
HAL Id: hal-00408517
https://hal.science/hal-00408517

Submitted on 30 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Testing Service Composition Using TGSE tool
Dung Cao, Patrick Felix, Richard Castanet, Ismail Berrada

To cite this version:
Dung Cao, Patrick Felix, Richard Castanet, Ismail Berrada. Testing Service Composition Using TGSE
tool. IEEE 3rd International Workshop on Web Services Testing (WS-Testing 2009). In conjunction
with 7th IEEE International Conference on Web Services (ICWS 2009), Jul 2009, Los Angeles, United
States. WS-Testing 2009 papers will be included in the proceedings of SERVICES 2009 (Part I), which
will be. �hal-00408517�

https://hal.science/hal-00408517
https://hal.archives-ouvertes.fr


Testing Service Composition Using TGSE tool∗

Tien-Dung Cao 1, Patrick Félix 1, Richard Castanet 1 and Ismail Berrada 2

1LaBRI - CNRS - UMR 5800, University of Bordeaux 1
351 cours de la libération, 33405 Talence cedex, France.

Email: {cao,felix,castanet}@labri.fr
2L3I, La Rochelle University, 17042 La Rochelle, France.

Email: ismail.berrada@univ-lr.fr

Abstract

This paper proposes an approach to test (actively and
passively) a Web service composition described in BPEL
using the TGSE (Test Generation, Simulation and Emula-
tion), that is a tool to generate the test cases based on
the Communicating System (CS) and implementing of a
generic algorithm of generation. For the first step, the
BPEL specification is transformed into Timed Extended Fi-
nite State Machines (TEFSM) model which enable modeling
of BPEL behaviour, timing constraints, its data variables
and clocks. On the active testing approach, test case gener-
ation is based on simulation where the exploration is guided
by test purpose that is a part of CS (i.e. it is also modeled
by a TEFSM). Otherwise, the passive testing approach, the
TGSE tool will verify a trace that is either correct or incor-
rect with specification. This tool also works with the timing
constraints on clocks (local and global). It covers test cases
not only with transitions but also with values of data vari-
ables. Our method is illustrated by an example.

1 Introduction

BPEL (Business Process Execution Language) [1] is an
emerging standard language to describe web service com-
position behaviour. A BPEL process implements one Web
service by specifying its interactions with other Web ser-
vices (called partner services). Various approaches for ser-
vice composition testing were analyzed by [2] including
unit testing, integration testing, black box testing and white
box testing of choreographies and orchestrations. On the ac-
tive testing approach, several test case generations for BPEL
Web services recently have been proposed [6, 7, 9, 10, 20],
even though timed test cases [16, 17, 21]. These methods

∗This Research is supported by the French National Agency of Re-
search within the WebMov Project http://webmov.lri.fr

have been given pertinent test cases. On the contrary, pas-
sive testing, several techniques have been proposed [24, 25]:
these methods focus on monitoring techniques and diagno-
sis semantic fault of BPEL service. The time notion is not
considered in these methods.

The TGSE tool (Test Generation, Simulation and Emu-
lation) [22, 23] that is composed of a test case generator
based on the Communicating Systems and implementing of
a generic algorithm of generation. This tool is developed by
LaBRI within the RNRT Avérroes project and the European
project Marie Curie RTN TAROT (MCRTN 505121). This
tool follows us to active testing (i.e. test generation from
one or some of components that are described by TEFSM)
and passive testing (i.e. verify a trace) and it also works with
the timing constraints on clocks(local and global). It covers
test cases not only with transitions but also with values of
data variables. This is helpful for passive testing approach.

A. Bucchiarone et al. [2] have defined two approaches
for Web services composition testing:

• White box approach: in this approach, as BPEL is an
executable language, the BPEL description of Web ser-
vices composition is considered as the source code of
the composition. It is executed by any BPEL engine
(Active BPEL, Oracle...). Several structural criteria of
coverage based on the code can be applied;

• Black box approach: in this approach, a composite
Web service is actually coded in a different language
from the specification. For instance, a BPEL specifica-
tion coded as a Java program. An implementation of a
composite Web service is tested without any informa-
tion of its internal structure. The test suite generated
from only specification.

In this paper, we focus on Black box testing of an imple-
mentation of the Web services composition that described
in BPEL. For the first step, we present a timed modeling
of BPEL based on Timed Extended Finite State Machine



(TEFSM) to automatic testing. The TEFSM formalism al-
lows to deal not only BPEL behaviour but also timing con-
straints, its data variables and clocks. In this model, we
assign a time invariant for each timed activity of BPEL (for
example: wait). We give also a description how to trans-
late BPEL specification into TEFSMs in this paper. On
the active testing approach: test case generation is based on
simulation where the exploration is guided by test purposes
that is a part of CS (i.e. it is also modeled by a TEFSM).
The TEFSM of BPEL specification and test purpose will be
modeled into a communicating system that is an input for-
mat of TGSE tool. Otherwise, the passive testing approach,
the TGSE tool will verify a trace that is either correct or in-
correct with specification. This trace is also modeled as a
TEFSM and it is a component of CS.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews some previous work on Web services com-
position testing. The section 3, we give some of defini-
tion about: TEFSM that is used to model BPEL process, a
partial of TEFSM and a Communicating System. The sec-
tion 4 describes the relationship between BPEL conceps and
TEFSM. How to test a service composition using the TGSE
tool is introduced in the section 5. A case study is studied
in the section 6. The section 7 concludes the paper.

2 Related Works

In the last years, several techniques and tools have been
developed to test Web services. Various approaches for ser-
vice composition testing were analyzed by [2] including
unit testing, integration testing, black box testing and white
box testing of choreographies and orchestrations. Jose
Garcia-Fanjul et al [6] use a formal verification tool, the
SPIN model checker, to generate test suite specifications for
compositions specified in BPEL. A transition coverage cri-
terion is employed to define a systematic procedure to select
the test cases. Yongyan Zheng and Paul Krause [7] model
each BPEL activity into an automaton (also referred as Web
Service Automaton). After that, these models are trans-
formed into Promela that is input format for model checker
SPIN. In the paper [10], the SPIN model checker is used one
more time to verify BPEL, but the authors do not transform
directly BPEL into Promela as in [6]. BPEL will be trans-
lated to guard condition which it is transformed to Promela.
In all of these methods, a test case is generated from coun-
terexample that is an output of SPIN model checker. Trans-
forming BPEL into Intermediate Format Language (IF) is
presented in [17]. Thus, the timed test case is generated us-
ing TestGen-IF tool. In our previous work [20, 21] some
of test case generation methods were proposed for white-
box testing approach. Actually, it is not supported by any
toolset. Some of work presented frameworks for white box
testing without model checker. [27, 28] presented a frame-

work for white box testing of BPEL composition. The prob-
lem of [27, 28] is that they do not consider the automatic test
case generation [17].

On the passive testing approach, several methods have
been proposed. [24, 25] present an automatic method to
model Web service behaviors and their interactions as a set
of synchronized discrete-event systems. This modeling is
the first step before tracing the evolution of the business pro-
cess and diagnosing business process faults. This method is
based on the fact that the existing Model Based Diagnosis
(MBD) techniques in Artificial Intelligence provide ways to
monitor and diagnose static and dynamic systems using par-
tial observations. The timing constraints are not considered
in these methods.

3 Preliminaries

We introduce in this section the formal definition of
TEFSM that is used to model BPEL, the partial of TEFSM
and the communicating system.

Definition 1 (TEFSM): A machine TEFSM M with invari-
ant is defined as a sextuple, M = (S, s0, V, E∪{ε}, C, Inv, T)
where:

• S = {s0, s1, ..., sn}: A finite set of states;

• s0 ∈ S: initial state;

• V : A finite set of data variables where: ~v =
(v0, v1, ..., vm);

• E : A finite set of the events including symbols below:

– ?pl.op.msg: input event i.e the reception of the
message (msg) for the operator (op) from the
partner (pl);

– !pl.op.msg: output event i.e the emission of the
message (msg) for the operator (op) to the part-
ner (pl);

• C : A finite set of clocks including a global clock
where: ~c = (c0, c1, ..., cn);

• Inv : S 7→ Φ(C) assigns a set of time invariants (logical
formulas) to the states;

• T ⊆ S × E × P (~v) ∧ φ(~c) × 2C × µ × S is a set of
transitions relation where:

– P (~v) ∧ φ(~c): guard condition is logical formula
on data variables and clocks;

– µ(~v): Data variable update function;

– 2C: Set of clocks to be reset;



Example 1 Each t ∈ T is the form: s <e, [g], {c;f}> s’
with: e ∈ E; s, s’ ∈ S; f ∈ µ(~v); {c} ∈ 2C and g ∈ P (~v) ∧
φ(~c).

If the machine at state s, an event e arrives and guard con-
dition g satisfies. It changes to state s’, the clock c will be
reseted and the function f is enabled to update the variables.

Definition 2 (Partial of TEFSM): Let a TEFSM M, the par-
tial of M is PM = (S, sin, Sout, V, E, C, Inv, T) where: (S,
sin, V, E, C, Inv, T) is a TEFSM and Sout ⊂ S.

A partial of TEFSM [15] is a TEFSM extended by input
state (representing the entering state of the partial machine
and which replaces the initial state s0) and a set of output
states, Sout (representing the exit state of the partial ma-
chine).

Definition 3 (Communicating System): A Communicating
System (CS) is a 5-tuple CS=(SP, SV, R, Mi,1≤i≤n, TP)
where:

• SP: A finite set of shared parameters;

• SV: A finite set of shared variables;

• R: A finite set of rules where: ~r is a vector n+1 ele-
ments;

• Mi = (Si, s0i, Vi, Ei, Ci, Invi, Ti): An automaton;

• TP: Test purpose;

A Communicating System declares a set of shared re-
sources (parameters and variables), a set of automatons and
a set of rules that declare the synchronous actions between
automatons, and a test purpose that is modeled as an au-
tomaton.

4 Relationship between BPEL concepts and
TEFSM

BPEL [1] provides constructs to describe complex busi-
ness processes that can interact synchronously or asyn-
chronously with their partners. A BPEL process always
starts with the process element (i.e the root of the BPEL
document). It is composed of the following children: part-
nerLinks, variables, activities and the optional children:
faultHandlers, eventHandlers, correlationSets. These chil-
dren are concurrent. We will model a BPEL process as
a communicating system with three automatons (activity,
faultHandler, eventHandler) and we use the rules to declare
synchronous actions between them. We use a stop variable
for activities machine to terminate the rest activities if this
machine happens a fault or the termination is activated by an
exit activity. The scope activity will be model as a process.

4.1. Messages

A BPEL variable is always connected to a message from
a WSDL description of partners. In BPEL, a Web ser-
vice that is involved in the process is always modeled as
a porType (i.e. abstract group of operations (noted op) sup-
ported by a service). These operations are executed via a
partnerlink (noted by pl). In our formalism, for instance,
the input message ?pl.op.v denotes the reception of the mes-
sage op(v) (constructed from the operation op and the BPEL
variable v) via the channel pl.

4.2 Basic Activities

Basic activities are: receive, reply, invoke, assign, wait,
empty, exit, throw. Each basic activity is described by a par-
tial machine. To synchronize the faults with faultHandler
machine, we can add two transitions !fault and ?done into
each partial machine if faultHandler activity of process
exists.

The Receive Activity: <receive partnerLink=pl port-
Type=pt operation=op variable=msg>

PM = ({sin, sout}, sin , {sout}, {v, stop}, {?pl.op.msg},
{c}, {(sin, true), (sout, true)}, {t1})

• t1=(sin,<?pl.op.msg,[stop=false],{c,v=msg}>,sout)

The Reply Activity: <reply partnerLink=pl portType=pt
operation=op variable=msg faultName=fault>

PM = ({sin, sout}, sin , {sout}, {stop}, {!pl.op.msg},
{c}, {(sin, true), (sout, true)}, {t1, t2})

• t1=(sin,<!pl.op.msg,[stop=false],{c}>,sout)

• t2=(sin,<!pl.op.fault,[],{c,stop=true}>,sout)

The Assign Activity: <assign> <from> v2 </from>
<to> v1 </to> ... </assign>

PM = ({sin, sout}, sin , {sout}, {v1,v2,...,vn,stop}, {∅},
{c}, {(sin, true), (sout, true)}, {t1})

• t1=(sin,< ,[stop=false],{c, v1=v2,...}>,sout)

The Wait Activity: <wait (for=d | until=dl)>.

• <wait for=d>: PM = ({sin, sout}, sin , {sout},
{stop}, {∅}, {c}, {(sin,c≤d),(sout, true)}, {t1})

– t1=(sin,< ,[c=d & stop=false],{c} >,sout)

• <wait until=dl>: PM = ({sin, sout},sin , {sout},
{stop}, {∅}, {gc}, {(sin,gc≤dl),(sout, true)}, {t1})

– t1=(sin,< ,[gc=dl & stop=false],{∅} >,sout)

The Throw Activity: <throw faultName=fault/>
PM = ({sin, sout}, sin, {sout}, {stop}, {∅}, {∅},

{(sin, true), (sout, true)}, {t1})



• t1=(sin,<!fault,[],{stop=true}>,sout)

The Exit Activity: <exit/>
PM = ({sin, sout}, sin , {sout}, {stop}, {∅}, {∅},

{(sin, true), (sout, true)}, {t1})

• t1=(sin,< ,[],{stop=true}>,sout)

The Invoke Activity: <invoke partnerLink=pl port-
Type=pt operation=op inputVariable=msg in outputVari-
able=msg out>

PM = ({sin, s1, sout}, sin , {sout}, {v in, v out,
stop}, {!pl.op.msg in, ?pl.op.msg out}, {c}, {(sin, true),
(s1, true) (sout, true)}, {t1, t2})

• t1=(sin,<!pl.op.msg in,[stop=false],{c}>,s1)

• t2=(s1,<?pl.op.msg out,[stop=false],{c,
v out=msg out}>,sout)

The Empty Activity: <empty/>
PM = ({sin, sout}, sin , {sout}, {stop}, {∅}, {c},

{(sin, true), (sout, true)}, {t1})

• t1=(sin,< ,[stop=false],{c}>,sout)

4.3. Structured Activities

Structural activities: structural activities are sequence,
while, switch, flow, pick, repeatUntil, if and scope. They
take some partial machines PMi,i∈[0,n] (see Fig 1) and
combine them to a new partial machine.

Figure 1. Partial machines

The partial machines of structural activities (sequence,
while, switch and pick) are shown in Fig 2. The repeatUntil
activity will be modeled as a while activity. The conditional
behavior if will be also modeled as a switch activity. The
eventHandler activity will be model as pick activity. The
flow activity allows to specify one or more activities to be
performed concurrently [1]. It specifies the parallel execu-
tion of the flow partial TEFSM . The links defined in the
flow activity permit to enforce precedence between these
activities, i.e. it permits synchronization. Fig 3 models links
of flow activity.

The faultHandlers element combines a switch activity
applied to various sequences of a catch or a catchAll ac-
tivities and a sub-activities partial machine. The catchAll

Figure 2. Modeling structural activities

element is used to catch all the faults that are not handled
by the defined catch activities. Fig 4 models a faultHandler
activity.

4.4. Limitations

There are the limitations of transformation that is de-
scribed in this paper. For example: the attributes joinCon-
dition, supressJoinFailure of the flow activity. An activity
with correlation will be model by adding a variable sta-
tus of properties as [16]. In that case, we add two transi-
tions !fault and ?done into the partial machine to handle the
fault because the standard fault correlationViolation must
be thrown [1] (i.e. synchronize the fault with faultHandler
machine).

5 Testing Services Composition Using TGSE

In this section, we study how to test the service compo-
sition using TGSE tool. Two approaches: active testing and
passive testing will be considered.



Figure 3. Modeling Links

Figure 4. Modeling faultHandler

5.1 An Overview of Testing Services Com-
position Using TGSE

Our method use a TGSE tool, that is a generic tool for
testing, to test a service composition described in BPEL
on two approaches: active testing and passive testing. The
first step is to transform the BPEL description into TEFSM.
Transformation can be done automatically by a prototype
tool (or by hand) follow mapping rules in the section 4. On
active testing approach, a test purpose is requested to gen-
erate test case. On passive testing approach, we use TGSE
to verify a trace either correct or incorrect. Fig 5 illustrates
the overall our methodology.

The current version of TGSE does not supported time
invariant on state. Thus, we use only timing constraints on
transition. Moreover, it only supported data single: inte-
ger and boolean. We use many variables to model a BPEL
message.

5.2 Test Case Generation

For the purpose active testing, we use this tool to gen-
erate test cases based on test purposes. These test pur-
poses will be modeled as a TEFSM and its actions will
be synchronized with corespondent action in each TEFSM.
This tool works also with timing constraints, Thus, we
can use a timed test purposes (i.e. test purpose with
some timed requirements) to generate timed test cases
[17]. In the case, faultHandler activity and compensa-

Figure 5. Overrall Method of Testing Services
Composition

tionHandler activity of a BPEL process exist, a commu-
nicating system for a process composes three TEFSMs
(Mactivities,MfaultHandler,McompensationHandler) and a
test purpose. A vector ~r of rules set has four elements.
TGSE generates a test case in XML format file if all test
purposes are satisfied, else, we have nothing. If transition
condition of TEFSM depends on input value of messages,
we will use a parameter as a value. We can also use a real
value for the variable if test purpose requires the conditions
on variable.

5.3 Passive Testing

Passive testing means that we verify a trace is either cor-
rect or incorrect with specification. Because of TGSE fol-
lows us to cover the transition based on guard condition that
is examined by variable value at run time. This is very help-
ful for our purpose of passive testing a BPEL service. We
will model a trace as a test purpose (i.e. also referred as a
TEFSM) with value of each input message that is assigned
by real values in the trace. In that case, all of variable of
BPEL process is used as shared variables. After modeling
BPEL specification and the trace as the TEFSMs and dec-
laration its rules, we use TGSE to verify this system. If
TGSE responds a sequence, it means this trace is correct
with specification, else, it is incorrect.

6 A Case Study

In this section, we study an example of the Loan Web
Service that is described in Fig 6. This process receives an
input from the client. If this input is less than 10, it invokes
the synchronous Assessment Service and receives a risk re-



sult. In the case, this risk is low, it sends a response yes to
client. Else (input≥10 or risk!=low), it invokes the asyn-
chronous Approval Service by sending a request and uses
a BPEL pick activity for one of the following cases: (1) to
receive an asynchronous response from the partner service
and send this response to client; (2) to send a timeout fault
to client if there is not response from the partner service
after a duration (e.g., 60 seconds).

Figure 6. The Loan Web Service

6.1 The TEFSM Specification of the Loan
Service

Using the rules in the section 4, we have a TEFSM of
Loan Web Service in the figure 7 (The separate lines denote
as transitions of link variables).

In TGSE, an TEFSM is described by: a number of state,
initial state, variables of clock and a list of transition. Each
transition t composes:

1. source state(id, name);

2. target state(id, name);

3. event (nop denotes internal event);

4. guard condition on clocks (# denotes true);

5. guard condition on variable (# denotes true);

6. reset clocks (# denotes empty);

7. update variable (# denotes empty);

Figure 7. TEFSM of Loan Web Service

The table 1 describes TEFSM of Loan Web Service in
TGSE input format. The value of variables: request ,risk
and response of Approval service is used as the parameter
(i.e. p input, p risk and p res).

6.2 Test Purposes

6.2.1 Test purposes for Scenario #1

The Loan process is initiated by receiving an input from the
client. It continues receive the response (i.e. risk msg) of
the Assessment service. Finally, it sends this response to
the client. The test purposes for scenario #1 is formulated
in TGSE as Fig 8:

TESTER test purpose1
{

nb states = 4
initial state = 0
final state = 3

(0, init), (1, state1), ?input, #, #, #, #
(1, state1), (2, state2), ?risk,#, #, #, #
(2, state2), (3, finish), !output, #, #, #, #

}

Figure 8. Test Purpose of Scenario #1 in
TGSE

The rules list for this test purpose as: {<?input msg,
?input>, <?risk msg,?risk>, <!output msg, !output>}.



Table 1. TEFSM specification of the Loan Ser-
vice for TGSE

P AUTO bpel
{
nb states: 20
initial state: 0
clocks: t

(0,init), (1,receive in), nop, #, #, #, #
(1,receive in), (2,receive out), ?input msg, #, #, #, #
(2,receive out), (3,assing1 in), nop, #, #, #, #
(3,assing1 in), (4,assing1 out), nop, #, #, #, req=p input
(4,assing1 out), (5,invoke1 in), nop, #, req[-inf,10[, #, #
(5,invoke1 in), (6,invoke1 s1), !invoke1 msg out, #, #, #, #
(6,invoke1 s1), (7,invoke1 out), ?risk msg, #, #, #, risk=p risk
(4,assing1 out), (8,invoke2 in), nop, #, req[10,+inf], #, #
(8,invoke2 in), (9,invoke2 out), !invoke2 msg out, #, #, #, #
(9,invoke2 out), (10,pick in), nop, #, #, h:=t, #
(10,pick in), (11,assign3 in), ?res msg, t[0,60[, #, #, #
(10,pick in), (13,assign4 in), ?res msg, t[60,+inf], #, #, #
(11,assign3 in), (12,assign3 out), nop , #, #, #, out=p res
(13,assign4 in), (14,assign4 out), nop , #, #, #, out=-1
(12,assign3 out), (15,pick out), nop, #, #, #, #
(14,assign4 out), (15,pick out), nop, #, #, #, #
(7,invoke1 out), (8,invoke2 in), nop, # , risk[1,1] , #, #
(7,invoke1 out), (16,assing2 in), nop, # , risk[0,0] , #, #
(16,assing2 in), (17,assing2 out), nop, #, #, #, out=1
(17,assing2 out), (18,invoke3 in), nop, #, #, #, #
(15,pick out), (18,invoke3 in), nop, #, #, #, #
(18,invoke3 in), (19,invoke3 out), !output msg, #, #, #, #
}

6.2.2 Test purposes for Scenario #2

The Loan process is initiated by receiving an input from the
client. It receives the response of the Approval service after
30 seconds. Finally, it sends this response to the client. The
test purposes for scenario #2 is formulated in TGSE as Fig
9:

The rules list for this test purpose as: {<?input msg,
?input>, <?res msg,?res>, <!output msg, !output>}.

6.3 Test Cases

The test cases that are generated by using TGSE is a
detail path (i.e. it covers also internal actions). For instance,
test case for scenario #1 as:

0
nop→ 1

input msg→ 2
nop→ 3

nop→ 4
nop→ 5

invoke1 msg out→ 6
risk msg→ 7

nop→ 16
nop→ 17

nop→ 18
output msg→ 19.

In our case, we focus on black-box testing, it means that
we covers only the input events and the output events. We
do not interested in the internal events. So that, from re-
sult of TGSE, we will cover the input events and the output

TESTER test purpose2
{

nb states = 4
initial state = 0
clocks: t
final state = 3
(0, init), (1, state1), ?input, #, #, #, #
(1, state1), (2, state2), ?res, t[30,30], #, #, #
(2, state2), (3, finish), !output, # , #, #, #

}

Figure 9. Test Purpose of Scenario #2 in
TGSE

events to have a test case. The test case for each scenario is
shown in Fig 10.

TEST CASE 1 FOR SCENARIO #1
1. ?input msg
2. !invoke1 msg out
3. ?risk msg
4. !output msg

TEST CASE 2 FOR SCENARIO #2 (first time)
1. ?input msg (p req=0)
2. !invoke1 msg out
3. ?risk msg (p risk=1)
4. !invoke2 msg out
5. ?res msg (p res=0)
6. !output msg

TEST CASE 2 FOR SCENARIO #2 (second time)
1. ?input msg (p req=10)
2. !invoke2 msg out
3. ?res msg (p res=0)
4. !output msg

Figure 10. The Abstract Test Cases

Note 1 TGSE has sixteen modes (i.e. from p0 to p15) that
concern to select the order of transitions, automatons, and
rules in the specification file. Here, we used mode p15 (all
random) to run this example. The value of parameters that
is generated randomly saved in the OutputLp.out file.

7 Conclusions

We have presented a methodology using the TGSE tool
to test a Web Service Composition that is described in
BPEL language. Two test approaches are considered: ac-
tive testing (generate the test cases) and passive testing (ver-



ify a trace). We given some of definitions on Timed Ex-
tended Finite State Machine (TEFSM), a partial of TEFSM
and a Communicating System (CS). TEFSM that we pro-
posed can enable modeling of BPEL behaviour, timing con-
straints, its data variables and clocks. We also define some
of rules to transform a BPEL specification into TEFSMs
that is the components of a CS. The Loan Web Service ex-
ample is used to illustrate for our method. Our future works
is to use this tool to handle integration testing as will as the
choreography of Web services.

References

[1] OASIS. Web Services Business Process Execution Lan-
guage (BPEL) Version 2.0, April 2007. http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html

[2] A. Bucchiarone, H. Melgratti, and F. Severoni, “Testing
Service Composition”, In Proceedings of ASSE07,Mar
del Plata, Argentina, Aug 2007.

[3] A. Gill, “Introduction to the Theory of Finite-State Ma-
chines”, Published by McGraw-Hill Book Co.., New
York, 1962.

[4] R. Alur, D. L. Dill, “A Theory of Timed Automata”, The-
ory of Computer Science .vol 126, no 2, pp 183 - 235 ,
1994.

[5] R. Alur, D. L. Dill, “Automata-theoretic Verification of
Real-Time Systems”, In Formal Methods for Real-Time
Computing. Nov 1995.

[6] Jose Garcia-Fanjul, Javier Tuya, Claudio de la Riva,
“Generating Test Cases Specifications for BPEL Com-
positions of Web Services Using SPIN”, International
Workshop on Web Services Modeling and Testing. 2006.

[7] Y. Zheng, P. Krause, “Automata Semantics and Analysis
of BPEL”, International Conference on Digital Ecosys-
tems and technologies. DEST 2007.

[8] Y. Zheng, J. Zhou, P. Krause, “Analysis of BPEL Data
Dependencies”, EUROMICRO Conference on Software
Engineering and Advanced Applications. SEAA 2007.

[9] Y. Zheng, J. Zhou, P. Krause, “A Model Checking
based Test Case Generation Framework for Web Ser-
vices”, International Conference on Information Technol-
ogy. ITNG 2007.

[10] X. Fu T. Bultan J. Su, “Analysis of Interacting BPEL Web
Services”, International Conference on World Wide Web.
May 17 - 22, 2004, New York, USA.

[11] A. Wombacher, P. Fankhauser, and E. Neuhold, “Trans-
forming bpel into annotated deterministic Finite state au-
tomata for service discovery” Procs of ICWS04, 2004.

[12] R. Kazhamiakin, P. Pandya, and M. Pistore, “Timed mod-
eling and analysis in web service compositions”, The
First International Conference on Availability, Reliabil-
ity and Security, vol. Volume 0, pp. 840 846, 2006.

[13] E. Bayse, A. Cavalli, M. Nunez, F. Zaidi, “A Passive
Testing Approach based on Invariants: Application to the
WAP”, Computer Networks, 48, pp 247 - 266, 2005.

[14] A. Cavalli, Edgardo Montes De Oca, W. Mallouli, M.
Lallali, “Two Complementary Tools for the Formal Test-

ing of Distributed Systems with Time Constraints”, 12th
IEEE International Symposium on Distributed Simulation
and Real Time Applications, Canada, Oct 27-29, 2008.

[15] M. Lallali, F. Zaidi, A. Cavalli, “Timed modeling of
web services composition for automatic testing”, 3rd
ACM/IEEE International conference on Signal-Image
technologies and Internet-Based Systems, China, 16-19
Dec 2007.

[16] M. Lallali, F. Zaidi, A. Cavalli, “Transforming BPEL into
Intermediate Format Language for Web Services Compo-
sition Testing”, The 4th IEEE International Conference
on Next Generation Web Services Practices, 2008.

[17] M. Lallali, F. Zaidi, A. Cavalli, Iksoon Hwang, “Au-
tomatic Timed Test Case Generation for Web Services
Composition”, Sixth European Conference on Web Ser-
vices. Dublin, Ireland, Nov 12 - 14, 2008.

[18] T. Higashino, A. Nakata, K. Taniguchi and A. Cav-
alli, “Generating Test Case for a Timed I/O automaton
model”, International Workshop on Testing of Communi-
cating Systems. Budapest, Sep 1999.

[19] A. Hessel et P. Pettersson, “A Global Algorithm for
Model-Based Test Suite Generation”, 3rd Workshop on
Model-Based Testing, Braga, Portugal, Mar 31 - Apr 1,
2007.

[20] T. D. Cao, P. Felix, R. Castanet, “Generating Test Cases
for BPEL Web Services Based on Extended Finite State
Machine Model”, The 1st International Workshop on Ad-
vanced Techniques for Web Services (AT4WS 2009).Mi-
lan, Italy, 6 - 7 May, 2009, Submitted.

[21] T. D. Cao, P. Felix, R. Castanet, “Generating Timed Test
Case Suites for BPEL Web Services”, 1st IEEE Workshop
on Performance Evaluation of Communications in Dis-
tributed Systems and Web based Service Architectures.
Sousse, Tunisia, 5 - 8 July, 2009, Submitted.

[22] I. Berrada and P. Félix, “TGSE : Un outil générique pour
le test”, Proc. of CFIP’2005, March, 2005.

[23] I. Berrada, “Modélisation, Analyse et Test des systems
communicants contraintes temporelles : Vers une ap-
proche ouverte du test”, PhD thesis of University Bor-
deaux 1, December 2005.

[24] Y. Yan, Y. Pencole, M.O. Cordier, A. Grastien, “Monitor-
ing Web Service Networks in a Model-based Approach”,
3rd European Conference on Web Services (ECOWS),
Vxj, Sweden. 14 - 16 Nov 2005.

[25] Y. Yan, P. Dague, “Monitoring and Diagnosing Orches-
trated Web Service Processes”, Proceedings of the 2007
IEEE International Conference on Web Services (ICWS
2007), Salt Lake City, Utah, USA. Jul 9-13, 2007.

[26] R. Heckel and L. Mariani, “Automatic conformance test-
ing of web services”, Fundamental Approaches to Soft-
ware Engineering, pp. 34-48, LNCS 3442, 2005.

[27] P. Mayer, “Design and Implementation of a Framework
for Testing BPEL Compositions”, Master thesis, Leibniz
University, Hannover, Germany, Sep 2006.

[28] Z. Li, W. Sun, Z.B. Jiang, X. Zhang, “BPEL4WS
Unit Testing: Framework and Implementation”, Proc
of the IEEE International Conference on Web Service
(ICWS’05), pp 103 - 110, 2005.


