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CLIFFORD BUNDLES: A COMMON FRAMEWORK FOR IMAGES,
VECTOR FIELDS AND ORTHONORMAL FRAME FIELDS

REGULARIZATION ∗

THOMAS BATARD †

Abstract. The aim of this paper is to present a new framework for regularization by diffusion.
The methods we develop in the sequel can be used to smooth multichannel images, multichannel
image sequences (videos), vector fields and orthonormal frame fields in any dimension.1

From a mathematical viewpoint, we deal with vector bundles over Riemannian manifolds and so-
called generalized Laplacians. Sections are regularized from heat equations associated to generalized
Laplacians, the solutions being approximated by convolutions with kernels. Then, the behaviour
of the diffusion is determined by the geometry of the vector bundle, i.e. by the metric of the base
manifold and by a connection on the vector bundle. For instance, the heat equation associated to the
Laplace-Beltrami operator can be considered from this point of view for applications to images and
videos regularization. The main topic of this paper is to show that this approach can be extended
in several ways to vector fields and orthonormal frame fields by considering the context of Clifford
algebras. We introduce Clifford-Beltrami and Clifford-Hodge operators as generalized Laplacians on
Clifford bundles over Riemannian manifolds. Laplace-Beltrami diffusion appears as a particular case
of diffusion for degree 0 sections (functions). Dealing with base manifolds of dimension 2, applications
to multichannel images, 2D vector fields and orientation fields regularization are presented.

Key words. regularization, heat equations, Clifford algebras, vector bundles, differential geom-
etry.
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1. Introduction. Most multichannel image regularization methods are based
on PDEs of the form

∂Iit
∂t

=
2∑

j,k=1

fjk
∂2Iit
∂j ∂k

+ (parts of order ≤ 1)

of initial condition I : (x1, x2) 7−→ (I1(x1, x2), · · · , In(x1, x2)) a n-channels image,
where fjk are real functions. We refer to [28] for an overview on related works.
From a geometric viewpoint, the set of right terms, for i = 1 · · ·n, may be viewed
as a second-order differential operator acting on sections of a vector bundle over a
Riemannian manifold called a generalized Laplacian H [4]. As a consequence, it
ensures existence and uniqueness of a kernel Kt(x, y,H), called the heat kernel of
H, generating the solution of the heat equation

∂It
∂t

+HIt = 0 (1.1)

from a ’convolution’ with the initial condition I. A generalized Laplacian H on a
vector bundle E over a Riemannian manifold X is determined by three pieces of data:
the metric g of the base manifold X that determines the second order part, a con-
nection on E that determines the first order part, and a zero-order operator F that
determines the zero order part. For instance, the so-called oriented Laplacians can

∗This work was partially supported by the ONR Grant N00014-09-1-0493, and by the ”Commu-
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2 T. BATARD

be viewed as generalized Laplacians [1]. Similarly, on the vector bundle C∞(X, g) of
smooth functions on a Riemannian manifold (X, g), there is a canonical generalized
Laplacian, the scalar Laplacian, which corresponds to the Laplace-Beltrami operator
up to a sign. Considering each component Ik of a multichannel image as a function
over a well-chosen Riemannian manifold, the heat equation associated to the scalar
Laplacian leads to the Beltrami flow of Sochen et al. in the context of image regular-
ization [23],[25]. The aim of this paper is to extend the Beltrami flow on C∞(X, g) to
vector fields and oriented orthonormal frame fields (i.e. SO(n)-valued fields) on (X, g).

Regularization of non-scalar fields such as vector fields and manifold-valued fields
has been widely investigated in the last few years. Concerning vector fields, we may
refer to [9],[28], where the smoothing is made through the smoothing of a correspond-
ing multichannel image and where the anisotropy is controlled at each point by the
orientation of the vector field. More precisely, an oriented Laplacian is applied on each
component of the image. The regularization of SO(n)-valued fields has been treated
in [13] in the context of principal bundles using a geometric flow on the SO(n) group,
and in [29] using a minimization problem with orthogonal constraints. For n = 2, this
is the problem of orientations regularization, treated in [18],[22],[27]. More generally,
regularization of symmetric definite positive matrice fields were proposed in [14],[21]
and of Stiefel manifolds in [6],[11], all of them using geometric flows on manifolds.

In [6],[9],[28],[29], the behaviour of the flow is determined by the field itself. In
[11],[13],[14],[21], it is determined by the choice of a Riemannian metric on the man-
ifold too. In this paper, we make use of an additional geometric structure, called
a connexion. Roughly speaking, a connection is a way to differentiate sections of a
vector bundle. An example of connexion is the Levi-Cevita connection on the tangent
bundle of a Riemannian manifold. By the use of heat equations on vector bundles in
this paper, the behaviour of the diffusion is completely determined by the geometry
of the vector bundle where the fields are considered as sections. By geometry of vec-
tor bundle, we mean a metric on the base manifold and a connection on the vector
bundle. More precisely, the metric of the base manifold determines the anisotropy of
the diffusion, whereas the connection determines the data averaged by the diffusion
by the use of the transport parallel map.

In this paper, we extend the Beltrami flow to vector fields and orthonormal frame
fields by extending the Laplace-Beltrami operator to vector fields and generators of
orthonormal frame fields, i.e. fields with values in the Lie algebra so(n) of SO(n).
For this, we consider Clifford bundles, that are vector bundles where the fibers are
endowed with a Clifford algebra structure. Clifford algebras framework [7],[16] finds
a wide range of applications in computer science [24]. Application of Clifford bundles
to image processing was introduced in [2] where the Di Zenzo’s gradient, devoted to
multichannel image segmentation, is generalized using covariant derivatives instead
of usual derivatives.

We show that Clifford bundles provide a common framework to treat functions, vec-
tor fields, orthonormal frame fields and their generators over manifolds. We also give
a general method to construct generalized Laplacians on Clifford bundles such that
the subsequent heat equation gives a tool to regularize functions, vector fields and
orthonormal frame fields. Even though we only treat the case of SO(n)-valued fields
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in this paper, we expect that the method we propose allows to treat and regularize
fields with values in connected components of much more Lie groups. Indeed, a lot of
Lie groups and their Lie algebras have representations in Clifford algebras [10],[16].

This paper is organized as follows. In Section 2, we treat the problem of approxima-
tions of heat equations solutions. We discuss both continuous and discrete settings.
We treat the particular case of the scalar Laplacian, and relate it with the Laplace-
Beltrami operator. In Section 3, we first introduce Clifford bundles, and show that
functions, vector fields and generators of orthonormal frame fields can be viewed as
sections of a Clifford bundle. Moreover, we show that rotation fields can be lifted
to sections of a Clifford bundle called spinor fields. Then, we show how to construct
generalized Laplacians leading to functions, vector fields and orthonormal frame fields
regularization from connections compatible with metrics of vector bundles. Dealing
with particular Clifford bundles, we construct Clifford-Beltrami and Clifford-Hodge
operators. In Section 4, we consider base manifolds of dimension 2. We compare
diffusions provided by Clifford-Beltrami and Clifford-Hodge flows in the context of
image processing with applications to image, 2D vector fields and orientation fields
regularization. The first Appendix is devoted to differential geometry of vector bun-
dles. We give definitions of notions used throughtout the paper. In the second one,
we introduce heat equations on vector bundles. In the last Appendix, we detail the
construction of Clifford algebras and give their main properties. We also explain how
orthogonal transformations can be represented in the Clifford algebras context using
the spinor group Spin(n).

2. Approximation of generalized heat equations solutions.

2.1. The continuous setting. Generally speaking, for arbitrary base manifold
(X, g) and vector bundle E, there is no explicit formula for the heat kernel Kt(x, y,H)
of a generalized Laplacian H on E. As a consequence, there is no explicit formulae
for solutions of the corresponding heat equation.

However, there exist kernels KN
t (x, y,H), for N ∈ N, approximating the heat ker-

nel of H on normal neighborhoods of the base manifold, for small t. Based on these
results, solutions of generalized heat equations may be approximated for small t by
the convolution of the initial condition with such kernels.

In this paper, we approximate the heat kernel of H by the kernel K0
t (x, y,H) de-

fined by Å
1

4πt

ãm/2
e−d(x,y)2/4t Ψ(d(x, y)2) τ(x, y) J(x, y)−1/2

where m is the dimension of the base manifold X, and d stands for the geodesic dis-
tance on X related to the Levi-Cevita connection on (TX, g). Ψ is a function such
that the term Ψ(d(x, y)2) equals 1 if y is inside a normal neighborhood of x and 0
otherwise. Hence we may assume that y is inside a normal neighborhood of x. The
map τ(x, y) is the parallel transport map on E related to the connection ∇E such that
H = ∆E +F (see Appendix B) along the unique geodesic joining y and x. Indeed, on
normal neighborhoods, there is a unique geodesic joining any point to the origin. At
last, J are the Jacobians of the coordinates changes from usual coordinates systems
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to normal coordinates systems.

Hence, we approximate the solution e−tHu of the heat equation ∂ut/∂t+Hut = 0, of
initial condition u0 = u, at x ∈ X by k0

t u(x) = (1/4πt)m/2×∫
X

e−d(x,y)2/4t Ψ(d(x, y)2) τ(x, y)u(y) J(x, y)−1/2 dy

Remark: Whereas the heat kernel Kt(x, y,H) of a generalized Laplacian H is unique,
there is no one-one correspondance between H and the kernel K0

t (x, y,H) approxi-
mating its heat kernel. Indeed, K0

t (x, y,H) only depends of the Riemannian metric
g on X and the connection ∇E on E such that H = ∆E + F . Then given F1 a
zero-order operator on E and the generalized Laplacian H1 = ∆E + F1, we have

K0
t (x, y,H) = K0

t (x, y,H1)

2.2. The discrete setting. For the purpose of applications to image process-
ing, we discretize the computation of k0

t u. We proceed by discrete convolutions with
masks.

Considering the standard Laplacian ∆ on R2, the gaussian kernel Gt(x, y) is the
heat kernel Kt(x, y,∆) of ∆. This means that the solution ut of the heat equation
∂ut/∂t = ∆ut of initial condition u0 = u is given by the convolution of u with the
Gaussian kernel

e−t∆u(x) =
Å

1
4πt

ã∫
R2
e−‖x−y‖

2/4t u(y) dy

The Gaussian kernel has an infinite support and satisfies the propertyÅ
1

4πt

ã∫
R2
e−‖x−y‖

2/4t dy = 1

In practice, the discrete Gaussian kernel is truncated such that Gt((i, j), (k, l)) = 0
if the pixel (k, l) is outside a given neighborhood N(i,j) of the pixel (i, j) (e.g. 5 × 5
neighborhood), and normalized inside N(i,j), i.e.

Gt((i, j), (k, l)) =
(1/4πt) e−‖(i,j)−(k,l)‖2/4t∑
N(i,j)

(1/4πt) e−‖(i,j)−(m,n)‖2/4t

Hence, the discrete approximation of e−t∆u at a pixel (i, j) is given by the discrete
convolution of u with such a mask. More precisely, we have

(e−t∆u)(i, j) '
∑

(k,l)∈N(i,j)

Gt((i, j),(k, l)) u(k, l)

More generally, the kernel

Qt(x, y) =
Å

1
4πt

ã
e−d(x,y)2/4t Ψ(d(x, y)2) J(x, y)−1/2
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on (X, g) may be viewed as the Riemannian counterpart of the Gaussian kernel on
R2. Indeed, dealing with normal coordinates around a point x, they take both the
form Å

1
4πt

ã
e−‖y‖

2/4t

where y are the normal coordinates of y.

Based on this observation, we propose to adapt the above method, devoted to com-
pute a discrete approximation of e−t∆u on R2, in order to compute more generally a
discrete approximation of k0

t u on (X, g) of dimension 2. This generalization requires
the construction of discrete geodesic curves and normal neighborhoods.

For this, we use the following definitions and results on differential geometry of man-
ifolds (see Appendix A and [15] for more details).

1. Let X be a manifold equipped with a connection ∇ on its tangent bundle TX.
The curve γ on X is said to be autoparallel if it satisfies ∇̇γ γ̇ = 0.

2. Normal neighborhoods may be characterized as neighborhoods where each point
is joined to the origin by a unique autoparallel curve.

3. Dealing with a Riemannian manifold X equipped with the Levi-Cevita connec-
tion on its tangent bundle, an autoparallel curve on X is called a geodesic.

Then we construct geodesic curves from (i, j) and a normal neighborhood V(i,j) of
(i, j) as follows.

Let us first fix a neighborhood N(i,j) of the pixel (i, j) (e.g. the 5 × 5 neighbor-
hood of (i, j)). For each p, q ∈ {−1, 0, 1} such that (p, q) 6= (0, 0), we construct the
geodesic γ such that γ(0) = (i, j) and γ̇(0) = (p, q) by solving a discrete counterpart
of the parallel transport of γ̇ along γ related to the Levi-Cevita connection on TX.
Then, we state that a point (k, l) ∈ N(i,j) belongs to V(i,j) if it belongs to a unique
geodesic from (i, j) and if it does not follow a point on this geodesic that belongs to
several geodesics from (i, j).

Hence, we truncate Qt((i, j), (k, l)) in such a way that Qt((i, j), (k, l)) = 0 if (k, l)
is outside V(i,j), and we normalize it inside V(i,j), i.e.

Qt((i, j), (k, l)) =
(1/4πt) e−d((i,j)−(k,l))2/4t∑
V(i,j)

(1/4πt) e−d((i,j)−(m,n))2/4t

Therefore, the discrete approximation of k0
t u at a pixel (i, j) is given by the discrete

convolution of the map

(k, l) 7−→ τ((i, j), (k, l))u(k, l)

with a such a mask. More precisely, we have

k0
t u(i, j) '

∑
(k,l)∈V(i,j)

Qt((i, j), (k, l)) τ((i, j),(k, l))u(k, l)
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Remark: Let us consider the operator k1
t u associated to the kernel K1

t (x, y,H) ap-
proximating the heat kernel of H. In the continuous setting, we have

(k1
t u)(x) =

∫
X

K1
t (x, y,H)u(y)dy

=
( 1

4πt

)∫
X

e−d(x,y)2/4t Ψ(d(x, y)2) (τ(x, y) + tΦ1(x, y,H))u(y) J(x, y)−
1
2 dy

In the discrete setting, we obtain

k1
t u(i, j) '

∑
(k,l)∈V(i,j)

Qt((i, j), (k, l)) [τ((i, j),(k, l)) + tΦ1((i, j), (k, l), H)]u(k, l)

Considering the neighborhood Vi,j := {(i, j)} of the pixel (i, j), we have

k1
t u(i, j) ' u(i, j) + tΦ1((i, j), (i, j),H)u(i, j)

Moreover, we have Φ1((i, j), (i, j), H) = −J1/2 ◦H ◦ J−1/2((i, j), (i, j)).

From the property

J(x, y) = 1 +O(‖y‖2) where y are the normal coordinates of y around x,

(see [4] Chapter 1), we can assume in the discrete setting that J = 1 near the diagonal.
Therefore, it gives Φ1((i, j), (i, j), H) = −H, and

k1
t u(i, j) ' u(i, j)− tHu(i, j) (2.1)

Finally, we obtain the Euler scheme of the PDE

∂ut
∂t

+Hut = 0, u0 = u

2.3. Example: the scalar/Beltrami Laplacian. The Laplace-Beltrami op-
erator can be viewed as a generalized Laplacian called the scalar Laplacian.

Definition 2.1. Let E be a vector bundle of rank 1 over a Riemannian manifold
(X, g), endowed with the connection ∇E = d+ω with ω ≡ 0. The scalar Laplacian is
the connection Laplacian on E associated to the connection ∇E.

In local frames ∂i := ∂/∂xi of TX and e1 of E, it is defined by

∆(fe1) = −
∑
ij

gij
(
∂i∂j −

∑
k

Γkij∂k
)
f e1 (2.2)

where f ∈ C∞(X), and Γkij are the symbols of the Levi-Cevita connection of (TX, g)
with respect to the frame ∂i.

In the following Proposition, we determine the parallel transport map on E related
to the connection ∇E .
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Proposition 2.2. Let (X, g), E and ∇E of Definition 2.1, γ be a C1 curve in
X such that γ(0) = y. The parallel transport Y along γ of the vector Y0 = Y 1

0 e1(y) is
Y (t) = Y 1

0 e1(γ(t)).

Proof. The parallel transport of Y0 along γ is the solution Y (t) = Y 1(t)e1(γ(t))
of the differential equation 

∇Eγ̇ Y (t) = 0

Y (0) = Y0

(2.3)

∇Eγ̇ Y (t) = ∇Eγ̇ (Y 1 e1)(t)

=
∂Y 1

∂t
(t) e1(γ(t))

Finally, we obtain an ordinary differential equation
∂Y 1

∂t
(t) = 0

Y 1(0) = Y 1
0

from which we deduce the solution of (2.3).

In other words, the parallel transport has no effect on coordinates. As a consequence,
the kernel K0

t (x, y,∆) equalsÅ
1

4πt

ãm/2
e−d(x,y)2/4tId(x, y) (2.4)

on normal neighborhoods of x, where Id(x, y) : Ey −→ Ex acts as the Identity map
on coordinates.

The Laplace-Beltrami operator ∆g is the differential operator of order 2 acting on
smooth functions on a Riemannian manifold (X, g), and defined by

∆g(f) =
1
√
g

∑
jk

∂j(
√
ggjk∂kf)

Considering the set C∞(X) of smooth functions on X as a trivial vector bundle of
rank 1 over (X, g) endowed with the connection ∇E determined by the 1-form ω = 0,
we have

∆g = −∆

This makes the PDE’s ∂f/∂t = ∆gf and ∂fe1/∂t+ ∆ fe1 = 0 be equivalent.

The PDE ∂f/∂t = ∆gf appears in the Beltrami framework in the context of im-
age regularization [23],[25]. In [23], the solution is approximated by an Euler scheme
of the form (2.1), whereas in [25] the solution is approximated by the convolution of
the initial condition with a kernel of the form (2.4).
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3. Clifford bundles over Riemannian manifolds: a common framework
to regularize functions, vector fields, and oriented orthonormal frame fields.

3.1. Clifford bundles: a common framework to treat functions, vector
fields and oriented orthonormal frame fields on manifolds. In this section,
we show that we can consider functions, vector fields and generators of rotation fields
on a manifold X as sections of a trivial Clifford bundle Cl(E, h) over X. Moreover,
we can also lift rotation fields to sections of Cl(E, h) called spinor fields.

Definition 3.1 (Clifford bundle). Let E be a vector bundle of rank n over a
manifold X, and equipped with a metric h. The Clifford bundle Cl(E, h) of (E, h) is
the quotient bundle

Cl(E, h) = T (E)
/
I(E, h)

where T (E) is the bundle whose fiber at x ∈ X is the tensor algebra of Ex and I(E, h)
is the bundle whose fiber at x ∈ X is the two-sided ideal I(Ex, hx) in T (Ex), generated
by elements v ⊗ v + hx(v, v) for v ∈ Ex.

We obtain a bundle of rank 2n over X whose fibers are endowed with a Clifford
algebra structure, and the fiberwise multiplication in Cl(E, h) gives an algebra struc-
ture to the space Γ(Cl(E, h)) of sections of Cl(E, h).

More precisely, let (e1, · · · , en) be a local oriented orthonormal frame field of (E, h)
on Ω ⊂ X. Then, any section s of Cl(E, h) takes the form

s = s0 1 +
∑

k=1···n
i1<···<ik

si1···ikei1 · · · eik

on Ω, for some functions s0, si1···ik ∈ C∞(Ω).

Example: Let X be a manifold of dimension m endowed with a metric g on its
tangent bundle TX. The couple (TX, g) induces a Clifford bundle Cl(TX, g) over X
of rank 2m.

The graduation on Clifford algebras carry over Clifford bundles. We denote by
Γ(Cl(E, h)k) the set of sections s of Cl(E, h) such that s(x) is a k-vector ∀x ∈ X.

Let x ∈ X. From the embeddings of R and Ex into the Clifford algebra Cl(Ex, h(x)),
both functions on X and sections of E may be viewed as sections of the Clifford
bundle Cl(E, h). More precisely, we have the identifications

C∞(X) ' Γ(Cl(E, h)0) Γ(E) ' Γ(Cl(E, h)1)

Let us denote by Γ(P SO(E, h)) the set of smooth oriented orthonormal frame fields
of (E, h). On a local trivialization U of (E, h), we have the identifications

Γ(P SO(E|U , h|U )) ' C∞(U,SO(n)) Γ(Cl(E|U , h|U )2) ' C∞(U, so(n))

the latter arising from the Lie algebra isomorphism spin(n) ' so(n). We call such



Clifford bundles for regularization 9

fields generators of oriented orthonormal frame fields.

From these identifications, functions, vector fields and generators of rotation fields
on X may be viewed as sections of a trivial Clifford bundle Cl(E, h) ' X × Rn,0,
respectively of degree 0,1,2.

Indeed, a vector-valued function v : X −→ Rn of components (v1, · · · , vn) may be
viewed as a section V of the trivial vector bundle (E, ‖ ‖2) = X × Rn of the form

V (x) = (x, (v1(x), · · · , vn(x)))

and consequently as a section of the trivial Clifford bundle Cl(E, ‖ ‖2)=X × Rn,0 of
the form

V (x) = (x, (0, v1(x), · · · , vn(x), 0, · · · , 0))

This construction may be generalized endowing the vector bundle E of a definite
metric h, in such a way that v may be viewed as a section V of a trivial vector bundle
(E, h) ' X × Rn. Let (e1, · · · , en) be an oriented orthonormal frame field of E with
respect to h, and φ be the global trivialization of (E, h) such that

V (x) = V1(x)e1(x) + · · ·+ Vn(x)en(x) = φ(x, (v1(x), · · · , vn(x)))

where (V1(x), · · · , Vn(x)) are the components of the vector (v1(x), · · · , vn(x)) in the
basis (e1(x), · · · , en(x)). As a consequence, v may be viewed as a section of the trivial
Clifford bundle Cl(E, h) ' X × Rn,0 of global trivialization Φ, of the form

V (x) = V1(x)e1(x) + · · ·+ Vn(x)en(x) = Φ(x, (0, v1(x), · · · , vn(x), 0, · · · , 0))

Then, we treat the case of rotation fields and their generators. Let r : X −→ SO(n) be
a rotation field on X, considered as a section of the principal bundle X× SO(n) over
X. From the covering ξ : Spin(n) −→ SO(n), r may be lifted to a spinor field s, i.e. a
section of the principal bundle X× Spin(n). By the embedding of Spin(n) into Rn,0,
we have X× Spin(n) ⊂ X ×Rn,0. Hence we can consider s as a section of the trivial
Clifford bundle X ×Rn,0. Moreover, from the Lie algebra isomorphism so(n) ' R2

n,0,
we can consider generators of rotation fields on X as sections s̃ of X × Rn,0 of the
form

s̃(x) = (x,
∑
i<j

aij(x) eiej)

for some functions aij , where eiej ∈ R2
n,0 are induced by an orthonormal basis

(e1, · · · , en) of (Rn, ‖ ‖2).

If we denote by exp the exponential map of Spin(n), the section s given by

s(x) = (x, exp(
∑
i<j

aij(x) eiej))

is a lifting of the rotation field r, i.e. we have

r(x) = (x, ξ ◦ exp(
∑
i<j

aij(x) eiej))
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Let us detail the construction of the section s̃. From the matrix representation of
SO(n), we can construct generators of rotations r(x), x ∈ X, by the computation of
log ◦ r(x) where log : SO(n) −→ so(n) is the logarithm map of the Lie group SO(n).
It gives a field of antisymmetric matrices on X. Then the Lie algebra isomorphism
so(n) −→ R2

n,0 maps

log ◦ r(x) =
∑
i<j

2aij(x)Eij to
∑
i<j

aij(x) eiej

We identify the last expression with the section

s̃(x) = (x,
∑
i<j

aij(x) eiej))

of X × Rn,0.

Remark: For n ≥ 3, the lifting of the rotation field r to a spinor field s is not unique,
due to the 2-sheeted covering Spin(n) −→ SO(n). Moreover, as the exponential map
of the group SO(n) is not injective for any n, the field s̃ generating the field r is not
unique.

Example: The case n = 2.
The lifting of a rotation field r to a spinor field s is unique from the isomorphism
SO(2) ' Spin(2). Indeed, the field θ lifts to cos(θ) + sin(θ)e1e2. For any k ∈ Z, the
field

s̃ = (θ + 2kπ)e1e2

is a generator of the field θ.

At last, any scalar field f : X −→ R may be viewed as a section F of a trivial vector
bundle Cl(E, h) ' X × Rn,0 of the form

F (x) = f(x)1(x)

In this paper, we are interested in the regularization of functions, vector fields and
rotation fields over manifolds. By the above constructions, we can apply the context
of heat equations on Clifford bundles to regularize these fields. By this approach, we
can control the anisotropy of the regularization by the choice of a Riemannian metric
of the base manifold X and the data we regularize by the choice of a connection on
the Clifford bundle Cl(E, h), for a well-chosen metric h.

Through the regularization of sections of degree 0, resp. 1, we can regularize func-
tions and vector fields over X. We propose to regularize rotation fields through the
regularization of their generators, i.e. sections of degree 2 of Cl(E, ‖ ‖2) = X × Rn,0.
Indeed, as mentioned above, we can construct a generator s̃ ∈ Γ(Cl(E, ‖ ‖2)2) of a
rotation field r on X. The regularization of s̃ provides sections s̃t,t≥0 of the form

s̃t(x) = (x,
∑
i<j

aij(t, x)eiej)

Then computing

rt(x) = (x, ξ ◦ exp(
∑
i<j

aij(t, x)eiej))
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we obtain rotation fields rt,t≥0 on X regularizing the initial field r.

Finally, this general method only requires that the regularization process preserves the
structure of function, vector field and generator of rotation field. Hence we are looking
for heat equations preserving the graduation of Clifford bundles. More precisely, we
are looking for PDEs of the form

∂st
∂t

+Hst = 0

where H is a generalized Laplacian on Cl(E, h) preserving the graduation, i.e.
H : Γ(Cl(E, h)k) −→ Γ(Cl(E, h)k).

In the sequel, we show that such differential operators can be constructed from con-
nections preserving the graduation. These connections can be constructed from con-
nections on E compatible the metric h.

3.2. Connections preserving the graduation. Let E be a vector bundle of
rank n equipped with a metric h over a manifold X.

Proposition 3.2. A connection ∇E on E compatible with the metric h induces
a connection ∇C on the Clifford bundle Cl(E, h) preserving the graduation, i.e. a
connection satisfying ∀k ∈ {0 · · ·n}

∇Eϕ ∈ Γ(T ∗X ⊗ Cl(E, h)k) if ϕ ∈ Γ(Cl(E, h)k)

Proof. Any connection ∇E on E may be extended in a unique way to a connection
∇ on T (E) by linearity and postulation of the Leibniz rule.
For U ∈ Γ(TX) and V ∈ Γ(E), we have

∇
U

(V ⊗ V − h(V, V )) =
1
2

[
(∇

U
V + V )⊗ (∇

U
V + V )− h(∇

U
V + V,∇

U
V + V )

]
−1

2

[
(∇

U
V − V )⊗ (∇

U
V − V )− h(∇

U
V − V,∇

U
V − V )

]
(3.1)

We prove (3.1) by developping both right and left terms of the equality.

For the right term we obtain

∇
U
V ⊗ V + V ⊗∇

U
V − 2h(∇

U
V, V )

Developping the left term we have

∇
U

(V ⊗ V − h(V, V )) = ∇
U
V ⊗ V + V ⊗∇

U
V − d

U
h(V, V )

However, by definition of a connexion compatible with the metric of a vector bundle,
we have for any U ∈ Γ(TX) and W,Z ∈ Γ(E)

d
U
h(W,Z) = h(∇

U
W,Z) + h(W,∇

U
Z)

Then, taking W = Z = V , it gives

d
U
h(V, V ) = 2h(∇

U
V, V )
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and the equality (3.1) is proved.

As the right term of (3.1) belongs to Γ(I(E, h)), it proves that ∇ preserves the
Γ(I(E, h)).

We deduce that ∇ induces a connection ∇C on Cl(E, h). Indeed, for a, b ∈ Γ(T (E))
in the same equivalence class (denoted by ȧ = ḃ), we have ∇

U
b = ∇

U
(a + I1) for

some I1 ∈ Γ(I(E, h)). Hence ∇
U
b = ∇

U
a + I2 for some I2 ∈ Γ(I(E, h)). Therefore

˙̆
∇(a) =

˙̄
∇(b), and ∇C is well-defined.

Let ϕ,ψ ∈ Γ(Cl(E, h)). By definition, there exist a, b ∈ Γ(T (E)) such that ϕ = ȧ and
ψ = ḃ. Then,

∇C(ϕψ) =
˙¸�∇(a⊗ b)

=
˙ˇ�∇(a)⊗ b+ a⊗∇(b)

=
˙¸�∇(a)⊗ b+

˙¸�a⊗∇(b)

=
˙̆
∇(a) ḃ+ ȧ

˙̄
∇(b)

= ∇C(ϕ)ψ + ϕ∇C(ψ)

from which follows that ∇C preserves the graduation.

Remark: Dealing with the tangent bundle (TX, g) of a Riemannian manifold, the
Levi-Cevita connection ∇ on (TX, g) is compatible with g. It follows that ∇ induces
a connection ∇C on Cl(TX, g) preserving the graduation [5].

As a consequence, from a connection compatible with the metric h on E and a
zero-order operator F on Cl(E, h) preserving the graduation, we can construct a
generalized Laplacian H on Cl(E, h) preserving the graduation, by the formula (see
Appendix B)

H = ∆C + F

where ∆C is the connection Laplacian related to the connection ∇C on Cl(E, h) in-
duced by the connection ∇E .

By this method, we construct in the sequel two generalized Laplacians on Clifford
bundles preserving the graduation, and restricting to the Laplace-Beltrami on func-
tions (i.e. sections of degree 0), called Clifford-Beltrami and Clifford-Hodge operators.

3.3. The Clifford-Beltrami operator. Let X be a manifold of dimension m,
endowed with a Riemannian metric g on its tangent bundle TX. Over the Rieman-
nian manifold (X, g), we consider the vector bundle TX endowed with the metric g̃
given by the identity matrix Im in local frames (∂/∂x1, · · · , ∂/∂xm) induced by local
coordinates system (x1, · · · , xm) on X. The vector bundle (TX, g̃) over X induces a
Clifford bundle Cl(TX, g̃) over X. A local section s of Cl(TX, g̃) is of the form

s = s0 1 +
∑

k=1···m
i1<···<ik

si1···ik ∂/∂x1 · · · ∂/∂xk
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for some functions s0, si1···ik ∈ C∞(X).

The Levi-Cevita connection ∇ on (TX, g̃) is determined by ω ≡ 0 by construction of
g̃. From Section 3.2, it induces an algebra connection ∇C on Cl(TX, g̃) satisfying

∇Cs = ds0 1 +
∑

k=1···m
i1<···<ik

dsi1···ik ∂/∂x1 · · · ∂/∂xk

In fact, ∇C corresponds in this particular case to the differentation of components on
Γ(Cl(TX, g̃)).

Then we construct the connection Laplacian ∆C on Cl(TX, g̃) related to ∇C . It
takes the form

∆C(s) = −∆gs0 1−
∑

k=1···m
i1<···<ik

∆gsi1···ik ∂/∂x1 · · · ∂/∂xk

It consists in the action of minus the Laplace-Beltrami operator related to g on each
component of a section. In this paper, we call this operator the Clifford-Beltrami
operator.

As the Clifford-Beltrami operator is a generalized Laplacian, we may consider the
corresponding heat equation, whose solution are provided by the convolution of the
initial conditions with the heat kernel Kt(x, y,∆C) of ∆C .

Definition 3.3. Let s ∈ Γ(Cl(TX, g̃)). The Clifford-Beltrami flow of s is
the solution st, t≥0 of the heat equation

∂st
∂t

+ ∆Cst = 0, s0 = s

Then, as the Clifford-Beltrami operator preserves the graduation on Cl(TX, g̃), it pre-
serves the structures of function, vector field and generator of orthonormal frame field.
As a consequence, the Clifford-Beltrami flow provides a common tool to regularize
functions, vector fields and oriented orthonormal frame fields.

3.4. The Clifford-Hodge operator. Let (X, g) be a Riemannian manifold.
We denote by

∧
T ∗X the vector bundle of differential forms on (X, g). The vector

space isomorphism (C.2) between
∧
V ∗ and Cl(V,Q) carries over vector bundles. It

follows a canonical vector bundle isomorphism between
∧
T ∗X and Cl(TX, g) that

maps differential forms of degree k to sections of degree k of Cl(TX, g).

The Hodge Laplacian ∆ is a generalized Laplacian acting on differential forms on
a Riemannian manifold (X, g). It is defined by

∆ = dδ + δd

where d is the exterior derivative operator and δ its formal adjoint [8].
In particular, when applied to 0-forms, i.e. functions, ∆ corresponds to minus the
Laplace-Beltrami operator.
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Under the identification between
∧
T ∗X and Cl(TX, g), the Hodge Laplacian can

also be applied to Γ(Cl(TX, g)), and consequently to vector fields and generators of
orthonormal frame fields. In the context of Clifford bundles, we call this operator the
Clifford-Hodge operator. It is defined as the square of a first order differential
operator called the Dirac operator.

Definition 3.4. Let ∇C be the connection on Cl(TX, g) induced by the Levi-
Cevita connection on (TX, g). Let (e1, · · · , em) be a local oriented orthormal frame
field of TX with respect to g. The Dirac operator is the first-order differential operator
D : Γ(Cl(TX, g)) −→ Γ(Cl(TX, g)) defined locally by

Dσ =
m∑
i=1

ei∇Cei σ (3.2)

This definition is independant of the choice of the local oriented orthonormal frame
field.

By the Bochner identity, the Clifford-Hodge operator D2 is a generalized Laplacian
on Cl(TX, g) preserving the graduation. Indeed, we have

D2 = ∆C +
∑
i<j

eiejRei,ej

where
∑
i<j eiejRei,ej is a zero-order operator preserving the graduation. The term

Rei,ej is called the curvature transformation of ∇C associated to ei and ej [19].

As the operator D2 is a generalized Laplacian, we may consider the corresponding
heat equation, whose solution are provided by the convolution of the initial conditions
with the heat kernel Kt(x, y,D2) of D2.

Definition 3.5. Let s ∈ Γ(Cl(X, g)). The Clifford-Hodge flow of s is the
solution st,t≥0 of the heat equation

∂st
∂t

+D2st = 0, s0 = s

Then, as the Clifford-Hodge operator preserves the graduation on Cl(TX, g), it pre-
serves the structures of function, vector field and generator of orthonormal frame
field. As a consequence, the Clifford-Hodge flow provides a common tool to regularize
functions, vector fields and oriented orthonormal frame fields.

4. Applications. In this paper, we approximate the solution of the heat equa-
tion associated to a generalized Laplacian H by the convolution of the initial condition
with the kernel K0

t (x, y,H) approximating the heat kernel of H near the diagonal.
This kernel is determined by the tranport parallel map associated to the connection
∇E such that H = ∆E + F (see Appendix B), and by geodesic distances on the
base manifold. In this Section we compute parallel transport maps on Cl(TX, g̃)
and Cl(TX, g) related to the Clifford-Beltrami and Clifford-Hodge operators for base
manifolds of dimension 2. Then we present applications in the context of image pro-
cessing.
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4.1. Clifford-Beltrami operator and subsequent parallel transport map.
We denote by (∂x1 , ∂x2) the frame field (∂/∂x1, ∂/∂x2). From Section 3.3, we have

∇C∂x1 1 = 0 ∇C∂x2 1 = 0

∇C∂x1 ∂x1 = 0 ∇C∂x2 ∂x1 = 0
∇C∂x1 ∂x2 = 0 ∇C∂x2 ∂x2 = 0

∇C∂x1∂x1 ∂x2 = 0 ∇C∂x2∂x1 ∂x2 = 0

Then, for ϕ = ϕ1 1 + ϕ2 ∂x1 + ϕ3 ∂x2 + ϕ4 ∂x1 ∂x2 we have

∆Cϕ = −(∆gϕ1)1− (∆gϕ2)∂x1 − (∆gϕ3)∂x2 − (∆gϕ4)∂x1 ∂x2

Proposition 4.1 (Parallel transport on Cl(TX, g̃)). Let X be a manifold of di-
mension 2. Let ∇C be the connection on Cl(TX, g̃) induced by the Levi-Cevita connec-
tion on (TX, g̃). Let Y0 = Y 1

0 1(y)+Y 2
0 ∂x1(y)+Y 3

0 ∂x2(y)+Y 4
0 ∂x1∂x2(y) ∈ Cl(TX, g̃)y,

and γ be a C1 curve in X such that γ(0) = y. The parallel transport Y of Y0 along γ is

Y (t) = Y 1
0 1(γ(t)) + Y 2

0 ∂x1(γ(t)) + Y 3
0 ∂x2(γ(t)) + Y 4

0 ∂x1 ∂x2(γ(t))

Proof. The parallel transport of Y0 along γ is the solution Y (t) = Y1(t) 1(γ(t)) +
Y2(t) ∂x1(γ(t)) + Y3(t) ∂x2(γ(t)) + Y4(t) ∂x1 ∂x2(γ(t)) of the differential equation

∇C
γ̇
Y (t) = 0

Y (0) = Y0

(4.1)

∇C
γ̇
Y (t) = ∇C

γ̇
Y1 1 + Y2 ∂x1 + Y3 ∂x2 + Y4 ∂x1∂x2 (t)

=
∂Y1

∂t
(t) 1(t) + Y1(t)(γ̇1(t)∇C

∂x1
1 (t) + γ̇2(t)∇C

∂x2
1 (t))

+
∂Y2

∂t
(t) ∂x1(t) + Y2(t)(γ̇1(t)∇C

∂x1
∂x1 (t) + γ̇2(t)∇C

∂x2
∂x1 (t))

+
∂Y3

∂t
(t) ∂x2(t) + Y3(t)(γ̇1(t)∇C

∂x1
∂x2 (t) + γ̇2(t)∇C

∂x2
∂x2 (t))

+
∂Y4

∂t
(t) ∂x1∂x2(t) + Y4(t)(γ̇1(t)∇C

∂x1
∂x1∂x2 (t) + γ̇2(t)∇C

∂x2
∂x1∂x2 (t))

=
∂Y1

∂t
(t) 1(t)

+
∂Y2

∂t
(t) ∂x1(t)

+
∂Y3

∂t
(t) ∂x2(t)

+
∂Y4

∂t
(t) ∂x1∂x2(t)

Finally, we obtain four ordinary differential equations on R of the form ∂Yi/∂t = 0
for i = 1 · · · 4, from which we deduce the parallel transport of Y0 along γ.
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4.2. Clifford-Hodge operator and subsequent parallel transport map.
Let us denote by Γk

′

ij the Levi-Cevita connection’s symbols of (TX, g) with respect to
a local orthonormal frame field (e1, e2). By Section 3.2, we have

∇Ce1 1 = 0 ∇Ce2 1 = 0

∇Ce1 e1 = Γ2′

11 e2 ∇Ce1 e2 = −Γ2′

11 e1

∇Ce2 e1 = Γ2′

21 e2 ∇Ce2 e2 = −Γ2′

21 e1

∇Ce1 e1e2 = 0 ∇Ce2 e1e2 = 0

Proposition 4.2. Let (X, g) be a Riemannian manifold of dimension 2. Let
(e1, e2) be a local oriented orthonormal frame field of (TX, g) and ϕ = ϕ11 + ϕ2e1 +
ϕ3e2 + ϕ4e1e2 ∈ Γ(Cl(TX, g)). Then

D2(ϕ11) =
(
− d2

e1,e1
ϕ1 − d2

e2,e2
ϕ1 − Γ2′

21 de1ϕ1 + Γ2′

11 de2ϕ1

)
1

= −∆g(ϕ1)1

D2(ϕ2e1 + ϕ3e2) =
(
− d2

e1,e1
ϕ2 − d2

e2,e2
ϕ2 − Γ2′

21 de1ϕ2 + Γ2′

11 de2ϕ2 + 2 Γ2′

11 de1ϕ3

+2 Γ2′

21 de2ϕ3 + ϕ2(d
e2

Γ2′

11 − de1 Γ2′

21 ) + ϕ3(d
e1

Γ2′

11 + de2Γ2′

21 )
)
e1

+
(
− d2

e1,e1
ϕ3 − d2

e2,e2
ϕ3 − Γ2′

21 de1ϕ3 + Γ2′

11 de2ϕ3 − 2 Γ2′

11 de1ϕ2

−2 Γ2′

21 de2ϕ2 + ϕ2(−d
e2

Γ2′

21 − de1 Γ2′

11 ) + ϕ3(−d
e1

Γ2′

21 + de2Γ2′

11 )
)
e2

D2(ϕ4e1e2) =
(
− d2

e1,e1
ϕ4 − d2

e2,e2
ϕ4 − Γ2′

21 de1ϕ4 + Γ2′

11 de2ϕ4

)
e1e2

= −∆g(ϕ4)e1e2

Proof. We obtain D2(ϕ) from (3.2) and the relations above defining ∇C in the
frame (e1, e2). Then we simplify the expression using some properties of the Levi-
Cevita connection:
(i) In an orthonormal frame, its symbols satisfy Γk

′

ij = −Γj
′

ik .
(ii) [e1, e2] = −Γ2′

11 e1 − Γ2′

21 e2.

Proposition 4.3 (Parallel transport on Cl(TX, g)). Let (X, g) be a Riemannian
manifold of dimension 2. Let (e1, e2) be a local oriented orthonormal frame of TX,
and Y0 = Y 1

0 1(y)+Y 2
0 e1(y)+Y 3

0 e2(y)+Y 4
0 e1e2(y) ∈ Cl(TX, g)y. Let γ be a C1 curve

in X such that γ(0) = y. The parallel transport Y of Y0 along γ is

Y (t) = Y 1
0 1(γ(t)) +Re

[
exp
(
i
∫ t

0
γ̇1(s) Γ2′

11 (s) + γ̇2(s) Γ2′

21 (s) ds
)

(Y 2
0 + i Y 3

0 )
]
e1(γ(t))

+Im
[
exp
(
i
∫ t

0
γ̇1(s) Γ2′

11 (s)+ γ̇2(s) Γ2′

21 (s) ds
)

(Y 2
0 +i Y 3

0 )
]
e2(γ(t))+Y 4

0 e1e2(γ(t))
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Proof. The parallel transport of Y0 along γ is the solution Y (t) = Y1(t) 1(γ(t)) +
Y2(t) e1(γ(t)) + Y3(t) e2(γ(t)) + Y4(t) e1e2(γ(t)) of the differential equation

∇C
γ̇
Y (t) = 0

Y (0) = Y0

(4.2)

∇C
γ̇
Y (t) = ∇C

γ̇
Y1 1 + Y2 e1 + Y3 e2 + Y4 e1e2 (t)

=
∂Y1

∂t
(t) 1(t) + Y1(t)(γ̇1(t)∇C

e1
1 (t) + γ̇2(t)∇C

e2
1 (t))

+
∂Y2

∂t
(t) e1(t) + Y2(t)(γ̇1(t)∇C

e1
e1 (t) + γ̇2(t)∇C

e2
e1 (t))

+
∂Y3

∂t
(t) e2(t) + Y3(t)(γ̇1(t)∇C

e1
e2 (t) + γ̇2(t)∇C

e2
e2 (t))

+
∂Y4

∂t
(t) e1e2(t) + Y4(t)(γ̇1(t)∇C

e1
e1e2 (t) + γ̇2(t)∇C

e2
e1e2 (t))

=
∂Y1

∂t
(t) 1(t)

+
∂Y2

∂t
(t) e1(t) + Y2(t)(γ̇1(t) Γ2′

11 (t) e2(t) + γ̇2(t) Γ2′

21 (t) e2(t))

+
∂Y3

∂t
(t) e2(t) + Y3(t)(−γ̇1(t) Γ2′

11 (t) e1(t)− γ̇2(t) Γ2′

21 (t) e1(t))

+
∂Y4

∂t
(t) e1e2(t)

Finally, we obtain a differential equation on R4

dY1/dt

dY2/dt

dY3/dt

dY4/dt


=



0 0 0 0

0 0 γ̇1 Γ2′

11 + γ̇2 Γ2′

21 0

0 − γ̇1 Γ2′

11 − γ̇2 Γ2′

21 0 0

0 0 0 0





Y1

Y2

Y3

Y4


of initial condition Y1(0) = Y 1

0 , Y2(0) = Y 2
0 , Y3(0) = Y 3

0 and Y4(0) = Y 4
0 .

It leads to Y1(t) = Y 1
0 , Y4(t) = Y 4

0 and a differential equation on R2Ñ
dY2/dt

dY3/dt

é
=

Ñ
0 γ̇1Γ2′

11 + γ̇2Γ2′

21

−γ̇1Γ2′

11 − γ̇2Γ2′

21 0

éÑ
Y2

Y3

é
(4.3)

of initial condition Y2(0) = Y 2
0 and Y3(0) = Y 3

0 .

Under the identification between R2 and C, (4.3) becomes ∂(Y2 + i Y3)/∂t = i (γ̇1 Γ2′

11 + γ̇2 Γ2′

21 )(Y2 + i Y3)

Y2(0) + i Y3(0) = Y 2
0 + i Y 3

0

(4.4)
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The solution of (4.4) is

Y2(t) + i Y3(t) = exp
(
i

∫ t

0

γ̇1(s) Γ2′

11 (s) + γ̇2(s) Γ2′

21 (s) ds
)

(Y 2
0 + i Y 3

0 ) (4.5)

from which follows the parallel transport of Y0 along γ.

4.3. The particular context of images. Let us consider a n-channels image
I : (x1, x2) 7−→ (I1(x1, x2), · · · , In(x1, x2)) defined on a domain Ω ⊂ R2. I determines
a surface S embedded in Rn+2 parametrized by

ϕ : (x1, x2) 7−→ (x1, x2, I
1(x1, x2), · · · , In(x1, x2))

Then we endow Rn+2 of a metric h of matrix representation diag(1, 1, h1, · · · , hn)
where h1, · · · , hn are positive functions. We denote by g the metric on S induced by
h. This construction makes the couple (S, g) be a Riemannian manifold of dimension
2 of global chart (Ω, ϕ).

On the trivial vector bundle TS, the natural global frame is (∂/∂x1, ∂/∂x2) induced
by the cartesian coordinates system (x1, x2) on Ω. However, the Clifford-Hodge op-
erator D2 on Cl(TS, g) is defined with respect to an oriented orthonormal frame field
of (TS, g) (see Section 3.4). In what follows, we construct an oriented orthonormal
frame field (e1, e2) of (TS, g) and compute the transformation of Levi-Cevita connec-
tion’s symbols with respect to the frame change from (∂/∂x1, ∂/∂x2) to (e1, e2).

Proposition 4.4 (Positively oriented orthonormal basis of TpS).

Let
Å
E F
F G

ã
be the matrix representation of g at p in the basis (∂/∂x1, ∂/∂x2)(p).

Let λ+ and λ− (λ+ ≥ λ−) be the two eigenvalues of the induced endomorphism. Then
a positively oriented orthonormal basis (e1, e2) of TpS may be constructed from eigen-
vectors, distinguishing four cases:

(i) if F 6= 0, take (e1, e2) =àà
λ+ −G√

λ+
√
F 2 + (λ+ −G)2

F√
λ+
√
F 2 + (λ+ −G)2

í
, sign(F )

à
λ− −G√

λ−
√
F 2 + (λ− −G)2

F√
λ−
√
F 2 + (λ− −G)2

íí
in the basis (∂/∂x1, ∂/∂x2)(p).

(ii) if F = 0 and E > G, take

(e1, e2) =
(∂/∂x1(p)√

E
,
∂/∂x2(p)√

G

)
(iii) if F = 0 and E < G, take

(e1, e2) =
(∂/∂x2(p)√

G
,−∂/∂x1(p)√

E

)
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(iv) if F = 0 and E = G, the whole space TpS is eigenspace. Then for any θ, the two
vectors àà

cos(θ)√
E

sin(θ)√
E

í
,

à
− sin(θ)√

E

cos(θ)√
E

íí
in the basis (∂/∂x1, ∂/∂x2)(p) form a positively oriented orthonormal basis of TpS.

Proof. As unit eigenvectors, they form an orthonormal basis of TpS. The orienta-
tion is clearly positive in the cases (ii), (iii) and (iv). For the case (i), one just need
to compute the 2-form

ω =
[( λ+ −G√

λ+
√
F 2 + (λ+ −G)2

)
dx1 +

( F√
λ+
√
F 2 + (λ+ −G)2

)
dx2

]
∧

[( λ− −G√
λ−
√
F 2 + (λ− −G)2

)
dx1 +

( F√
λ−
√
F 2 + (λ− −G)2

)
dx2

]
Then

ω =
F (λ+ − λ−)√

λ+λ−
√
F 2 + (λ+ −G)2

√
F 2 + (λ− −G)2

dx1 ∧ dx2

and the sign of the scalar term is given by the sign of F .

Following this construction for each p ∈ S, we obtain a positively oriented orthonor-
mal frame field (e1, e2) of (TS, g), where e1 is the unit vector field of highest variations
(eigenvectors associated to the eigenvalues λ+) and e2 the unit vector field of lowest
variations (eigenvectors associated to the eigenvalues λ−).

By the antisymmetry property of its symbols Γk
′

ij in an orthonormal frame field, the
Levi-Cevita connection is entirely determined by the symbols Γ2′

11 and Γ2′

21 in such
frames. In the next proposition, we determine the expressions of these two symbols
in a frame field (v1, v2) in function of the symbols Γkij of the connection in the frame
field (∂/∂x1, ∂/∂x2).

Proposition 4.5. Let (v1, v2) be a frame field such that v1 = a ∂/∂x1 + b ∂/∂x2

and v2 = c ∂/∂x1 + d ∂/∂x2. Then

Γ2′

11 = 1/(ad− bc)×(
−ab ∂a

∂x1
−a2bΓ1

11−2ab2 Γ1
12−b2

∂a

∂x2
−b3 Γ1

22+a3 Γ2
11+a2 ∂b

∂x1
+2a2bΓ2

12+ab
∂b

∂x2
+ab2 Γ2

22

)
Γ2′

21 = 1/(ad− bc)×(
− bc ∂a

∂x1
−acbΓ1

11− (bc+ad)bΓ1
12− bd

∂a

∂x2
− b2dΓ1

22 +a2cΓ2
11 +ac

∂b

∂x1
+(bc+ad)aΓ2

12
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+ad
∂b

∂x2
+ abdΓ2

22

)
Proof. By definition, we have

∇
v1
v1 = Γ1′

11 v1 + Γ2′

11 v2 ∇
v2
v1 = Γ1′

21 v1 + Γ2′

21 v2

With respect to the frame field (∂x1 , ∂x2) := (∂/∂x1, ∂/∂x2), we obtain

∇
v1
v1 = ∇

a∂x1+b∂x2
a ∂x1 + b ∂x2

= a∇
∂x1

a ∂x1 + a∇
∂x1

b ∂x2 + b∇
∂x2

a ∂x1 + b∇
∂x2

b ∂x2

= a
[ ∂a
∂x1

∂x1 + a
(

Γ1
11 ∂x1 + Γ2

11 ∂x2

)]
+ a
[ ∂b
∂x1

∂x2 + b
(

Γ1
12 ∂x1 + Γ2

12 ∂x2

)]
+b
[ ∂a
∂x2

∂x1 + a
(

Γ1
21 ∂x1 + Γ2

21 ∂x2

)]
+ b
[ ∂b
∂x2

∂x2 + b
(

Γ1
22 ∂x1 + Γ2

22 ∂x2

)]

=
[
a
∂a

∂x1
+a2 Γ1

11+2abΓ1
12+b

∂a

∂x2
+b2 Γ1

22

]
∂x1+

[
a
∂b

∂x1
+a2 Γ2

11+2abΓ2
12+b

∂b

∂x2
+b2 Γ2

22

]
∂x2

Then, since

∂x1 =
1

ad− bc
(d v1 − b v2) ∂x2 =

1
ad− bc

(−c v1 + a v2)

we obtain

∇
v1
v1 =

1
ad− bc

[
ad

∂a

∂x1
+ a2dΓ1

11 + 2abdΓ1
12 + bd

∂a

∂x2
+ b2dΓ1

22 − a2cΓ2
11 − ac

∂b

∂x1

−2abcΓ2
12 − bd

∂b

∂x2
− b2cΓ2

22

]
v1

+
1

ad− bc

[
− ab ∂a

∂x1
− a2bΓ1

11 − 2ab2 Γ1
12 − b2

∂a

∂x2
− b3 Γ1

22 + a3 Γ2
11 + a2 ∂b

∂x1

+2a2bΓ2
12 + ab

∂b

∂x2
+ ab2 Γ2

22

]
v2

from which we deduce Γ2′

11 ,

and

∇
v2
v1 =

1
ad− bc

[
cd

∂a

∂x1
+ acdΓ1

11 + (bc+ ad)dΓ1
12 + d2 ∂a

∂x2
+ bd2 Γ1

22 − ac2 Γ2
11 − c2

∂b

∂x1

−(bc+ ad)cΓ2
12 − cd

∂b

∂x2
− cbdΓ2

22

]
v1

+
1

ad− bc

[
− bc ∂a

∂x1
− acbΓ1

11 − (bc+ ad)bΓ1
12 − bd

∂a

∂x2
− b2dΓ1

22 + a2cΓ2
11

+ac
∂b

∂x1
+ (bc+ ad)aΓ2

12 + ad
∂b

∂x2
+ abdΓ2

22

]
v2

from which we deduce Γ2′

21 .

From this proposition, we deduce the expression of the Levi-Cevita’s connection sym-
bols in the frame field (e1, e2).
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4.4. Experiments. We apply the Clifford-Beltrami and Clifford-Hodge flows in
the context of image processing. The base manifold X we consider is the surface S
embedded in R5 parametrized by the graph of a color image I = (I1, I2, I3) given
with its RGB components. We endow S with the Riemannian metric g induced by
the metric h on R5, for some functions hi (see Section 4.3). Then we construct the
trivial Clifford bundles Cl(TS, g̃) = S × R2,0 and Cl(TS, g) ' S × R2,0 over (S, g).

Clifford-Beltrami flow in Γ(Cl(TS, g̃)0) and Clifford-Hodge flow in Γ(Cl(TS, g)0) can
be applied to regularize the color image I. Indeed we can consider each component
Ii of I as a section of degree 0 of the Clifford bundles Cl(TS, g̃) and Cl(TS, g), of the
form Ii1. Then the heat equations associated to Clifford-Beltrami ∆C and Clifford-
Hodge D2 operators lead in both cases to the following 3 PDEs

∂Iit
∂t

= ∆gI
i
t , Ii0 = Ii

Finally, we obtain the 3 PDEs of Beltrami framework of Sochen et al. in the context
of color image regularization (see e.g. [23],[25]).

Fig. 4.1 is an illustration of color image regularization induced by Clifford-Beltrami
and Clifford-Hodge flows. It is given by the computations of k0

t (x, y,∆C)Ii1 and
k0
t (x, y,D2)Ii1, i = 1, 2, 3, where convolutions are done on 5x5 neighborhoods (see

Section 2). Fig. 4.1(a) is taken from the Berkeley image segmentation database [20].
Fig. 4.1(b) is the result of the diffusions after 10 iterations for t = 0.2, and g induced
by h1 = h2 = h3 = 0.01. We obtain a smoothing of the initial image on regions of
low color variations whereas high edges are preserved.

(a) Original image (b) Clifford-Beltrami/Hodge flows of functions

Fig. 4.1. Color image regularization

Clifford-Beltrami flow in Γ(Cl(TS, g̃)1) and Clifford-Hodge flow in Γ(Cl(TS, g)1) can
be applied to regularize vector fields related to I. Indeed, let v = (v1, v2) be a vector
field on Ω. By the global chart ϕ of S, it can be considered as a tangent vector field on
S. Then, v is the section v1∂/∂x1+v2∂/∂x2 of Cl(TS, g̃) and the section ṽ1e1+ṽ2e2 of
Cl(TS, g) where (e1, e2) is the oriented orthonormal frame field of (TS, g) constructed
in Section 4.3. Then we consider the heat equations related to ∆C on Cl(TS, g̃) and
D2 on Cl(TS, g) of initial condition v0 = v

∂vt
∂t

+ ∆Cvt = 0
∂vt
∂t

+D2vt = 0
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(a) (b)

Fig. 4.2. Unit vector field of edge orientations

(a) Clifford-Beltrami flow of vector field (b) Clifford-Hodge flow of vector field

Fig. 4.3. Unit vector field of edge orientations regularization for hi = 0.1

(a) Clifford-Beltrami flow of vector field (b) Clifford-Hodge flow of vector field

Fig. 4.4. Unit vector field of edge orientations regularization for hi = 0.01

Fig. 4.2(b) is the unit vector field v indicating edge orientations in an area around the
hat of Fig. 4.2(a). We compare Clifford-Beltrami and Clifford-Hodge flows of v for
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two different metrics g on S. Results are given by the computations of k0
t (x, y,∆C)v

and k0
t (x, y,D2)v, where convolutions are done on 5x5 neighborhoods. Fig. 4.3 shows

results for t = 0.3 after 200 iterations where g is induced by hi = 0.1. Fig. 4.4 shows
results for t = 0.3 after 200 iterations where g is induced by hi = 0.01.

The role of the functions hi is to control the anisotropy of the diffusion. Indeed,
we have explained throughtout the paper that the anisotropy of the diffusion is de-
termined by the metric g of the base manifold. In this context, g is determined by
the functions hi. Therefore, the more the functions hi are low, the more the diffusion
is isotropic, as it can be seen comparing Fig. 4.3 and Fig. 4.4. By the base manifold
we have chosen for the applications, g measures color variations. It explains why the
anisotropy of the diffusions is related with color variations of the image on Fig. 4.2(a).
By definition, the Clifford-Beltrami flow consists in a Beltrami flow of each component
of v. We see on Fig. 4.3(a) and Fig. 4.4(a) that it preserves the vector field on high
color variations and smoothes it on low color variations. The Clifford-Hodge flow also
preserves the vector field on high color variations, but it vanishes it on regions of low
color variations, as it can be seen on Fig. 4.3(b) and Fig. 4.4(b).

Clifford-Beltrami flow in Γ(Cl(TS, g̃)2) and Clifford-Hodge flow in Γ(Cl(TS, g)2) can
be respectively applied to regularize rotation fields in (TS, g̃) and (TS, g). As we
deal with vector bundle of rank 2, rotation fields can be given by unit vector fields.
We propose to compare regularizations of unit vector fields depending on they are
treated as vector fields or as rotation fields. By our choice of the unit vector field
treated in this paper (the unit vector field of edge orientations), the Clifford-Hodge
flow can not be considered in this application. Indeed, unit vector fields in the frame
(∂/∂x1, ∂/∂x2) are not unit in the frame (e1, e2). Therefore, we are only concerned
with the Clifford-Beltrami flow.

Let ψ be the rotation field given by v = (cosψ, sinψ) on Ω ⊂ R2, where v is the
unit vector field of edge orientations (see Fig. 4.2(b)). Following the method of Sec-
tion 3.1, we construct the section‹Ψ: x 7−→ (x, ψ̃(x) ∂/∂x1 ∂/∂x2) ∈ Γ(Cl(TS, g̃)2)

such that for each x ∈ S, ψ̃(x) is an infinitesimal generator of the rotation ψ(x). The
2π periodicity in the choice of ψ̃ is discussed in the Remark below. From Section 4.1,
the Clifford-Beltrami flow of ‹Ψ leads to

∂ψ̃t
∂t

= ∆gψ̃t, ψ̃0 = ψ̃

Remark: The 2π periodicity in the choice of ψ̃ may be removed by constructing ‹Ψ
not as a global section of Γ(Cl(TS, g̃)), but locally on small neighborhoods. Indeed,
for x0 ∈ S, we state ψ̃(x) = ψ(x) − 2π if ψ(x) − ψ(x0) ≥ π, ψ̃(x) = ψ(x) + 2π if
ψ(x) − ψ(x0) < −π and ψ̃(x) = ψ(x) otherwise. By this construction ψ̃ takes val-
ues locally in [ψ(x0) − π, ψ(x0) + π[. Hence, it makes sense to the computation of
(k0
t
‹Ψ)(x0). Then we extend this construction for each point in S. This method can

be viewed as the Lie group counterpart of the choice of maximal normal coordinates
systems on manifolds. Indeed, we always work in the tangent space of the neutral
element and consider the exponential map of the Lie group.
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(a) Clifford-Beltrami flow of vector fields (b) Clifford-Beltrami flow of orthonormal frame
fields

Fig. 4.5. Unit vector field of edge orientations regularization for hi = 0.1

Fig. 4.5(b) shows the result of the diffusion for t = 0.3 after 200 iterations. We have
constructed ‹Ψ locally on 5x5 neighborhoods. Compared to the Clifford-Beltrami flow
of edge orientations treated as a vector field (Fig. 4.5(a)), the regularization provides
similar orientations but the unit norm of the initial unit vector field is preserved when
it is treated as an oriented orthonormal frame field.

5. Conclusion. In this paper, we have proposed a new framework to treat scalar,
vector and oriented orthonormal frame fields on manifolds, by considering Clifford
bundles. We have shown that scalar and vector fields can be viewed as sections of
Clifford bundles, respectively of degree 0 and 1, and that oriented orthonormal frame
fields can be lifted to sections of Clifford bundles called spinor fields. We have also
shown that sections of degree 2 can be identified with generators of orthonormal frame
fields. In this paper, we were particulary concerned with the problem of regulariza-
tion of these fields. Using the framework of heat equations associated to generalized
Laplacians on vector bundles over Riemannian manifolds, we have shown that the
behaviour of the regularization of these fields is determined by the choice of a connec-
tion on a Clifford bundle and a Riemannian metric on the base manifold. We have
considered the Clifford-Beltrami and Clifford-Hodge flows generalizing the Beltrami
flow to sections of Clifford bundles. Dealing with base manifolds of dimension 2, we
have shown applications in the context of image processing. By the choice of different
metrics and connections, different regularizations can be performed. Moreover, by the
choice of other base manifolds and vector bundles, regularization of fields in other con-
texts can be envisaged. For instance, dealing with base manifolds of dimension 3, we
can extend the applications presented in this paper to the context of video processing.

Acknowledgments. The author thanks Pr. Michel Berthier for helpful discus-
sions. He also thank the anonymous reviewers for helpful remarks and suggestions.
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Appendix A. Differential Geometry of Vector Bundles.

See [12],[15],[17],[26] for some references on differential geometry of manifolds and
vector bundles.

Definition A.1. A smooth vector bundle of rank n is a triplet (E, π,X)
where X and E are two C∞ manifolds, and π : E −→ X is a surjective map such
that the preimage π−1(x) of x ∈ X is endowed with a structure of vector space of
dimension n. X is called the base manifold and E the total space of the vector
bundle. The set π−1(x) is called the fiber over x, and is denoted by Ex.

The vector bundle is said to be locally trivial if the following conditions hold: for each
x ∈ X , there is a neighborhood U of x and a diffeomorphism φ : U ×Rn −→ π−1(U)
satisfying π ◦ φ(x, f) = x, and such that the map φx : Rn −→ Ex is a vector space
isomorphism. The couple (U, φ) is called a local trivialization.

The vector bundle is said to be trivial if there exists a diffeomorphism Φ: X×Rn −→
E such that π ◦ Φ(x, f) = x, and Φx : Rn −→ Ex is a vector space isomorphism.

Example: Let X be a C∞ manifold of dimension m. The disjoint union of tan-
gent spaces TX :=

⊔
TxX for x ∈ X, is the total space of a vector bundle (TX, π,X)

of rank m called the tangent bundle of X. Tangent space TxX is the fiber over x.

Definition A.2. A metric h on a vector bundle is the assigment of a scalar
product hx on each fiber π−1(x).

Example: A Riemannian metric on a manifold is a definite positive metric on its
tangent bundle.

Definition A.3. A section of a smooth vector bundle (E, π,X) is a differen-
tiable map S : X −→ E such that π ◦ S = IdX .

Let (f1, · · · , fn) be a basis of Rn. In a local trivialization (U, φ) of (E, π,X), any
section may be written

S(x) =
n∑
i=1

si(x)φ(x, fi)

for some functions si ∈ C∞(X).

The set {φ(·, f1), · · · , φ(·, fn)} is called a local frame of (E, π,X). The set of
sections of (E, π,X) is denoted by Γ(E).

Example: Tangent vector fields onX are the sections of the tangent bundle (TX, π,X).

Definition A.4. A connection on (E, π,X) is a map ∇E : Γ(TX)×Γ(E) −→
Γ(E) satisfying the following axioms:

-∇Efu+gvY = f∇Eu Y + g∇Ev Y
-∇Eu fY = (duf)Y + f∇Eu Y
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for f, g ∈ C∞(X), u, v ∈ Γ(TX) and Y ∈ Γ(E).

Hence, a connection on (E, π,X) may be written as d+ω, where d is the differentation
of components and ω ∈ Γ(T ∗X ⊗ End(E)).

In local frames (e1, · · · , en) of E and (u1, · · · , um) of TX, a connection is determined
by n2 ×m functions Υk

ij such that

∇Euiej =
n∑
k=1

Υk
ijek

Example: The Levi-Cevita connection is the connection on the tangent bundle of a
Riemannian manifold (X, g) determined by the m3 functions

Γkij =
1
2
gkl(∂jgli + ∂iglj − ∂lgij)

with respect to the local frame (∂/∂x1, · · · , ∂/∂xm) of TX given by a local coordi-
nates system (x1, · · · , xm) of X.

Definition A.5. Let ∇E be a connection on a vector bundle (E, π,X), and γ
a C1 curve in X such that γ(0) = y. The parallel transport of Y0 ∈ Ey along the
curve γ is the section Y (t) that is solution of the following differential equation
∇Eγ̇ Y (t) = 0

Y (0) = Y0

A section Y along a curve γ is parallel if ∇Eγ̇ Y (t) = 0 for each t.

Example: Let (X, g) be a Riemannian manifold endowed with the Levi-Cevita con-
nection ∇ on its tangent bundle. A Geodesic curve on X is a C1 curve γ whose
tangent vector field γ̇ is parallel along γ, i.e. ∇γ̇ γ̇ = 0.

Appendix B. Heat Kernels of Generalized Laplacians.

We refer to [4] for more details on this part.

Definition B.1. Let E be a vector bundle over a Riemannian manifold (X, g),
endowed with a connection ∇E. Let ∇ be the Levi-Cevita connection of (TX, g). To
any pair of tangent vector fields V and W on X, we associate an invariant second
derivative ∇2

V,W
: Γ(E) −→ Γ(E) by setting

∇2
V,W

ϕ ≡ ∇E
V
∇E
W
ϕ−∇E

∇
V
W
ϕ

Then the connection Laplacian ∆E : Γ(E) −→ Γ(E) is defined by

∆Eϕ = −trace(∇2
·,·
ϕ)

where trace denotes the contraction with the metric g.
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In particular, if ei is a local orthonormal frame of TX, the operator ∆E is given
by

∆E = −
∑
i

(
∇Eei ∇

E
ei −∇

E
∇ei
ei

)
With respect to the local frame ∂i := ∂/∂xi defined by a local coordinates system of
X, we have

∆E = −
∑
ij

gij
(
∇E
∂i
∇E
∂j
−
∑
k

Γkij∇E∂k
)

where the symbols Γkij are defined by ∇
∂i
∂j =

∑
k Γkij∂k.

Definition B.2. Let E be a vector bundle over a Riemannian manifold (X, g).
A Generalized Laplacian on E is a second-order differential operator H : Γ(E) −→
Γ(E) that may be written

H = ∆E + F

for some connection ∇E and a zero-order operator F .

In particular, any connection Laplacian is a generalized Laplacian.

To any generalized Laplacian H on a vector bundle E over a compact manifold X,
one may associate an operator e−tH : Γ(E) −→ Γ(E), for t > 0, with the property
that ut(x) = e−tHu(x) satisfies the heat equation

∂ut
∂t

+Hut = 0, u0 = u

We shall define e−tH as an integral operator of the form

(e−tHu)(x) =
∫
X

Kt(x, y,H)u(y)dy

where Kt(x, y,H) : Ey −→ Ex is a linear map depending smoothly on x, y and t. It
is called the heat kernel of H.

In the following theorem, we summarize some results on approximations of the heat
kernel and solutions of the heat equation (see [4] p. 84).

Theorem B.3. Let x ∈ X. We denote by yi the normal coordinates of a point
y in the injectivity radius of X at x, ∂i the corresponding partial derivatives, and by
gij(y) the scalar product of ∂i and ∂j at y. Moreover, we define

J(x, y) = det(gij(y))1/2 for y = expx(y)

Let ε chosen smaller than the injectivy radius of X. Let Ψ: R+ −→ [0, 1] be a smooth
function such that Ψ(s) = 1 if s < ε2/4 and Ψ(s) = 0 if s > ε2.
Let τ(x, y) : Ey −→ Ex be the parallel transport along the unique geodesic curve join-
ing x and y, and d(x, y) its length.
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Then the kernels KN
t (x, y,H) defined by( 1

4πt

)m
2
e−d(x,y)2/4t Ψ(d(x, y)2)

N∑
i=0

tiΦi(x, y,H)J(x, y)−
1
2 ,

where the sections Φi are given by Φ0(x, y,H) = τ(x, y) and τ(x, y)−1Φi(x, y,H) =

−
∫ 1

0

si−1τ(xs, y)−1(Bx.Φi−1)(xs, y,H)ds

with Bx be the operator J1/2 ◦Hx ◦ J−1/2 where Hx is the operator H with respect to
the first variable,

satisfy

1. For every N > m/2, the kernel KN
t (x, y,H) is asymptotic to Kt(x, y,H):∥∥∥∂kt [Kt(x, y,H)−KN
t (x, y,H) ]

∥∥∥
l

= O(tN−m/2−l/2−k)

where ‖ ‖l is a norm on Cl sections.

2. Denoting by kNt the operator defined by

(kNt u)(x) =
∫
X

KN
t (x, y,H)u(y)dy

we have limt→0 ‖kNt u− u‖l = 0 for every N .

Moreover, we have the following estimate:∥∥∥e−tHu− k∑
i=0

(−tH)i

i!
u
∥∥∥
j

= O(tk+1)

which justifies the notation e−tH .

Appendix C. Clifford algebras and the Lie group Spin(n).

C.1. Clifford algebras. We refer to [7],[16],[19] for more details on Clifford al-
gebras.

Definition C.1 (Clifford algebra). Let V be a vector space of finite dimension
n over R equipped with a quadratic form Q. Formally speaking, the Clifford algebra
Cl(V,Q) of (V,Q) is the solution of the following universal problem. We search a
couple (Cl(V,Q), iQ) where Cl(V,Q) is an R-algebra and iQ : V −→ Cl(V,Q) is
R-linear satisfying:

(iQ(v))2 = Q(v).1

for all v in V (1 denotes the unit of Cl(V,Q)) such that for each R-algebra A and
each R-linear map f : V −→ A with

(f(v))2 = Q(v).1
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for all v in V (1 denotes the unit of A), then there exists a unique morphism

g : Cl(V,Q) −→ A

of R-algebras such that f = g ◦ iQ.
The solution is unique up to isomorphisms and is given as the (non commutative)
quotient

T (V )/(v ⊗ v +Q(v).1)

of the tensor algebra of V by the two-sided ideal generated by v⊗ v+Q(v).1, where v
belongs to V (see [19] for a proof).
It is well known that there exists a unique anti-automorphism t on Cl(V,Q) such that

t(iQ(v)) = iQ(v)

for all v in V . It is called reversion and usually denoted by x 7−→ x†, x in Cl(V,Q).
In the same way there exists a unique automorphism α on Cl(V,Q) such that

α(iQ(v)) = −iQ(v)

for all v in V . In this paper we write v for iQ(v) (according to the fact that iQ embeds
V in Cl(V,Q)).

When it is defined, we denote ‖x‖ =
√
xx† and say that x is a unit if xx† = ±1.

Let V be a vector space on R of dimension n, Q a quadratic form on V and (e1, · · · , en)
an orthonormal basis of V with respect to Q. As a vector space Cl(V,Q) is of dimen-
sion 2n on R and a basis is given by the set

{ei1ei2 · · · eik , i1 < i2 < · · · < ik, k ∈ {1, . . . , n}}

and the unit 1. An element of degree k∑
i1<···<ik

αi1...ikei1ei2 · · · eik

is called a k-vector. A 0-vector is a scalar and e1e2 · · · en is called the pseudoscalar.
We denote 〈x〉k the component of degree k of an element x of Cl(V,Q).
The inner product of xr of degree r and ys of degree s is defined by

xr · ys = 〈xrys〉|r−s|

if r and s are positive and by

xr · ys = 0

otherwise.
The outer product of xr of degree r and ys of degree s is defined by

xr ∧ ys = 〈xrys〉r+s (C.1)

These products extend by linearity on Cl(V,Q). Clearly, if a and b are vectors of V ,
then the inner product of a and b coincides with the scalar product defined by Q.
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Remark: For Q ≡ 0, the Clifford algebra Cl(V,Q) corresponds to the exterior al-
gebra

∧
V of V . Indeed, in this case the product in the Clifford algebra is the outer

product (C.1), and we have an algebra isomorphism between Cl(V,Q) and
∧
V . For

arbitrary quadratic form Q, there is a vector space isomorphism between
∧
V and

Cl(V,Q), that maps the subspace
∧k V to Cl(V,Q)k. It follows a vector space isomor-

phism between the space
∧
V ∗ of linear forms on V and the Clifford algebra Cl(V,Q),

that maps k-linear forms to k-vectors. More precisely, for (e1, · · · , en) a orthonormal
basis of (V,Q), we have the identifications

k-form :
∑

i1<···<ik
1≤ik≤m

ωi1···ike
i1 ∧ · · · ∧ eik ←→

∑
i1<···<ik
1≤ik≤m

ωi1···ik ei1 · · · eik

0-form : l←→ l 1
(C.2)

In this paper, we deal in particular with the Clifford algebra of the Euclidean space
(Rn, ‖ ‖2) denoted by Rn,0. Rkn,0 is the subspace of elements of degree k and R∗n,0 is
the group of elements that admit an inverse in Rn,0.

C.2. The Lie groups Spin(n) and SO(n). The group Spin(n) is defined by

Spin(n) =

{
2k∏
i=1

ai, ai ∈ R1
n,0, ‖ai‖ = 1

}
It is well known that Spin(n) is a connected compact Lie group that universally covers
SO(n) (n ≥ 3). Under the identification of (Rn, ‖ ‖2) and its embedding R1

n,0 into Rn,0,
the covering group is given by the map ξ

Spin(n) −→ SO(n)
R1
n,0 −→ R1

n,0

ξ : s 7−→ Rs : x 7−→ sxs−1

For instance, one can verify that Spin(3) is the group

{a1 + be1e2 + ce2e3 + de3e1, a
2 + b2 + c2 + d2 = 1}

and is isomorphic to the group H1 of unit quaternions.
We have Spin(2)= {a1 + be1e2, a

2 + b2 = 1}. It follows the identifications

Spin(2) ' S1 ' SO(2)

The Lie algebra spin(n) of Spin(n) is R2
n,0 with Lie bracket

A×B = AB −BA.

The exponential map exp : spin(n) −→ Spin(n) is onto and corresponds to the usual
matrix exponential map. As a consequence, every spinor can be written as

S =
∞∑
i=0

1
i!
Ai
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for some 2-vector A.

From the covering group Spin(n) −→ SO(n), we have a Lie algebra isomorphism

spin(n) ' so(n)

Dealing with the matrix representation of the group SO(n), we have

so(n) ' {n× n skew symmetric matrices}

Denoting by Eij , i < j the elementary skew symmetric matrix such that Eij(i, j) = −1

and Eij(j, i) = 1, the Lie algebra isomorphism maps Eij to
1
2
eiej .

In the rest of this part, we show how rotations in Rn can be interpreted in the
Clifford algebras formalism. From Hestenes and Sobczyk [16], we know that every A
in R2

n,0 can be written as

A = A1 +A2 + · · ·+Am

where m ≤ n/2 and

Aj = ‖Aj‖ajbj , j ∈ {1, . . . ,m},

with

{a1, . . . , am, b1, . . . , bm}

a set of orthonormal vectors. Thus

AjAk = AkAj = Ak ∧Aj
whenever j 6= k and

A2
k = −‖Ak‖2 < 0

This means that the planes encoded by Ak and Aj are orthogonal and implies that

eA1+A2+···+Am = eAσ(1)eAσ(2) . . . eAσ(m)

for all σ in the permutation group S(m). Actually, as A2
k is negative we have

eAi = cos(‖Ai‖) + sin(‖Ai‖)
Ai
‖Ai‖

The corresponding rotation

Ri : x 7−→ e−AixeAi

acts in the oriented plane defined by Ai as a plane rotation of angle 2‖Ai‖. The
vectors orthogonal to Ai are invariant under Ri.
It then appears that any element R of SO(n) is a composition of commuting simple
rotations, in the sense that they have only one invariant plane. The vectors left in-
variant by R are those of the orthogonal subspace to A. If m = n/2 this latter is
trivial. The previous decomposition is not unique if ‖Ak‖ = ‖Aj‖ for some j and k
with j 6= k. In this case infinitely many planes are left invariant by R.
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