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Abstract. It was already shown that, with a simplest classical device, namely
two coupled pendula, one can simulate the movement of a free quantum two-level
system, as for instance a one-half spin in a static magnetic field. We now show
that, with a hardly more sophisticated device, one can simulate the latter system
undergoing a sinusoidal perturbation. We present an experimental mechanical
illustration of the transition of the system between its two eigenstates, known as
the Rabi precession. Abstract theoretical concepts of absorption and stimulated
emission of energy are thus provided with an intuitive support.

PACS numbers: 45.20.-d, 45.20.Jj, 45.05.+x

1. Introduction

In the course of the undergraduate level academic progress, the students’ first contact
with Quantum Mechanics (QM) is always a rather puzzling experience. Per se, this
perturbation is neither unique nor pathological: facing a new concept, like for instance
the non Euclidian metrics of space-time in Special Relativity, is not surprisingly
disturbing, and every major step in our understanding the world invariably began
with a disturbance in our preexisting conceptions. But the unease of students faced
with their QM primers is a bit particular in that it has an entangled twofold origin: the
novelty of both the physical concepts and the mathematical Hamiltonian formalism.
The upshot of this is that it is rather difficult (at least at the undergraduate level) to
tell a purely quantum effect from a fairly classical one dressed in QM guise. Conversely,
it is possible to simulate quantum behaviours with purely classical physics and devices.
Such simulations are interesting from a pedagogical point of view: students are
gradually and painlessly won over by quantum ideas and vocabulary. Moreover, they
are provided with what is most lacking for beginners in QM: an intuitive support.

It is the aim of the present paper to show how a typically quantum process, namely
a one-half spin undergoing the so-called Rabi precession, can be simulated, both
theoretically and experimentally, with a most simple classical system: two coupled
pendula.

In a foregoing paper [1], we have already shown that the free movement of such
a two-pendulum system is, under certain conditions that we have specified at some
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length, formally analogous to a one-half spin precessing in a static magnetic field
(Larmor precession). In the present paper, we go a step further and show that an
ad hoc parametric excitation of the system – a small sinusoidal modulation of the
length of one of the coupled pendula under the circumstances – enables us to observe
transitions between the two eigenmodes of the free two-pendulum oscillator. These
transitions (as for any sinusoidally perturbed two-level system in QM) can all the same
be regarded as the Rabi precession undergone by a one-half fictitious spin submitted
to both a static and a rotating magnetic field.

The above topics may concern the same readership as does [1], namely
undergraduate level students as well as their teachers. An easy understanding of
these topics requires, to our opinion, a good mastery of the content and results of [1].
We consequently suggest a preliminary study of this foregoing paper, the notations of
which have been carefully conserved in the present article. The readers who would have
followed this suggestion may then jump directly to section 3. Nevertheless, for those
readers who prefer an all-in-one-block presentation, we have condensed the material of
[1] in section 2, which sets this paper self-consistent. The latter is therefore organized
as follows.

Section 2 is devoted to a wide recall (although with a slightly different
presentation) of the main results of [1]. In section 3, we deal with the problem
of the parametric excitation of the two-pendulum system, first in the general case
(subsection 3.1), then in the quasi-degeneracy limit (subsection 3.2). In the latter
limit, we carefully distinguish the representation in the Hilbert space (3.2.1) and that
in the Larmor space (3.2.2). In section 4, we focus on the Rabi precession. We begin
with our experimental device (subsection 4.1). We then carry out the calculation in
the Hilbert space (subsection 4.2) and present our experiment (subsection 4.3). Next
we resume the calculations in the Larmor space (subsection 4.4) and we draw up an
energy balance of the process (subsection 4.5). We conclude this paper in section 5.

2. The free two-pendulum system

2.1. The general case

Let us consider two pendula than can rotate freely around some horizontal axis (A).
The natural dynamic variables of the system are the angles θ1, θ2 made by the pendula
with the vertical, so that θ1 = θ2 = 0 is the equilibrium position. Let J1 and ℓ1 (resp.
J2 and ℓ2) be the inertia momentum with respect to axis (A) and the {centre of mass
to axis (A)} distance of pendulum 1 (resp. 2). The pendula are coupled through a
torsion wire with angular stiffness C, and have a common total mass M . This device
is sketched in figure 1.

In the absence of any external torque, the dissipation-free equations of motion
read

J1θ̈1 = −Mgℓ1 sin θ1 − C(θ1 − θ2),

J2θ̈2 = −Mgℓ2 sin θ2 − C(θ2 − θ1),
(1)

where g is the gravity acceleration. We shall henceforth assume that the oscillation
amplitudes are small and linearize sin θ1 (resp. sin θ2) in θ1 (resp. θ2).

Introducing the standard dynamical variables (k = 1, 2)

qk =
√
Jkθk, (2a)
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Figure 1. Experimental device. Both pendula can rotate freely around axis
(A). They are coupled through a torsion wire. Angles θ1 and θ2 are measured by
means of two potentiometers connected to a numerical oscilloscope.

setting

ω2
k =

Mgℓk + C

Jk

, (2b)

and defining the dimensionless coupling constant κ by

C√
J1J2

= κω1ω2  κ =
C√

(Mgℓ1 + C)(Mgℓ2 + C)
6 1, (2c)

the equations of motion (1) read

q̈ +B2q = 0, (3)

where

q =

(
q1
q2

)
and B2 =

(
ω2

1 −κω1ω2

−κω1ω2 ω2
2

)
. (4)

The above equation (3) can be derived from the Lagrangian

L =
1

2
(tq̇q̇ − tqB2q) (5a)

(superscript t indicating matricial transposition) or from the Hamiltonian

H =
1

2
(tpp+ tqB2q), (5b)

where p =

(
p1

p2

)
=
∂L

∂q̇
are the conjugate momenta of variables q.
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Unless the coupling constant κ is zero, matrix B2 is nondiagonal (see (4)) and the
dynamic variables q1 and q2 are coupled together. In order to find a pair of uncoupled
dynamic variables, the standard procedure consits in diagonalizing matrix B2, that is
to find a passage matrix Pe such that

P−1
e B2Pe =

(
ω2

+ 0
0 ω2

−

)
. (6a)

It is noteworthy that, since matrix B2 is real and symmetrical, it is possible to get an
orthogonal passage matrix Pe, i.e. to have P−1

e = tPe. We shall henceforth assume
that Pe is orthogonal and set

Pe =

(
cos φe

2 sin φe

2

− sin φe

2 cos φe

2

)
. (6b)

Then, introducing the so-called normal variables (ϕ+, ϕ−) defined by

q = Peϕ with ϕ =

(
ϕ+

ϕ−

)
, (7)

the matricial equation (3) is turned into the following set of two uncoupled equations:

ϕ̈+ P−1
e B2Peϕ = 0  

∣∣∣∣
ϕ̈+ + ω2

+ϕ+ = 0
ϕ̈− + ω2

−ϕ− = 0
. (8)

Not surprisingly, eqs. (8) can be derived from Lagrangian (5a) which reads, using the
normal variables

L =
1

2

(
tϕ̇tPePeϕ̇− tϕtPeB

2Peϕ
)

=
1

2
(ϕ̇2

+ − ω2
+ϕ

2
+) +

1

2
(ϕ̇2

− − ω2
−ϕ

2
−), (9)

i.e. as the sum of two independent HO1 lagrangians. Consequently, π =

(
π+

π−

)

standing for the conjugate momenta of ϕ, one has:

π =
∂L

∂ϕ̇
= ϕ̇ = P−1

e q̇ = P−1
e p  p = Peπ, (10)

so that Hamiltonian (5b) reads

H =
1

2
(π2

+ + ω2
+ϕ

2
+) +

1

2
(π2

− + ω2
−ϕ

2
−), (11)

hence equations (8) again using Hamiton’s formalism.

As will appear in the following, it is interesting to note what turns out when use
is made of the Glauber‡ variables (α1, α2) of the pendula to express Hamiltonian (5b).
Defining

αk =
1√
2~

(√
ωkqk +

i√
ωk

pk

)
(k = 1, 2), (12a)

one readily obtains:

H = ~ω1|α1|2 + ~ω2|α2|2 − κ
~

2

√
ω1ω2(α1 + α∗

1)(α2 + α∗

2). (12b)

‡ The Glauber variables are used throughout [1]. Moreover, they are introduced in subsection (2.1)
of our foregoing study [2]. For a more complete intoduction to the Glauber formalism, see [3], [4], [5]
or [6].
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From the above Hamiltonian (12b), and considering the Poisson’s brackets

{αk, αk′} = {α∗

k, α
∗

k′} = 0; {αk, α
∗

k′} =
1

i~
δkk′ , (13)

one derives the following equations of motion:

α̇1 = {α1, H} = −iω1α1 + i
κ

2

√
ω1ω2(α2 + α∗

2), (14a)

α̇2 = {α2, H} = −iω2α2 + i
κ

2

√
ω1ω2(α1 + α∗

1). (14b)

It is interesting too to introduce the eigenmodes’ proper Glauber variables, i.e.

the Glauber variables associated with the normal variables set {ϕ, π}. Defining

α± =
1√
2~

(
√
ω±ϕ± +

i
√
ω±

π±

)
, (15a)

one easily derives from equation (11)

H = ~ω+|α+|2 + ~ω−|α−|2. (15b)

Using again Poisson’s relations (13), with k and k′ now standing for + or − (instead
of 1 or 2), one consequently finds

α̇± = {α±, H} = −iω±α±  α±(t) = α±(0) e−iω±t. (16)

As a consequence, the semiclassical quanta numbers |α+|2 and |α−|2 are separately

constants of motion.

It is noteworthy that, although equations (14) and (16) are perfectly equivalent,
passing from the former to the latter is not straightforward at all. This is due to the
fact that, in the general case of the present subsection, there is no simple relation
between (α1, α2) and (α+, α−). Note for instance that, contrary to equations (16),
equations (14) are not linear, due to the presence of the starred terms on their right-
hand sides. We shall now recall in the following subsection how these difficulties vanish
in the quasi-degeneracy limit.

2.2. The quasi-degeneracy limit

Substantial simplifications of the two-degree of freedom problem occur when eigen
angular frequencies ω+ and ω− of the two-pendulum system are close to each other,
and the motion equation of the HO2 is then “Schrödinger-like”. Moreover, the
corresponding movement can be described using the Schwinger-Larmor geometrical
representation. Let us briefly sketch these points.

2.2.1. New simplifications and Hilbert space Let us set

ω0 =
ω1 + ω2

2
, ∆ = ω1 − ω2, (17)

and assume that simultaneously

|∆| ≪ ω0 (small detuning) and κ≪ 1 (small coupling). (18)

Allowing from the above conditions (18), it is easy to check that one has also
|ω+−ω−| ≪ ω0, hence the “quasi-degeneracy” term we choose to qualify this situation.
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It is then not difficult to show that, using the {I, σX , σY , σZ} Pauli matrices basis

I =

(
1 0
0 1

)
, σX =

(
0 1
1 0

)
, σY =

(
0 −i
i 0

)
, σZ =

(
1 0
0 −1

)
, (19)

matrix B2 defined in (4) approximatively reads

B2 ≃ ω2
0I + ω0Ω0(cosφe σZ − sinφe σX), (20a)

with

Ω0 =
√
∆2 + κ2ω2

0 , cosφe =
∆

Ω0
, sinφe =

κω0

Ω0
. (20b)

Moreover, as explained in subsection 4.1 of [1], the starred terms in the right-hand side
of equations (14) give no secular contribution to the time-evolutions of the Glauber
variables α1 and α2, so that these equations are simplified§ into

α̇1 = −iω1α1 + i
κω0

2
α2, (21a)

α̇2 = −iω2α2 + i
κω0

2
α1 (21b)

(where ω0 has been substituted for
√
ω1ω2, owing to the quasi-degeneracy situation).

It is noteworthy that the above approximate equations (21) can be derived very
simply from the exact equations (16) in the framework of quasi-degeneracy. Since
ω1 ≃ ω2 ≃ ω+ ≃ ω− ≃ ω0 indeed, one can substitute ω0 for (ω1, ω2, ω+, ω−) in
the definitions (12a) and (15a) themselves of the Glauber variables (α1, α2, α+, α−).
Then, using the (exact) relations (7) and (10), we get

q = Peϕ, p = Peπ  

(
α1

α2

)
= Pe

(
α+

α−

)
. (22)

Deriving (22) with respect to time, one has, owing to (16),
(
α̇1

α̇2

)
= − iPe

(
ω+ 0
0 ω−

)
P−1

e

(
α1

α2

)
, (23a)

which reads, allowing for (6), (20a), (20b) and Ω0 ≪ ω0:(
α̇1

α̇2

)
= − i

(
ω0 + 1

2Ω0 cosφe − 1
2Ω0 sinφe

− 1
2Ω0 sinφe ω0 − 1

2Ω0 cosφe

)(
α1

α2

)

= − i

(
ω1 − 1

2κω0

− 1
2κω0 ω2

)(
α1

α2

)
, (23b)

so that equations (21) are recovered.

The above relation (22) deserves a further comment. Since matrix Pe is
orthogonal, one has

|α1|2 + |α2|2 = |α+|2 + |α−|2 = N. (24)

In other words, the total semiclassical quanta number N is an intrinsic quantity, in
that it does not depend of the set of variables (standard or normal) which is used to
calculate it. More generally, relation (22) suggests to consider (α1, α2) and (α+, α−)
as the components of a “state” vector |ψ〉 in two different (orthonormalized) bases
{|1〉, |2〉} and {|+〉, |−〉} of a two-dimensional Hilbert space Ê , and to write

|ψ(t)〉 = α1(t)|1〉 + α2(t)|2〉 = α+(t)|+〉 + α−(t)|−〉. (25)

§ This simplification is known as the “Secular Approximation” (SA). It is introduced and used in [1]
and [2].
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With these notations, equations (21) as well as (16) read

i~
d|ψ(t)〉

dt
= Ĥ|ψ(t)〉, (26)

where Ĥ is a Hermitian operator respectively represented in bases {|1〉, |2〉} and
{|+〉, |−〉} by the matrices:

H1,2 =

(
~ω1 −κ~ω0

2

−κ~ω0

2 ~ω2

)
and H+,− =

(
~ω+ 0
0 ~ω−

)
, (27a)

with of course

H+,− = P−1
e H1,2Pe. (27b)

In the framework of this new description, it is noteworthy that vectors |1〉, |2〉, |+〉
and |−〉 have very simple meanings: vector |1〉 describes a state of the two-pendulum
system in which pendulum 1 oscillates with an oscillation energy corresponding to one
quantum ~ω1, pendulum 2 being at rest (more precisely : α1 = 1, α2 = 0); vector |2〉,
conversely, describes the oscillation state (α1 = 0, α2 = 1). In the same way, vector
|+〉 describes a state with one energy quantum ~ω+ in eigenmode +, eigenmode −
being “off” (α+ = 1, α− = 0); with of course the symmetric definition for vector |−〉
(α+ = 0, α− = 1). Let us recall that the above simplest definition of the physical states
of the two-pendulum system entirely relies on the fulfilment of the quasi-degeneracy
conditions.

2.2.2. Geometrical description of the movement : the Larmor space and the Bloch

sphere As well known in QM, the time-evolution of the physical state of any two-
level system in its two-dimensional (complex) Hilbert space can be represented by
the motion of a (real) vector ~m in a R

3-isomorphous space. Not surprisingly, this
description can be applied to our (quasidegenerate) two-pendulum system.

To begin with, let us introduce the so-called “density-operator”

D̂(t) = |ψ(t)〉〈ψ(t)|. (28)

In basis {|1〉, |2〉}, D̂ is represented by the matrix

D =

(
α1

α2

)(
α∗

1 α∗
2

)
=

(
α1α

∗
1 α1α

∗
2

α2α
∗
1 α2α

∗
2

)
. (29a)

Expanding D in terms of the {I, σX , σY , σZ} Pauli basis (see (19)), one gets

D =
1

2

(
NI +mX0

σX +mY0
σY +mZ0

σZ

)
(29b)

with

N = α1α
∗
1 + α2α

∗
2,

mX0
= α∗

1α2 + α1α
∗
2,

mY0
= − i(α∗

1α2 − α1α
∗
2),

mZ0
= α1α

∗
1 − α2α

∗
2.

(29c)

The above definitions are the classical adaptation of an algebra introduced by
Schwinger [7], and ultimately reprinted in [8]. It is easy to check that

N2 = m2
X0

+m2
Y0

+m2
Z0
, (30a)

and to establish (using Poisson’s brackets (13))

{mX0
,mY0

} =
2mZ0

~
, {mY0

,mZ0
} =

2mX0

~
, {mZ0

,mX0
} =

2mY0

~
, (30b)
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as well as

{N,mX0
} = {N,mY0

} = {N,mZ0
} = 0. (30c)

The above relations (30) (which, by the way, owe nothing to quasi-degeneracy), suggest
that mX0

, mY0
and mZ0

are the three components of a pseudo dimensionless angular
momentum ~m in some orthonormalized basis {~eX0

, ~eY0
, ~eZ0

} of a fictitious R
3 space,

referred to as the “Larmor space” and henceforth labelled L:

~m = mX0
~eX0

+mY0
~eY0

+mZ0
~eZ0

. (30d)

Of course, the density operator D̂ (see (28)) can be expanded all the same in
the eigenstates basis {|+〉, |−〉} of the Hilbert space Ê . It is then represented by the
matrix

De =

(
α+

α−

)(
α∗

+ α∗
−

)
=

(
α+α

∗
+ α+α

∗
−

α−α
∗
+ α−α

∗
−

)
, (31a)

which can in turn be expanded in terms of the Pauli basis (19):

De =
1

2

(
NeI +mXσX +mY σY +mZσZ

)
, (31b)

with
Ne = α+α

∗
+ + α−α

∗
−,

mX = α∗
+α− + α+α

∗
−,

mY = − i(α∗
+α− − α+α

∗
−),

mZ = α+α
∗
+ − α−α

∗
−.

(31c)

We still have N2
e = m2

X +m2
Y +m2

Z (see (30a)), as well as the commutation relations
(30b). We can consequenltly all the same regard mX , mY and mZ as the components
of a pseudo angular momentum ~me “living” in a R

3-isomorphous space Le.

Nevertheless, it is only in the quasi-degeneracy limit that our representation
reaches its full significance and interest. In this limit indeed, the Larmor spaces Le

and L do coincide, with

~me = ~m = mX~eX +mY ~eY +mZ~eZ , (32a)

where the new orthonormalized basis {~eX , ~eY , ~eZ} derives from {~eX0
, ~eY0

, ~eZ0
} through

the relations
~eX = cosφe ~eX0

+ sinφe ~eZ0
,

~eY = ~eY0
,

~eZ = − sinφe ~eX0
+ cosφe ~eZ0

,
(32b)

i.e. through a rotation with angle − φe around common axis ~eY = ~eY0
(see figure 2).

Note by the way that equations (32) are the exact transposition in the Larmor space
L of equations (22), (25) in the Hilbert space Ê . They imply inter alia Ne = N , as
displayed by (24).

In order to describe the time-evolution of vector ~m, one may solve equations (16)
for (α+, α−) (resp. eqs. (21) for (α1, α2)), then use definitions (31c) of (mX ,mY ,mZ)
(resp. (29c) of (mX0

,mY0
,mZ0

)). In fact, there is a much smarter method. Let us
consider again equations (21). They obviously derive from the secular‖ Hamiltonian

Hsec = ~ω1|α1|2 + ~ω2|α2|2 − κ
~ω0

2
(α1α

∗

2 + α∗

1α2). (33a)

‖ This term is explained in [1]. It originates from the fact that the numerical value of Hsec varies
slowly at the time-scale of ω−1

0
.
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−κω0

∆

~

~
eY0

 = eY~ ~

eZ0~

eX0~

eZ~eX~

Ω
0
 =

 Ω
0

 e Z

φe

φe

Figure 2. Main elements of the geometrical representation of the free motion
of (any) quasidegenerate HO2 in its Larmor space. The representing vector ~m

precesses with the angular velocity ~Ω0 = ∆~eZ0
− κω0 ~eX0

= Ω0 ~eZ . Basis
{~eX , ~eY , ~eZ} is derived from {~eX0

, ~eY0
, ~eZ0

} through a rotation with angle − φe

around common axis ~eY = ~eY0
.

Using definition (29c), the above Hamiltonian can be rewritten

Hsec = N~ω0 +
~

2
~Ω0 · ~m, (33b)

where

~Ω0 = ∆~eZ0
− κω0 ~eX0

(33c)

is the so-called Larmor precession angular velocity. Using Poisson’s brackets (30b),
(30c), the Ehrenfest theorem reads indeed

d~m

dt
= {~m,Hsec} = ~Ω0 × ~m ;

dN

dt
= {N,Hsec} = 0. (34)

The time-evolution of ~m is thus a precession with angular velocity ~Ω0. The main
features of the geometrical representation of the free motion of the quasidegenerate
two-pendulum system (in fact of any quasidegenerate HO2) are displayed in figure 2.

To complete this brief overflight of our adapting the Schwinger representation to
the two-pendulum problem, it is interesting to recall how the basis vectors |1〉, |2〉, |+〉
and |−〉 introduced above about the Hilbert space Ê are represented in the Larmor
space L. Unit vector |1〉 in Ê is represented by unit vector ~eZ0

in L. Conversely, vector
|2〉 in Ê is represented by unit vector − ~eZ0

in L. Similarly, unit vectors |+〉 and |−〉
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–    -out of phase
(a

2 = – ia
1)

π
2

Ω0

+    -out of phase

(a
2 = ia

1)

π
2

Z0

X0

Y0

pendulum 2 

at re
st (a2 =

 0)

    eige
nstate

 +

(a– =
 0)

π-out of 
phase

(a2 =
 – a1)

both pendula in
 phase

(a2 =
 a1)

eigen
state

 –

(a+
 = 0)    

pendulum 1 

at re
st (a1 =

 0)

eX0
~

eZ0
~

eY0
~

eZ~

Figure 3. A few remarkable orientations of the representing vector ~m in the
Larmor space. We have displayed the Bloch sphere with radius N = 1. Along
axis X0, the pendula are in phase (~eX0

) or π-out of phase (−~eX0
). Along axis

Y0, the pendula are ±π

2
-out of phase (±~eY0

). Along axis Z0, pendulum 2 or

pendulum 1 is at rest (~eZ0
or −~eZ0

respectively). Along the ~Ω0 direction, the
two-pendulum system is in its eigenstates + or − (~eZ or −~eZ respectively).

in Ê are represented by unit vectors ~eZ and − ~eZ , respectively. It is noteworthy
that vectors |1〉 and |2〉 on the one hand, vectors |+〉 and |−〉 on the other hand, are
orthogonal in Ê , while they are represented by opposite vectors in L. This rule is
general: if |ψ1〉 and |ψ2〉 are orthogonal in space Ê , then their representations ~m1 and
~m2 make an angle equal to π in space L. As displayed by (29c), any vector of Ê has
a representation in L. Reciprocally, we have shown in [1] that every vector of L is the
representation of a state vector of Ê . Nevertheless, this Ê ↔ L correspondance is not
strictly speaking biunivocal: vectors |ψ〉 and eiχ|ψ〉 (χ real) of Ê are represented by
the same vector ~m of L. This is due to the fact that the phase factor eiχ is lost when
one builds the density operator D̂ (see definition (28)). Moreover, any unit vector of Ê
is represented by a unit vector of L. Thus, the tips of all vectors ~m describing physical
states with a given total (semiclassical) quanta number, say N , are located in L on
the surface of a sphere with centre at the origin and radius N . Such a sphere will be
referred to as a “Bloch sphere” throughout the present paper. The Bloch sphere with
radius unity is displayed in figure 3, as well as a few remarkable orientations of vector
~m mentioned above.

As displayed by equations (34), in any free movement of the quasidegenerate
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−κω0

∆

eZ~ eZ~

eX~

m(0) North pole

South pole

~

~m
(t)

Equator

~Ω0

φe

eY0~

•

•

Figure 4. Representation of the free movement in the Larmor space in the
particular case where ~m(0) = N~eZ0

(i.e. only pendulum 1 excited, with N
oscillation quanta). The pseudo angular momentum ~m undergoes a rotation
around axis ~eZ with constant angular velocity Ω0 (Larmor precession). The
representative point (i.e. ~m’s tip) moves on a parallel of its Bloch sphere and
thus keeps at a constant distance from both poles.

HO2, the total semiclassical quanta number N is conserved¶, which means that the
tip of vector ~m (in L) moves on the surface of a Bloch sphere. This is the geometrical
translation of the unitarity of the time-evolution of vector |ψ(t)〉 (in Ê), as involved
by the Schrödinger-like equation (26). Moreover, allowing for (34) again, the angle

between ~Ω0 and ~m is constant too: ~m(t) generates a cone, the apex half-angle of which
is fixed by the initial conditions. This cone is displayed in figure 4 (in the particular
case where ~m(0) = N~eZ0

, i.e. where only pendulum 1 is oscillating at t = 0, with N
oscillation quanta). The trajectory of the representative point (i.e. the tip of vector

~m(t) on its Bloch sphere) is a circle with axis ~Ω0. From now on and by convention, we
shall call “North pole” (resp. “South pole”) the intersection of the Bloch sphere with
the semi-axis + Z (resp. −Z). With this “geographical” vocabulary, it is clear that
in any free motion of the two-pendulum system, the representative point moves on a
parallel of the Bloch sphere, and thus keeps at a constant distance from both poles.

Could we manage to obtain a more complex trajectory of the representative point
on the Bloch sphere, for instance a trip from one pole to the other? We shall show
below that the answer is yes.

¶ Using the time-honoured jargon of QM, N is said to be a “good quantum number”.
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3. Parametric excitation of the two-pendulum system

There are several ways to implement a parametric excitation of the two-pendulum
system. One may vary the apparent gravity by fixing axis (A) (see figure 1) in a
(vertically) accelerated frame. One may also vary the stiffness C of the coupling
device. At last, one may vary the length (ℓ1, ℓ2 or both) of the pendula. In the above
schemes, the dynamical matrix B2 (see (4)) and the orthogonal passage matrix Pe (see
(6b)) become time-dependent, as well as the definition (12a) of the Glauber variables,
so that the motion equations (14) are non longer valid. Let us examine this point.

3.1. The general case

It is easy to check that Lagrangian

L(θ1, θ2, θ̇1, θ̇1, t) =
1

2
J1θ̇

2
1 +

1

2
J2θ̇

2
2 − 1

2
Mgℓ1θ

2
1 − 1

2
Mgℓ2θ

2
2 − 1

2
C(θ1 − θ2)

2 (35a)

is available to describe the dynamics of the system, even if parameters ℓ1 ( J1),
ℓ2 ( J2), g or C are varied in the course of the (small) oscillations of the pendula.
Consequently, Hamiltonian

H(θ1, θ2, σ1, σ2, t) =
σ2

1

2J1
+

σ2
2

2J2
+

1

2
Mgℓ1θ

2
1 +

1

2
Mgℓ2θ

2
2 +

1

2
C(θ1 − θ2)

2, (35b)

where

σk =
∂L

∂θ̇k

(k = 1, 2), (35c)

is available too. Then, using definitions (2b) and (2c) (which are now time-dependent),
and rewriting definition (12a) as

αk =
1√
2~

(√
ωkJkθk +

i√
ωkJk

σk

)
, (35d)

it turns out that expression (12b) of the Hamiltonian is still valid, even with ω1, ω2

or κ being time-dependent. Nevertheless the motion equations (14) should now be
completed using the generalized Ehrenfest relations

α̇1 = {α1, H} +
∂α1

∂t
= − iω1(t)α1 +

i

2
(κ
√
ω1ω2)(t)(α2 + α∗

2) + f1(t)α
∗

1, (36a)

α̇2 = {α2, H} +
∂α2

∂t
= − iω2(t)α2 +

i

2
(κ
√
ω1ω2)(t)(α1 + α∗

1) + f2(t)α
∗

2, (36b)

with

fk(t) =
1

2

˙(
Jkωk

)

Jkωk

=
d

dt
ln
√
Jkωk (k = 1, 2). (36c)

The above equations are exact. Nevertheless, trying to solve them for (α1, α2) leads to
cumbersome calculations, and no analytical solution is available. In a foregoing study
[9] we have tackled this question in the general framework of the n-degree-of-freedom
parametrically excited harmonic oscillator. Let us sketch below the main conclusions
of this study.

The first idea that springs to mind is of course to introduce the instantaneous

eigenmodes of the two-pendulum device and rewrite system (36) using the associated
Glauber variables α±(t). A (tedious) time-derivation of these variables leads to

d

dt

(
α+

α−

)
= − i

(
ω+(t) 0

0 ω−(t)

)(
α+

α−

)
+ A

(
α+

α−

)
+ S

(
α∗

+

α∗
−

)
, (37)
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where S is a symmetrical 2 × 2 matrix and A an antisymmetrical one. It is next
shown that, if the parametric excitation is adiabatic in the Ehrenfest sense (see [9] for
a detailed explanation of this term), then the total semiclassical eigen quanta number
Ne = |α+(t)|2 + |α−(t)|2 is conserved in the course of the motion (whereas, separately,
|α+(t)|2 and |α−(t)|2 are not), and is therefore an adiabatic invariant of the oscillator.

3.2. The quasi-degeneracy limit

3.2.1. Parametric excitation in the Hilbert space In the present paper, we shall not
attempt to determine explicitly matrices A and S in the general case, but rather focus
on the quasi-degeneracy limit. In the framework of this limit (and of the associated
approximations) indeed, system (36) is simplified into

α̇1 = − iω1(t)α1 +
i

2
(κω0)(t)α2 + f1(t)α

∗

1, (38a)

α̇2 = − iω2(t)α2 +
i

2
(κω0)(t)α1 + f2(t)α

∗

2. (38b)

Furthermore, if the parametric excitation is adiabatic,+ then the starred terms in the
right-hand side of the above equations (38) can be omitted (they bring no secular
contribution to the time-evolution of α1 or α2). We are thus left again with system
(23b), in which ω1, ω2 and κω0 are now time-dependent.

On the other hand, as made in [9] in the general case, we can rewrite (38) using
the eigen Glauber variables α± in the framework of quasi-degeneracy. Allowing for
(6b) and (22), we then recover (37), with matrices A and S now (approximately) given
by

A = − P−1
e Ṗe =

φ̇e

2

(
0 −1
1 0

)
, (39a)

S = P−1
e

(
f1 0
0 f2

)
Pe =

1

2
(f1 + f2)I +

1

2
(f1 − f2)

(
cosφe sinφe

sinφe − cosφe

)
. (39b)

As recalled above about (37) and (38), the contribution of the starred terms in the
right-hand sides is negligible in the case of an adiabatic excitation. In the latter case,
building the state vector |ψ(t)〉 defined in (25), we recover the Schrödinger equation
(26), with Hamiltonian Ĥ now time-dependent and respectively represented in bases
{|1〉, |2〉} and {|+〉, |−〉} by the matrices:

H1,2(t) =

(
~ω1(t) −~

2κω0(t)
−~

2κω0(t) ~ω2(t)

)
and H+,−(t) =

(
~ω+(t) 0

0 ~ω−(t)

)
. (40)

We would emphasize the following point. Passing from the vectorial equation (26)
to system (23b) is straightforward, since basis {|1〉, |2〉} does not depend on time. A

contrario, handling the Schrödinger equation in basis {|+〉, |−〉} requires some care.
Allowing for (6b) indeed, we have

d|+〉
dt

= − φ̇e

2

(
sin

φe

2
|1〉 + cos

φe

2
|2〉
)

= − φ̇e

2
|−〉,

d|−〉
dt

=
φ̇e

2

(
cos

φe

2
|1〉 − sin

φe

2
|2〉
)

=
φ̇e

2
|+〉,

(41a)

+ Under the circumstances, “adiabatic” means “slow at the time-scale of the free motion”: rates f1

and f2 (see (36c)), as well as all the angular frequencies of their nonzero Fourier components, are
small compared to ω0.
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so that expanding (26) on basis {|+〉, |−〉} yields, non surprisingly (see (39a)),
(
α̇+

α̇−

)
=

(
−iω+ − φ̇e

2
φ̇e

2 −iω−

)(
α+

α−

)
. (41b)

The off-diagonal terms of the above matrix are responsible for transitions between
the two eigenstates of Hamiltonian operators Ĥ(t). These off-diagonal terms originate
in the time-dependence of basis vectors |+〉 and |−〉, as displayed by relations (41a).
This result is remarkable: should the (adiabatic) parametric excitation of the two-
pendulum system not “mix” its eigenmodes, then both N+ = |α+|2 and N− = |α−|2
would separately be conserved in the course of the motion (in other words, the HO2
would behave as the simple juxtaposition of two noninteracting HO2).

3.2.2. Parametric excitation in the Larmor space Correlatively, in the Larmor space
L, the movement of the pseudo angular momentum ~m is still governed by equation
(24) in which ~Ω0(t) now depends on time, not only in intensity but also in direction.
In the latter dependence originate ~m-flips between +~eZ and −~eZ , which are the exact
representation of the above-mentioned |ψ〉-transitions between |+〉 and |−〉, and which
can be simply apprehended as follows. Let us consider again the orthonormalized basis
{~eX , ~eY , ~eZ} defined in (32b). This basis is now time-dependent and we have

~̇eX = φ̇e ~eZ , ~̇eY = 0, ~̇eZ = −φ̇e ~eX , (42a)

so that equation (34) yields

ṁX = −Ω0(t)mY + φ̇emZ ,
ṁY = +Ω0(t)mX ,

ṁZ = − φ̇emX .

(42b)

Observe that the above results (42) are the exact trasposition to the Larmor space L

of the foregoing equations (41) in the Hilbert space Ê . Note too that, since φ̇e 6= 0,
component mZ is no longer constant as was the case in the free Larmor precession
with static angular frequency ~Ω0.

We shall now focus on a particular case of adiabatic parametric excitation of
our HO2 inducing the classical equivalent of the “Rabi precession”. In this case,
the machinery of the aforesaid transitions/flips can be clearly demonstrated and
calculated, as well in the Hilbert space as in the Larmor one.

4. Simulating the Rabi precession

4.1. The experimental device

Let us come back to the experimental device displayed in figure 1, and let us modify
it in the following way. In one of the pendula, say number 1, the cylinder can be slid
along the rods thanks to a piano wire drawn (up or down) by an electric engine. We
should precise that, in the latter movement, the wire is dragged through a grooved
pulley located on axis (A), so that no torque at all is exerted onto this axis by the
wire’s doing: moving the mass along the rod simply changes its distance to axis (A)
and should thus be regarded as a pure parametric excitation of the pendulum. This
modified device is displayed in figure 5. Let the electric engine rotate at angular



Simulating the Rabi precession 15

torsion wire

traction wire

Ω

optical
detection

θ1
θ2

M

M

ℓ1(t)

ℓ2 = ℓ0

(A)

Figure 5. Modified experimental device. In the left pendulum, labelled 1,
the cylindrical mass M can be slid along a couple of rods thanks to a traction
wire dragged by an electric engine through a grooved pulley in such a way that
no torque at all is exerted upon (A): sliding mass M thus implements a pure
parametric excitation of pendulum 1.

frequency Ω ≪ ω0. This results in a modulation of distance ℓ1 which reads (omitting
index 0 for the mean value):

ℓ1 + δℓ1(t) = ℓ1(1 + ǫ sinΩt). (43a)

We shall henceforth assume that the above modulation is small : ǫ≪ 1. We then get,
after simple calculations,

ω1 + δω1(t) = ω1

(
1 +

1

2

(
Mgℓ1

Mgℓ1 + C
− J ′

1ℓ1
J1

)
ǫ sinΩt

)
, (43b)

κω0 + δ(κω0)(t) = κω0

(
1 − 1

4

(
Mgℓ1

Mgℓ1 + C
+
J ′

1ℓ1
J1

)
ǫ sinΩt

)
, (43c)

where J ′
1 = dJ1

dℓ1
. One has in addition, as a consequence of (17):

δω0(t) =
1

2
δω1(t), δ∆(t) = δω1(t). (44)

Observe that the above expressions (43b, c) can be drastically simplified, at least in
first approximation: the coupling is small, then (see (2c)) C ≪Mgℓ1; the pendula are

quasi simple ones, thus J1 ≃Mℓ21  
J′
1
ℓ1

J1
≃ 2; in addition ω1 ≃ ω0 (quasi-degeneracy).
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As a consequence of the above approximations, we have roughly :

δ∆(t) = δω1(t) ≃ − 1

2
ω0ǫ sinΩt, (45a)

δ(κω0) ≃ − 3

4
κω0ǫ sinΩt. (45b)

The above relations (45) show that, since κ ≪ 1, the modulation of κω0 is small
compared to that of ∆, and can therefore be neglected. Consequently

δ ~Ω0(t) ≃ δ∆(t)~eZ0
, δΩ0(t) ≃ δ∆(t) cosφe, δφe(t) ≃ −δ∆(t)

sinφe

Ω0
. (46)

We shall now consider the physical consequences of the above-described (equations
(43a) through (46)) slight modulation of length ℓ1. For the sake of completeness
and to underline the high suggestion power of the Larmor representation, we shall
successively carry out the calculations in the Hilbert space Ê , then in the Larmor
space L. In the meantime, we shall illustrate our purpose with the results of our
experimental implementation.

To begin with, let us consider the situation in the Hilbert space.

4.2. Calculation in the Hilbert space

Setting:

α+(t) = C+(t) e−i(ω0+
Ω

2
)t,

α−(t) = C−(t) e−i(ω0−
Ω

2
)t,

(47)

and using secularized equations (41b), we obtain the system:

i

(
Ċ+

Ċ−

)
=

(
a −ib
ib a

)(
C+

C−

)
, (48)

where

a(t) =
Ω0 −Ω

2
− 1

4
ω0ε cosφe sinΩt,

b(t) =
1

4
ω0ε sinφe

Ω

Ω0
cosΩt e−iΩt.

(49)

From now on, to be consistent at first order in ǫ, the time-dependence of angle φe

will be neglected in the above system (49). Moreover, (48) can be further simplified,
provided that conditions (quite analogous with (18))

|Ω0 −Ω|, ΩR =
1

4
ω0ε sinφe ≪ Ω0 (50a)

(ΩR is the so-called “Rabi angular frequency”) are simultaneously fulfilled, or
equivalently that:

Ωeff =
√

(Ω0 −Ω)2 +Ω2
R ≪ Ω0. (50b)

In return indeed for the above conditions (50) fulfillement, system (48) is simplified
into:

i

(
Ċ+

Ċ−

)
=

1

2
[(Ω0 −Ω)σZ +ΩRσY ]

(
C+

C−

)
. (51)

Then setting, in analogy with (20b):

cosβ =
Ω0 −Ω

Ωeff
, sinβ =

ΩR

Ωeff
, (52)
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the above Schrödinger-like equation (51) is satisfied by the unitary evolution law:
(
C+(t)
C−(t)

)
=

(
cos Ωeff t

2 − i cosβ sin Ωeff t
2 − sinβ sin Ωeff t

2

sinβ sin Ωeff t
2 cos Ωeff t

2 + i cosβ sin Ωeff t
2

)(
C+(0)
C−(0)

)
.(53)

Let us suppose, for instance, that the two-pendulum system is initially prepared in
eigenmode (+), with N quanta, say: α−(0) = 0, α+(0) = C+(0) =

√
N . Then we

have:

|α+(t)|2 = |C+(t)|2 = N(1 − sin2 β sin2 Ωefft

2
),

|α−(t)|2 = |C−(t)|2 = N sin2 β sin2 Ωefft

2
,

(54)

which is, by the way, the perfect transposition of formulas (68) in [1].

Thus the system undergoes transitions between modes (+) and (−). These
transitions are complete only for β = π

2 (Ω0 = Ω), i.e. at resonance. This
parametrically induced movement is known as the “Rabi precession”. Let us observe
that, at resonance, the effective angular frequency Ωeff is minimum (and equal
to ΩR) and that, after an odd number of full Rabi precessions (i.e. at instants
t′n = (2n + 1) 2π

Ωeff
, with n integer), the state vector |ψ〉 of the system is left 180◦

out of phase with that of a twin device undergoing no parametrical excitation at all.
An analogous remark has already been made about the induction-free movement (see
(70) and the related comments in [1]). Moreover, let us keep in mind that the classical
analogy of the Rabi precession we propose in the present paper relies on a twofold
secular approximation: the SA was already used to simplify (37) into (48), which
required the adiabatic condition Ω ≪ ω0. Further simplifying (48) into (51), which
requires Ωeff ≪ Ω0, should consequently be regarded as a second secularization of
(37). As a consequence and in prospect of an experimental check of results (53 - 54),
we should, whatever the circumstances, maintain the twofold conditions fulfilled:

ΩR ≪ Ω0 ≪ ω0, (55a)

or equivalently (see (20b) and (50a)):

ǫ≪ κ≪ 1. (55b)

Let us now relate our experimental implementation of the Rabi precession.

4.3. Experimental results

As displayed by (41b) or (42b), the most effective manner to induce transitions between
modes (+) and (−) of the HO2 is to maximize derivative φ̇e, which corresponds, in

the Larmor space, to δ ~Ω0(t) perpendicular to ~Ω0. Since, with our length modulation

(43a), δ ~Ω0(t) is parallel to ~eZ0
(see (46)), we should set ~Ω0 parallel to ~eX0

, i.e. have
φe = π

2 . Consequently, the mean value ℓ1 of ℓ1(t) is fixed equal to ℓ2, both pendula
being thus identical in absence of parametric excitation. Allowing for (7) and (6b),
the normal variables are then given by:

ϕ =

(
ϕ+

ϕ−

)
= tPeq =

√
J

2

(
θ1 − θ2
θ1 + θ2

)
. (56)

According to the above equation (56), mode (−) corresponds to both pendula in phase
(θ1 = θ2) and mode (+) to both pendula 180◦-out of phase with each other (θ1 = −θ2).
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Figure 6. Examples of Rabi precessions: normal variables ϕ+ and ϕ
−

(respectively represented by θ1 − θ2 and θ1 + θ2) associated with modes (+) and
(−), as functions of time. Both pendulum lengths are 53 cm and Ω0 = 0.231 ±
0.003 rad/s. Initially, only mode (−) is excited. In (a), the angular frequency of
the engine is Ω = 0.228 ± 0.003 rad/s ≃ Ω0: cos β ≃ 0 and the transfer from mode
(−) to mode (+) is total. In (b), Ω = 0.190 ± 0.003 rad/s 6= Ω0: cos β = 0.67
and the transfer is but partial.
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Figure 7. Square of the effective angular frequency Ωeff of the Rabi precession
as a function of the angular frequency Ω of the engine. The expected law is given
by (50b) with Ω0 = 0.231 rad/s and ΩR = 4.85×10−2 rad/s. The fit (solid curve)
gives Ω0 = 0.234 rad/s and ΩR = 4.85 × 10−2 rad/s.
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In figures 6, we have dispayed the quantities θ1 + θ2 and θ1 − θ2 (respectively
proportional to normal variables ϕ− and ϕ+) calculated with the numerical
oscilloscope from the signals θ1(t) and θ2(t) delivered by the potentiometers. The
two-pendulum system is initially prepared in its (symmetrical) mode (−). In (a) the
angular frequency Ω of the engine is set as close as possible to the Larmor angular
frequency Ω0: then cosβ (see (52)) is approximately zero; we are at resonance and the
energy transfer from mode (−) to mode (+) is total (the envelop of the curve labelled
“θ1 + θ2” is pinched). In (b) the engine rotation is deliberately detuned: cosβ = 0.67;
we are out of resonance and the energy transfer from mode (−) to mode (+) is but
partial. One may notice that the maximum of the envelop curve of θ1 − θ2 does not
coincide exactly with the waist of the envelop curve of θ1 + θ2, contrary to what was
observed in the (very analogous) curves of figure 6 in [1]: this should be attributed to
the effect of solid friction which occurs to be more effective on the time-scale 2π

Ωeff
= Teff

of the Rabi precession than on the time-scale 2π
Ω0

= T0 of the Larmor precession (since
Teff ≫ T0, see conditions (50)).

Notwithstanding this perturbing effect of solid friction, it turns out to be easy
to measure Teff (time interval between two consecutive pinches of the θ1 − θ2 curves
in figures 6). We have plotted the corresponding values of Ω2

eff versus the engine’s
angular frequency Ω in figure 7. The experimental points are fitted with the expected
law (50b) (solid curve in the figure). Observe the tight resemblance with figure 7 in
[1].

The minimum value of Ωeff is ΩR. It is obtained at resonance (Ω = Ω0). As
expected from formula (50b), ΩR should be proportional to the length modulation
depth ǫ introduced in (43a). We have measured TR = 2π

ΩR
for different values of ε and

displayed the ratio ΩR/ω0 as a function of ε in figure 8. According to formula (50b)
this ratio should be equal to ε

4 (let us recall that sinφe = 1 in this experiment). In
fact our pendula are not simple pendula, due to the nonzero mass of the rods and
the finite extent of the cylinders. This feature has been discussed at some length in
reference [2]. We shall not take this detailled discussion again here, but just give its
conclusion: allowing for the caracteristics of the pendula listed in table I of [2] and for
the exact formula (43b), the expected slope of the ΩR/ω0 versus ε law is 0.217. The
fit (solid line in figure 8) has a slope of 0.214.

We shall now use our geometrical representation of the two-pendulum’s dynamics
to resume the calculation carried out in the Hilbert space (see subsection 4.2).

4.4. Geometrical description of the Rabi precession

What does the Rabi precession look like in the Larmor space ? To avoid any confusion,
we recall hereafter the standard answer ([10], [11]) and deliberately choose a picture
slightly different from that adopted to establish equations (42): for the following
discussion, we note {~eX , ~eY , ~eZ} the static basis defined in (32b) in absence of any
parametric excitation. Let us now consider the frame which rotates around axis ~eZ

with angular velocity ~Ω = Ω~eZ . In this frame, labelled “r”, we define a static basis
{~eX′ , ~eY ′ , ~eZ′} by:

~eX′ = cosΩt ~eX + sinΩt ~eY ,
~eY ′ = − sinΩt ~eX + cosΩt ~eY ,
~eZ′ = ~eZ .

(57)
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Figure 8. Influence of the length modulation depth ε on the reduced Rabi
angular frequency ΩR/ω0. According to (50a), a straight line with a slope of 0.25
is expected. Taking the fact that the pendula are not simple into account, the
theoretical slope is brought down to 0.217. The fit (solid straight line) gives a
slope of 0.214.
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Figure 9. Effective precession angular velocity ~Ωeff in the rotating frame with
basis {~eX′ , ~eY ′ , ~eZ′}. At resonance Ω = Ω0, β = π

2
, and ~Ωeff = ΩR~eY ′ .
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In the rotating frame, equation (34) reads:
(

d~m

dt

)

r

=
d~m

dt
− ~Ω × ~m = ( ~Ω0 + δ ~Ω0(t) − ~Ω) × ~m, (58)

where, allowing for (46), (45a), (32b), (57) and (50a):

δ ~Ω0(t) = δ∆(t) ~eZ0

= − 1

2
ω0ε sinΩt (cosφe ~eZ + sinφe ~eX)

= − 1

2
ω0ε

[
cosφe sinΩt ~eZ′ + sinφe (sinΩt cosΩt ~eX′ − sin2Ωt ~eY ′)

]

= − 1

2
ω0ε cosφe sinΩt ~eZ′ +ΩR [~eY ′ − (sin 2Ωt ~eX′ + cos 2Ωt ~eY ′)] . (59)

Thus, the precession vector ~Ω0 + δ ~Ω0(t)− ~Ω reads, in the rotating frame, as the sum
of three terms:

(i) a term parallel to ~eZ′ and oscillating with angular frequency Ω,

(ii) a term rotating around ~eZ′ with angular frequency 2Ω,

(iii) a static term

~Ωeff = (Ω0 −Ω)~eZ′ +ΩR ~eY ′ . (60)

Provided that Ωeff ≪ Ω0, we can neglect the time-dependent above terms (i.e. the first
two terms) and keep only the static one. This is in fact, once more, the SA, known
under the circumstances as the “Rotating Wave Approximation” (RWA). Equation
(58) is then simplified into:

(
d~m

dt

)

r

= ~Ωeff × ~m. (61)

In the rotating frame, the movement of ~m is thus a simple precession with a constant
angular frequency ~Ωeff (see figure 9). This result justifies a posteriori the “Rabi
precession” appellation and it provides a straightforward geometrical interpretation
of formulas (54). In the static (non rotating) frame, the movement results from the

combination of two rotations with respective angular velocities ~Ωeff and ~Ω. Vector ~m
is then given by

~m(t) = e
~Ωt×

{
e

~Ωeff t× {~m0}
}

(62)

(which, as expected, reduces to ~m(t) = e
~Ω0t×{~m0} in absence of parametric excitation,

i.e. for ΩR = 0 ~Ωeff = (Ω0 −Ω)~eZ). The tip of vector ~m moves on a Bloch sphere,
as shown in figures 10 in the particular case where ~m0 = N~eZ (i.e. the case considered
in subsection 4.2 with α−(0) = 0 and α+(0) =

√
N , and yielding results (54)). In

both figures 10 the representative point is initially the North pole (i.e. direction
+~eZ) of the Bloch sphere. Note by the way that analogous computed trajectories
(including relaxation) can be found in the literature, e.g. in [12]. In figure 10a,
Ω = Ω0 (resonance): the representative point actually reaches the South pole (i.e.
direction −~eZ , representing N oscillation quanta in mode (−)). If Ω 6= Ω0 (out of
resonance), the ~m-flip is not complete and the south pole of the Bloch sphere is never
reached, as displayed in figure 10b.

To complete the present section 4, we would now draw up an energy balance of
the above process.
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Figure 10. Trajectory of the tip M of the pseudo angular momentum ~m on
the Bloch sphere. Departing from the North pole, point M reaches a maximum
colatitude 2min{β, π − β}. The South pole is reached only at resonance (β = π

2
)

(see (a)).

4.5. Energy balance of the Rabi precession

Let T be the tension of the piano wire. When projected along pendulum 1 rods axis,
Newton’s Law reads:

M(ℓ̈1 − ℓ1θ̇
2
1) = −T +Mg cos θ1. (63)

Consequently, since | sin θ1| ≪ 1, the power Pe consumed by the engine to move the
cylinder along these rods is:

Pe = −T ℓ̇1 = Mℓ̇1

(
ℓ̈1 − ℓ1θ̇

2
1 − g + g

θ21
2

)
. (64)

Next, averaging Pe over a 2π
Ω

(engine rotation’s period) duration, we get

〈Pe〉 = M
〈
ℓ̇1

(
− ℓ1θ̇

2
1 + g

θ21
2

)〉
, (65a)

or equivalently in the Glauber formalism, and deriving θ1 and θ̇1 from expression (35d)
of α1 (with ω1 ≃ ω0 in the quasi-degeneracy limit):

〈Pe〉 = M
~

2J1ω0

〈
ℓ̇1

(
ℓ1ω

2
0(α1 − α∗

1)
2 +

g

2
(α1 + α∗

1)
2
)〉
. (65b)

Using (43a), neglecting the nonsecular terms α2
1 and α∗2

1 (which average to zero
anyway), and since Mℓ21 ≃ J1 and g/ℓ1 ≃ ω2

0 , we finally have

〈Pe〉 = −εω0

2
~Ω〈α1α

∗

1 cosΩt〉. (66a)

Since α1α
∗
1 =

N+mZ0

2 , and using the basis change (32b), 〈Pe〉 reads

〈Pe〉 = −εω0

4
sinφe~Ω〈mX cosΩt〉, (66b)

or equivalently, owing to (50a) and (57),

〈Pe〉 = − ~ΩΩR〈(mX′ cosΩt−mY ′ sinΩt) cosΩt〉

= − 1

2
~ΩΩRmX′(t). (66c)
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Now, with the particular initial conditions considered in subsections 4.2 and 4.4,
namely ~m0 = N~eZ , and with definition (52) of angle β, the solution of dynamical
equation (61) reads:

~m(t) = N
[
sinβ sinΩefft ~eX′ + sinβ cosβ(1 − cosΩefft) ~eY ′

+ (cos2 β + sin2 β cosΩefft) ~eZ′

]
, (67)

so that 〈Pe〉 is finally given by:

〈Pe〉 = −1

2
N~ΩΩR sinβ sinΩefft. (68)

As expected, this power is negative for the first half of the Rabi precession (0 <
t < π

Ωeff
= Teff

2 ), which corresponds to a stimulated emission of energy by the two-
pendulum system. The total work received by the engine between times t = 0 and
t = Teff

2 is:

−
∫ Teff

2

0

dt 〈Pe〉(t) = +N~Ω sin2 β. (69)

During the second half of the Rabi precession (Teff

2 < t < Teff), power 〈Pe〉 is
positive, which corresponds to an absorption of energy by the system. The total
work furnished by the engine during this second process is N~Ω sin2 β. At resonance
(Ω = Ω0  sinβ = 1) this work is N~Ω0, i.e. exactly the energy splitting between
states

√
N |+〉 and

√
N |−〉 of our classical TLS, as required by energy conservation.

This paper is over. Let us now summarize its main results in the next section.

5. Conclusion

In this work, we have reconsidered the basic, well known and long time taught classical

device used in our forgoing paper [1], namely two coupled harmonic oscillators,
with which rather simple calculations and experiments can be performed at the
undergraduate level. We have recalled what considerable simplifications can be
brought in the problem as soon as both HOs are weakly coupled and have their
proper angular frequencies close to each other, i.e. as soon as both eigenfrequencies
are quasidegenerate. In this quasi-degeneracy limit, the physical state of the HO2 can
be described by means of a state vector |ψ〉 belonging to some Hilbert space Ê , the
time-evolution of which is easily checked to be unitary and to obey a time-independent
Schrödinger-like equation of motion. Space Ê being of dimension 2, the latter motion
is naturally paralleled with that of a half-one spin evolving in a fictitious R

3-like space
L in a static magnetic field (Larmor precession).

Moreover we have shown that the above recalled results still hold in the case
of an adiabatic parametric excitation of the HO2. The time-evolution (in Ê) of
the state vector |ψ〉 is then ruled by a time-dependent Schrödindger-like equation,
and its representing pseudo-angular momentum ~m then undergoes (in L) a time-
dependent pseudo magnetic field. The particular case of a small monochromatic
adiabatic parametric excitation is shown to correspond to the Rabi scheme (space
Ê) or equivalently to the Nuclear Magnetic Resonance (NMR, [13]) scheme (space
L). We have presented an experimental implementation of such schemes with a
simplest device, the machinery of which is perfectly transparent and intuitive. It is
fascinating indeed that, with but two coupled pendula, one can introduce the concept
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of quantum transition and “follow” the associated trip of ~m’s tip on the Bloch sphere
in the course of time. A wealth of related concepts can be apprehended too: spin
echoes, population inversion and so on. In this respect, the energy balance presented
in the Rabi precession study may be used to suggest a classical equivalent of processes
like energy absorption or stimulated emission, essential to any understanding of the
LASER effect for example.

There is however a price to pay for this entertaining introduction to Q.M. In so
far as most of the technical machinery of the present paper relies on the use of the
Glauber variables, we end up with the same conclusion as in our foregoing papers [1],
[2] and [9] : these variables (and the attached formalism) would deserve a better place
in undergaduate level teaching and textbooks.
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