functions on X and sections of E may be viewed as sections of the Clifford bundle Cl(E, h). More precisely, we have the identifications

C ∞ (X) Γ(Cl(E, h) 0 ) Γ(E) Γ(Cl(E, h) 1 )
Let us denote by Γ(P SO(E, h)) the set of smooth oriented orthonormal frame fields of (E, h). On a local trivialization U of (E, h), we have the identifications

Γ(P SO(E |U , h |U )) C ∞ (U, SO(n)) Γ(Cl(E |U , h |U ) 2 ) C ∞ (U, so(n))
the latter arising from the Lie algebra isomorphism spin(n) so(n). We call such fields generators of oriented orthonormal frame fields.

From these identifications, functions, vector fields and generators of rotation fields on X may be viewed as sections of a trivial Clifford bundle Cl(E, h) X × R n,0 , respectively of degree 0,1,2.

Indeed, a vector-valued function

v : X -→ R n of components (v 1 , • • • , v n ) may be viewed as a section V of the trivial vector bundle (E, 2 ) = X × R n of the form V (x) = (x, (v 1 (x), • • • , v n (x)))
and consequently as a section of the trivial Clifford bundle Cl(E, 2 ) = X × R n,0 of the form

V (x) = (x, (0, v 1 (x), • • • , v n (x), 0, • • • , 0))
This construction may be generalized endowing the vector bundle E of a definite metric h, in such a way that v may be viewed as a section V of a trivial vector bundle (E, h) X × R n . Let (e 1 , • • • , e n ) be an oriented orthonormal frame field of E with respect to h, and φ be the global trivialization of (E, h) such that

V (x) = V 1 (x)e 1 (x) + • • • + V n (x)e n (x) = φ(x, (v 1 (x), • • • , v n (x))) where (V 1 (x), • • • , V n (x)) are the components of the vector (v 1 (x), • • • , v n (x)) in the basis (e 1 (x), • • • , e n (x)
). As a consequence, v may be viewed as a section of the trivial Clifford bundle Cl(E, h) X × R n,0 of global trivialization Φ, of the form

V (x) = V 1 (x)e 1 (x) + • • • + V n (x)e n (x) = Φ(x, (0, v 1 (x), • • • , v n (x), 0, • • • , 0))
Then, we treat the case of rotation fields and their generators. Let r : X -→ SO(n) be a rotation field on X, considered as a section of the principal bundle X× SO(n) over X. From the covering ξ : Spin(n) -→ SO(n), r may be lifted to a spinor field s, i.e. a section of the principal bundle X× Spin(n). By the embedding of Spin(n) into R n,0 , we have X× Spin(n) ⊂ X × R n,0 . Hence we can consider s as a section of the trivial Clifford bundle X × R n,0 . Moreover, from the Lie algebra isomorphism so(n) R 2 n,0 , we can consider generators of rotation fields on X as sections s of X × R n,0 of the form

s(x) = (x, i<j a ij (x) e i e j )
for some functions a ij , where e i e j ∈ R 2 n,0 are induced by an orthonormal basis

(e 1 , • • • , e n ) of (R n , 2 ).
If we denote by exp the exponential map of Spin(n), the section s given by

s(x) = (x, exp( i<j a ij (x) e i e j ))
is a lifting of the rotation field r, i.e. we have

r(x) = (x, ξ • exp( i<j a ij (x) e i e j ))
Let us detail the construction of the section s. From the matrix representation of SO(n), we can construct generators of rotations r(x), x ∈ X, by the computation of log • r(x) where log : SO(n) -→ so(n) is the logarithm map of the Lie group SO(n). It gives a field of antisymmetric matrices on X. Then the Lie algebra isomorphism so

(n) -→ R 2 n,0 maps log • r(x) = i<j 2a ij (x)E ij to i<j a ij (x) e i e j
We identify the last expression with the section

s(x) = (x, i<j a ij (x) e i e j ))
of X × R n,0 .

Remark: For n ≥ 3, the lifting of the rotation field r to a spinor field s is not unique, due to the 2-sheeted covering Spin(n) -→ SO(n). Moreover, as the exponential map of the group SO(n) is not injective for any n, the field s generating the field r is not unique.

Example:

The case n = 2.
The lifting of a rotation field r to a spinor field s is unique from the isomorphism SO(2) Spin(2). Indeed, the field θ lifts to cos(θ) + sin(θ)e 1 e 2 . For any k ∈ Z, the field

s = (θ + 2kπ)e 1 e 2
is a generator of the field θ.

At last, any scalar field f : X -→ R may be viewed as a section F of a trivial vector bundle Cl(E, h) X × R n,0 of the form

F (x) = f (x)1(x)
In this paper, we are interested in the regularization of functions, vector fields and rotation fields over manifolds. By the above constructions, we can apply the context of heat equations on Clifford bundles to regularize these fields. By this approach, we can control the anisotropy of the regularization by the choice of a Riemannian metric of the base manifold X and the data we regularize by the choice of a connection on the Clifford bundle Cl(E, h), for a well-chosen metric h.

Through the regularization of sections of degree 0, resp. 1, we can regularize functions and vector fields over X. We propose to regularize rotation fields through the regularization of their generators, i.e. sections of degree 2 of Cl(E, 2 ) = X × R n,0 . Indeed, as mentioned above, we can construct a generator s ∈ Γ(Cl(E, 2 ) 2 ) of a rotation field r on X. The regularization of s provides sections st,t≥0 of the form

st (x) = (x, i<j a ij (t, x)e i e j )
Then computing

r t (x) = (x, ξ • exp( i<j a ij (t, x)e i e j ))
we obtain rotation fields r t,t≥0 on X regularizing the initial field r.

Finally, this general method only requires that the regularization process preserves the structure of function, vector field and generator of rotation field. Hence we are looking for heat equations preserving the graduation of Clifford bundles. More precisely, we are looking for PDEs of the form

∂s t ∂t + Hs t = 0
where H is a generalized Laplacian on Cl(E, h) preserving the graduation, i.e.

H : Γ(Cl(E, h) k ) -→ Γ(Cl(E, h) k ).
In the sequel, we show that such differential operators can be constructed from connections preserving the graduation. These connections can be constructed from connections on E compatible the metric h.

3.2.

Connections preserving the graduation. Let E be a vector bundle of rank n equipped with a metric h over a manifold X. Proposition 3.2. A connection ∇ E on E compatible with the metric h induces a connection ∇ C on the Clifford bundle Cl(E, h) preserving the graduation, i.e. a connection satisfying ∀k ∈ {0 • • • n}

∇ E ϕ ∈ Γ(T * X ⊗ Cl(E, h) k ) if ϕ ∈ Γ(Cl(E, h) k )
Proof. Any connection ∇ E on E may be extended in a unique way to a connection ∇ on T (E) by linearity and postulation of the Leibniz rule. For U ∈ Γ(T X) and V ∈ Γ(E), we have For the right term we obtain

∇ U (V ⊗ V -h(V, V )) = 1 2 (∇ U V + V ) ⊗ (∇ U V + V ) -h(∇ U V + V, ∇ U V + V ) - 1 2 (∇ U V -V ) ⊗ (∇ U V -V ) -h(∇ U V -V, ∇ U V -V ) (3.
∇ U V ⊗ V + V ⊗ ∇ U V -2h(∇ U V, V )
Developping the left term we have

∇ U (V ⊗ V -h(V, V )) = ∇ U V ⊗ V + V ⊗ ∇ U V -d U h(V, V )
However, by definition of a connexion compatible with the metric of a vector bundle, we have for any U ∈ Γ(T X) and W, Z ∈ Γ(E)

d U h(W, Z) = h(∇ U W, Z) + h(W, ∇ U Z) Then, taking W = Z = V , it gives d U h(V, V ) = 2h(∇ U V, V )
and the equality (3.1) is proved.

As the right term of (3.1) belongs to Γ(I(E, h)), it proves that ∇ preserves the Γ(I(E, h)).

We deduce that ∇ induces a connection ∇ C on Cl(E, h). Indeed, for a, b ∈ Γ(T (E)) in the same equivalence class (denoted by ȧ = ḃ), we have

∇ U b = ∇ U (a + I 1 ) for some I 1 ∈ Γ(I(E, h)). Hence ∇ U b = ∇ U a + I 2 for some I 2 ∈ Γ(I(E, h)). Therefore ∇ (a) = ∇ (b)
, and ∇ C is well-defined.

Let ϕ, ψ ∈ Γ(Cl(E, h)). By definition, there exist a, b ∈ Γ(T (E)) such that ϕ = ȧ and ψ = ḃ. Then,

∇ C (ϕ ψ) = ˙ ∇(a ⊗ b) = ˙ ∇(a) ⊗ b + a ⊗ ∇(b) = ˙ ∇(a) ⊗ b + ˙ a ⊗ ∇(b) = ∇ (a) ḃ + ȧ ∇ (b) = ∇ C (ϕ)ψ + ϕ∇ C (ψ)
from which follows that ∇ C preserves the graduation.

Remark: Dealing with the tangent bundle (T X, g) of a Riemannian manifold, the Levi-Cevita connection ∇ on (T X, g) is compatible with g. It follows that ∇ induces a connection ∇ C on Cl(T X, g) preserving the graduation [START_REF] Blau | Connections on Clifford bundles and the Dirac operator[END_REF].

As a consequence, from a connection compatible with the metric h on E and a zero-order operator F on Cl(E, h) preserving the graduation, we can construct a generalized Laplacian H on Cl(E, h) preserving the graduation, by the formula (see Appendix B)

H = ∆ C + F
where ∆ C is the connection Laplacian related to the connection ∇ C on Cl(E, h) induced by the connection ∇ E .

By this method, we construct in the sequel two generalized Laplacians on Clifford bundles preserving the graduation, and restricting to the Laplace-Beltrami on functions (i.e. sections of degree 0), called Clifford-Beltrami and Clifford-Hodge operators.

3.3. The Clifford-Beltrami operator. Let X be a manifold of dimension m, endowed with a Riemannian metric g on its tangent bundle T X. Over the Riemannian manifold (X, g), we consider the vector bundle T X endowed with the metric g given by the identity matrix I m in local frames (∂/∂x 1 , • • • , ∂/∂x m ) induced by local coordinates system (x 1 , • • • , x m ) on X. The vector bundle (T X, g) over X induces a Clifford bundle Cl(T X, g) over X. A local section s of Cl(T X, g) is of the form

s = s 0 1 + k=1•••m i1<•••<i k s i1•••i k ∂/∂x 1 • • • ∂/∂x k for some functions s 0 , s i1•••i k ∈ C ∞ (X).
The Levi-Cevita connection ∇ on (T X, g) is determined by ω ≡ 0 by construction of g. From Section 3.2, it induces an algebra connection ∇ C on Cl(T X, g) satisfying

∇ C s = ds 0 1 + k=1•••m i1<•••<i k ds i1•••i k ∂/∂x 1 • • • ∂/∂x k
In fact, ∇ C corresponds in this particular case to the differentation of components on Γ(Cl(T X, g)).

Then we construct the connection Laplacian ∆ C on Cl(T X, g) related to ∇ C . It takes the form

∆ C (s) = -∆ g s 0 1 - k=1•••m i1<•••<i k ∆ g s i1•••i k ∂/∂x 1 • • • ∂/∂x k
It consists in the action of minus the Laplace-Beltrami operator related to g on each component of a section. In this paper, we call this operator the Clifford-Beltrami operator.

As the Clifford-Beltrami operator is a generalized Laplacian, we may consider the corresponding heat equation, whose solution are provided by the convolution of the initial conditions with the heat kernel K t (x, y, ∆ C ) of ∆ C . Definition 3.3. Let s ∈ Γ(Cl(T X, g)). The Clifford-Beltrami flow of s is the solution s t, t≥0 of the heat equation

∂s t ∂t + ∆ C s t = 0, s 0 = s
Then, as the Clifford-Beltrami operator preserves the graduation on Cl(T X, g), it preserves the structures of function, vector field and generator of orthonormal frame field. As a consequence, the Clifford-Beltrami flow provides a common tool to regularize functions, vector fields and oriented orthonormal frame fields.

3.4. The Clifford-Hodge operator. Let (X, g) be a Riemannian manifold. We denote by T * X the vector bundle of differential forms on (X, g). The vector space isomorphism (C.2) between V * and Cl(V, Q) carries over vector bundles. It follows a canonical vector bundle isomorphism between T * X and Cl(T X, g) that maps differential forms of degree k to sections of degree k of Cl(T X, g).

The Hodge Laplacian ∆ is a generalized Laplacian acting on differential forms on a Riemannian manifold (X, g). It is defined by

∆ = dδ + δd
where d is the exterior derivative operator and δ its formal adjoint [START_REF] Rham | Variétés différentiables: Formes, Courants, Formes harmoniques[END_REF]. In particular, when applied to 0-forms, i.e. functions, ∆ corresponds to minus the Laplace-Beltrami operator.

Under the identification between T * X and Cl(T X, g), the Hodge Laplacian can also be applied to Γ(Cl(T X, g)), and consequently to vector fields and generators of orthonormal frame fields. In the context of Clifford bundles, we call this operator the Clifford-Hodge operator. It is defined as the square of a first order differential operator called the Dirac operator. Definition 3.4. Let ∇ C be the connection on Cl(T X, g) induced by the Levi-Cevita connection on (T X, g). Let (e 1 , • • • , e m ) be a local oriented orthormal frame field of T X with respect to g. The Dirac operator is the first-order differential operator D : Γ(Cl(T X, g)) -→ Γ(Cl(T X, g)) defined locally by

Dσ = m i=1 e i ∇ C e i σ (3.2)
This definition is independant of the choice of the local oriented orthonormal frame field.

By the Bochner identity, the Clifford-Hodge operator D 2 is a generalized Laplacian on Cl(T X, g) preserving the graduation. Indeed, we have

D 2 = ∆ C + i<j e i e j R ei,ej
where i<j e i e j R ei,ej is a zero-order operator preserving the graduation. The term R ei,ej is called the curvature transformation of ∇ C associated to e i and e j [START_REF] Lawson | Spin Geometry[END_REF].

As the operator D 2 is a generalized Laplacian, we may consider the corresponding heat equation, whose solution are provided by the convolution of the initial conditions with the heat kernel K t (x, y, D 2 ) of D 2 .

Definition 3.5. Let s ∈ Γ(Cl(X, g)). The Clifford-Hodge flow of s is the solution s t,t≥0 of the heat equation

∂s t ∂t + D 2 s t = 0, s 0 = s
Then, as the Clifford-Hodge operator preserves the graduation on Cl(T X, g), it preserves the structures of function, vector field and generator of orthonormal frame field. As a consequence, the Clifford-Hodge flow provides a common tool to regularize functions, vector fields and oriented orthonormal frame fields.

Applications.

In this paper, we approximate the solution of the heat equation associated to a generalized Laplacian H by the convolution of the initial condition with the kernel K 0 t (x, y, H) approximating the heat kernel of H near the diagonal. This kernel is determined by the tranport parallel map associated to the connection ∇ E such that H = ∆ E + F (see Appendix B), and by geodesic distances on the base manifold. In this Section we compute parallel transport maps on Cl(T X, g) and Cl(T X, g) related to the Clifford-Beltrami and Clifford-Hodge operators for base manifolds of dimension 2. Then we present applications in the context of image processing.

Clifford-Beltrami operator and subsequent parallel transport map.

We denote by (∂ x1 , ∂ x2 ) the frame field (∂/∂x 1 , ∂/∂x 2 ). From Section 3.3, we have

∇ C ∂x 1 1 = 0 ∇ C ∂x 2 1 = 0 ∇ C ∂x 1 ∂ x1 = 0 ∇ C ∂x 2 ∂ x1 = 0 ∇ C ∂x 1 ∂ x2 = 0 ∇ C ∂x 2 ∂ x2 = 0 ∇ C ∂x 1 ∂ x1 ∂ x2 = 0 ∇ C ∂x 2 ∂ x1 ∂ x2 = 0 Then, for ϕ = ϕ 1 1 + ϕ 2 ∂ x1 + ϕ 3 ∂ x2 + ϕ 4 ∂ x1 ∂ x2 we have ∆ C ϕ = -(∆ g ϕ 1 )1 -(∆ g ϕ 2 )∂ x1 -(∆ g ϕ 3 )∂ x2 -(∆ g ϕ 4 )∂ x1 ∂ x2 Proposition 4.1 (Parallel transport on Cl(T X, g)).
Let X be a manifold of dimension 2. Let ∇ C be the connection on Cl(T X, g) induced by the Levi-Cevita connection on (T X, g).

Let Y 0 = Y 1 0 1(y)+Y 2 0 ∂ x1 (y)+Y 3 0 ∂ x2 (y)+Y 4 0 ∂ x1 ∂ x2 (y) ∈ Cl(T X, g) y , and γ be a C 1 curve in X such that γ(0) = y. The parallel transport Y of Y 0 along γ is Y (t) = Y 1 0 1(γ(t)) + Y 2 0 ∂ x1 (γ(t)) + Y 3 0 ∂ x2 (γ(t)) + Y 4 0 ∂ x1 ∂ x2 (γ(t))
Proof. The parallel transport of Y 0 along γ is the solution

Y (t) = Y 1 (t) 1(γ(t)) + Y 2 (t) ∂ x1 (γ(t)) + Y 3 (t) ∂ x2 (γ(t)) + Y 4 (t) ∂ x1 ∂ x2 (γ(t)) of the differential equation    ∇ C γ Y (t) = 0 Y (0) = Y 0 (4.1) ∇ C γ Y (t) = ∇ C γ Y 1 1 + Y 2 ∂ x1 + Y 3 ∂ x2 + Y 4 ∂ x1 ∂ x2 (t) = ∂Y 1 ∂t (t) 1(t) + Y 1 (t)( γ1 (t)∇ C ∂x 1 1 (t) + γ2 (t)∇ C ∂x 2 1 (t)) + ∂Y 2 ∂t (t) ∂ x1 (t) + Y 2 (t)( γ1 (t)∇ C ∂x 1 ∂ x1 (t) + γ2 (t)∇ C ∂x 2 ∂ x1 (t)) + ∂Y 3 ∂t (t) ∂ x2 (t) + Y 3 (t)( γ1 (t)∇ C ∂x 1 ∂ x2 (t) + γ2 (t)∇ C ∂x 2 ∂ x2 (t)) + ∂Y 4 ∂t (t) ∂ x1 ∂ x2 (t) + Y 4 (t)( γ1 (t)∇ C ∂x 1 ∂ x1 ∂ x2 (t) + γ2 (t)∇ C ∂x 2 ∂ x1 ∂ x2 (t)) = ∂Y 1 ∂t (t) 1(t) + ∂Y 2 ∂t (t) ∂ x1 (t) + ∂Y 3 ∂t (t) ∂ x2 (t) + ∂Y 4 ∂t (t) ∂ x1 ∂ x2 (t)
Finally, we obtain four ordinary differential equations on R of the form ∂Y i /∂t = 0 for i = 1 • • • 4, from which we deduce the parallel transport of Y 0 along γ.

4.2.

Clifford-Hodge operator and subsequent parallel transport map. Let us denote by Γ k ij the Levi-Cevita connection's symbols of (T X, g) with respect to a local orthonormal frame field (e 1 , e 2 ). By Section 3.2, we have

∇ C e1 1 = 0 ∇ C e2 1 = 0 ∇ C e1 e 1 = Γ 2 11 e 2 ∇ C e1 e 2 = -Γ 2 11 e 1 ∇ C e2 e 1 = Γ 2 21 e 2 ∇ C e2 e 2 = -Γ 2 21 e 1 ∇ C e1 e 1 e 2 = 0 ∇ C e2 e 1 e 2 = 0
Proposition 4.2. Let (X, g) be a Riemannian manifold of dimension 2. Let (e 1 , e 2 ) be a local oriented orthonormal frame field of (T X, g) and ϕ = ϕ 1 1 + ϕ 2 e 1 + ϕ 3 e 2 + ϕ 4 e 1 e 2 ∈ Γ(Cl(T X, g)). Then Proof. We obtain D 2 (ϕ) from (3.2) and the relations above defining ∇ C in the frame (e 1 , e 2 ). Then we simplify the expression using some properties of the Levi-Cevita connection: (i) In an orthonormal frame, its symbols satisfy

D 2 (ϕ 1 1) = -d 2 e 1 ,e 1 ϕ 1 -d 2 e 2 ,e 2 ϕ 1 -Γ 2 21 d e 1 ϕ 1 + Γ 2 11 d e 2 ϕ 1 1 = -∆ g (ϕ 1 )1 D 2 (ϕ 2 e 1 + ϕ 3 e 2 ) = -d 2 e 1 ,e 1 ϕ 2 -d 2 e 2 ,
Γ k ij = -Γ j ik . (ii) [e 1 , e 2 ] = -Γ 2 11 e 1 -Γ 2 21 e 2 .
Proposition 4.3 (Parallel transport on Cl(T X, g)). Let (X, g) be a Riemannian manifold of dimension 2. Let (e 1 , e 2 ) be a local oriented orthonormal frame of T X, and

Y 0 = Y 1 0 1(y) + Y 2 0 e 1 (y) + Y 3 0 e 2 (y) + Y 4 0 e 1 e 2 (y) ∈ Cl(T X, g) y . Let γ be a C 1 curve in X such that γ(0) = y. The parallel transport Y of Y 0 along γ is Y (t) = Y 1 0 1(γ(t)) + Re exp i t 0 γ1 (s) Γ 2 11 (s) + γ2 (s) Γ 2 21 (s) ds (Y 2 0 + i Y 3 0 ) e 1 (γ(t)) +Im exp i t 0 γ1 (s) Γ 2 11 (s)+ γ2 (s) Γ 2 21 (s) ds (Y 2 0 +i Y 3 0 ) e 2 (γ(t))+Y 4 0 e 1 e 2 (γ(t))
Proof. The parallel transport of Y 0 along γ is the solution 

Y (t) = Y 1 (t) 1(γ(t)) + Y 2 (t) e 1 (γ(t)) + Y 3 (t) e 2 (γ(t)) + Y 4 (t) e 1 e 2 (γ(t)) of the differential equation    ∇ C γ Y (t) = 0 Y (0) = Y 0 (4.2) ∇ C γ Y (t) = ∇ C γ Y 1 1 + Y 2 e 1 + Y 3 e 2 + Y
          dY 1 /dt dY 2 /dt dY 3 /dt dY 4 /dt           =           0 0 0 0 0 0 γ1 Γ 2 11 + γ2 Γ 2 21 0 0 -γ1 Γ 2 11 -γ2 Γ 2 21 0 0 0 0 0 0                     Y 1 Y 2 Y 3 Y 4           of initial condition Y 1 (0) = Y 1 0 , Y 2 (0) = Y 2 0 , Y 3 (0) = Y 3 0 and Y 4 (0) = Y 4 0 . It leads to Y 1 (t) = Y 1 0 , Y 4 (t) = Y 4 0 and a differential equation on R 2 Ñ dY 2 /dt dY 3 /dt é = Ñ 0 γ1 Γ 2 11 + γ2 Γ 2 21 -γ1 Γ 2 11 -γ2 Γ 2 21 0 é Ñ Y 2 Y 3 é (4.3) of initial condition Y 2 (0) = Y 2 0 and Y 3 (0) = Y 3 0 .
Under the identification between R 2 and C, (4.3) becomes

   ∂(Y 2 + i Y 3 )/∂t = i ( γ1 Γ 2 11 + γ2 Γ 2 21 )(Y 2 + i Y 3 ) Y 2 (0) + i Y 3 (0) = Y 2 0 + i Y 3 0 (4.4) T. BATARD
The solution of (4.4) is

Y 2 (t) + i Y 3 (t) = exp i t 0 γ1 (s) Γ 2 11 (s) + γ2 (s) Γ 2 21 (s) ds (Y 2 0 + i Y 3 0 ) (4.5)
from which follows the parallel transport of Y 0 along γ.

4.3.

The particular context of images. Let us consider a n-channels image

I : (x 1 , x 2 ) -→ (I 1 (x 1 , x 2 ), • • • , I n (x 1 , x 2 )) defined on a domain Ω ⊂ R 2 . I determines a surface S embedded in R n+2 parametrized by ϕ : (x 1 , x 2 ) -→ (x 1 , x 2 , I 1 (x 1 , x 2 ), • • • , I n (x 1 , x 2 )) Then we endow R n+2 of a metric h of matrix representation diag(1, 1, h 1 , • • • , h n )
where h 1 , • • • , h n are positive functions. We denote by g the metric on S induced by h. This construction makes the couple (S, g) be a Riemannian manifold of dimension 2 of global chart (Ω, ϕ).

On the trivial vector bundle T S, the natural global frame is (∂/∂x 1 , ∂/∂x 2 ) induced by the cartesian coordinates system (x 1 , x 2 ) on Ω. However, the Clifford-Hodge operator D 2 on Cl(T S, g) is defined with respect to an oriented orthonormal frame field of (T S, g) (see Section 3.4). In what follows, we construct an oriented orthonormal frame field (e 1 , e 2 ) of (T S, g) and compute the transformation of Levi-Cevita connection's symbols with respect to the frame change from (∂/∂x 1 , ∂/∂x 2 ) to (e 1 , e 2 ). Let λ + and λ -(λ + ≥ λ -) be the two eigenvalues of the induced endomorphism. Then a positively oriented orthonormal basis (e 1 , e 2 ) of T p S may be constructed from eigenvectors, distinguishing four cases:

(i) if F = 0, take (e 1 , e 2 ) = àà λ + -G √ λ + F 2 + (λ + -G) 2 F √ λ + F 2 + (λ + -G) 2 í , sign(F ) à λ --G √ λ -F 2 + (λ --G) 2 F √ λ -F 2 + (λ --G) 2 íí in the basis (∂/∂x 1 , ∂/∂x 2 )(p). (ii) if F = 0 and E > G, take (e 1 , e 2 ) = ∂/∂x 1 (p) √ E , ∂/∂x 2 (p) √ G (iii) if F = 0 and E < G, take (e 1 , e 2 ) = ∂/∂x 2 (p) √ G , - ∂/∂x 1 (p) √ E
(iv) if F = 0 and E = G, the whole space T p S is eigenspace. Then for any θ, the two vectors àà cos(θ)

√ E sin(θ) √ E í , à -sin(θ) √ E cos(θ) √ E íí in the basis (∂/∂x 1 , ∂/∂x 2 )(p)
form a positively oriented orthonormal basis of T p S.

Proof. As unit eigenvectors, they form an orthonormal basis of T p S. The orientation is clearly positive in the cases (ii), (iii) and (iv). For the case (i), one just need to compute the 2-form

ω = λ + -G √ λ + F 2 + (λ + -G) 2 dx 1 + F √ λ + F 2 + (λ + -G) 2 dx 2 ∧ λ --G √ λ -F 2 + (λ --G) 2 dx 1 + F √ λ -F 2 + (λ --G) 2 dx 2 Then ω = F (λ + -λ -) √ λ + λ -F 2 + (λ + -G) 2 F 2 + (λ --G) 2 dx 1 ∧ dx 2
and the sign of the scalar term is given by the sign of F .

Following this construction for each p ∈ S, we obtain a positively oriented orthonormal frame field (e 1 , e 2 ) of (T S, g), where e 1 is the unit vector field of highest variations (eigenvectors associated to the eigenvalues λ + ) and e 2 the unit vector field of lowest variations (eigenvectors associated to the eigenvalues λ -).

By the antisymmetry property of its symbols Γ k ij in an orthonormal frame field, the Levi-Cevita connection is entirely determined by the symbols Γ 2 11 and Γ 2 21 in such frames. In the next proposition, we determine the expressions of these two symbols in a frame field (v 1 , v 2 ) in function of the symbols Γ k ij of the connection in the frame field (∂/∂x 1 , ∂/∂x 2 ).

Proposition 4.5. Let (v 1 , v 2 ) be a frame field such that v 1 = a ∂/∂x 1 + b ∂/∂x 2 and v 2 = c ∂/∂x 1 + d ∂/∂x 2 . Then Γ 2 11 = 1/(ad -bc)× -ab ∂a ∂x 1 -a 2 b Γ 1 11 -2ab 2 Γ 1 12 -b 2 ∂a ∂x 2 -b 3 Γ 1 22 +a 3 Γ 2 11 +a 2 ∂b ∂x 1 +2a 2 b Γ 2 12 +ab ∂b ∂x 2 +ab 2 Γ 2 22 Γ 2 21 = 1/(ad -bc)× -bc ∂a ∂x 1 -acb Γ 1 11 -(bc + ad)b Γ 1 12 -bd ∂a ∂x 2 -b 2 d Γ 1 22 + a 2 c Γ 2 11 + ac ∂b ∂x 1 + (bc + ad)a Γ 2 T. BATARD +ad ∂b ∂x 2 + abd Γ 2 22
Proof. By definition, we have

∇ v 1 v 1 = Γ 1 11 v 1 + Γ 2 11 v 2 ∇ v 2 v 1 = Γ 1 21 v 1 + Γ 2 21 v 2
With respect to the frame field (∂ x1 , ∂ x2 ) := (∂/∂x 1 , ∂/∂x 2 ), we obtain

∇ v 1 v 1 = ∇ a∂x 1 +b∂x 2 a ∂ x1 + b ∂ x2 = a∇ ∂x 1 a ∂ x1 + a∇ ∂x 1 b ∂ x2 + b∇ ∂x 2 a ∂ x1 + b∇ ∂x 2 b ∂ x2 = a ∂a ∂x 1 ∂ x1 + a Γ 1 11 ∂ x1 + Γ 2 11 ∂ x2 + a ∂b ∂x 1 ∂ x2 + b Γ 1 12 ∂ x1 + Γ 2 12 ∂ x2 +b ∂a ∂x 2 ∂ x1 + a Γ 1 21 ∂ x1 + Γ 2 21 ∂ x2 + b ∂b ∂x 2 ∂ x2 + b Γ 1 22 ∂ x1 + Γ 2 22 ∂ x2 = a ∂a ∂x 1 +a 2 Γ 1 11 +2ab Γ 1 12 +b ∂a ∂x 2 +b 2 Γ 1 22 ∂ x1 + a ∂b ∂x 1 +a 2 Γ 2 11 +2ab Γ 2 12 +b ∂b ∂x 2 +b 2 Γ 2 22 ∂ x2
Then, since

∂ x1 = 1 ad -bc (d v 1 -b v 2 ) ∂ x2 = 1 ad -bc (-c v 1 + a v 2 )
we obtain

∇ v 1 v 1 = 1 ad -bc ad ∂a ∂x 1 + a 2 d Γ 1 11 + 2abd Γ 1 12 + bd ∂a ∂x 2 + b 2 d Γ 1 22 -a 2 c Γ 2 11 -ac ∂b ∂x 1 -2abc Γ 2 12 -bd ∂b ∂x 2 -b 2 c Γ 2 22 v 1 + 1 ad -bc -ab ∂a ∂x 1 -a 2 b Γ 1 11 -2ab 2 Γ 1 12 -b 2 ∂a ∂x 2 -b 3 Γ 1 22 + a 3 Γ 2 11 + a 2 ∂b ∂x 1 +2a 2 b Γ 2 12 + ab ∂b ∂x 2 + ab 2 Γ 2 22 v 2
from which we deduce Γ 2 11 , and

∇ v 2 v 1 = 1 ad -bc cd ∂a ∂x 1 + acd Γ 1 11 + (bc + ad)d Γ 1 12 + d 2 ∂a ∂x 2 + bd 2 Γ 1 22 -ac 2 Γ 2 11 -c 2 ∂b ∂x 1 -(bc + ad)c Γ 2 12 -cd ∂b ∂x 2 -cbd Γ 2 22 v 1 + 1 ad -bc -bc ∂a ∂x 1 -acb Γ 1 11 -(bc + ad)b Γ 1 12 -bd ∂a ∂x 2 -b 2 d Γ 1 22 + a 2 c Γ 2 11 +ac ∂b ∂x 1 + (bc + ad)a Γ 2 12 + ad ∂b ∂x 2 + abd Γ 2 22 v 2
from which we deduce Γ 2 21 .

From this proposition, we deduce the expression of the Levi-Cevita's connection symbols in the frame field (e 1 , e 2 ).

Experiments.

We apply the Clifford-Beltrami and Clifford-Hodge flows in the context of image processing. The base manifold X we consider is the surface S embedded in R 5 parametrized by the graph of a color image I = (I 1 , I 2 , I 3 ) given with its RGB components. We endow S with the Riemannian metric g induced by the metric h on R 5 , for some functions h i (see Section 4.3). Then we construct the trivial Clifford bundles Cl(T S, g) = S × R 2,0 and Cl(T S, g) S × R 2,0 over (S, g).

Clifford-Beltrami flow in Γ(Cl(T S, g) 0 ) and Clifford-Hodge flow in Γ(Cl(T S, g) 0 ) can be applied to regularize the color image I. Indeed we can consider each component I i of I as a section of degree 0 of the Clifford bundles Cl(T S, g) and Cl(T S, g), of the form I i 1. Then the heat equations associated to Clifford-Beltrami ∆ C and Clifford-Hodge D 2 operators lead in both cases to the following 3 PDEs

∂I i t ∂t = ∆ g I i t , I i 0 = I i
Finally, we obtain the 3 PDEs of Beltrami framework of Sochen et al. in the context of color image regularization (see e.g. [START_REF] Sochen | A General Framework for Low Level Vision[END_REF], [START_REF] Spira | A Short-time Beltrami Kernel for Smoothing Images and Manifolds[END_REF]). Clifford-Beltrami flow in Γ(Cl(T S, g) 1 ) and Clifford-Hodge flow in Γ(Cl(T S, g) 1 ) can be applied to regularize vector fields related to I. Indeed, let v = (v 1 , v 2 ) be a vector field on Ω. By the global chart ϕ of S, it can be considered as a tangent vector field on S. Then, v is the section v 1 ∂/∂x 1 +v 2 ∂/∂x 2 of Cl(T S, g) and the section ṽ1 e 1 +ṽ 2 e 2 of Cl(T S, g) where (e 1 , e 2 ) is the oriented orthonormal frame field of (T S, g) constructed in Section 4.3. Then we consider the heat equations related to ∆ C on Cl(T S, g) and Results are given by the computations of k 0 t (x, y, ∆ C )v and k 0 t (x, y, D 2 )v, where convolutions are done on 5x5 neighborhoods. Fig. 4.3 shows results for t = 0.3 after 200 iterations where g is induced by h i = 0.1. Fig. 4.4 shows results for t = 0.3 after 200 iterations where g is induced by h i = 0.01.

D 2 on Cl(T S, g) of initial condition v 0 = v ∂v t ∂t + ∆ C v t = 0 ∂v t ∂t + D 2 v t = 0 T. BATARD (a) (b)
The role of the functions h i is to control the anisotropy of the diffusion. Indeed, we have explained throughtout the paper that the anisotropy of the diffusion is determined by the metric g of the base manifold. In this context, g is determined by the functions h i . Therefore, the more the functions h i are low, the more the diffusion is isotropic, as it can be seen comparing Clifford-Beltrami flow in Γ(Cl(T S, g) 2 ) and Clifford-Hodge flow in Γ(Cl(T S, g) 2 ) can be respectively applied to regularize rotation fields in (T S, g) and (T S, g). As we deal with vector bundle of rank 2, rotation fields can be given by unit vector fields. We propose to compare regularizations of unit vector fields depending on they are treated as vector fields or as rotation fields. By our choice of the unit vector field treated in this paper (the unit vector field of edge orientations), the Clifford-Hodge flow can not be considered in this application. Indeed, unit vector fields in the frame (∂/∂x 1 , ∂/∂x 2 ) are not unit in the frame (e 1 , e 2 ). Therefore, we are only concerned with the Clifford-Beltrami flow.

Let ψ be the rotation field given by v = (cos ψ, sin ψ) on Ω ⊂ R 2 , where v is the unit vector field of edge orientations (see Fig. 4.2(b)). Following the method of Section 3.1, we construct the section

‹ Ψ : x -→ (x, ψ(x) ∂/∂x 1 ∂/∂x 2 ) ∈ Γ(Cl(T S, g) 2 )
such that for each x ∈ S, ψ(x) is an infinitesimal generator of the rotation ψ(x). The 2π periodicity in the choice of ψ is discussed in the Remark below. From Section 4.1, the Clifford-Beltrami flow of ‹ Ψ leads to

∂ ψt ∂t = ∆ g ψt , ψ0 = ψ
Remark: The 2π periodicity in the choice of ψ may be removed by constructing ‹ Ψ not as a global section of Γ(Cl(T S, g)), but locally on small neighborhoods. Indeed, for x 0 ∈ S, we state ψ(x) = ψ(x) -2π if ψ(x) -ψ(x 0 ) ≥ π, ψ(x) = ψ(x) + 2π if ψ(x) -ψ(x 0 ) < -π and ψ(x) = ψ(x) otherwise. By this construction ψ takes values locally in [ψ(x 0 ) -π, ψ(x 0 ) + π[. Hence, it makes sense to the computation of (k 0 t ‹ Ψ)(x 0 ). Then we extend this construction for each point in S. This method can be viewed as the Lie group counterpart of the choice of maximal normal coordinates systems on manifolds. Indeed, we always work in the tangent space of the neutral element and consider the exponential map of the Lie group. , the regularization provides similar orientations but the unit norm of the initial unit vector field is preserved when it is treated as an oriented orthonormal frame field.

Conclusion.

In this paper, we have proposed a new framework to treat scalar, vector and oriented orthonormal frame fields on manifolds, by considering Clifford bundles. We have shown that scalar and vector fields can be viewed as sections of Clifford bundles, respectively of degree 0 and 1, and that oriented orthonormal frame fields can be lifted to sections of Clifford bundles called spinor fields. We have also shown that sections of degree 2 can be identified with generators of orthonormal frame fields. In this paper, we were particulary concerned with the problem of regularization of these fields. Using the framework of heat equations associated to generalized Laplacians on vector bundles over Riemannian manifolds, we have shown that the behaviour of the regularization of these fields is determined by the choice of a connection on a Clifford bundle and a Riemannian metric on the base manifold. We have considered the Clifford-Beltrami and Clifford-Hodge flows generalizing the Beltrami flow to sections of Clifford bundles. Dealing with base manifolds of dimension 2, we have shown applications in the context of image processing. By the choice of different metrics and connections, different regularizations can be performed. Moreover, by the choice of other base manifolds and vector bundles, regularization of fields in other contexts can be envisaged. For instance, dealing with base manifolds of dimension 3, we can extend the applications presented in this paper to the context of video processing.

Appendix A. Differential Geometry of Vector Bundles.

See [START_REF] Greub | Connections, Curvature and Cohomology[END_REF], [START_REF] Helgason | Differential geometry, Lie groups, and symmetric spaces[END_REF], [START_REF] Husemoller | Fibre Bundles[END_REF], [START_REF] Spivak | A Comprehensive Introduction to Differential Geometry[END_REF] for some references on differential geometry of manifolds and vector bundles.

Definition A.1. A smooth vector bundle of rank n is a triplet (E, π, X) where X and E are two C ∞ manifolds, and π : E -→ X is a surjective map such that the preimage π -1 (x) of x ∈ X is endowed with a structure of vector space of dimension n. X is called the base manifold and E the total space of the vector bundle. The set π -1 (x) is called the fiber over x, and is denoted by E x .

The vector bundle is said to be locally trivial if the following conditions hold: for each x ∈ X , there is a neighborhood U of x and a diffeomorphism φ : U × R n -→ π -1 (U ) satisfying π • φ(x, f ) = x, and such that the map φ x : R n -→ E x is a vector space isomorphism. The couple (U, φ) is called a local trivialization.

The vector bundle is said to be trivial if there exists a diffeomorphism Φ : X × R n -→ E such that π • Φ(x, f ) = x, and Φ x : R n -→ E x is a vector space isomorphism.

Example: Let X be a C ∞ manifold of dimension m. The disjoint union of tangent spaces T X := T x X for x ∈ X, is the total space of a vector bundle (T X, π, X) of rank m called the tangent bundle of X. Tangent space T x X is the fiber over x. Definition A.2. A metric h on a vector bundle is the assigment of a scalar product h x on each fiber π -1 (x).

Example: A Riemannian metric on a manifold is a definite positive metric on its tangent bundle.

Definition A.3. A section of a smooth vector bundle (E, π, X) is a differentiable map S :

X -→ E such that π • S = Id X . Let (f 1 , • • • , f n ) be a basis of R n .
In a local trivialization (U, φ) of (E, π, X), any section may be written

S(x) = n i=1 s i (x)φ(x, f i ) for some functions s i ∈ C ∞ (X). The set {φ(•, f 1 ), • • • , φ(•, f n )} is called a local frame of (E, π, X).
The set of sections of (E, π, X) is denoted by Γ(E).

Example: Tangent vector fields on X are the sections of the tangent bundle (T X, π, X).

Definition A.4. A connection on (E, π, X) is a map ∇ E : Γ(T X) × Γ(E) -→ Γ(E) satisfying the following axioms: -∇ E f u+gv Y = f ∇ E u Y + g∇ E v Y -∇ E u f Y = (d u f )Y + f ∇ E u Y for f, g ∈ C ∞ (X), u, v ∈ Γ(T X) and Y ∈ Γ(E).
Hence, a connection on (E, π, X) may be written as d+ω, where d is the differentation of components and ω ∈ Γ(T * X ⊗ End(E)).

In local frames

(e 1 , • • • , e n ) of E and (u 1 , • • • , u m ) of T X, a connection is determined by n 2 × m functions Υ k ij such that ∇ E ui e j = n k=1 Υ k ij e k
Example: The Levi-Cevita connection is the connection on the tangent bundle of a Riemannian manifold (X, g) determined by the m 3 functions

Γ k ij = 1 2 g kl (∂ j g li + ∂ i g lj -∂ l g ij ) with respect to the local frame (∂/∂x 1 , • • • , ∂/∂x m ) of T X given by a local coordi- nates system (x 1 , • • • , x m ) of X.
Definition A.5. Let ∇ E be a connection on a vector bundle (E, π, X), and γ a C 1 curve in X such that γ(0) = y. The parallel transport of Y 0 ∈ E y along the curve γ is the section Y (t) that is solution of the following differential equation

   ∇ E γ Y (t) = 0 Y (0) = Y 0 A section Y along a curve γ is parallel if ∇ E γ Y (t) = 0 for each t.
Example: Let (X, g) be a Riemannian manifold endowed with the Levi-Cevita connection ∇ on its tangent bundle. A Geodesic curve on X is a C 1 curve γ whose tangent vector field γ is parallel along γ, i.e. ∇ γ γ = 0.

Appendix B. Heat Kernels of Generalized Laplacians.

We refer to [START_REF] Berline | Heat Kernels and Dirac Operators[END_REF] for more details on this part.

Definition B.1. Let E be a vector bundle over a Riemannian manifold (X, g), endowed with a connection ∇ E . Let ∇ be the Levi-Cevita connection of (T X, g). To any pair of tangent vector fields V and W on X, we associate an invariant second derivative

∇ 2 V,W : Γ(E) -→ Γ(E) by setting ∇ 2 V,W ϕ ≡ ∇ E V ∇ E W ϕ -∇ E ∇ V W ϕ
Then the connection Laplacian ∆ E : Γ(E) -→ Γ(E) is defined by

∆ E ϕ = -trace(∇ 2 •,• ϕ)
where trace denotes the contraction with the metric g.

In particular, if e i is a local orthonormal frame of T X, the operator ∆ E is given by

∆ E = - i ∇ E ei ∇ E ei -∇ E ∇ e i e i
With respect to the local frame ∂ i := ∂/∂x i defined by a local coordinates system of X, we have

∆ E = - ij g ij ∇ E ∂ i ∇ E ∂ j - k Γ k ij ∇ E ∂ k
where the symbols Γ k ij are defined by

∇ ∂ i ∂ j = k Γ k ij ∂ k .
Definition B.2. Let E be a vector bundle over a Riemannian manifold (X, g). A Generalized Laplacian on E is a second-order differential operator H : Γ(E) -→ Γ(E) that may be written

H = ∆ E + F
for some connection ∇ E and a zero-order operator F .

In particular, any connection Laplacian is a generalized Laplacian.

To any generalized Laplacian H on a vector bundle E over a compact manifold X, one may associate an operator e -tH : Γ(E) -→ Γ(E), for t > 0, with the property that u t (x) = e -tH u(x) satisfies the heat equation

∂u t ∂t + Hu t = 0, u 0 = u
We shall define e -tH as an integral operator of the form (e -tH u)(x) = X K t (x, y, H)u(y)dy where K t (x, y, H) : E y -→ E x is a linear map depending smoothly on x, y and t. It is called the heat kernel of H.

In the following theorem, we summarize some results on approximations of the heat kernel and solutions of the heat equation (see [START_REF] Berline | Heat Kernels and Dirac Operators[END_REF] p. 84).

Theorem B.3. Let x ∈ X. We denote by y i the normal coordinates of a point y in the injectivity radius of X at x, ∂ i the corresponding partial derivatives, and by g ij (y) the scalar product of ∂ i and ∂ j at y. Moreover, we define J(x, y) = det(g ij (y)) 1/2 for y = exp x (y)

Let chosen smaller than the injectivy radius of X. Let Ψ : R + -→ [0, 1] be a smooth function such that Ψ(s) = 1 if s < 2 /4 and Ψ(s) = 0 if s > 2 . Let τ (x, y) : E y -→ E x be the parallel transport along the unique geodesic curve joining x and y, and d(x, y) its length.

for all v in V (1 denotes the unit of A), then there exists a unique morphism

g : Cl(V, Q) -→ A of R-algebras such that f = g • i Q .
The solution is unique up to isomorphisms and is given as the (non commutative) quotient

T (V )/(v ⊗ v + Q(v).1)
of the tensor algebra of V by the two-sided ideal generated by v ⊗ v + Q(v).1, where v belongs to V (see [START_REF] Lawson | Spin Geometry[END_REF] for a proof ).

It is well known that there exists a unique anti-automorphism t on Cl(V, Q) such that

t(i Q (v)) = i Q (v)
for all v in V . It is called reversion and usually denoted by x -→ x † , x in Cl(V, Q).

In the same way there exists a unique automorphism α on Cl(V, Q) such that

α(i Q (v)) = -i Q (v)
for all v in V . In this paper we write v for i Q (v) (according to the fact that i Q embeds V in Cl(V, Q)).

When it is defined, we denote x = √ xx † and say that x is a unit if xx † = ±1. Let V be a vector space on R of dimension n, Q a quadratic form on V and (e 1 , • • • , e n ) an orthonormal basis of V with respect to Q. As a vector space Cl(V, Q) is of dimension 2 n on R and a basis is given by the set These products extend by linearity on Cl(V, Q). Clearly, if a and b are vectors of V , then the inner product of a and b coincides with the scalar product defined by Q.

T. BATARD

Remark: For Q ≡ 0, the Clifford algebra Cl(V, Q) corresponds to the exterior algebra V of V . Indeed, in this case the product in the Clifford algebra is the outer product (C.1), and we have an algebra isomorphism between Cl(V, Q) and V . For arbitrary quadratic form Q, there is a vector space isomorphism between V and Cl(V, Q), that maps the subspace k V to Cl(V, Q) k . It follows a vector space isomorphism between the space V * of linear forms on V and the Clifford algebra Cl(V, Q), that maps k-linear forms to k-vectors. More precisely, for (e 1 , • • • , e n ) a orthonormal basis of (V, Q), we have the identifications k-form :

i1<•••<i k 1≤i k ≤m ω i1•••i k e i1 ∧ • • • ∧ e i k ←→ i1<•••<i k 1≤i k ≤m ω i1•••i k e i1 • • • e i k 0-form : l ←→ l 1 (C.2)
In this paper, we deal in particular with the Clifford algebra of the Euclidean space (R n , 2 ) denoted by R n,0 . R k n,0 is the subspace of elements of degree k and R * n,0 is the group of elements that admit an inverse in R n,0 .

C.2. The Lie groups Spin(n) and SO(n). The group Spin(n) is defined by

Spin(n) = 2k i=1 a i , a i ∈ R 1 n,0 , a i = 1
It is well known that Spin(n) is a connected compact Lie group that universally covers SO(n) (n ≥ 3). Under the identification of (R n , 2 ) and its embedding R 1 n,0 into R n,0 , the covering group is given by the map ξ

Spin(n) -→ SO(n) R 1 n,0 -→ R 1 n,0 ξ : s -→ R s : x -→ sxs -1
For instance, one can verify that Spin(3) is the group The exponential map exp : spin(n) -→ Spin(n) is onto and corresponds to the usual matrix exponential map. As a consequence, every spinor can be written as

S = ∞ i=0 1 i! A i
for some 2-vector A.

From the covering group Spin(n) -→ SO(n), we have a Lie algebra isomorphism spin(n) so(n)

Dealing with the matrix representation of the group SO(n), we have so(n) {n × n skew symmetric matrices}

Denoting by E ij , i < j the elementary skew symmetric matrix such that E ij (i, j) = -1

and E ij (j, i) = 1, the Lie algebra isomorphism maps E ij to 1 2 e i e j .

In the rest of this part, we show how rotations in R n can be interpreted in the Clifford algebras formalism. From Hestenes and Sobczyk [START_REF] Hestenes | Clifford Algebra to Geometric Calculus[END_REF], we know that every A in R 2 n,0 can be written as

A = A 1 + A 2 + • • • + A m
where m ≤ n/2 and for all σ in the permutation group S(m). Actually, as A 2 k is negative we have e Ai = cos( A i ) + sin( A i )

A j = A j
A i A i
The corresponding rotation R i : x -→ e -Ai xe Ai acts in the oriented plane defined by A i as a plane rotation of angle 2 A i . The vectors orthogonal to A i are invariant under R i . It then appears that any element R of SO(n) is a composition of commuting simple rotations, in the sense that they have only one invariant plane. The vectors left invariant by R are those of the orthogonal subspace to A. If m = n/2 this latter is trivial. The previous decomposition is not unique if A k = A j for some j and k with j = k. In this case infinitely many planes are left invariant by R.
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  {e i1 e i2 • • • e i k , i 1 < i 2 < • • • < i k , k ∈ {1, . . . , n}}and the unit 1. An element of degreek i1<•••<i k α i1...i k e i1 e i2 • • • e i kis called a k-vector. A 0-vector is a scalar and e 1 e 2 • • • e n is called the pseudoscalar. We denote x k the component of degree k of an element x of Cl(V, Q). The inner product of x r of degree r and y s of degree s is defined by x r • y s = x r y s |r-s| if r and s are positive and by x r • y s = 0 otherwise. The outer product of x r of degree r and y s of degree s is defined by x r ∧ y s = x r y s r+s (C.1)
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Then the kernels K N t (x, y, H) defined by

m 2 e -d(x,y) 2 /4t Ψ(d(x, y) 2 )

where the sections Φ i are given by Φ 0 (x, y, H) = τ (x, y) and τ (x, y)

where H x is the operator H with respect to the first variable, satisfy 1. For every N > m/2, the kernel

where l is a norm on C l sections.

2. Denoting by k N t the operator defined by

we have lim t→0 k N t u -u l = 0 for every N .

Moreover, we have the following estimate:

which justifies the notation e -tH .

Appendix C. Clifford algebras and the Lie group Spin(n).

C.1. Clifford algebras. We refer to [START_REF] Chevalley | The Algebraic Theory of Spinors and Clifford Algebras[END_REF], [START_REF] Hestenes | Clifford Algebra to Geometric Calculus[END_REF], [START_REF] Lawson | Spin Geometry[END_REF] for more details on Clifford algebras.

Definition C.1 (Clifford algebra). Let V be a vector space of finite dimension n over R equipped with a quadratic form Q. Formally speaking, the Clifford algebra Cl(V, Q) of (V, Q) is the solution of the following universal problem. We search a couple

for all v in V (1 denotes the unit of Cl(V, Q)) such that for each R-algebra A and each R-linear map f : V -→ A with (f (v)) 2 = Q(v).1