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SUMMARY

We present a massively parallel algorithm for distributed-memory plat-

form to perform 2D acoustic frequency-domain Full-Waveform In-

version (FWI) of global offset seismic data. Our code is written

in Fortran 90 and uses Message Passing Interface (MPI) for paral-

lelism. The linearized inverse problem is solved by a classical gra-

dient method which consists in finding a model perturbation which

minimizes the least-squares cost function. A key feature of our code is

the direct solver used for frequency-domain full-waveform modeling.

Frequency-domain full-waveform modeling requires to solve a huge

sparse system of linear equations with complex coefficients whose

multiple Right-Hand Side (RHS) terms are the seismic sources and

solutions of the system are the pressure wavefield. We use the MUlti

frontal Massively Parallel direct Solver (MUMPS) for distributed-

memory computer to solve this system (LU factorization). MUMPS

includes a functionality to perform parallel multiple-shot resolutions

once the LU factors have been distributed over the processors. Once

the resolution phase is completed, the multiple-shot solutions are left

in core and distributed over the processors allowing straight forward

parallelization of subsequent tasks in the FWI program such as gra-

dient computation. We first validated our algorithm with a realistic

synthetic test consisting of a dip section of the Overthrust model. We

first inverted 7 frequencies successively following a multiresolution

strategy. Second, two groups of 4 and 3 frequencies respectively were

inverted successively. A fastest and more robust convergence was ob-

served using the first multiresolution strategy. This multiresolution

strategy was applied to a real wide-angle 2D dense Ocean Bottom

Seismometers (OBS) data set (100 OBS gathers) recorded with a 1-km

spacing in the eastern-Nankai trough (Japan) to image the deep crustal

structure of the subduction system (105 km X 25 km). A speedup of

14 was obtained using 40 processors of a PC cluster and an Infiniband

interconnect. The same parallel strategies was implemented in a 3D

full-waveform inversion algorithm.

INTRODUCTION

Full-waveform inversion (FWI) has prompted renewed interest these

last years. Especially, the frequency domain formulation of FWI has

been shown to be effective to build accurate velocity models for com-

plex structures from global offset acquisition geometries (Pratt, 2004).

The potential interest of such approach is to exploit the full aper-

ture range spanned by global offset geometries to image a broad and

continuous range of wavelengths in the medium including large to

middle wavelengths. For the global offset acquisition geometry, the

frequency-domain approach of FWI has been shown to be efficient for

several reasons: first, only few discrete frequencies are necessary to

develop a reliable image of the medium thanks to the wave number

redundancy provided by multi-aperture geometries (Sirgue and Pratt,

2004; Pratt and Worthington, 1990; Pratt, 1999). Second, proceeding

sequentially from the low to the high frequencies defines a multi reso-

lution imaging strategy which helps to mitigate the non linearity of the

inverse problem. The inverse problem is solved by an iterative local

linearized approach using a classic gradient method. At each iteration,

the residual wavefield is minimized in the least-squares sense. This

process is iterated non linearly, which means that the final model of the

current iteration is used as a starting model for the subsequent iteration.

Full-waveform modeling of the inverted frequencies is performed with

a finite-difference frequency-domain method (Jo et al., 1996; Hustedt

et al., 2004). In the frequency-domain, solving the wave equation re-

quires the resolution of a large sparse system of linear equations.If

this system can be solved with a direct solver, the solution for multi-

ple sources (i.e. multiple RHS vectors) can be obtained efficiently by

substitutions once the matrix was LU factorized (Marfurt, 1984).

Although the frequency-domain formulation of FWI is attractive for

three abovementioned reasons, the computational cost of FWI remains

high especially for 2D multiparameter elastic or 3D acoustic inver-

sions. Therefore, it is essential that FWI algorithms take advantage of

parallel computing facilities. We present in this paper how parallelism

for distributed-memory platform can be implemented in frequency-

domain FWI and quantify the speed-up that we obtained with a 2D real

data case study. The structure of the parallel FWI algorithm is strongly

driven by the parallel functionalities implemented in the MUMPS di-

rect solver (Amestoy et al., 2006, 2007) that we used to solve the for-

ward problem.

FREQUENCY-DOMAIN FULL-WAVEFORM INVERSION

Theoretical aspects

Let’s consider the 2D frequency-domain acoustic wave equation

ω2
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(1)

where p is pressure, b is buoyancy, ρ is density, ω is angular frequency

and s is the source. ξ are 1D damping functions for absorbing PML

conditions (Berenger, 1994).

Since the relationship between the pressure wavefield and the source

is linear, equation 1 can be recast in matrix form

A(m)p = s (2)

where A is the so-called impedance matrix whose coefficients depend

non linearly on the model parameters m.

The inverse problem related to the forward problem 2 is solved with

a weighted least-squares gradient method. The weighted least-squares

cost function is given by

C (m) = ∆d†Wd∆d, (3)

where ∆d is the misfit vector (the difference between the observed data

and the data computed in model m). The superscript † indicates the

adjoint (transpose conjugate). Wd is a weighting operator applied to

the data which scales the relative contribution of each component of

the vector ∆d in the inversion. Minimization of the cost function leads

to the following solution for the ith component of the model perturba-

tion ∆m after scaling and smoothing of the gradient (see Pratt et al.

(1998); Ravaut et al. (2004); Operto et al. (2006) for more details).

∆mi = −α (diagHa + εI)−1
GmRe

{

pt

[

∂At

∂mi

]

A−1Wd∆d∗
.

}

(4)
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where diag Ha = diagRe{ Jt Wd J∗} denotes the diagonal elements

of the weighted approximate Hessian Ha and J denotes the sensitivity

matrix. According to equation 4, one element of the sensitivity matrix

is given by

Jk(m,n),i = pt
m

[

∂At

∂mi

]

A−1δn. (5)

where k(m,n) denotes a source-receiver pair of the acquisition system,

m and n denote a shot and a receiver position respectively. δn is an

impulsional source located at the receiver position n.

The diagonal of the approximate Hessian provides a preconditioner of

the gradient which properly scales the perturbation model (Shin et al.,

2001). The damping parameter ε is used to avoid numerical instability

(i.e. division by zero). The matrix Gm is a smoothing regularization

operator. It was implemented in the form of a 2-D Gaussian spatial

filter whose correlation lengths are adapted to the inverted frequency

component Ravaut et al. (2004). An amplitude gain with offset ap-

plied to each seismic trace was used for the operator Wd (Operto et al.,

2006). The inversion code can be applied to vertical geophone data or

to hydrophone data generated by explosive sources. Indeed, vertical

geophone data can be processed as pressure data thanks to the reci-

procity principle (Operto et al., 2006). The inversion is applied in cas-

cade to several groups of discrete frequencies. All the frequencies of

one group are inverted simultaneously. The final model obtained close

to inversion of one group of frequencies is used as a starting model

for the next group of frequencies. For each frequency group, several

iterations can be computed.

Equation 4 describes the imaging principle of FWI based on general-

ized diffraction tomography (Lailly, 1984; ?): the model perturbation

is computed by zero-lag correlation between the forward wavefields

p with the residuals backpropagated in time, A−1δd∗. Contribution

of several shots is taken into account by simple summation. Gradient

computation requires two forward problems per shot, one to compute

the incident wavefield p and one to compute backpropagated resid-

uals. The scaling of the gradient in equation 4 requires the explicit

estimation of J and therefore one resolution per non redundant shot

and receiver position (see equation 5). In our algorithm, the scaling

of the gradient could be estimated once per frequency before the first

iteration and kept constant over iterations or re-computed at each iter-

ation. The term ∂A
∂mi

is the radiation pattern of the diffraction by the

model parameter mi. In the case of the P-wave velocity, this radiation

pattern is that of an explosion. In other words, this matrix reduces to

one scalar. In the case of density, the radiation pattern is that of a verti-

cal force for a shot located at the vertices of the model parameter. The

source term can be estimated in the FWI algorithm by solving a linear

inverse problem (Pratt, 1999).

Parallel implementation of FWI

To solve the system equation 2 for multiple RHSs, we used the mas-

sively parallel direct solver MUMPS (Amestoy et al., 2006, 2007) for

distributed-memory computer. The direct solver is based on a mul-

tifrontal method which is suited for parallelization (Duff and Reid,

1983). The MUMPS algorithm is subdivided in three main steps. First

a sequential symbolic analysis step performs re-ordering of the matrix

coefficients to minimize the fill-in of the matrix during the subsequent

factorization and an estimation of the graph of the matrix. Second,

the numerical factorization provides LU factors distributed over all the

processors. Third, the resolution is performed in parallel for multi-

ple sources (i.e. multiple RHS vectors) taking advantage the BLAS3

(Basic Linear Alegebra subprograms) library. The source vectors for

the resolution phase are provided in sparse format on the host proces-

sor. After resolution, the multiple solutions are left distributed over

processors and each processor stores a spatial sub-domain of all the

solutions. We take advantage of the distributed in-core storage of the

MUMPS solutions to compute in parallel the gradient and the diagonal

Hessian. The gradient of the cost function and the diagonal Hessian

are basically computed by a weighted summation of the forward prob-

lem solutions, equation 4, where the weights contain the data residuals

and the coefficients of ∂At

∂mi
. Each processor computes a subdomain of

the gradient and of the diagonal Hessian according to the domain de-

composition of the forward problem solutions performed by MUMPS

At the end of the summations, the gradient and the diagonal Hessian

are centralized on the host processor with a collective communication

and the gradient is scaled by the diagonal Hessian. The algorithm

proceeds with the search of the optimal step length by parabolic fit-

ting. The search of the step length requires to perform two times a

factorization and a multi-RHS resolution in order to compute the cost

function for two guesses of the step length. These tasks are computed

with the parallel functionalities of MUMPS described above.

The parallel FWI algorithm is summarized in Figure 1.

Figure 1: Parallel algorithm for FWI. The tasks in red and black are

computed on multi and single processors respectively. P[i] means pro-

cessor number i. RMS is the root-mean squares.

APPLICATION TO THE SEG/EAGE OVERTHRUST MODEL

We first verified the algorithm using a dip section of the SEG/EAGE

Overthrust model (Figure 3a). The test was run on 12 processors of

a HP DL 145G2 cluster made of Opteron dual-core bi-processor 2.4

GHz 64 bits nodes with a 921.6 Gflops total peak power. The in-

terconnect is Infiniband. The model grid us 801 x 187 with a 25-m

grid interval. Seven frequencies ranging between 3.5 Hz and 20 Hz

were inverted. The starting model was obtained by smoothing the

true model with a 2D Gaussian filter of vertical and horizontal cor-

relation lengths of 500 m (Figure 3b). During the first test (Test 1),

the seven frequencies were inverted successively by proceeding from

the lower to the higher frequency. The source wavelet was a Ricker

with a 10-Hz dominant frequency. Fifteen iterations were computed
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per frequency leading to 105 velocity models of increasing resolution.

The real time required for 15 iterations of 1 frequency inversion was

around 10 mn. The final model is shown in Figure 3c. During the

last two tests, two group of frequencies were successively inverted

(frequencies of one group are inverted simultaneously). The 4 fre-

quencies of the first group range between 3.5 Hz and 10 Hz and the

3 frequencies of the second group range between 13 Hz and 20 Hz.

The source wavelet was respectively a Ricker wavelet (same that of

Test 1) and a Dirac wavelet for the Tests 2 and 3 respectively. Two

different wavelets were used to assess the impact of the relative spec-

tral amplitudes in the multi-frequency FWI behavior. Fifty iterations

were necessary for each group of frequencies to obtain a final velocity

model with the same resolution that of Test 1 suggesting that the mul-

tiresolution strategy used for Test 1 provides the best preconditioning

of the FWI (Figures 3d and 3e). The final model obtained with a Dirac

wavelet exhibits a slightly better resolution than the one obtained with

a Ricker wavelet. This illustrates the higher weight of the low and high

frequencies in FWI when a Dirac wavelet is used.

Figure 2: a) Dip section of the Overthrust model. b) Smooth starting

model. Note that the true model is set up in the first 100 meters. c)

Final model obtained by 7 successive mono-frequency inversions. d)

Final model obtained by 2 successive multi-frequency inversions us-

ing a Ricker source wavelet. e) Final model obtained by 2 successive

multi-frequency inversions using a Dirac wavelet with a 5-Hz domi-

nant frequency.

APPLICATION TO A DENSE OBS DATA SET

We computed the speed-up reached by our parallel algorithm for an

application to a real 2D Ocean Bottom Seismometer (OBS) data set.

The reader is referred to Operto et al. (2006) for an extensive descrip-

tion of the velocity models obtained by FWI and their interpretation.

Figure 3: a) Vertical graphs extracted from the true velocity model

(black) and the final FWI velocity models (gray) of Test 1 (a), 2 (b)

and 3 (c).

In Operto et al. (2006), the application was performed on 12 Xeon

processors interconnected with a GBytes network. Only the factoriza-

tion was computed in parallel. The computing time was more than

20 days. The OBS data presented were collected during the KY0106

cruise, performed by the Institute for Frontier Research on Earth Evo-

lution (IFREE, Japan) between July 29th and September 6th 2001. A

dense array with a 1-km spacing of 100 OBS was deployed. Thirteen

frequencies uniformly sampled between 3 Hz and 15 Hz (frequency

interval: 1 Hz) were inverted successively. Twenty iterations were

computed per frequency leading to 260 velocity models of increasing

resolution. The velocity model dimensions are 105 km x 25 km cor-

responding to a finite-difference grid of 4201 x 1001 with a 25-m grid

interval. The number of shot per OBS gather was 1005 and the number

of inverted OBS gathers was 93. The order of the matrix is about 4.4

106 with 40 106 non zero coefficients. The diagonal Hessian was com-

puted for a decimated acquisition consisting of 1 shot out of 4. This

lead to 354 RHSs in the resolution phase for the Hessian estimation.

The parallel FWI algorithm have been run on several clusters to assess

its numerical behavior. Due to the increase of MPI communication in

this algorithm, a fast interconnect is required to improve the CPU time.

We present here results obtained on a HP DL 145G2 cluster composed

of forty eight Opteron dual-core bi-processor 2.4 GHz 64 bits nodes

with a 921.6 Gflops total peak power. Each nodes shared 8 Gbytes of

RAM memory. Each node is interconnected with an Infiniband net-

work. Four MPI processes were allocated per node. We have also

used a HP DL 585 Opteron dual core quadri-processors with 32 Go of

RAM to performed our simulation on a single processor.

In parallel computing, speedup refers to how much a parallel algo-

rithm is faster than a corresponding sequential algorithm. It is defined

by the ratio between the effective time used by a sequential and paral-

lel execution. In our application and for 40 cores, parallel factorization

was 14 times faster than the sequential one. Another important perfor-

mance metric is the efficiency, defined by the ratio between the speed

up and the number of core. The efficiency estimates how well-used

the processors in solving the problem, compare to how much effort is

wasted in communication and synchronization. Our scalability anal-

ysis consists of performing a series of simulations by increasing the

number of cores to evaluate the behavior of CPU time and memory.

The results are summarized in Figures 4 and 6. The red curve in Fig-

ure 4 gives the CPU-time scalability of the overall algorithm for one

frequency inversion. The cyan and yellow curves shows the CPU-

time scalability of the MUMPS solve phase for respectively 354 and
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93 RHS vectors. Table 1 summarizes the computational complexity

of this application. The memory allocated during the factorization is

a linear function of the number of core. The amount of memory in-

creases because of increasing overheads during factorization (Figure

6). The optimal number of cores for this application in term of CPU

time is 40 because past it, significant MPI communication will be re-

quired.

Figure 4: Speed up and efficiency of the main step of the FWI algo-

rithm as a function of the number of core.

Optimal number of cores 40

Number of LU factors (complex) 645.106

Total memory to store LU factors 5 Gb

Total memory to store one solution 32 Mb

Total memory for factorization 19 Gb

Real time for factorization (1 frequency) 19 sec

Real time for 354 resolutions (diagonal Hessian) 106 sec

Real time for 93x2 resolutions (gradient estimation) 2x25 sec

Real time for 1 iteration of 1 frequency inversion 760 sec

Total time for 20 iterations of 13 frequencies inversion 2 days

Table 1: Computational complexity of the parallel FWI algorithm for

the seismic imaging of the eastern Nankai trough.

PERSPECTIVE AND CONCLUSIONS

We present a massively parallel algorithm for 2D acoustic full-waveform

inversion based on the MUMPS direct solver for distributed-memory

Figure 5: Size in Gbytes of all Mumps internal data allocated during

factorization (sum over all processors) as a function of the number of

core.

Figure 6: a) Velocity model obtained close of the 5-Hz frequency in-

version. b) Corresponding velocity perturbation model (difference be-

tween the FWI model and the starting model developed by first-arrival

traveltime inversion.

platform such as High Performance Cluster. Future works will concern

the extension to 2D visco-elastic media, 2D TTI anisotropic acoustic

media and 3D acoustic media.
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