N
N

N

HAL

open science

Generating interoperability test cases from conformance
test case generation tools
Ismail Berrada, Richard Castanet, Patrick Felix

» To cite this version:

Ismail Berrada, Richard Castanet, Patrick Felix. Generating interoperability test cases from con-
formance test case generation tools. 24th IFIP International Conference on Formal Techniques for

Networked and Distributed Systems (FORTE’04), Sep 2004, Madrid, Spain. hal-00408505

HAL Id: hal-00408505
https://hal.science/hal-00408505
Submitted on 30 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00408505
https://hal.archives-ouvertes.fr

Generating Interoperability Test Cases from
Conformance Test Case Generation Tools

Ismail Berrada, Richard Castanet and Patrick Félix

LaBRI - CNRS - UMR 5800 Université Bordeaux 1
33405 Talence cedex, France
{ berrada | castanet | felix}@labri.fr

Abstract. This paper focuses on studing efficient solutions for deriving
interoperability tests. In this work, we propose first a coherent formal
framework for interoperability testing based on a parametrized writing
of the interoperability relations. An approach and associated algorithm
is then introduced for this framework. As a consequence, adaptation of
our results to conformance testing tools for generating interoperability
tests is fully automatic. By the way, we show that the proposed approach
applies for testing in context.

1 Introduction

Protocol specifications are used to develop products and services. To ensure cor-
rectness of such products, testing, the process of checking that a system possesses
a set of desired properties and/or behaviors, is the one of the used validation
techniques. Various testing methodologies have been proposed and applied. One
approach is conformance testing, in which a single implementation is compared
to the standard to be sure that the implementation does what the standard
specifies; the theory behind conformance testing is that all conform implemen-
tations to the abstract standard should interoperate with each other, although
in practice this is not necessarily the case. The other approach is interoperabil-
ity testing, in which two or more implementations are tested directly against
each other, with the standard used as a primarily as a reference to adjudicate
problems and incompatibilities, and secondarily as a guide to the functions to
be tested and the general behavior to be expected.

Conformance testing inspires little confidence in the user community. In con-
trast, conformance testing potentially provides benefits to an implementor during
the early stages of development as a simple check. A limitation of conformance
testing become from the generality of the protocols being tested, particularly
at the OSI model applications layer, protocols are typically very complex and
general, offering many options and choices.

In order to decide the correctness of an implementation, a clear criterion
is needed. In the context of conformance testing, many proposals for such cor-
rectness in the form of implementation relations have been made [1,2]. Un-
fortunately, interoperability testing did not know such formalization. Another

weakness of interoperability testing is the lack of tools and precise algorithms as
discussed bellow.

Interoperability Definitions. While a precise definition of interoperability is
somewhat elusive, functionally the meaning is clear: components communicating
with one another correctly and providing the expected services. Some definitions
of interoperability are: The ability of two or more systems to exchange informa-
tion and mutually use the information that has been exchanged [4]. The ability
of a distributed system to interchange PDUs via the communicating platform
[5]- Thus, the activity of interoperability testing consists in checking correct op-
erations of a system of components. According to [21], this activity should check
only external messages that lead to inter-component communication. This is not
the case of [6] in which this activity should check an interoperability relation.
The authors gave nine interoperability relations depending on the architecture
used.

Interoperability Architectures. The degree of observability and controlla-
bility, and the configuration of the communicating systems have a great influence
on the interoperability architecture to adopt. The Astride architecture of [7] uses
upper testers and a test coordination procedure. The ATM Forum [8] proposed
a test configuration connecting testers to the different Implementations Under
Test (IUTs), and places Points of observation (PO) and Points of Control and
Observation (PCO) between IUTs and between testers and IUTs. [9] proposed
a generic architecture designed as toolbox whose components can be configured
as needed.

Interoperability Testing. The recent research works on interoperability test-
ing are related to systematic test suite generation. [7] was one of the first papers
in the field. The approach adopted is based on reachability analysis. Kang, Kim
et al. have proposed a whole of works relating to interoperability testing [13-21].
[13,14,17] proposed a test generation technique for symmetric protocols based
on system composition. [21] deal with derivation of interoperability tests for the
control and the data part of protocols. A skeleton test suite for control part is
derived. Each test case is then parameterized. The test suite is completed by
assigning values to parameters. The approach adopted by [22] is so called one
against N in which a single entity interoperates with the rest of the integrated
communicating systems. The approach is then reported on the VoIP system. In
order to avoid the state space explosion, [3] proposed a test purpose oriented
method. The principle was the definition of synchronization rules for parallel
composition. Tretmans et al. [23] showed that, under some assumptions, the
ioco-test theory for conformance is suitable for compositional systems.

Our Approach. This paper proposes a framework for testing interoperabil-
ity inspired by work of [6]. Some parameterized relations, taking into account

available interfaces, are then introduced. Based on this framework, we propose
an approach and associated algorithm for checking the correctness of communi-
cating systems. The approach is based on a lazy composition in order to avoid
the state space explosion. The originality of our approach is the possibility to
interface some conformance test tools for generating interoperability tests.

The remainder of the paper is organized as follows: Section 2 presents the
formal model and notations used. Section 3 introduces and explains some pa-
rameterized interoperability relations. Based on the results of section 3, section
4 shows first, how to generate interoperability tests for this framework and then
how our approach can be used to generate interoperability tests from some con-
formance test tools. Conclusion is in section 5, and some equivalence proofs are
presented in section 6.

2 Modeling with IOLTS

The behavior of communicating components can be described by means of formal
models such as Input Qutput Labeled Transition System (IOLTS). As usual in
the testing theory, we need to model implementations, even if their behaviors are
unknown. An IUT will also be represented by an IOLTS. Section 2.1 introduces
the IOLTS model and some notions used in the rest of the paper. Section 2.2
defines the IOLTS composition.

2.1 IOLTS Model

Let S be a system composed of a set of communicating components (M;). Every
component M; defines a set of actions (events) AMi performed by M;, and a set
of interactions points (ports or interfaces) PMi through which M; communicates
with the other components and with its environment. To define formally a com-
ponent M;, we will use the model of Input Output Labelled Transition System
(IOLTS) which is an adaptation of the usual LTS model. In this model, every
action is associated to an interface through which the system receives or sends
the event.

Definition 1. An IOLTS is a tuple M = (Q™, XM —r, ¢}) where:

— QM s a set of states and ¢}t € QM is the initial state.

— XM C PM x AM where PM is a finite set of interfaces (ports) through
which M communicates with its environment and AM is the alphabet of
actions exchanged by M through P . It is partitioned into three sets: XM =
XMy ZMy M: for (p,a) € XM, then (p,a) € XM if a is input action,
(p,a) € XM if a is an output action, and (p,a) € I™ if a is an internal
action of M.

— = C QM x M »x QM s the transition relation. We note ¢ = ¢ for
(¢, 0.q") €=nr and ¢ Sp for 3¢ 1 q S g

Next, ZOLT S will denote the set of input output labeled transition systems.

Note 1. p?a stands for (p,a) € XM and pla for (p,a) € XM, i = plaif u = p?a
and g = p?a if p = pla.

Example 1. Specification M; of the Fig.1 communicates with specification M,
through interfaces C'1 and C2 and with its environment through interfaces C3
and C4. Specification M> communicates with its environment through inter-
face C5. For My: PM = {C1,02,C3,C4}, AM = {\start, 2ack, linit, ?status},
My — (Cllstart, CAlinit}, and M = {C2%ack, C37status}.

Ml C2?ack
Cl!start
C2?ack

Canal 3 Canal 4

calinit

C3?st at us

Canal 1 ¢ T Canal 2

M2

Cl?start C21 ack

!
Cl?start Cs!ready Cl?start

¢ Canal 5

Fig. 1. Communicating specifications.

We use the following standard notation of IOLTS.

Notation 1 Let M € ZTOLTS, p € M, agy € XM M i) € M, ¢
(ZMANIM)*, S C XM, PCQM, and q,q' g € QY.

— " d =2 3w =qq 00 =d, Vi€ [L,n],qi1 s g
— out(q) =a {acXM|3q¢ and g S '}
— out(P) =a {out(q)|qe€ P}.
The visible behavior of M 1is described with =
& ! ! T..-T !
—q=>MmM{q =A =q orqg—Mm¢q-
a p € o € ’
~q=Mmq =a 39> —m @ =>md . v
—q¢3ud =2 3o=¢q..qn=0,Vie[l,nl,q 15Ny q,
- Uz,ul(;",un-
—q=wuM =a 3d¢.9=>md"
— qafter o =a {deQM|q3Znmqd}. Mafter o =a ¢}! after o.
— Out(M, o) =a out(M after o). Outs(M,o) =ao Out(M,o)NS.
— Traces(q) =a {oe€(ZM\IM)*|qafter o #0}. Traces(M) =a
Traces(q)?).

Note 2. For M € TOLTS, X € PM s Cc ¥YM 4y € YM and (0,0') €
Traces(M):

— 0.0’ will denote the concatenation of the two traces.

— 0/g will denote the projection of o on S defined by: ¢/g = ¢, (a.0)/s =
o/sif a ¢S, and (.0))s = a.(0/s)if a€S.

— YM/X = {(p,a) € XM|p € X} will denote the projection of £ on the
interface set X.

— Pu(0,X) = {0’ € Traces(M) | 0/gm/x = a’/EM/X } will denote the set of
traces of M that correspond with ¢ on X.

— card(S) will denote the number of elements of S.

An IOLTS M is input complete if it is completely specified for input actions.
Definition 2. Let M be an IOLTS.

— M is input complete if Vg € QM , Ya € XM, ¢).

— M is linear if Vg € QM, card(out(q)) < 1. In this case, the projection of

M on S C XM is the linear IOLTS noted by Mg restricted to S (thus
Traces(M,g) = {05 | o € Traces(M)}).

2.2 Synchronous Composition of IOLTS

Communication mechanism of two IOLTS can be modeled by an IOLTS.

Definition 3. Let M; and My be two IOLTS such that SM 0 £M> = xMn
25‘42 = (. The synchronous composition of My and Ms is the IOLTS M =
(QM, XM —yr,qd) noted My || Mz, defined by:
— Ports of M is the union of ports of M, and M,: PM = pMiy pMz,
— M — xMi M,
sh = (g pley (oM pin),
= IM = My M
" (qo vq(])w2 :
QM ={aqllez | @1 € @M, g2 € QM}.
— —r is the smallest relation defined by the following rules (u € XM):
Loqi S gy, p & ZMNIM: = aillee Su dille
2. qo Snp, b, p & SN = qllee Suald
$oq1 Boany a2 B oy n €T = aillae B il
In interoperability testing, we usually need to observe only some specific events
among all possible events. That is, we define M visible X . The observable events
of M visible X are those exchanged over X. The other events are considered
internal actions 7.

Definition 4. Let M be an IOLTS and X C PM q set of interfaces. M visible X
is IOLTS defined by:

QM visible X QM, and qM visible X qéw

— yMyvisible X EM/X U {7_}
= T Mvisible X is the smallest relations deﬁned by (u € EM)
1. q—>Mq UgEM/X = q_>Mv151blqu
2. qﬁMq,MGEM/X = ¢S uvisible x ¢
Note 3. Let M, M, and M> be three IOLTS. When X = PM then M visible X =
M. M;||xM, will denote M; || M, visible X.

3 A Parameterized Writing of the Interoperability
Relation

A system of communicating components defined a set of available interfaces.
Events exchanged over this set are observable and then testable. Interoperability
relations for such systems must take account these available interfaces. This
section introduces and compares some parameterized interoperability relations.

3.1 Preliminaries

One of the used conformance relations is the relation ioconf. It states that an
implementation I is conformant to its specification M if after a trace of M,
outputs of I are foreseen in M .This relation allows partial specifications and
allows implementations to add the underspecification.

Definition 5. Let M and I be two IOLTS.
I ioconf M =, Vo € Traces(M) = Out(l,0) C Out(M, o).

To compare binary relations, we use C and =. Let R, and R, be two binary
relations over ZOLT S. R, T R if for every (I, M) € ZOLT S such that I R, M
then I Ry M. R, =Ry if Ry C R, and R, T Ry.

3.2 A Parameterized Writing.

The starting point for interoperability testing is some given specifications, im-
plementations for these specifications defining some available interfaces, and a
criterion that implementations should satisfy. Thus, Two implementations in-
teroperate if they check the interoperability criterion. The framework presented
here, is based on the comparison between the outputs of the system to be tested
and the outputs of one specification, modulo some interface projection. Let I(;) be
an implementation of the specification M;) with i € {1,2}, and X c PM yp™M2
be an interface set. We recall that M || xMaz is M; || M, visible X.

Definition 6. interopx (I3, I2) SvVoe trace(M|| x Mz), =
Out s, (11 ||XIQ, O’) C UU/GPMIHMQ (O-7X)OutEM1/X (Ml, 0'//2M1)

The first relation defined is the relation interopx. It states that during the in-
teraction between I; and I5, when a trace o of M1 || x M- is injected to the system
to be tested, the observable behaviors of the system projected on the available
interfaces of I; is foreseen in the union of observable behaviors (projected on
the available interfaces) of M7, while applying the projection, on the alphabet
of M7, of each trace o’ € Traces(M||Ms) (¢’ coincides with o on the interface
set X).

Let Y = PMi 0 PM2 he the commun interfaces of M, and M.

Definition 7. intercomx (11, I) = Vo € trace(M || x Ma), Yo' € Pay, jar, (0, X),

U//Y 75 € = Outzll (.[1”)([2,0) C UgleleHMQ(mX)OutZMl/X (Ml,JI/EMl)

intercomx is similar to interopx, but only invokes inter-component communi-
cations. Generally, components are tested to conformance, and thus, intercomx
avoids the conformance testing, but only tests the inter-communication part.

Another criterion is to define a set A C YM1 U ¥Mz2 to be covered. intercoverx
covers all transitions which pass by a given event of A. intercovery covers some
transitions which pass by a given event of A. The traces that these relations con-
sider can be smaller comparing to intercomx and interopx.

Definition 8. intercoverx (11, I3) 2 vVa e A, Vo € trace(M,||xMs), Yo' €
Pry g, (0, X), 0, # € =

Outxfl (I1||XIQ, O') C Uo/ele My (U7X)Out2M1/X (Ml, U//Z‘Ml)

Definition 9. intercoverk (I, 1) 2 vVa e A, do € trace(My||xMs), Vo' €
Pry g, (0, X), 0, # € =
OUt211 (IlHXIQ’J) - UU’GPMl \|Mz(¢TaX)OUt2Ml/X (M17JI/2M1)

The four relations defined here are suitable for any test architecture. The choice
of a relation depends on the confidence that we have in an implementation and
also on the size of components to be invoked.

As result, the next theorem shows the equivalence between interopx and ioconf:

Theorem 2. Let My, Mo, I; and Is be four IOLTS. We assume that My, M,
I and I are input complete, Eé‘/fl N Z(])‘@ =10, Zé”l N 23’2 =10, Egl N Z‘(J)Vb =0,
and XN Y12 = (). Then:

interopx (11, I>) A interopx (I2, 1) = 1| xI2 ioconf M| xMs

An interesting case is when the whole interfaces are available: X = PM: y pMz,
In this case, for o € M;||Ma, we have Py, ar, (0, P U PM2) = {o}. Therefore,
the relations interopx and intercomx can be written as follows (the subscript
x will be omitted):

interop(Iy, I2) SvVoe trace(Mi||Mz) = Outor, (11|12, 0) C Out(Mi, 0,5).

intercom(11, 1) Lvoe trace(M1||M2) oy # € = Outyr, (I1]|12,0) C Out(Mi,0) 5m,).

The paper [6] defined nine interoperability relations based on a layer architecture
for asynchronous environment. These relations are decomposed into three classes
depending on which interfaces of the implementations they focus on. These rela-
tions can be obtained from interopx by defining a suitable interface set X. For
example, the relation interop corresponds to Unilateral Total Interoperability
Relation defined in [6].

To conclude, comparison between relations is given bellow:

interopx (11, Iz) A interopx (I, I1) = Ih || x Iz ioconf M || x M,
intercomx (11, I3) C interopx (11, I3).
intercoverk (I1, I) C intercoverx (11, Iz) C interopx (11, I2).

4 Derivation of Interoperability Test Cases

Interoperability testing is a finite set of experiences, in which a set of test cases,
usually derived from some specifications according to a given interoperability
relation, is a applied by a tester to the system under test (SUT). Depending on
the results of the execution of a test case, it can be concluded whether or not
the implementations interoperate. In the preceding section, we have introduce a
framework for interoperability testing. Relations presented there are based on the
available interfaces of implementations, and on the comparison between outputs
of implementations with outputs of one specification modulo some projections.
In this section, we propose an approach to check the relation interopx. Section
4.1 introduces some definitions used in section 4.2 which presents our approach.
Section 4.3 shows how to interface some conformance generation tools to generate
interoperability tests.

4.1 Preliminaries

Definition 10 (Completion). Let T be a linear IOLTS, and X' C PT a subset
of interfaces of T. Comp(T, X") is the linear IOLTS defined by:

— g5 XD = g

_ ECOmp(T,X’) C PT « AT,

_ QComp(T,X/) ECOmp(T,X/)

) = Comp(T,X"), and are obtained by the following rules:

Lop¢ STIX g B g = q,q € QU e RPN Land g B compir,x 1
q .
2. plae STX g% ¢ r ¢ = q,q'q) € QUPTX) pla, pra € HComPTXD)
la ?a
and q LComp(T,X/) ql L)Comp(T,X’) q”

pra

Ao =q,dq" € QP TXD pla pra € yOomP(TXD
la Ta
and q LComp(T,X’) q” _>Comp(T,X’) ql'

’ pla a ’
bopta € SV g frd, d D " = da) q" € QUMD plapra €
EComp(T,X/)

3. pla € ET/X/J qp—!(:T q,q

d ; pla m pla 1"
; ana q —~ Comp(T,X") q — Comp(T,X") q .

Indeed, Comp(T,X') is T by following each emission, over X’ interfaces, by
the same reception and reciprocally. In Fig.4.1, T} represents a linear ILOTS.
It consists on the emission of start through port C'1 and the reception of ack
through port C2. The complemention of T} according to ports X' = {C1,C2}
is the linear IOLTS T3 (T = Comp(T1,{C1,C2})).

Definition 11 (Transition Matching). Let T' be a linear IOLTS. We assume

that T is without internal actions (I7 = (). A transition matching is a function

TM :—p+— IN that assigns to every transition a naturel number such that:
*TM((g,0,0)) > TM((42,b.45)) If 3o € (Z)" | ¢ % @1 B7 g2 P gs.
*TM((q,a,q1)) = TM((q1,b,92)) If a =b.

A transition matching is a function that assigns to every label a value de-
pending on the order of its appearance on the linear IOLTS. The set of the
transition matching over T is noted 7 M(T). For example, in Fig.4.1, we asso-
ciate the transition matching TM to T» to obtain Ts: TM((0,C1llstart, 1)) =
TM((1',C1?start,1)) = 2, and TM((1, C2lack,2')) = TM((2',C2%ack,2)) =

Definition 12. Let T and T' be two linear IOLTS without internal actions. T’
is said to be a path of T if:

~ QT cQT, 2T C X7, and —»pC—r.
— Vo € Traces(T) = 0,51 € Traces(T).

L(T) will denote the set of all paths T” of T

Definition 13 (Restricted Transition Matching). Let T be a linear IOLTS
without internal actions, T' € L(T) be a path of T, and TM € TM(T) a transi-
tion matching of T. The transition matching T M restricted to T’ is the matching
noted TM [T /T’ :—1— IN defined by: TM[T/T'|((¢,a,q1)) = TM((q,a,q1)).

Definition 14 (Extended Transition Matching). Let T' be a linear IOLTS
without internal actions, T' € L(T) be a path of T, and TM € TM(T') a

transition matching of T'. We assume that if ¢ € QT such that out(q) = 0 in T’
then out(q) = 0 in T. An extended transition matching of T' to T is the function

TM(T/T') :—r— IN defined by:
*TM(T/T')((g:a,q1)) = TM((q,a,q1)) If (¢,0,q1) €= .
*TM(T/T/)((q7a7q1)) = TM((q27b7 qd)) If Jdo € (ET)*ﬁ U/ET/ =6 and

a a b
q—T q1 =T q2 —T q3.

T T> T3 Ty Ts

Cllstart 2 | Cllstart 2 | Cllstart

C2lack 1| C27ack 1 | C4linit

0
0 J\.
l Cl!start l
i C27ack l C2lack

1 | C2%7ack

0 0

2| Cllstart
Cl7start 2 l Cl7?start t 2 i C37status
C2%ack L C2%ack Jl

Fig. 2. Transition matching.

Example 2. In Fig;4.1, we can remark that T, is a path of 7’3, and the re-
striected transition of TM to Ty is defined by TM[T5/T4]((0, Cllstart,1) = 2,

TM[T5/T4]((1,C2%ck,2) = 1. Also, Ty is a pth of T5, then the extended tran-
sition matching is defined by: -
TM(T5/T4)((0, Cllstart, 1)) = 2, TM(T5/T4)((1, C37status, 2)) =1,
TM(Ts/Ty)((2, Clinit,3)) = 1, and TM (Ts/T4)((3, C2?ack,4)) = 1.
Definition 15 (Lazy Composition). Let T1 and T> be two linear IOLTS and
TM1 € TM(Th), TM2 € TM(T3). The lazy composition of Ty and Ts noted
(T, TM1) LC (To, TM?2) is the IOLTS defined by:

1. q5n ¢, q i>T2 gi,a g 72, TM1((q,a,q")) > TM2((q1,bq2)) = (¢,q1) 1, LC T
(d'sq1).

2.5 ¢, o ¢ = (Gq) > o (4 q).

3. Symmetric rule of 1.

The goal of the lazy composition is to avoid the construction of linear IOLTS
product, but to build a product who preserves the event appearance order.

4.2 OQur Approach

A Test Purpose (TP) is a property that one would like to observe/check on
implementation behavior. It defines a temporal sequencing of observable actions.

Definition 16 (Test Purpose). A test purpose TP is a deterministic and
acyclic IOLTS. TP is associated with two distinguished non-empty sets of states
Accept(TP) and Incon(TP) such as Accept(TP) C Q™" and Incon(TP) C QT".

To generate test case for the relation interopx, our approach is oriented test
purpose. First, we start from o; a M; trace, then we search the corresponding
M || M traces o such as 01 = o /s . The same reasoning can be adopted for
My or My||Ms traces.

Let us suppose, that T'P is a test purpose of M || M>! modeled by a linear IOLTS,
such as Incon(TP) =) and V(q,a) € (QTF,XTP), ¢ 21p then V¢’ € QTF,

q¢ #rp- Let Y = PMi 0 PM2 be the commun interfaces of M; and Ms. The
algorithm for generating interoperability tests is described in figure 3.

First a matching transition is selected for TP. TP is then completed ac-
cording to Y and devised into two test purposes: test purpose 77 for M; and
test purpose T, for M. M is traversed to find a path T3 that verifies T7. The
resulting path 73 brings some Mj events that is not in 7P and by consequence
is not in T5. To add these new events to 75, T3 is first completed according to
Y, then projected on M, alphabet (74 as result), and finally composed with 7%
according to the lazy composition defined above. This composition aim is to add
new M> events to T while preserving events order (T as result). T is projected
on XMz 1In every state of Ty, we prohibit synchronization from A, other than
those reported in Ty. This is done by adding Inconc states to Tg. M, is traversed

1 TP contains events of M; or M or both.

Input: Three IOLTS M;, M and TP.
Output: Test cases for M ||M;.

Selection of a transition matching T'M for T P.

Completion of TP = Comp(TP,Y).

Making projections: 71 = Comp(T P, Y)/EM1 and T> = Comp(TP, Y)/EMQ.

Computation of a test case verifying Ty in M; = T3 .

Completion of T3 = Comp(T3,Y).

Making projection: Ty = Comp(T3, Y)/EMQ.

Realization of the lazy composition: (T, m(T4/T1)) LC (T2, TM[T3]) = Ts.

Making projection: T = T5 , s, -

Addition to Ts, in every state, synchronization events not envisaged with M;

in Ts. These states are labeled Incon.

10. Computation of a test case verifying T in My = T~.

11. Realization of the lazy composition: Tx =
(T7, TM(T7/T2)) LC (T35, TM(T3/T1)).

12. Computation of Tg Visible X.

13. Test Selection.

© 0N oW

Fig. 3. Interoperability generation algorithm.

to find a path 77 that verifies T5. In this case, we are sure, that new events of
My brought by T7 are envisaged by T5. Then a lazy composition of T3 and 77 is
performed and projected on X.

Method Complexity. The complexity of the algorithm depends on the size of
the three entities: O(size(T'P) * (size(M1) + size(Ms)) + size(T P) x size(T P)).

Remark 1. In the case where the test purpose TP contains only events from one
entity, for example M;, the T'P projection on M, is empty ie. To = (). In this case
Ty = T4 and the algorithm hold. The interest of our approach is the possibility
to transform conformance test cases into interoperability test case.

4.3 Interoperability Testing using Conformance Test Tools

A number of tools for conformance testing exist, among which there are TVG
[24], GenTest [26] and TorX [25]. To generate interoperability testing with these
tools, for a system of communicating components S, one must compute the
global specification of S by composing all its specification components. In this
case, we generate conformance test of S rather then interoperability test. The
inconvenient of this approach is the state space explosion. Interfacing this tools
for generating interoperability tests that checks the relation interopx, without
composing systems is showed bellow.

Oriented Test Purpose Generation Tools. Oriented test purpose gener-
ation tools take in entry an IOLTS M and a test purpose T and produce a

conformance test case. Interfacing these tools can be done through an external
module. The external module interacts and controls the generating tool inputs
and outputs. The algorithm given in 3 is implemented by this latter.

Figure 4 summarizes the functionalities of the external module for a given
TP. Let us suppose that TP consists in checking the emission of C1!start fol-
lowed by the emission of C2lack for specifications of figure 1. The module selects
the transition matching 1 and 2 for TP (1). TP is then completed (2). Two pro-
jections are carried out: Ty and T3 (3). 71 and M; are injected into the generation
tool who produces a test case T3 of M; (T3 brings new events C3?statut and
c4linit (4)). This latter is completed and projected on X2 (5,6). At this time,
the external module realizes the lazy composition according to the initial match-
ing of TP (7). Non-envisaged events are added (thus a verdict Inconc (9)), and
the result is injected into the generation tool with M to obtain a test case of My
(this latter brings event C5lready (10)). The last stage is a lazy construction of
M test case with M test case (new events of T3 and 7% has the same priority
(11)). The result is an IOLTS checking the test purpose T'P.

Remark 2. To generate interoperability testing from conformance tools, we made
the assumption that all components interfaces are accessible. In the case of a sys-
tem having X accessible interfaces, hiding interfaces and eliminating redundant
test cases can be done at the end of the test generation.

5 Discussion

In this paper, we have proposed a formal framework for the interoperability test-
ing. We show that interoperability relations can be defined by taking account test
architecture, and do not necessary need to consider the whole interfaces between
components. The equivalence between the parameterized relation interopx and
conformance relation ioconf is proved. As results of our framework, we proposed
an efficient approach and an associated algorithms for generating interoperabil-
ity tests. Interfacing conformance generating tools is then presented. Depending
in the goal of generating tools, we suggested an addition of an external module
to interface these tools.

Testing in context.We was interested in this work in generating interoper-
ability tests, but the framework, the approach and the algorithms we gave, is
suitable to testing in context.

Synchronous vs Asynchronous We supposed here that the communications
between entities are synchronous, but the results are the same in an asynchronous
environment. Indeed, in the work [6], we studied this problem by consider an
environment £ between M; and M, and we have considered the composition
M;||€]| Ms. In this case, the completion in input of M; and M, is not necessary.
Future Work. Future works are oriented interoperability testing for real-time
systems and interfacing conformance tools for interoperability testing.

' -‘ 1| cuistart
1
! T3
. oM 1 | cusstart
| “ 1| Clistart
: Lt)
ista
| Comp(TP) 1 Completion 5 | canstatut
Generation Tool
' — + —
' o 2| C37statut
Cl!start C27ack Catinit
! ™ 8 7adl 2 | Catini
' Projection 2| caninit
Accept
Cl7start
N 1 | Clistart 1 2 | C2lack
1
Completion
2| C27ack
] .
C2lack
2 2 corack
I C2lack 2 Accept
] Accept
] Accept T2
2
| C27ack Projection
Cl?start
1
. Accept 3) 1 M
I 1| Clostart
Lazy Composition
1
: 2
| C2lack
' 2| cotack
i Accept
' M2 Accept
A
custart |1 T4
(1) C2tack
* Lazy Composition Clostart (9) 1| Civstart
\ (10)
\ Inconc Inconct
Csiready |2 Generation Tool 44—
\ !
\ Cl?start
\ ' C2lack 2| corack
“ C2lack 2 Inconc
* Accept Accept
Accept T4
Clistart
! m T6
C37statut C5!ready

/ \
2 2
2
Catinit Ctrel C3tstatut

2 Calinit
2\
C5!ready Test Cases for M1|M2

2 | C2lack

Accept

Comp(TP3)

Fig. 4. An application example.

(6)

Projection

References

1. M. Philippou. Relations d’implantations et Hypothéses de test sur les automates a
entréss sorties. PhD thesis, Université de Bordeaux 1, France 1994.

2. J. Tretmans. A formal approach to conformance testing. PhD thesis, University of
Twente, Enschede, The Netherlands, 1992.

3. R. Castanet, O. Kone. Test generation for interworking systems. Computer Commu-
nications, 23 (2000), 642-652.

4. ISO/IEC JTC1 DTR-10000. Information Technology - Framework and Classification
of International Standard Protocol. 1994.

5. ETSI ETR (ETSI Technical Report) 130. Methods for Testing and Specification
(MTS). Interoperability and Conformance Testing/A Classification Scheme. April
1994.

6. S. Barbin, L. Tanguy and C. Viho, Towards a Formal Framework for Interoperability
Testing. Proceedings FORTE(1, Korea, August 28-31, 2001.

7. O. Rafiq and R. Castanet. From Conformance Testing to Interoperability Testing.
Proceedings of the 3rd IWPCS’90, Oct-Nov, Washington DC, USA, 1990.

8. W. Buehler. Introduction to ATM Forum Test Specifications, Version 1.0. ATM
Forum Technical Committee, Testing SUbworking Group, af-test-0022.000.

9. T. Walter, I. Schieferdecker and J. Grabowski. Test Architecture for Distributed
Systems - State of Art and Beyond. Proceedings of 11th IWTCS’98, Tomsk, Russia,
August 31 - September 2, 1998.

10. J. Gadre, C. Rohrer, C. Summers, and S. Stmington. A COS Study of OSI Inter-
operability. Computer Standards and Interfaces, 9:217-237, 1990.

11. G. S. Vermmeer and H. Blik. Interoperability Testing: Basis for the Accepting of
Communicating Systems. Protocol Test System VI, 1994.

12. G. Bonnes. IBM OSI Interoperability Verifications Services. The 3rd IWPTS, 1990.

13. S. Kang and M. Kim. Test Sequence Generation for Adaptive Interoperability
Testing. In Proceedings of Protocol Test Systems VIII, pp. 187 - 200, 1995.

14. S. Kang, M. Kim, Interoperability Test Suite Derivation for Symmetric Communi-
cation Protocols. Proceedings of FORTE/PSTV’97, p.57-72, November 18-21, 1997

15. J. Shin and S. kang. Interoperability Test Suite Derivation for the ATM/B-ISDN
Signaling Protocol. Proceedings of IWTCS’98, Tomsk, Russia, August31-September
2, 1998.

16. S. Seol, M. Kim, S. Kang. Interoperability Test Suite Derivation for the TCP
Protocol. In FORTE/PSTV’99, 1999.

17. S. Kang, J. Shin and M. Kim. Interoperability Test Suite Derivation for Commu-
nication Protocols. Computer Network 32 (2000) 347 - 364.

18. J. Ryu, M. Kim, S. Kang, S. Seol, Interoperability Test Suite Generation for
the TCP Data Part Using Experimental Design Techniques. Proceedings of TEST-
COM’00, p.127-142, August 29-September 01, 2000

19. S. Seol, M. Kim and S. T. Chanson. Interoperability Test Generation for communi-
cation Protocols based on Multiple Stimuli Principle. Proceedings of TestCom’22),
Berlin, Germany, March 19 - 22 | 2002.

20. V. Trenkaev, M. Kim, S. Seol, Interoperability Testing Based on a Fault Model for
a System of Communicating FSMs. Proceedings of TestCom’03, Sophia Antipolis,
France, May 26-28, 2003.

21. S. Seol, M. Kim, S. Kang, J. Ryu. Fully automated interoperability test suite
derivation for communication protocols. Computer Networks Volume 43, Pages 735
- 759, December 2003.

22. N. Griffeth, R. Hao, D. Lee, R.K. Sinha, Integrated System Interoperability Testing
with Applications to VoIP. Proceedings of FORTE XIII/PSTV XX, p.69-84, October
10-13, 2000

23. Machiel van der Bijl, Arend Rensink, Jan Tretmans, Compositional Testing with
ioco. Proceedings of the 3rd International Workshop on Formal Approaches to Test-
ing of Software, FATES2003, Montreal, Canada 2003.

24. J. Fernandez, C. Jard, T. Jéron, C Viho, An Experiment in Automatic Generation
of Test Suites for Protocols with Verification Technology. Sci. Comput. Program.
29(1-2): 123-146 (1997).

25. A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw,
L. Heerink. Formal test automation, A simple experiment. Proceedings of 12th Int.
Workshop on Testing of Communicating Systems, pages 179-196, 1999.

26. J. He and K. Turner. Protocol-Inspired Hardware Testing. Proceedings of Testing
Communicating Systems XII, pages 131-147, September 1999, London, UK.

