
HAL Id: hal-00408532
https://hal.science/hal-00408532v1

Preprint submitted on 30 Jul 2009 (v1), last revised 25 Mar 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clifford bundles: a unifying framework for images
(videos), vector fields and orthonormal frame fields

regularization.
Thomas Batard

To cite this version:
Thomas Batard. Clifford bundles: a unifying framework for images (videos), vector fields and or-
thonormal frame fields regularization.. 2009. �hal-00408532v1�

https://hal.science/hal-00408532v1
https://hal.archives-ouvertes.fr


CLIFFORD BUNDLES: A UNIFYING FRAMEWORK FOR
IMAGES(VIDEOS), VECTOR FIELDS AND ORTHONORMAL

FRAME FIELDS REGULARIZATION ∗

THOMAS BATARD †

Abstract. The aim of this paper is to present a new framework for regularization by diffusion.
The methods we develop in the sequel can be used to smooth nD images, nD videos, vector fields
and orthonormal frame fields in any dimension.1

From a mathematical viewpoint, we deal with vector bundles over Riemannian manifolds and so-
called generalized Laplacians. Sections are regularized from heat equations associated to generalized
Laplacians, the solution being given as convolution by generalized heat kernels. The anisotropy of the
diffusion is controlled by the metric of the base manifold and by the connection of the vector bundle.
It finds applications to images and videos anisotropic regularization. The main topic of this paper
is to show that this approach can be extended to other fields such as vector fields and orthonormal
frame fields by considering the context of Clifford algebras. We introduce a Clifford-Hodge operator
(and the corresponding Clifford-Hodge flow) as a generalized Laplacian on the Clifford bundle of
a Riemannian manifold. Laplace-Beltrami diffusion appears as a particular case of Clifford-Hodge
diffusion, namely diffusion for degree 0 sections (functions). Considering base manifolds of dimension
2 and 3, applications to multispectral images, multispectral videos, 2D and 3D vector fields and
orthonormal frame fields regularization may be envisaged. Some of them are presented in this paper.

Key words. regularization, heat equations, Clifford algebras, vector bundles, differential geom-
etry

AMS subject classifications. 68U10-53CXX-15A66-58J35

1. Introduction. Most multivalued image smoothing process are based on PDE’s
of the form

∂Ii

∂t
=

2∑

j,k=1

fjk
∂2Ii

∂j ∂k
+ first-order part

of initial condition I : (x, y) 7−→ (I1(0, x, y), · · · , In(0, x, y)) a nD image, where fjk are
real functions. We refer to [20] for an overview on related works. From a geometric
viewpoint, the set of right terms, for i = 1 · · ·n, may be viewed as a second-order
differential operator acting on sections of a vector bundle over a Riemannian manifold
called a generalized Laplacian H [4]. As a consequence, it ensures existence and
unicity of a kernel Kt(x, y,H), called the heat kernel of H, generating the solution
of the heat equation

∂I

∂t
+HI = 0 (1.1)

from a ’convolution’ with the initial condition. For arbitrary Riemannian manifold
and vector bundle, it is usually impossible to find a closed form for this kernel, and
consequently a closed form of the solution. However, for the problem we consider in
this paper, the use of an approximate solution appears to be sufficient. A generalized
Laplacian H on a vector bundle E over a Riemannian manifold X is determined by
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2 T. BATARD

three pieces of data: the metric g of the base manifold X that determines the second
order part, a connection on E that determines the first order part, and a section
F ∈ Γ(End(E)) that determines the zero order part. It follows that the anisotropy
of a regularization is determined by these data. For example, the so-called oriented
Laplacians may be viewed as generalized Laplacians [1]. Similarly, on the vector bun-
dle C∞(X) of smooth functions on X, there is a canonical generalized Laplacian, the
scalar Laplacian, which corresponds to the Laplace-Beltrami operator up to a sign.
Considering each component Ik of a nD image as a function over a well-chosen Rie-
mannian manifold, we obtain the Beltrami flow of Sochen et al. in the context of
image regularization [14],[15]. The aim of this paper is to show that this Beltrami
flow, acting on C∞(X), can be extended in a natural way to tangent vector fields
and oriented orthonormal frame fields on (X, g) by considering the Clifford bundle of
(X, g). The former is devoted to regularization of vector fields on the charts, the latter
to regularization of orthonormal frame fields on the charts with respect to the metric g.
Both isotropic and anisotropic regularizations of fields differing from nD images(videos)
were widely investigated. Concerning vector fields, we may refer to [20],[8], where the
smoothing is made through the smoothing of a corresponding image and where the
anisotropy is controlled at each point by the orientation of the vector field. More
precisely, an oriented Laplacian is applied on each component of the image. Concern-
ing SO(n)-valued fields, we may refer to [16] in the framework of principal bundles,
where the anisotropy is determined by the flow itself too. In this paper, the context
is slightly different since the anisotropy of the regularization is entirely determined
by the geometry of the manifold where fields are defined. Additionally, let us refer
to [19] for Sn-valued fieds regularization and [22] for constrained matrix-valued fields
regularization.
Generalizing the Laplace-Beltrami operator acting on functions to tangent vector
fields and oriented orthonormal frame fields is not straightforward. This was in-
troduced in [3] for X of dimension m = 2. First, considering the Clifford bundle
Cl(X, g) of X [11], both functions and tangent vector fields may be viewed as sec-
tions of Cl(X, g). This is not the case for oriented orthonormal frame fields but, by
the trivializations of the fiber bundle, oriented orthonormal frame fields are locally
mappings from X to SO(m), and sections of Cl(X, g) with values in the bivector part
are locally mappings from X to so(m). By the canonical isomorphism between the
bundle of differential forms of a Riemannian manifold and its Clifford bundle, the
Hodge Laplacian ∆ [7] may be viewed as a generalized Laplacian on Cl(X, g) and its
restriction to functions is minus the Laplace-Beltrami operator. As a consequence,
it makes sense to consider the flow generated by the solution of the heat equation
∂I/∂t + ∆I = 0 on Cl(X, g), that provides anisotropic smoothing of the initial con-
dition. By construction of the Clifford bundle, the anisotropy is determined by the
metric of the base manifold. From now on, we call Clifford-Hodge Laplacian the
Hodge Laplacian on Cl(X, g). In particular, the Clifford-Hodge Laplacian preserves
the structures of functions, tangent vector fields and bivector-valued fields. Whereas
smoothing of functions and tangent vector fields is done in a natural way, the regu-
larization of oriented orthonormal frame fields needs the use of the exponential map
of SO(m).
Clifford algebras framework [6],[9] finds a wide range of applications in computer
science [17]. Application of Clifford bundles to image processing was introduced in
[2] where the Di Zenzo’s gradient, devoted to nD image segmentation, is generalized
using covariant derivatives instead of usual derivatives. Most properties of Clifford
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algebras we use in this paper are presented in [2].
This paper is organized as follows. Section 2 is devoted to introduce heat equations
on vector bundles associated to generalized Laplacians. In particular, we discuss
approximations of the solutions. It requires to determine geodesic curves and com-
pute geodesic distances on the base manifold, and to compute the parallel transport
map on the vector bundle. We treat the particular case of the scalar Laplacian,
and relate it with the Laplace-Beltrami operator. In Section 3, we introduce the
Clifford bundle Cl(X, g). We determine the connection on Cl(X, g) and the sec-
tion F ∈ Γ(End(Cl(X, g))) that make the Clifford-Hodge Laplacian be a generalized
Laplacian on Cl(X, g). Then, we detail the method to regularize oriented orthonormal
frame fields. In section 4, we treat the case m = 2. We first compute explicit formulae
of ∆ and transport parallel map on Cl(X, g) for X of dimension 2 . Then, we are
concerned in the particular case of images. We construct the Riemannian manifold
being the base manifold of the Clifford bundle we consider, and a global frame field of
the tangent bundle, generating a global frame field of the Clifford bundle. At last, we
present applications to regularization of a color image, and regularizations of a vector
field and a orientation field related to the image. In section 5, we treat the case m = 3.
We first compute explicit formulae of ∆ and transport parallel map on Cl(X, g), for X
of dimension 3. Then, we are concerned in the particular case of videos. We construct
the Riemannian manifold being the base manifold of the Clifford bundle we consider.
At last, we present an application to regularization of a color video.

2. Heat equations on vector bundles. For details on this part, see [4].

2.1. Generalized Laplacians on vector bundles. We refer to [18],[10] for an
introduction to differential geometry. For a smooth vector bundle E over a manifold
X, the symbol Γ(E) denotes the space of smooth sections of E. For x ∈ X, Ex

denotes the fiber over x.

Definition 2.1. Let E be a vector bundle over a Riemannian manifold (X, g).
A generalized Laplacian on E is a second-order differential operator H : Γ(E) −→
Γ(E), that may be written

H = −
∑

ij

gij(x)∂
i
∂

j
+ first-order part

in any local coordinates system, where (gij(x)) is the inverse of the matrix g(x) =
(gij(x)).

The heat kernel of a generalized Laplacian on a vector bundle E is related with a
connection on E.

Definition 2.2. Let E be a vector bundle over a Riemannian manifold (X, g),
endowed with a connection ∇E. Since (X, g) is Riemannian, it possesses a canonical
connection, the Levi-Cevita connection ∇. To any pair of tangent vector fields V and
W on X, we associate an invariant second derivative ∇2

V,W
: Γ(E) −→ Γ(E) by setting

∇2
V,W

ϕ ≡ ∇E
V
∇E

W
ϕ−∇E

∇
V

W
ϕ (2.1)

Then, the connection Laplacian ∆E : Γ(E) −→ Γ(E) is defined by

∆Eϕ = −trace(∇2
·,·
ϕ)
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where trace denotes the contraction with the metric g.

In particular, if ei is a local orthonormal frame of TX, the operator ∆E is given
by

∆E = −
∑

i

(
∇E

ei
∇E

ei
−∇E

∇ei
ei

)

With respect to the frame ∂i := ∂/∂xi defined by a coordinates system around a point
in X, the operator ∆E equals

∆E = −
∑

ij

gij
(
∇E

∂i
∇E

∂j
−

∑

k

Γk
ij∇E

∂k

)
(2.2)

where Γk
ij ’s are defined by ∇

∂i
∂j =

∑
k Γk

ij∂k.

We have the following result:
Any generalized Laplacian is of the form ∆E + F , where ∆E is the connec-
tion Laplacian associated to some connection ∇E, and F is a section of the
bundle End(E). In particular, any connection Laplacian ∆E is a general-
ized Laplacian.

2.2. The heat kernel of a generalized Laplacian. To any generalized Lapla-
cian H, one may associate an operator e−tH : Γ(E) −→ Γ(E), for t > 0, with the
property that I(t, x) = e−tHI(x) satisfies the heat equation ∂I/∂t+HI = 0.
We shall define e−tH as an integral operator of the form

(e−tHI)(x) =

∫

X

Kt(x, y,H)I(y)dy (2.3)

where Kt(x, y,H) : Ey −→ Ex is a linear map depending smoothly on x, y and t. This
kernel K is called the heat kernel of H.

In the following theorem, we give some results on approximations of the heat ker-
nel and solutions of the heat equation.

Theorem 2.3. Let x ∈ X and a normal coordinates system around x, we denote
by yi the normal coordinates of a point y in the injectivity radius of X at x, ∂i the
corresponding partial derivatives, and by gij(y) the scalar product of ∂i and ∂j at y.
Moreover, we define

J(x, y) = det(gij(y))1/2 for y = expx(y)

Let ǫ chosen smaller than the injectivy radius of X. Let Ψ: R+ −→ [0, 1] be a smooth
function such that Ψ(s) = 1 if s < ǫ2/4 and Ψ(s) = 0 if s > ǫ2.
Let τ(x, y) : Ey −→ Ex be the parallel transport along the unique geodesic curve joining
x and y, and d(x, y) its length.
Let KN

t (x, y,H) be the kernel defined by

( 1

4πt

)m
2

e−d(x,y)2/4t Ψ(d(x, y)2)
N∑

i=0

tiΦi(x, y,H)J(x, y)−
1
2
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where the sections Φi are given by Φ0(x, y,H) = τ(x, y) and

τ(x, y)−1Φi(x, y,H) = −
∫ 1

0

si−1τ(xs, y)
−1(Bx.Φi−1)(xs, y,H)ds

Bx is the operator J1/2 ◦Hx ◦ J−1/2 where Hx is the operator H with respect to the
first variable.

1. For every N > m/2, the kernel KN
t (x, y,H) is asymptotic to Kt(x, y,H):

∥∥∥∂k
t [Kt(x, y,H)−KN

t (x, y,H) ]
∥∥∥

l
= O(tN−m/2−l/2−k)

where ‖ ‖l is a norm on Cl sections.

2. Let us denote by kN
t the operator defined by

(kN
t I)(x) =

∫

X

KN
t (x, y,H)I(y)dy (2.4)

Then for every N , limt→0 ‖kN
t I − I‖l = 0.

3. We have the following estimate:

∥∥∥e−tHI −
k∑

i=0

(−tH)i

i!
I
∥∥∥

j
= O(tk+1)

which justifies the notation e−tH .

In the sequel, we make use the following property:

(P1) J(x, y) = 1 +O(‖y‖2).

2.3. Discrete approximations of heat equations solutions. As mentionned
above, for arbitrary base manifold and vector bundle, it is not possible to compute
the solution of the equation (1.1), but for the problem we consider in this paper, the
computation of an approximation of (2.3) appears to be sufficient. A natural choice is
to consider the operator kN

t (2.4), for some N . Additionally, there is a freedom in the
choice of the function Ψ of Theorem 2.3, that determines the neighborhoods where
the convolutions are computed. For the problem we consider in this paper, we need
to compute discretizations of such approximations. As a consequence, the function Ψ
determines the size of the masks involved in the discrete convolutions. From (P1), we
approximate J(x, y) by 1.

Let us first consider the particular case of the operator k0
t , defined by

(k0
t I)(x) =

∫

X

K0
t (x, y,H)I(y)dy

=
( 1

4πt

)m
2

∫

X

e−d(x,y)2/4t Ψ(d(x, y)2) τ(x, y)I(y) J(x, y)−
1
2 dy
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We discretize it as the discrete convolution of τ(x, y)I(y) with a mask whose inputs
are geodesic distances from the current point to x (up to the normalization of the
mask).

Remark: the kernel K0
t entirely depends on the metric of the base manifold and

the parallel transport map of the vector bundle. The first one determines geodesics
and their lengths on the base manifold, the second one the map τ . As a consequence,
any generalized Laplacian on a vector bundle equipped with a connection generates
the same operator k0

t , and the subsequent diffusion process.

As last, let us mention that the Euler scheme may be obtained from this point of
view. We have τ(x, x) = Id and Φ1(x, x,H) = −J1/2 ◦ H ◦ J−1/2(x, x). Then,
considering the operator k1

t of (2.4), defined by

(k1
t I)(x) =

∫

X

K1
t (x, y,H)I(y)dy

=
( 1

4πt

)m
2

∫

X

e−d(x,y)2/4t Ψ(d(x, y)2) (τ(x, y) + tΦ1(x, y,H))I(y) J(x, y)−
1
2 dy

and choosing Ψ generating sufficiently small neighborhoods, we obtain that the dis-
cretization of k1

t I at a point x results from the convolution of (τ(x, y)+tΦ1(x, y,H))I(y)
with a normalized 1x1 mask, i.e. with 1. In other words, we have

I(x)− tHI(x) (2.5)

This is the Euler scheme of (1.1).

2.4. An example: the scalar/Beltrami Laplacian. The scalar Laplacian on
a Riemannian manifold (X, g) of dimension m is the connection Laplacian (2.2) on
the vector bundle E = C∞(X). In other words, it is the connection Laplacian on a
smooth vector bundle E of rank 1 with connection ∇E defined by the symbols

Υ1 = · · · = Υm = 0

i.e. ∇E
X

(f) = d
X
f . It follows the transport parallel map on C∞(X)

Proposition 2.4. Let (X, g), E and ∇E as defined above, γ be a C1 curve in X
such that γ(0) = y. Then, the parallel transport Y along γ of the scalar Y0 = Y 1

0 1(y)
is Y (t) = Y 1

0 1(γ(t)).

In local coordinates, the scalar Laplacian is defined by

∆(f) = −
∑

ij

gij
(
∂

i
∂

j
−

∑

k

Γk
ij∂k

)
f (2.6)

The Laplace-Beltrami operator ∆g is the differential operator of order 2 on C∞(X)
defined by

∆g(f) =
1√
g

∑

jk

∂j(
√
ggjk∂kf)

It is well-known that if a Riemannian manifold (X, g) is equipped with the Levi-
Cevita connection, then ∆g is minus the scalar Laplacian (2.6). This makes the
PDE’s ∂I/∂t = ∆gI and ∂I/∂t+ ∆I = 0 be equivalent.
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3. The Clifford-Hodge Laplacian: an extension of the scalar Laplacian
for multivector fields smoothing.

3.1. The Clifford-Hodge Laplacian: a generalized Laplacian on the Clif-
ford bundle of a Riemannian manifold. The Hodge Laplacian ∆ is a generalized
Laplacian acting on differential forms of a Riemannian manifold. It is defined by

∆ = dδ + δd

where d is the exterior derivative operator and δ its formal adjoint [7].
In particular, when applied to 0-forms, i.e. functions, ∆ corresponds to the scalar
Laplacian (2.6).

One of the main ideas of this paper is the following: the Hodge Laplacian can also be
applied to tangent vector fields and generators of orthonormal frame fields by consid-
ering the Clifford bundle of X.

Definition 3.1 (Clifford bundle). Let (X, g) be a Riemannian manifold, and
let us denote by TX its tangent bundle. The Clifford bundle Cl(X, g) of (X, g) is the
quotient bundle

Cl(X, g) = T (TX)
/
I(TX)

where T (TX) is the bundle whose fiber at x ∈ X is the tensor algebra of TxX and
I(TX) is the bundle whose fiber at x ∈ X is the two-sided ideal I(TxX) in T (TxX),
generated by elements v ⊗ v + ‖v‖2 for v ∈ TxX.

We obtain a bundle of Clifford algebras over X, and the fiberwise multiplication
in Cl(X, g) gives an algebra structure to the space Γ(Cl(X, g)) of sections of Cl(X, g).

More precisely, let (e1, · · · , em) be a local oriented orthonormal frame field on Ω ⊂ X.
Then, any section s of Cl(X, g) takes the form

s = s1 1 + s2 e1 + sm+1 em + · · ·+ s2m e1 · · · em

on Ω, for some functions si1···ik
defined on Ω where i1 < · · · < ik and k ∈ {1 · · ·m}.

Given a finite-dimensional vector space V equipped with a quadratic form Q, there
is a vector space isomorphism between the exterior algebra

∧
V of V and Cl(V,Q).

In particular, if Q ≡ 0, they are isomorphic as algebras. Let (X, g) be a Riemannian
manifold, we denote by

∧
T ∗X the bundle of differential forms of (X, g). By the

constructions of
∧
T ∗X and Cl(X, g) as associated bundles to the principal bundle

PSO(X) of oriented orthonormal frame fields of (X, g), it follows a canonical vector
bundle isomorphism between

∧
T ∗X and Cl(X, g). As a consequence, we may identify

Γ(
∧
T ∗X) and Γ(Cl(X, g)), as follows

k-form :
∑

i1<···<ik

1≤ik≤m

ωi1···ik
ei1 ∧ · · · ∧ eik ←→

∑

i1<···<ik

1≤ik≤m

ωi1···ik
ei1 · · · eik

0-form : f ←→ f1
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Under this identification, the Hodge Laplacian may be applied to Γ(Cl(X, g)) (see
[11] for details). In the Clifford algebras context, it is the square of a first order dif-
ferential operator, namely the Dirac operator. Let us first introduce the connection
on Cl(X, g) induced by the Levi-Cevita connection on TX.

Proposition 3.2. The Levi-Cevita connection of a Riemannian manifold (X, g)
induces an algebra connection on its Clifford bundle, i.e. a connection ∇C satisfying

∇C(ϕψ) = (∇Cϕ)ψ + ϕ(∇Cψ)

for any ϕ,ψ ∈ Γ(Cl(X, g)).

Proof. [5] The Levi-Cevita connection may be extended in a unique way to a
connection ∇ on T (TX) by linearity and postulation of the Leibniz rule.
For U, V ∈ Γ(TX) we have

∇
U
(V ⊗ V − g(V, V )) =

1

2

[
(∇

U
V + V )⊗ (∇

U
V + V )− g(∇

U
V + V,∇

U
V + V )

]

−1

2

[
(∇

U
V − V )⊗ (∇

U
V − V )− g(∇

U
V − V,∇

U
V − V )

]

(3.1)
We prove (3.1) by developping both right and left terms of the equality.

For the first one we obtain

∇
U
V ⊗ V + V ⊗∇

U
V − 2g(V,∇

U
V )

Indeed, by property of the Levi-Cevita connection, for any U,W,Z ∈ Γ(TX)

d
U
g(W,Z) = g(∇

U
W,Z) + g(W,∇

U
Z)

Then, taking W = Z = V , it gives

d
U
g(V, V ) = 2g(∇

U
V, V )

Developping the left term we have

∇
U
(V ⊗ V − g(V, V )) = ∇

U
V ⊗ V + V ⊗∇

U
V − d

U
g(V, V )

and the equality (3.1) is proved.

As the right term of (3.1) belongs to I(TX), it proves that ∇ preserves the ideal
I(TX).

We deduce that ∇ induces a connection ∇C on Cl(X, g). Indeed, for a, b ∈ Γ(T (TX))
in the same equivalence class (denoted by ȧ = ḃ), ∇(b) = ∇(a + I1) for some
I1 ∈ Γ(I(TX)). Hence ∇(b) = ∇(a) + I2 for some I2 ∈ Γ(I(TX)). Therefore

˙̆∇(a) =
˙̄∇(b), and ∇C is well-defined.

The rest of the proof is devoted to show that ∇C is an algebra connection.
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Let ϕ,ψ ∈ Γ(Cl(X, g)). By definition, there exist a, b ∈ Γ(T (TX)) such that ϕ = ȧ
and ψ = ḃ. Then,

∇C(ϕψ) =
˙̧�∇(a⊗ b)

=
˙̌�∇(a)⊗ b+ a⊗∇(b)

=
˙̧�∇(a)⊗ b+

˙̧�a⊗∇(b)

=
˙̆∇(a) ḃ+ ȧ

˙̄∇(b)

= ∇C(ϕ)ψ + ϕ∇C(ψ)

which ends the proof.

Definition 3.3. Let Cl(X, g) be the Clifford bundle of a Riemannian man-
ifold (X, g) equipped with the connection ∇C . Let (e1, · · · , em) be a local orthor-
mal frame field of TX. The Dirac operator is the first-order differential operator
D : Γ(Cl(X, g)) −→ Γ(Cl(X, g)) defined locally by

Dσ =
m∑

i=1

ei∇C
ei
σ (3.2)

It can be shown that this definition is independant of the choice of the local orthonor-
mal frame field.

Proposition 3.4. Under the isomorphism between Cl(X, g) and
∧
T ∗X, the

Clifford-Hodge operator D2 may be identified with the Hodge Laplacian ∆.

Proof. [11] From the fact that d2 = δ2 = 0, we have

∆ = (d+ δ)2

on
∧
T ∗X. Hence it suffices to prove that D may be identified with d+ δ.

Endowing Clifford algebras with the outer ∧ and the inner · products, D may be
decomposed as follows

D =
m∑

j=1

ej ∧∇ej
+

m∑

j=1

ej · ∇ej

Then, it can be shown that the operator
∑m

j=1 ej ∧ ∇ej
satisfies the properties that

define in a unique way the exterior derivative d on
∧
T ∗X. Moreover, computing the

adjoint of
∑m

j=1 ej ∧∇ej
, we obtain

∑m
j=1 ej · ∇ej

which ends the proof.

As ∆ preserves the subbundles
∧k T ∗X of

∧
T ∗X for k ∈ {0 · · ·m}, we deduce that

D2 preserves the subbundles
∧k TX of Cl(X, g).

Proposition 3.5. Let E be a vector bundle over a manifold X equipped with a
connection ∇E. Let V,W ∈ Γ(TX). The operator

R
V,W

= ∇E
V
∇E

W
−∇E

W
∇E

V
−∇E

[V,W ]
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is a zero-order operator on Γ(E), i.e. R
V,W
∈ Γ(End(E)). It is called the curvature

transformation associated to V and W .

Proposition 3.6. Let Cl(X, g) be the Clifford bundle of a Riemannian manifold
(X, g) equipped with the connection ∇C . The Clifford-Hodge operator D2 is a gener-
alized Laplacian.

Proof. [11] We first remind that the definition of D does not depend of the
choice of local orthonormal frame fields. Let us fix a point x ∈ X and choose a local
orthonormal frame field (e1, · · · , em) such that (∇ej)x = 0 for each j, where ∇ is the
Levi-Cevita connection of TX. Then, for ϕ ∈ Γ(Cl(X, g)) we have at x

D2ϕ =
∑

ij

ei∇C
ei

(ej∇C
ej
ϕ)

=
∑

ij

eiej∇C
ei
∇C

ej
ϕ

since ∇C
ei

(ej∇C
ej
ϕ) = ∇C

ei
ej ∇C

ej
ϕ + ej∇C

ei
∇C

ej
ϕ, and (∇C

ei
ej)x = (∇

ei
ej)x = 0. It may

rewritten as

D2ϕ = −
∑

i

∇C
ei
∇C

ei
ϕ+

∑

i<j

eiej(∇C
ei
∇C

ej
−∇C

ei
∇C

ej
)ϕ

= −
∑

i

∇C
ei
∇C

ei
ϕ+

∑

i<j

eiejRei,ej
(ϕ)

Indeed, as TX is endowed with the Levi-Cevita connection, [ei, ej ] = ∇
ei
ej − ∇ej

ei

and ([ei, ej ])x
= 0 by property of (e1, · · · , em). As a consequence, (∇C

[ei,ej ]
)

x
= 0 and

we deduce from the previous proposition that (∇C
ei
∇C

ej
−∇C

ei
∇C

ej
)

x
= (Rei,ej

)
x
.

Therefore we have

D2 = ∆C + F

where ∆C is the connection Laplacian on Cl(X, g) with respect to the connection ∇C

and F =
∑

i<j eiejRei,ej
is a section of End(Cl(X, g)).

3.2. Application to functions, vector fields and oriented orthonormal
frame fields smoothing. As the operator D2 is a generalized Laplacian, we may
consider the corresponding heat equation, whose solution arises from the convolution
of the initial condition with the heat kernel Kt(x, y,D

2) associated to D2.

Definition 3.7. Let s0 ∈ Γ(Cl(X, g)). The Clifford-Hodge flow of s0 is the
solution st of the heat equation

∂st

∂t
= D2st

of initial condition s0.

As D2 preserves the subbundles
∧k TX for k ∈ {0, · · · ,m}, we deduce that the

Clifford-Hodge flow preserves the subbundles
∧k TX too.
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Let x ∈ X. From the embeddings of TxX and R into Cl(TxX, g(x)), both tan-
gent vector fields and functions on a Riemannian manifold may be viewed as sections
of its Clifford bundle. More precisely, we have the identifications

C∞(X) ≃ Γ(
∧0 TX) Γ(TX) ≃ Γ(

∧1 TX)

Let us denote by Γ(PSO(X)) the set of smooth oriented orthonormal frame fields
of TX. On a local trivialization (U,Φ) of Cl(X, g), we have the identifications

Γ(P SO(U)) ≃ C∞(U,SO(m)) Γ(
∧2 TU) ≃ C∞(U, so(m))

the latter arising from the Lie algebra isomorphism spin(m) ≃ so(m). We call such
fields generators of orthonormal frame fields.

As the Clifford-Hodge flow preserves the subbundles
∧k TX, it preserves the struc-

tures of functions, tangent vector fields and generators of orthonormal frame fields.
As a consequence, it provides a tool to regularize such fields.

Through the regularization of sections of degree 2, the Clifford-Hodge flow provides
also a tool to smooth orthonormal frame fields, as follows. Given a mapping f from
U to SO(m), we construct f̃ ∈ Γ(

∧2 TU) such that f = ρ ◦ exp ◦ f̃ where ρ is the
projection map of the covering Spin(m) −→ SO(m) and exp the exponential map
from spin(m) to Spin(m). Then, the Clifford-Hodge flow provides a regularization of
f̃ given by sections f̃t,t≥0 ∈ Γ(

∧2 TU). Computing ρ ◦ exp ◦ f̃t, we obtain mappings
ft,t≥0 ∈ C∞(U,SO(m)). In this sense, we obtain a regularization of f .

Let us give some precisions concerning the construction of f̃ for m ≥ 3.
Two methods may be envisaged to construct f̃ . The first one consists in characterizing
the rotations f(x), x ∈ U , by their angles and invariant planes from the computation
of eigenvalues and eigenvectors. Then f̃ follows in a straightforward way using the
fact that bivectors in Rn,0 represent oriented planes in R

n. The second one uses the
matrix logarithm log : SO(m) −→ so(m) with values in the matrix representation of
the Lie algebra so(m), i.e. the antisymmetric matrices. We may write

log ◦ f(x) =
∑

i<j

aij(x)Eij

where Eij is the elementary m×m antisymmetric matrix such that Eij(i, j) = −1 and

Eij(j, i) = 1. The Lie algebra isomorphism so(m) −→ spin(m) maps Eij to
1

2
eiej .

Hence we obtain

f̃(x) =
∑

i<j

1

2
aij(x) eiej

For m = 3, the first method is suitable since the spectrum of a rotation is easily
computable from geometric calculus methods [9]. Indeed, let us suppose that f(x) is
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the rotation of angle θ in the oriented plane P in R
3, given by the matrix

A =

Ñ
a11 a12 a13

a21 a22 a23

a31 a32 a33

é

in the orthonormal basis (e1, e2, e3).

Then, considering the Clifford algebra Cl(R3,−‖ ‖2), we have





a11 + a22 + a33 = 1 + 2cos(θ)

(a12 − a21)e1e2 + (a13 − a31)e1e3 + (a23 − a21)e1e2 = 2sin(θ)
B

‖B‖

where B stands for the bivector representing the oriented plane P of the rotation. A
proof and a generalization for m > 3 may be found in [9].

From the two equalities, we may construct f̃(x) =
θ

2

B

‖B‖ , θ ∈ [0, 2π[, which sat-

isfies ρ ◦ exp ◦f̃(x) = f(x).

Note that f̃(x) is not defined in a unique way since

ρ ◦ exp ◦
(θ

2

B

‖B‖
)

= ρ ◦ exp ◦
(
(θ/2 + kπ)

B

‖B‖
)

for any k ∈ Z

More generally, for B = θ1e1e2 + · · ·+ θC2
m
em−1em, we have

ρ◦exp◦
(
θ1e1e2+· · ·+θC2

m
em−1em

)
= ρ◦exp◦

(
(θ1+kπ)e1e2+· · ·+(θC2

m
+kπ)em−1em

)

The π periodicity raises a problem when convolving f̃ with a kernel KN
t (x, y,D2).

It may be solved by defining f̃ locally on the normal neighborhoods determined by
the function Ψ of Section 2.3. Let x0 ∈ U and θj ’s defined as above. Let Ωx0

⊂ U

be such a neighborhood of x0. We state ‹θj(x) = θj(x) − π if θj(x) − θj(x0) ≥ π/2,
‹θj(x) = θj(x) + π if θj(x)− θj(x0) < −π/2, and ‹θj(x) = θj(x) otherwise. This makes

the functions ‹θj be valued in [θj(x0) − π/2, θj(x0) + π/2[ on Ωx0
. Then we define

f̃ = ‹θ1e1e2 + · · ·fiθC2
m
em−1em on Ωx0

. Extending this construction for each x0 ∈ U ,

we construct f̃ for which the convolution with the kernel KN
t (x, y,D2) makes sense.

At last, let us treat the particular case m = 2 since Spin(2)≃ SO(2).

Given f ∈ C∞(U,SO(2)), we construct f̃ = θ̃e1e2 such that exp(θ̃e1e2) = cos(θ)e1 +
sin(θ)e2. There is a 2π periodicity in the choice of f̃ , that may be solved by defining f̃

locally on the neighborhoods Ωx0
. Indeed, we state θ̃(x) = θ(x)−2π if θ(x)−θ(x0) ≥ π,

θ̃(x) = θ(x) + 2π if θ(x) − θ(x0) < −π and θ̃(x) = θ(x) otherwise. Then we extend
this construction for each x0 ∈ U as mentionned above.

The heat kernel of a generalized Laplacian H on a vector bundle E equipped with a
connection ∇E is determined by geodesic distances on the base manifold, transport
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parallel map associated to ∇E along geodesic curves, and H itself. In the rest of
the paper we give explicit formulae of the operator D2 and parallel transport map
on Cl(X, g) for X of dimension 2 and 3. We present applications in the contexts of
image and video processing.

4. The case m = 2.

4.1. The operator D2 and parallel transport map on Cl(X, g). Let us
first determine the connection ∇C in an orthonormal frame (e1, e2). Let Γk′

ij be the
Levi-Cevita connection’s symbols of (X, g) with respect to the frame (e1, e2).

∇C
e1

1 = 0 ∇C
e2

1 = 0

∇C
e1
e1 = Γ2′

11 e2 ∇C
e1
e2 = −Γ2′

11 e1
∇C

e2
e1 = Γ2′

21 e2 ∇C
e2
e2 = −Γ2′

21 e1

∇C
e1
e1e2 = 0 ∇C

e2
e1e2 = 0

Proposition 4.1. Let (X, g) be a Riemannian manifold of dimension 2. Let
(e1, e2) be an orthonormal frame on X and ϕ = ϕ11 + ϕ2e1 + ϕ3e2 + ϕ4e1e2 ∈
Γ(Cl(X, g)). Then

D2(ϕ11) =
(
− d2

e1,e1
ϕ1 − d2

e2,e2
ϕ1 − Γ2′

21 de1
ϕ1 + Γ2′

11 de2
ϕ1

)
1

= −∆g(ϕ1)1

D2(ϕ2e1 + ϕ3e2) =
(
− d2

e1,e1
ϕ2 − d2

e2,e2
ϕ2 − Γ2′

21 de1
ϕ2 + Γ2′

11 de2
ϕ2 + 2 Γ2′

11 de1
ϕ3

+2 Γ2′

21 de2
ϕ3 + ϕ2(de2

Γ2′

11 − de1
Γ2′

21 ) + ϕ3(de1
Γ2′

11 + de2
Γ2′

21 )
)
e1

+
(
− d2

e1,e1
ϕ3 − d2

e2,e2
ϕ3 − Γ2′

21 de1
ϕ3 + Γ2′

11 de2
ϕ3 − 2 Γ2′

11 de1
ϕ2

−2 Γ2′

21 de2
ϕ2 + ϕ2(−de2

Γ2′

21 − de1
Γ2′

11 ) + ϕ3(−de1
Γ2′

21 + de2
Γ2′

11 )
)
e2

D2(ϕ4e1e2) =
(
− d2

e1,e1
ϕ4 − d2

e2,e2
ϕ4 − Γ2′

21 de1
ϕ4 + Γ2′

11 de2
ϕ4

)
e1e2

= −∆g(ϕ4)e1e2

where ∆g stands for the Laplace-Beltrami operator on (X, g) (see Sect. 2.4).

Proof. We obtain D2(ϕ) from (3.2) and the relations above defining ∇C in the
frame (e1, e2). Then we simplify the expression using some properties of the Levi-
Cevita connection:
(i) In an orthonormal frame, symbols satisfy Γk′

ij = −Γj′

ik .

(ii) [e1, e2] = −Γ2′

11 e1 − Γ2′

21 e2

Proposition 4.2 (Parallel transport on Cl(X, g)). Let (X, g) be a Rieman-
nian manifold of dimension 2. Let (e1, e2) be an orthonormal frame on X, and
Y0 = Y 1

0 1(y) + Y 2
0 e1(y) + Y 3

0 e2(y) + Y 4
0 e1e2(y) ∈ Cl(X, g)y. Let γ be a C1 curve
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in X such that γ(0) = y. The parallel transport Y of Y0 along γ is

Y (t) = Y 1
0 1(γ(t)) +

[
f1 ·

(
(Y 2

0 f1 + Y 3
0 f2)S(t)

)]
e1(γ(t))

+
[
f2 ·

(
(Y 2

0 f1 + Y 3
0 f2)S(t)

)]
e2(γ(t)) + Y 4

0 e1e2(γ(t))

where (f1, f2) is an orthonormal basis generating Cl(R2,−‖‖2) and S(t) ∈ Spin(2)
⊂ Cl(R2,−‖‖2) defined by

S(t) = exp
(
f1f2

∫ t

0

γ̇1(s) Γ2′

11 (s) + γ̇2(s) Γ2′

21 (s) ds
)

Proof. The parallel transport of Y0 along γ is the solution Y (t) = Y1(t) 1(γ(t)) +
Y2(t) e1(γ(t)) + Y3(t) e2(γ(t)) + Y4(t) e1e2(γ(t)) of the differential equation





∇C
γ̇
Y (t) = 0

Y (0) = Y0

(4.1)

∇C
γ̇
Y (t) = ∇C

γ̇
Y1 1 + Y2 e1 + Y3 e2 + Y4 e1e2 (t)

=
∂Y1

∂t
(t) 1(t) + Y1(t)(γ̇1(t)∇C

e1
1 (t) + γ̇2(t)∇C

e2
1 (t))

+
∂Y2

∂t
(t) e1(t) + Y2(t)(γ̇1(t)∇C

e1
e1 (t) + γ̇2(t)∇C

e2
e1 (t))

+
∂Y3

∂t
(t) e2(t) + Y3(t)(γ̇1(t)∇C

e1
e2 (t) + γ̇2(t)∇C

e2
e2 (t))

+
∂Y4

∂t
(t) e1e2(t) + Y4(t)(γ̇1(t)∇C

e1
e1e2 (t) + γ̇2(t)∇C

e2
e1e2 (t))

=
∂Y1

∂t
(t) 1(t)

+
∂Y2

∂t
(t) e1(t) + Y2(t)(γ̇1(t) Γ2′

11 (t) e2(t) + γ̇2(t) Γ2′

21 (t) e2(t))

+
∂Y3

∂t
(t) e2(t) + Y3(t)(−γ̇1(t) Γ2′

11 (t) e1(t)− γ̇2(t) Γ2′

21 (t) e1(t))

+
∂Y4

∂t
(t) e1e2(t)

Finally, we obtain a differential equation on R
4.




dY1/dt

dY2/dt

dY3/dt

dY4/dt




=




0 0 0 0

0 0 γ̇1 Γ2′

11 + γ̇2 Γ2′

21 0

0 − γ̇1 Γ2′

11 − γ̇2 Γ2′

21 0 0

0 0 0 0







Y1

Y2

Y3

Y4




of initial condition Y1(0) = Y 1
0 , Y2(0) = Y 2

0 , Y3(0) = Y 3
0 and Y4(0) = Y 4

0 .
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It leads to Y1(t) = Y 1
0 , Y4(t) = Y 4

0 and a differential equation on R
2

Ñ
dY2/dt

dY3/dt

é
=

Ñ
0 γ̇1Γ

2′

11 + γ̇2Γ
2′

21

−γ̇1Γ
2′

11 − γ̇2Γ
2′

21 0

éÑ
Y2

Y3

é
(4.2)

of initial condition Y2(0) = Y 2
0 and Y3(0) = Y 3

0 .

Under the identification between R
2 and C, (4.2) becomes





∂(Y2 + i Y3)/∂t = i (γ̇1 Γ2′

11 + γ̇2 Γ2′

21 )(Y2 + i Y3)

Y2(0) + i Y3(0) = Y 2
0 + i Y 3

0

(4.3)

The solution of (4.3) is

Y2(t) + i Y3(t) = exp
(
i

∫ t

0

γ̇1(s) Γ2′

11 (s) + γ̇2(s) Γ2′

21 (s) ds
)
(Y 2

0 + i Y 3
0 ) (4.4)

Under the identification between R
2 and C, the right term of (4.4) is the rotation of

angle
∫ t

0
γ̇1(s) Γ2′

11 (s) + γ̇2(s) Γ2′

21 (s) ds applied to the vector (Y 2
0 , Y

3
0 ).

Embedding R
2 of orthonormal basis (f1, f2) into the Clifford algebra Cl(R2,−‖‖2) of

basis (1, f1, f2, f1f2), (4.4) may be written into the Clifford algebras context as

Y2(t)f1 + Y3(t)f2 = exp
(
f1f2

∫ t

0

γ̇1(s) Γ2′

11 (s) + γ̇2(s) Γ2′

21 (s) ds
)
(Y 2

0 f1 + Y 3
0 f2)

Then Y2(t) = f1 · (Y2(t)f1 + Y3(t)f2) and Y3(t) = f2 · (Y2(t)f1 + Y3(t)f2), where · is
the inner product of Cl(R2,−‖‖2).

4.2. The particular context of images. Let us consider a nD image defined
by a function I : (x, y) 7−→ (I1(x, y), · · · , In(x, y)) on a domain Ω ⊂ R

2. I determines
a surface S embedded in R

n+2 parametrized by

ϕ : (x, y) 7−→ (x, y, I1(x, y), · · · , In(x, y))

Then endow R
n+2 of a metric h of the form

h(p) =

Å
1 0
0 1

ã
⊕




h1(p) 0 0 · · · · · · 0
0 h2(p) 0 · · · · · · 0

0 0
. . .

...
...

...
. . .

...
0 0 · · · · · · 0 hn(p)




where h1, · · · , hn are positive functions and denote by g the metric on S induced by
h makes the couple (S, g) be a Riemannian manifold of dimension 2 of global chart
(Ω, ϕ).

On the manifold S the natural frame is (∂/∂x, ∂/∂y) induced by the cartesian co-
ordinates system (x, y). However, the Clifford-Hodge operator D2 is defined with
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respect to orthonormal frame fields on the base manifold (see Sect.3.1). In what fol-
lows, we construct an oriented orthonormal frame field (e1, e2) on S and compute the
transformation of Levi-Cevita connection’s symbols with respect to the frame change
from (∂/∂x, ∂/∂y) to (e1, e2).

Proposition 4.3 (Positively oriented orthonormal basis of TpS).

Let

Å
E F
F G

ã
be the matrix representation of g at p in the basis (∂/∂x, ∂/∂y)(p).

Let λ+ and λ− (λ+ ≥ λ−) be the two eigenvalues of the induced endomorphism. Then
a positively oriented orthonormal basis (e1, e2) of TpS may be constructed from eigen-
vectors, distinguishing four cases:

(i) if F 6= 0, take (e1, e2) =

àà
λ+ −G√

λ+
√
F 2 + (λ+ −G)2

F√
λ+

√
F 2 + (λ+ −G)2

í

, sign(F )

à
λ− −G√

λ−
√
F 2 + (λ− −G)2

F√
λ−

√
F 2 + (λ− −G)2

íí

in the basis (∂/∂x, ∂/∂y)(p).

(ii) if F = 0 and E > G, take

(e1, e2) =
(∂/∂x(p)√

E
,
∂/∂y(p)√

G

)

(iii) if F = 0 and E < G, take

(e1, e2) =
(∂/∂y(p)√

G
,−∂/∂x(p)√

E

)

(iv) if F = 0 and E = G, the whole space TpS is eigenspace. Then for any θ,
àà

cos(θ)√
E

sin(θ)√
E

í

,

à
− sin(θ)√

E

cos(θ)√
E

íí

in the basis (∂/∂x, ∂/∂y)(p) is a positively oriented orthonormal basis of TpS.

Proof. As unit eigenvectors, they form an orthonormal basis of TpS. The orienta-
tion is clearly positive in the cases (ii), (iii) and (iv). For the case (i), one just need
to compute the 2-form

ω =
[( λ+ −G√

λ+
√
F 2 + (λ+ −G)2

)
dx+

( F√
λ+

√
F 2 + (λ+ −G)2

)
dy

]
∧

[( λ− −G√
λ−

√
F 2 + (λ− −G)2

)
dx+

( F√
λ−

√
F 2 + (λ− −G)2

)
dy

]
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Then

ω =
F (λ+ − λ−)√

λ+λ−
√
F 2 + (λ+ −G)2

√
F 2 + (λ− −G)2

dx ∧ dy

and the sign of the scalar term is the sign of F .

To complete the construction, we state (e1, e2) =
(∂/∂x(p)√

E
,
∂/∂y(p)√

E

)
when the

case (iv) holds.

Following this construction for each p ∈ S, we obtain a positively oriented orthonor-
mal frame field (e1, e2) on S, where e1 is the unit vector field of highest variations
(eigenvectors associated to the eigenvalues λ+) and e2 the unit vector field of lowest
variations (eigenvectors associated to the eigenvalues λ−).

By the antisymmetry property of its symbols Γk′

ij in an orthonormal frame, the Levi-

Cevita connection is entirely determined by the symbols Γ2′

11 and Γ2′

21 in such frames.
In the next proposition, we determine the expressions of these two symbols in a frame
(v1, v2) in function of the symbols Γk

ij of the connection in the frame (∂/∂x, ∂/∂y).

Proposition 4.4. Let (v1, v2) be a frame such that v1 = a ∂/∂x + b ∂/∂y and
v2 = c ∂/∂x+ d ∂/∂y. Then

Γ2′

11 = 1/(ad− bc)×
(
−ab∂a

∂x
−a2bΓ1

11−2ab2 Γ1
12−b2

∂a

∂y
−b3 Γ1

22 +a3 Γ2
11 +a2 ∂b

∂x
+2a2bΓ2

12 +ab
∂b

∂y
+ab2 Γ2

22

)

Γ2′

21 = 1/(ad− bc)×
(
− bc∂a

∂x
− acbΓ1

11 − (bc+ ad)bΓ1
12 − bd

∂a

∂y
− b2dΓ1

22 + a2cΓ2
11 + ac

∂b

∂x
+ (bc+ ad)aΓ2

12

+ad
∂b

∂y
+ abdΓ2

22

)

Proof. By definition, we have

∇
v1
v1 = Γ1′

11 v1 + Γ2′

11 v2 ∇
v2
v1 = Γ1′

21 v1 + Γ2′

21 v2

With respect to the frame (∂x, ∂y) := (∂/∂x, ∂/∂y), we obtain

∇
v1
v1 = ∇

a∂x+b∂y
a ∂x + b ∂y

= a∇
∂x
a ∂x + a∇

∂x
b ∂y + b∇

∂y
a ∂x + b∇

∂y
b ∂y

= a
[∂a
∂x

∂x + a
(
Γ1
11 ∂x + Γ2

11 ∂y

)]
+ a

[ ∂b
∂x

∂y + b
(
Γ1
12 ∂x + Γ2

12 ∂y

)]

+b
[∂a
∂y

∂x + a
(
Γ1
21 ∂x + Γ2

21 ∂y

)]
+ b

[ ∂b
∂y

∂y + b
(
Γ1
22 ∂x + Γ2

22 ∂y

)]

=
[
a
∂a

∂x
+a2 Γ1

11 +2abΓ1
12 + b

∂a

∂y
+ b2 Γ1

22

]
∂x +

[
a
∂b

∂x
+a2 Γ2

11 +2abΓ2
12 + b

∂b

∂y
+ b2 Γ2

22

]
∂y
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Then, since

∂x =
1

ad− bc (d v1 − b v2) ∂y =
1

ad− bc (−c v1 + a v2)

we obtain

∇
v1
v1 =

1

ad− bc
[
ad
∂a

∂x
+ a2dΓ1

11 + 2abdΓ1
12 + bd

∂a

∂y
+ b2dΓ1

22 − a2cΓ2
11 − ac

∂b

∂x

−2abcΓ2
12 − bd

∂b

∂y
− b2cΓ2

22

]
v1

+
1

ad− bc
[
− ab∂a

∂x
− a2bΓ1

11 − 2ab2 Γ1
12 − b2

∂a

∂y
− b3 Γ1

22 + a3 Γ2
11 + a2 ∂b

∂x

+2a2bΓ2
12 + ab

∂b

∂y
+ ab2 Γ2

22

]
v2

from which we deduce Γ2′

11 ,

and

∇
v2
v1 =

1

ad− bc
[
cd
∂a

∂x
+ acdΓ1

11 + (bc+ ad)dΓ1
12 + d2 ∂a

∂y
+ bd2 Γ1

22 − ac2 Γ2
11 − c2

∂b

∂x

−(bc+ ad)cΓ2
12 − cd

∂b

∂y
− cbdΓ2

22

]
v1

+
1

ad− bc
[
− bc∂a

∂x
− acbΓ1

11 − (bc+ ad)bΓ1
12 − bd

∂a

∂y
− b2dΓ1

22 + a2cΓ2
11

+ac
∂b

∂x
+ (bc+ ad)aΓ2

12 + ad
∂b

∂y
+ abdΓ2

22

]
v2

from which we deduce Γ2′

21 .

4.3. Experiments. We show three applications of the Clifford-Hodge flow in
dimension 2.

The Clifford-Hodge flow of functions on Riemannian manifolds of dimension 2 may be
devoted to anisotropic regularization of nD images. Let us detail the context of the
regularization. Let I = (I1, · · · , In) be a nD image. As mentionned above, it induces
a Riemannian manifold (S, g) of dimension 2. Then we consider each component Ii
as a section of the Clifford bundle Cl(S, g) of degree 0, and apply the Clifford-Hodge
flow on each one of them. Under the identification between sections of Cl(S, g) of
degree 0 and functions of S, we get n PDE’s

∂Ii
∂t

+ ∆Ii = 0

where ∆ is the scalar Laplacian on C∞(S, g).

The Beltrami framework of Sochen et al. in the context of image regularization
(see e.g. [14],[15]) yields to define each component Ii as a function over (S, g), and
then to solve the n PDE’s ∂Ii/∂t = ∆gIi. From Sect. 2.4, it corresponds to solve heat
equations associated to the scalar Laplacian over the Riemannian manifold (S, g).
This makes the image regularization process induced by Clifford-Hodge and Beltrami
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flows be equivalent. In [14], the diffusion process arises from the Euler scheme (2.5).
In [15], the diffusion process arises from a convolution of the initial data with a mask
corresponding to the discretization of the kernel K0

t mentionned in Sect. 2.3.

Fig. 4.1 is an illustration of the anisotropic regularization of a color image (n = 3)
induced by the Clifford-Hodge flow. It is computed from the convolution with a 5x5
mask discretizing the kernel K0

t . Fig. 4.1(a) is taken from the Berkeley image segmen-
tation database [12]. Fig. 4.1(b) is the result of the regularization after 10 iterations
for h1 = h2 = h3 = 0.01 and t = 0.3, the metric g being updated at each iteration.
We obtain a smoothing of the image on regions of low color variations whereas high
edges are preserved.

(a) Original image (b) Anisotropic Clifford-Hodge flow

Fig. 4.1. Clifford-Hodge flow of functions

The Clifford-Hodge flow of tangent vector fields on Riemannian manifolds of dimen-
sion 2 may be devoted to anisotropic regularization of vector fields related to nD
images, that is illustrated on Fig. 4.2. Fig. 4.2(a) is the unit vector field v = (v1, v2)
indicating edge orientations in a region around the hat of Fig. 4.1(b). Let (S, g) be
the Riemannian manifold associated to the color image of Fig. 4.1(b), and (Ω, ϕ)
be the global chart of S. Using the chart, v may be viewed as the tangent vector
field v = (v1, v2) in the frame (∂/∂x, ∂/∂y). Then under the frame change from
(∂/∂x, ∂/∂y) to (e1, e2) (see Section 4.2), we may consider the Clifford-Hodge flow
of v. Fig. 4.2(b) is the result of the Clifford-Hodge flow of v after 99 iterations for
h1 = h2 = h3 = 0.01 and t = 0.3. It is computed from the convolution with a 5x5
mask discretizing the kernel K0

t . We see that it tends to preserve the vector field on
high edges of the image, conversely to vanish it on low edges.

In dimension 2, the Clifford-Hodge flow of oriented orthonormal frame fields on Rie-
mannian manifolds may be devoted to anisotropic regularization of orientation fields
related to nD images. Let v = (v1, v2) be the unit vector field on Ω ⊂ R

2 of Fig. 4.2(a).
For each p ∈ S, v(p) may be represented by polar coordinates (1, θ(p)), θ(p) ∈ [0, 2π[.
Let us corrupt the function θ by adding to it a random map with values in [−π/2, π/2].
The corresponding unit vector field u is on Fig. 4.3(a). Using the chart (Ω, ϕ) of S,
u is a tangent vector field of S that may be written u = λ(cos(ψ)e1 + sin(ψ)e2),
for some functions λ, ψ. Then it may be viewed (up to a normalization) as the
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(a) Unit vector field of edge orientations (b) Anisotropic Clifford-Hodge flow

Fig. 4.2. Clifford-Hodge flow of tangent vector field

result of a rotation field of angle ψ applied to e1. Following Section 3.2, we con-
struct ψ̃e1e2 ∈ Γ(

∧2 TX) such that the rotation field of angle ψ equals exp ◦ ψ̃e1e2,
and we regularize it through the Clifford-Hodge flow of ψ̃e1e2. From Section 4.1, it
produces the scalar Laplacian/Beltrami flow of the function ψ̃. Hence we obtain a
unit vector field ut in the frame (e1, e2). By the inverse frame change from (e1, e2)
to (∂/∂x, ∂/∂y), we obtain (up to normalization) a unit vector field in the frame
(∂/∂x, ∂/∂y), and consequently on the chart. Fig. 4.2(b) is the result of this process
after 1000 iterations for h1 = h2 = h3 = 0.1 and t = 0.3. It is computed from the
convolution with a 5x5 mask discretizing the kernel Kt

0. Up to details, we refind the
original unit vector field of Fig. 4.2(a).

(a) Noisy unit vector field of edge orientations (b) Anisotropic Clifford-Hodge flow

Fig. 4.3. Clifford-Hodge flow of oriented orthonormal frame field

The results concerning regularization of images and orientation fields should have
been foreseen. Indeed, it is a well-known fact that the Beltrami flow tends to diffuse
in the direction of edges on regions located on high edges, and behaves as a gaussian
diffusion on homogeneous regions. By the result of Fig. 4.2. where the unit vector
field of edge orientations is preserved on high edges and where its components are
averaged on regions of low color variations, we may deduce more generally that the
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Clifford-Hodge flow acts in this way.

5. The case m = 3.

5.1. The operator D2 and parallel transport map on Cl(X, g). Let us
first determine the connection ∇C in an orthonormal frame (e1, e2, e3). Let Γk′

ij be
the Levi-Cevita connection’s symbols of (X, g) with respect to the frame (e1, e2, e3).

∇C
e1

1 = 0 ∇C
e2

1 = 0 ∇C
e3

1 = 0

∇C
e1
e1 = Γ2′

11 e2 + Γ3′

11 e3 ∇C
e2
e1 = Γ2′

21 e2 + Γ3′

21 e3 ∇C
e3
e1 = Γ2′

31 e2 + Γ3′

31 e3

∇C
e1
e2 = Γ1′

12 e1 + Γ3′

12 e3 ∇C
e2
e2 = Γ1′

22 e1 + Γ3′

22 e3 ∇C
e3
e2 = Γ1′

32 e1 + Γ3′

32 e3

∇C
e1
e3 = Γ1′

13 e1 + Γ2′

13 e2 ∇C
e2
e3 = Γ1′

23 e1 + Γ2′

23 e2 ∇C
e3
e3 = Γ1′

33 e1 + Γ2′

33 e2

∇C
e1
e1e2 = Γ3′

12 e1e3−Γ3′

11 e2e3 ∇C
e2
e1e2 = Γ3′

22 e1e3−Γ3′

21 e2e3 ∇C
e3
e1e2 = Γ3′

32 e1e3−Γ3′

31 e2e3

∇C
e1
e1e3 = Γ2′

13 e1e2+Γ2′

11 e2e3 ∇C
e2
e1e3 = Γ2′

23 e1e2+Γ2′

21 e2e3 ∇C
e3
e1e3 = Γ2′

33 e1e2+Γ2′

31 e2e3

∇C
e1
e2e3 = Γ1′

12 e1e3−Γ1′

13 e1e2 ∇C
e2
e2e3 = Γ1′

22 e1e3−Γ1′

23 e1e2 ∇C
e3
e2e3 = Γ1′

32 e1e3−Γ1′

33 e1e2

∇C
e1
e1e2e3 = 0 ∇C

e2
e1e2e3 = 0 ∇C

e3
e1e2e3 = 0

Proposition 5.1. Let (X, g) be a Riemannian manifold of dimension 3. Let
(e1, e2, e3) be an orthonormal frame on X and ϕ = ϕ1 1 + ϕ2 e1 + ϕ3 e2 + ϕ4 e3 +
ϕ5 e1e2 + ϕ6 e1e3 + ϕ7 e2e3 + ϕ8 e1e2e3 ∈ Γ(Cl(X, g)). Then

D2(ϕ1 1) =
(
− d2

e1,e1
ϕ1 − d2

e2,e2
ϕ1 − d2

e3,e3
ϕ1 + Γ2′

11 de2
ϕ1 + Γ3′

11 de3
ϕ1 − Γ2′

21 de1
ϕ1

+Γ3′

22 de3
ϕ1 − Γ3′

31 de1
ϕ1 − Γ3′

32 de2
ϕ1

)
1

= −∆g(ϕ1)1

D2(ϕ2 e1 + ϕ3 e2 + ϕ4 e3) =

(
−d2

e1,e1
ϕ2−d2

e2,e2
ϕ2−d2

e3,e3
ϕ2+d

e1
ϕ2(−Γ2′

21−Γ3′

31 )+d
e2
ϕ2(Γ

2′

11 −Γ3′

32 )+d
e3
ϕ2(Γ

3′

22 +Γ3′

11 )

+2Γ2′

11 de1
ϕ3 + 2Γ2′

21 de2
ϕ3 + 2Γ2′

31 de3
ϕ3 + 2Γ3′

11 de1
ϕ4 + 2Γ3′

21 de2
ϕ4 + 2Γ3′

31 de3
ϕ4

+ϕ2(−de1
Γ2′

21 − de1
Γ3′

31 + d
e2

Γ2′

11 + d
e3

Γ3′

11 + (Γ3′

21 )2 + (Γ2′

31 )2− 2Γ3′

21 Γ2′

31 −Γ3′

11 Γ3′

22 + Γ3′

32 Γ2′

11 )

+ϕ3(de1
Γ2′

11 − de1
Γ3′

32 + d
e2

Γ2′

21 + d
e3

Γ3′

12 + d
e3

Γ2′

31 − 2Γ3′

22 Γ2′

31 − Γ3′

12 Γ3′

22 + Γ3′

21 Γ3′

22 + Γ3′

32 Γ2′

21 )

+ϕ4(de1
Γ3′

11 +d
e1

Γ3′

22 −de2
Γ3′

12 +d
e2

Γ3′

21 +d
e3

Γ3′

31 +2Γ3′

21 Γ3′

32 −Γ3′

22 Γ3′

31 −Γ3′

32 Γ3′

12 −Γ2′

31 Γ3′

32 )
)
e1
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+
(
−d2

e1,e1
ϕ3−d2

e2,e2
ϕ3−d2

e3,e3
ϕ3+de1

ϕ3(−Γ2′

21−Γ3′

31 )+d
e2
ϕ3(Γ

2′

11−Γ3′

32 )+d
e3
ϕ3(Γ

3′

22 +Γ3′

11 )

−2Γ2′

11 de1
ϕ2 − 2Γ2′

21 de2
ϕ2 − 2Γ2′

31 de3
ϕ2 + 2Γ3′

12 de1
ϕ4 + 2Γ3′

22 de2
ϕ4 + 2Γ3′

32 de3
ϕ4

+ϕ2(−de1
Γ2′

11 − de2
Γ2′

21 − de2
Γ3′

31 + d
e3

Γ3′

21 − de3
Γ2′

31 +2Γ3′

11 Γ2′

31 +Γ3′

12 Γ3′

11 −Γ3′

11 Γ3′

21 −Γ3′

31 Γ2′

11 )

+ϕ3(−de1
Γ2′

21 + d
e2

Γ2′

11 − de2
Γ3′

32 + d
e3

Γ3′

22 + (Γ3′

12 )2 + (Γ2′

31 )2 + 2Γ3′

12 Γ2′

31 −Γ3′

11 Γ3′

22 −Γ3′

31 Γ2′

21 )

+ϕ4(de1
Γ3′

12 −de1
Γ3′

21 +d
e2

Γ3′

11 +d
e2

Γ3′

22 +d
e3

Γ3′

32 +2Γ3′

12 Γ3′

31 −Γ3′

11 Γ3′

32 −Γ3′

31 Γ3′

21 +Γ2′

31 Γ3′

31 )
)
e2

+
(
−d2

e1,e1
ϕ4−d2

e2,e2
ϕ4−d2

e3,e3
ϕ4+de1

ϕ4(−Γ2′

21−Γ3′

31 )+d
e2
ϕ4(Γ

2′

11−Γ3′

32 )+d
e3
ϕ4(Γ

3′

22 +Γ3′

11 )

−2Γ3′

11 de1
ϕ2 − 2Γ3′

21 de2
ϕ2 − 2Γ3′

31 de3
ϕ2 − 2Γ3′

12 de1
ϕ3 − 2Γ3′

22 de2
ϕ3 − 2Γ3′

32 de3
ϕ3

+ϕ2(−de1
Γ3′

11 − de2
Γ3′

21 + d
e2

Γ2′

31 − de3
Γ2′

21 − de3
Γ3′

31 +2Γ2′

11 Γ3′

21 −Γ3′

12 Γ2′

11 −Γ2′

11 Γ2′

31 −Γ2′

21 Γ3′

11 )

+ϕ3(−de1
Γ3′

12 − de1
Γ2′

31 − de2
Γ3′

22 + d
e3

Γ2′

11 − de3
Γ3′

32 − 2Γ3′

12 Γ2′

21 +Γ2′

11 Γ3′

22 +Γ3′

21 Γ2′

21 −Γ2′

21 Γ2′

31 )

+ϕ4(−de1
Γ3′

31 −de2
Γ3′

32 +d
e3

Γ3′

11 +d
e3

Γ3′

22 +(Γ3′

12 )2+(Γ3′

21 )2−2Γ3′

12 Γ3′

21 +Γ2′

11 Γ3′

32 −Γ2′

21 Γ3′

31 )
)
e3

D2(ϕ5 e1e2 + ϕ6 e1e3 + ϕ7 e2e3) =

(
−d2

e1,e1
ϕ5−d2

e2,e2
ϕ5−d2

e3,e3
ϕ5+d

e1
ϕ5(−Γ2′

21−Γ3′

31 )+d
e2
ϕ5(Γ

2′

11−Γ3′

32 )+d
e3
ϕ5(Γ

3′

22 +Γ3′

11 )

+2Γ3′

12 de1
ϕ6 + 2Γ3′

22 de2
ϕ6 + 2Γ3′

32 de3
ϕ6 − 2Γ3′

11 de1
ϕ7 − 2Γ3′

21 de2
ϕ7 − 2Γ3′

31 de3
ϕ7

+ϕ5(−de1
Γ3′

31 − de2
Γ3′

32 + d
e3

Γ3′

11 + d
e3

Γ3′

22 + (Γ3′

21 )2 + (Γ3′

12 )2− 2Γ3′

21 Γ3′

12 + Γ2′

11 Γ3′

32 −Γ2′

21 Γ3′

31 )

+ϕ6(de1
Γ3′

12 + d
e1

Γ2′

31 + d
e2

Γ3′

22 − de3
Γ2′

11 + d
e3

Γ3′

32 + 2Γ2′

21 Γ3′

12 − Γ2′

11 Γ3′

22 + Γ2′

21 Γ2′

31 − Γ3′

21 Γ2′

21 )

+ϕ7(−de1
Γ3′

11−de2
Γ3′

21 +d
e2

Γ2′

31−de3
Γ2′

21−de3
Γ3′

31 +2Γ2′

11 Γ3′

21−Γ2′

11 Γ2′

31−Γ3′

12 Γ2′

11−Γ2′

21 Γ3′

11 )
)
e1e2

+
(
−d2

e1,e1
ϕ6−d2

e2,e2
ϕ6−d2

e3,e3
ϕ6+de1

ϕ6(−Γ2′

21−Γ3′

31 )+d
e2
ϕ6(Γ

2′

11−Γ3′

32 )+d
e3
ϕ6(Γ

3′

22 +Γ3′

11 )
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−2Γ3′

12 de1
ϕ5 − 2Γ3′

22 de2
ϕ5 − 2Γ3′

32 de3
ϕ5 + 2Γ2′

11 de1
ϕ7 + 2Γ2′

21 de2
ϕ7 + 2Γ2′

31 de3
ϕ7

+ϕ5(−de1
Γ3′

12 + d
e1

Γ3′

21 − de2
Γ3′

11 − de2
Γ3′

22 − de3
Γ3′

32 − 2Γ3′

12 Γ3′

31 +Γ3′

32 Γ3′

11 −Γ2′

31 Γ3′

31 +Γ3′

31 Γ3′

21 )

+ϕ6(−de1
Γ2′

21 + d
e2

Γ2′

11 − de2
Γ3′

32 + d
e3

Γ3′

22 + (Γ3′

12 )2 + (Γ2′

31 )2 + 2Γ3′

12 Γ2′

31 −Γ3′

11 Γ3′

22 −Γ3′

31 Γ2′

21 )

+ϕ7(de1
Γ2′

11 +d
e2

Γ2′

21 +d
e2

Γ3′

31 −de3
Γ3′

21 +d
e3

Γ2′

31 −2Γ3′

11 Γ2′

31 +Γ3′

11 Γ3′

21 −Γ3′

12 Γ3′

11 +Γ3′

31 Γ2′

11 )
)
e1e3

+
(
−d2

e1,e1
ϕ7−d2

e2,e2
ϕ7−d2

e3,e3
ϕ7+de1

ϕ7(−Γ2′

21−Γ3′

31 )+d
e2
ϕ7(Γ

2′

11−Γ3′

32 )+d
e3
ϕ7(Γ

3′

22 +Γ3′

11 )

+2Γ3′

11 de1
ϕ5 + 2Γ3′

21 de2
ϕ5 + 2Γ3′

31 de3
ϕ5 − 2Γ2′

11 de1
ϕ6 − 2Γ2′

21 de2
ϕ6 − 2Γ2′

31 de3
ϕ6

+ϕ5(de1
Γ3′

11 + d
e1

Γ3′

22 − de2
Γ3′

12 + d
e2

Γ3′

21 + d
e3

Γ3′

31 + 2Γ3′

21 Γ3′

32 − Γ3′

22 Γ3′

31 − Γ2′

31 Γ3′

32 − Γ3′

32 Γ3′

12 )

+ϕ6(−de1
Γ2′

11 + d
e1

Γ3′

32 − de2
Γ2′

21 − de3
Γ3′

12 − de3
Γ2′

31 +2Γ3′

22 Γ2′

31 −Γ3′

21 Γ3′

22 +Γ3′

22 Γ3′

12 −Γ3′

32 Γ2′

21 )

+ϕ7(−de1
Γ2′

21−de1
Γ3′

31 +d
e2

Γ2′

11 +d
e3

Γ3′

11 +(Γ3′

21 )2+(Γ2′

31 )2−2Γ3′

21 Γ2′

31−Γ3′

22 Γ3′

11 +Γ3′

32 Γ2′

11 )
)
e2e3

D2(ϕ8 e1e2e3) =
(
− d2

e1,e1
ϕ8 − d2

e2,e2
ϕ8 − d2

e3,e3
ϕ8 + Γ2′

11 de2
ϕ8 + Γ3′

11 de3
ϕ8 − Γ2′

21 de1
ϕ8

+Γ3′

22 de3
ϕ8 − Γ3′

31 de1
ϕ8 − Γ3′

32 de2
ϕ8

)
e1e2e3

= −∆g(ϕ8)e1e2e3

Proof. We obtain D2(ϕ) from (3.2) and the relations above defining ∇C in the
frame (e1, e2, e3). Then we simplify the expression using some properties of the Levi-
Cevita connection:
(i) In an orthonormal frame, symbols satisfy Γk′

ij = −Γj′

ik .

(ii) [e1, e2] = −Γ2′

11 e1 − Γ2′

21 e2 + Γ3′

12 e3 − Γ3′

21 e3

[e3, e1] = Γ3′

11 e1 + Γ2′

31 e2 + Γ3′

12 e2 + Γ3′

31 e3

[e2, e3] = −Γ3′

21 e1 + Γ2′

31 e1 − Γ3′

22 e2 − Γ3′

32 e3

Proposition 5.2 (Parallel transport on Cl(X, g)). Let (X, g) be a Rieman-
nian manifold of dimension 3. Let (e1, e2, e3) be an orthonormal frame on X, and
Y0 = Y 1

0 1(y) + Y 2
0 e1(y) + Y 3

0 e2(y) + Y 4
0 e3(y) + Y 5

0 e1e2(y) + Y 6
0 e1e3(y) + Y 7

0 e2e3(y) +
Y 8

0 e1e2e3(y) ∈ Cl(X, g)y. Let γ be a C1 curve in X such that γ(0) = y. The parallel
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transport Y of Y0 along γ is obtained from the solution of the following differential
equation on R

8.

dY1/dt = 0,

à
dY2/dt

dY3/dt

dY4/dt

í

= A

à
Y2

Y3

Y4

í

,

à
dY5/dt

dY6/dt

dY7/dt

í

= B

à
Y5

Y6

Y7

í

, dY8/dt = 0

(5.1)

where A=

à
0 γ̇1Γ

2′

11 + γ̇2Γ
2′

21 + γ̇3Γ
2′

31 γ̇1Γ
3′

11 + γ̇2Γ
3′

21 + γ̇3Γ
2′

31

−γ̇1Γ
2′

11 − γ̇2Γ
2′

21 − γ̇3Γ
2′

31 0 γ̇1Γ
3′

12 + γ̇2Γ
3′

22 + γ̇3Γ
3′

32

−γ̇1Γ
3′

11 − γ̇2Γ
3′

21 − γ̇3Γ
2′

31 −γ̇1Γ
3′

12 − γ̇2Γ
3′

22 − γ̇3Γ
3′

32 0

í

and B =

à
0 γ̇1Γ

3′

12 + γ̇2Γ
3′

22 + γ̇3Γ
3′

32 −γ̇1Γ
3′

11 − γ̇2Γ
3′

21 − γ̇3Γ
2′

31

−γ̇1Γ
3′

12 − γ̇2Γ
3′

22 − γ̇3Γ
3′

32 0 γ̇1Γ
2′

11 + γ̇2Γ
2′

21 + γ̇3Γ
2′

31

γ̇1Γ
3′

11 + γ̇2Γ
3′

21 + γ̇3Γ
2′

31 −γ̇1Γ
2′

11 − γ̇2Γ
2′

21 − γ̇3Γ
2′

31 0

í

of initial condition Yi(0) = Y i
0 , for i ∈ {1, · · · , 8}.

The solutions Y1(t) and Y8(t) are given by Y1(t) = Y 1
0 and Y8(t) = Y 8

0 . To the best
of knowledge of the author, there exist no explicit formulae for (Y2(t), Y3(t), Y4(t))
and (Y5(t), Y6(t), Y7(t)). In practice, we suppose the matrices A and B to be locally
constant. This gives explicit solutions of (5.1).

Corollary 5.3. Let us suppose that Christoffel’s symbols Γk′

ij and coordinates
γ̇i of γ̇ are constant on some open set Ωy ⊃ y. Let (f1, f2, f3) be an orthonormal
basis of R

3 generating the Clifford algebra Cl(R3,−‖‖2) and S1(t), S2(t) ∈ Spin(3)
⊂ Cl(R3,−‖‖2) defined by

S1(t) = exp

ï
t
√
α2 + β2 + δ2

2

Å
αf1f2 + βf1f3 + δf2f3√

α2 + β2 + δ2

ãò

and

S2(t) = exp

ï
t
√
α2 + β2 + δ2

2

Å
δf1f2 − βf1f3 + αf2f3√

α2 + β2 + δ2

ãò

where α = γ̇1Γ
2

11 + γ̇2Γ
2

21 + γ̇3Γ
2

31, β = γ̇1Γ
3

11 + γ̇2Γ
3

21 + γ̇3Γ
2

31 and δ = γ̇1Γ
3

12 + γ̇2Γ
3

22 + γ̇3Γ
3

32.
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The solution Y (t) of (5.1) is given on Ωy by Y(t)=

Y 1
0 1(γ(t)) +

[
f1 ·

(
S1(t)

†(Y 2
0 f1 + Y 3

0 f2 + Y 4
0 f3)S1(t)

)]
e1(γ(t))

+
[
f2 ·

(
S1(t)

†(Y 2
0 f1 + Y 3

0 f2 + Y 4
0 f3)S1(t)

)]
e2(γ(t))

+
[
f3 ·

(
S1(t)

†(Y 2
0 f1 + Y 3

0 f2 + Y 4
0 f3)S1(t)

)]
e3(γ(t))

+
[
f1 ·

(
S2(t)

†(Y 5
0 f1 + Y 6

0 f2 + Y 7
0 f3)S2(t)

)]
e1e2(γ(t))

+
[
f2 ·

(
S2(t)

†(Y 5
0 f1 + Y 6

0 f2 + Y 7
0 f3)S2(t)

)]
e1e3(γ(t))

+
[
f3 ·

(
S2(t)

†(Y 5
0 f1 + Y 6

0 f2 + Y 7
0 f3)S2(t)

)]
e2e3(γ(t)) + Y 8

0 e1e2e3(γ(t))

Proof. We aim at solving the differential equationsà
dY2/dt

dY3/dt

dY4/dt

í

= A

à
Y2

Y3

Y4

í

and

à
dY5/dt

dY6/dt

dY7/dt

í

= B

à
Y5

Y6

Y7

í

(5.2)

where A and B are antisymmetric of the form

A =

Ñ
0 α β
−α 0 δ
−β −δ 0

é
B =

Ñ
0 δ −β
−δ 0 α
β −α 0

é

They got the same eigenvalues, i.e. 0, i
√
α2 + β2 + δ2 and its conjugate. The

eigenspaces associated to 0 are R(δ,−β, α) for A, and R(α, β, δ) for B. The two-
dimensional eigenspaces of the complex eigenvalue i

√
α2 + β2 + δ2 are their orthog-

onal supplementary in R
3. Let u1 resp. v1 be an eigenvector of A resp. B relative

to the eigenvalue 0, let (u2, u3) resp. (v2, v3) be a basis of the eigenspace relative
to the eigenvalue i

√
α2 + β2 + δ2, and P1 resp. P2 be the basis change matrix from

(f1, f2, f3) to (u1, u2, u3) resp. (v1, v2, v3).

In the basis (u1, u2, u3) of coordinates (Z2, Z3, Z4), the first differential equation of
(5.2) is

Ñ
dZ2/dt

d(Z3 + i Z4)/dt

é
=

Ñ
0 0

0 i
√
α2 + β2 + δ2

éÑ
Z2

Z3 + i Z4

é
(5.3)

of initial condition à
Z2(0)

Z3(0)

Z4(0)

í

= P−1
1

à
Y 2
0

Y 3
0

Y 4
0

í

In the basis (v1, v2, v3) of coordinates (Z5, Z6, Z7), the second differential equation of
(5.2) is

Ñ
dZ5/dt

d(Z6 + i Z7)/dt

é
=

Ñ
0 0

0 i
√
α2 + β2 + δ2

éÑ
Z5

Z6 + i Z7

é
(5.4)
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of initial condition à
Z5(0)

Z6(0)

Z7(0)

í

= P−1
2

à
Y 5
0

Y 6
0

Y 7
0

í

Solutions of (5.3) and (5.4) are




Z2(t) = Z2(0)

Z3(t) + iZ4(t) = exp(i t
√
α2 + β2 + δ2)(Z3(0) + iZ4(0))





Z5(t) = Z5(0)

Z6(t) + iZ7(t) = exp(i t
√
α2 + β2 + δ2)(Z6(0) + iZ7(0))

and general solutions of (5.2) are
à

Y2(t)

Y3(t)

Y4(t)

í

= P1

à
Z2(t)

Z3(t)

Z4(t)

í

and

à
Y5(t)

Y6(t)

Y7(t)

í

= P2

à
Z5(t)

Z6(t)

Z7(t)

í

We see that solutions of (5.2) are given by rotations of angle t
√
α2 + β2 + δ2 in R

3

with respect to the planes that are eigenspaces for the eigenvalue i
√
α2 + β2 + δ2 ap-

plied to the initial condition vectors. As in the case m = 2, using the Clifford algebras
context, such operations take a straightforward form. For this, we embed R

3 of basis
(f1, f2, f3) into Cl(R3,−‖‖2).

Indeed, oriented planes in R
3 are represented by bivectors in Cl(R3,−‖‖2). In par-

ticular, the bivector representing the orthogonal of the vector a1f1 + a2f2 + a3f3
results from the product (a1f1 + a2f2 + a3f3)f1f2f3. Hence the rotation of angle
t
√
α2 + β2 + δ2 in the oriented plane orthogonal to δf1−βf2+αf3 resp. αf1+βf2+δf3

is given by the spinor

S1(t) = exp

ï
t
√
α2 + β2 + δ2

2

Å
αf1f2 + βf1f3 + δf2f3√

α2 + β2 + δ2

ãò

resp.

S2(t) = exp

ï
t
√
α2 + β2 + δ2

2

Å
δf1f2 − βf1f3 + αf2f3√

α2 + β2 + δ2

ãò

Then we have

Y2(t)f1 + Y3(t)f2 + Y4(t)f3 = S1(t)
†(Y 2

0 f1 + Y 3
0 f2 + Y 4

0 f3)S1(t)

and

Y5(t)f1 + Y6(t)f2 + Y7(t)f3 = S2(t)
†(Y 5

0 f1 + Y 6
0 f2 + Y 7

0 f3)S2(t)

This gives the parallel transport Y (t) of Y0.
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5.2. The particular context of videos. Let us consider a nD video defined
by a function I : (x, y, z) 7−→ (I1(x, y, z), · · · , In(x, y, z)) on a domain Ω ⊂ R

3. I
determines a submanifold S of R

n+3 of dimension 3 parametrized by

ϕ : (x, y, z) 7−→ (x, y, z, I1(x, y, z), · · · , In(x, y, z))

Then endow R
n+3 of a metric h of the form

h(p) =

Ñ
λ 0 0
0 λ 0
0 0 β

é
⊕




h1(p) 0 0 · · · · · · 0
0 h2(p) 0 · · · · · · 0

0 0
. . .

...
...

...
. . .

...
0 0 · · · · · · 0 hn(p)




(5.5)

where h1, · · · , hn are positive functions, λ, β > 0 and denote by g the metric on S
induced by h makes the couple (S, g) be a Riemannian manifold of dimension 3 of
global chart (Ω, ϕ).

As for the case m = 2, an oriented orthonormal frame field (e1, e2, e3) may be con-
structed on (S, g) from the matrix representation of g in the frame (∂/∂x, ∂/∂y, ∂/∂z).
Indeed, for each p ∈ S, a positively oriented orthonormal basis of TpS may be con-
structed from its eigenvectors.

Then we need to compute the transformation of Levi-Cevita connection’s symbols
with respect to the frame change from (∂/∂x, ∂/∂y, ∂/∂z) to (e1, e2, e3). Remind that
by the antisymmetry property of its symbols Γk′

ij in an orthonormal frame, the Levi-

Cevita connection is determined by the 9 symbols Γ2′

11 ,Γ
3′

11 ,Γ
2′

21 ,Γ
3′

21 ,Γ
2′

31 ,Γ
3′

31 ,Γ
3′

12 ,Γ
3′

22

and Γ3′

32 in such frames. In the next proposition, we determine the expression of the
symbol Γ2′

11 in a frame (v1, v2, v3) in function of the symbols Γk
ij of the connection in

the frame (∂/∂x, ∂/∂y, ∂/∂z). For the sake of shortness, we give the expression of
just one symbol.

Proposition 5.4. Let (v1, v2, v3) be a frame on (S, g) and

A =

Ñ
a11 a12 a13

a21 a22 a23

a31 a32 a33

é

be the change frame field from (∂/∂x, ∂/∂y, ∂/∂z) to (v1, v2, v3). Then

Γ2′

11 =

1

detA
(a31a23 − a21a33)

(
a11

∂a11

∂x
+ (a11)

2Γ1
11 + 2a11a21Γ

1
12 + 2a11a31Γ

1
13 + a21

∂a11

∂y

+(a21)
2Γ1

22 + 2a21a31Γ
1

23 + a31
∂a11

∂z
+ (a31)

2Γ1
33

)
+

1

detA
(a11a33 − a13a31)

(
(a11)

2Γ2
11

+a11
∂a21

∂x
+ 2a11a21Γ

2
12 + 2a11a31Γ

2
31 + a21

∂a21

∂y
+ (a21)

2Γ2
22 + 2a21a31Γ

2
23 + a31

∂a21

∂z

+(a31)
2Γ2

33 +
1

detA
(a11a23 − a13a21)

(
(a11)

2Γ3
11 + a11

∂a31

∂x
+ 2a11a21Γ

3
12 + 2a11a31Γ

3
13

+a21
∂a31

∂y
+ (a21)

2Γ2
32 + 2a21a31Γ

3
23 + a31

∂a31

∂z
+ (a31)

2Γ3
33

)
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(a) Original video (left) / Anisotropic Clifford-Hodge flow (right) for β = 1

(b) Original video (left) / Anisotropic Clifford-Hodge flow (right) for β = 10

Fig. 5.1. Clifford-Hodge flow of functions

5.3. Experiments. In dimension 3, the Clifford-Hodge flow on functions may be
devoted to anisotropic regularization of nD videos. The process is the 3D counterpart
of the 2D process devoted to anisotropic regularization of nD images mentionned
above . Let I = (I1, · · · , In) be a nD video. It induces a Riemannian manifold (S, g)
of dimension 3. Then we consider each component Ii as a section of the Clifford
bundle Cl(S, g) of degree 0, and apply the Clifford-Hodge flow on each one of them.
Under the identification between sections of Cl(S, g) of degree 0 and functions on S,
we get n PDE’s

∂Ii
∂t

+ ∆Ii = 0

where ∆ is the scalar Laplacian on C∞(S, g).

In this application, we aim at showing the role of the parameter β of (5.5) in the
regularization process. By construction of the Riemannian manifold (S, g) , β con-
trols the norms of tangent vector fields in the direction ∂/∂z. More precisely, it
controls the measure of video’s variations in the temporal direction.

Fig. 5.1. is an illustration of anisotropic regularizations of a color video (n=3) in-
duced by the Clifford-Hodge flow. Fig. 5.1(a) (left) and Fig. 5.1(b) (left) is a capture
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of a video taken in the DynTex database [13]. Fig. 5.1(a) (right) and Fig. 5.1(b)
(right) are corresponding captures of anisotropic regularizations of the original video.
They are computed from a convolution with a 3x3x3 mask discretizing the kernel
K1

t (see Sect. 2.3). They result from 3 iterations for h1 = h2 = h3 = 0.01, t = 0.3
and λ = 1, where the metric g is updated at each iteration. They differ from the
parameter β, where β = 1 on Fig. 5.1(a) (right) and β = 10 on Fig. 5.1(b) (right).

As mentionned above, the more β is taken high, the more variations of the video
in the temporal direction are considered as high. From the property of the Beltrami
flow of diffusing in the direction of edges, we conclude that the more β is taken high,
the more the diffusion process behaves as a frame by frame diffusion. This is illus-
trated on Fig. 5.1. where some details of the original video have been removed (see
inside the red ellipses) by the diffusion process for β = 1, conversely only smoothed
for β = 10.

6. Conclusion. In this paper, we have proposed a new application of Clifford
algebras to image processing. We have shown that it provides a common framework
to regularize images (videos), vector fields and oriented orthonormal frame fields. As
we were concerned with anisotropic regularization, we introduced Clifford bundles
of Riemannian manifolds. Then images (videos), vector fields and generators of or-
thonormal frame fields may be viewed as sections of such vector bundles, respectively
of degree 0,1,2. Regularization process arises from the theory of heat equations asso-
ciated to generalized Laplacians on vector bundles over Riemannian manifolds, where
the solution is given by the convolution of the initial condition with a corresponding
heat kernel. We have considered the Clifford-Hodge operator on Clifford bundles.
This generalized Laplacian has the property of preserving the degree of sections, and
consequently so does the corresponding flow. It generalizes the Laplace-Beltrami
operator in the sense that the Clifford-Hodge, restricted to functions, is minus the
Laplace-Beltrami.
For the applications we had in mind to image and video processing, we were concerned
with base manifolds of dimension 2 and 3. We have computed transport parallel map
and transformation formulae of Levi-Cevita connection’s symbols under the frame
change from the holonomic frame to an orthonormal frame, needed to compute an
approximate solution of the heat equation. Applications to color images (videos), 2D
vector fields and orientation fields regularization were shown. By the application on
2D vector fields, it appears that the Clifford-Hodge flow possesses the same properties
as the Beltrami flow it extends, i.e. it behaves as a gaussian diffusion on homogeneous
regions and tends to diffuse only in the direction of edges on regions of high edges.
Thus, we may apply the Clifford-Hodge flow of 3D vector fields to optical flow regu-
larization. Applications of the Clifford-Hodge flow of 3D oriented orthonormal frame
fields to DTI dataset regularization, for a well-chosen Riemannian manifold of dimen-
sion 3, may also be envisaged. These last two points will be addressed in further works.

Acknowledgments. The author thanks Pr. Michel Berthier for helpful remarks
and discussions.
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