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3D frequency-domain finite-difference modeling of acoustic wave propagation using a massively par-
allel direct solver: a feasibility study
S. Operto �, J. Virieux, Géosciences Azur, P. Amestoy, L. Giraud ENSEEIHT-IRIT, J. Y. L’Excellent, INRIA-ENS-Lyon

SUMMARY

We present a frequency-domain finite-difference method for model-

ing 3D acoustic wave propagation based on a massively parallel direct

solver. This method was developed as a tool for frequency-domain

full-waveform inversion of 3D global offset data that requires an effi-

cient modeling code for multiple shots and few frequencies.

We have first implemented a finite-difference stencil for the 3D acous-

tic frequency-domain wave equation in pressure. The method is based

on the parsimonious mixed-grid formulation which linearly combines

several second-order accurate staggered-grid stencils on different ro-

tated coordinate frames to minimize the numerical anisotropy. Accu-

racy of the stencil is improved by using an average of the mass accel-

eration term at the collocation point. Our approach leads to a 27-point

stencil. The resultant system of linear equations is solved with the

massively parallel solver MUMPS based on a multifrontal method.

We have computed multi-shot simulations in the 3D SEG/EAGE over-

thrust model to assess whether representative seismic imaging prob-

lems can be tackled with the frequency-domain approach. The 5 Hz

frequency has been modeled in a portion of the overthrust model of

dimension 20� 11:4� 4:5 km using a PC cluster of 20 bi-processor

nodes with 4Go of memory each.

We conclude that, using larger clusters, 3D frequency-domain full-

waveform modeling and inversion applied to dense global offset ac-

quisition geometries may provide a reliable tool for imaging the large-

to middle- wavelengths of geological structures.

INTRODUCTION

Quantitative seismic imaging of 3D crustal structures is one of the

main challenge of geophysical exploration at different scales (subsur-

face, oil exploration, crustal and lithospheric investigations). Few ap-

plications of frequency-domain full-waveform inversion applied to 2D

onshore and offshore global offset seismic data have been recently pre-

sented to image complex structures such as thrust belt or subduction

zone (Ravaut et al., 2004; Operto et al., 2006). The potential inter-

est of such approaches is to exploit the full aperture range spanned

by global offset geometries to image a broad and continuous range

of wavelengths in the medium including large to middle wavelengths.

The frequency-domain approach of full-waveform inversion has been

shown to be efficient for several reasons (e.g., Pratt et al. (1998)): first,

only few discrete frequencies are necessary to develop a reliable im-

age of the medium thanks to the wavenumber redundancy provided by

multi-aperture geometries. Moreover, proceeding sequentially from

the low to the high frequencies defines a multiresolution imaging strat-

egy which helps to fulfill the assumptions associated with linearized

inverse methods.

In 2D, the few frequency components required to solve the inverse

problem can be efficiently modeled in the frequency domain using

a finite-difference (FD) method. Modeling of one frequency with a

finite-difference method requires to solve a large and sparse system of

linear equations. If this system can be solved with a direct solver, the

solution for multiple right-hand side terms (i.e., multiple sources) can

be obtained very efficiently which is crucial for tomographic applica-

tions. Indeed, the factorization of the matrix is solved once and the

multiple solutions can be rapidly obtained by forward and backward

substitutions.

The drawback of the direct approach compared to the iterative coun-

terpart is the huge core memory required by the fill-in of the factored

matrix (the matrix after LU factorization). Todays, modern computers

with shared or distributed memory allow to tackle the 2D frequency-

domain full-waveform modeling and inversion problems for repre-

sentative imaging problems at the oil exploration and deep crustal

scales (Ravaut et al., 2004; Operto et al., 2006). The aim of this study

is to assess the feasibility of 3D frequency-domain finite-difference

modeling of wave propagation based on a massively parallel direct

solver MUMPS (MUMPS-team, 2006; Amestoy et al., 2006). We first

present the FD stencils that have been developed for the 3D frequency-

domain finite-difference (FDFD) wave equation. Second, we present

some simulations in the 3D SEG/EAGE overthrust model performed

with a small PC cluster composed of 20 bi-processor nodes.

DISCRETIZATION OF THE 3D WAVE EQUATION

The method is the 3D extension of the 2D parsimonious mixed-grid

method (Hustedt et al., 2004). The wave equation is first written as

a first-order hyperbolic system in pressure-particle velocities in the

frequency-domain,�iω
K(x;y;z) P(x;y;z;ω) = 1:

ξx(x) ∂Vx(x;y;z;ω)
∂x

+ 1:
ξy(y) ∂Vy(x;y;z;ω)

∂y
+ 1:

ξz(z) ∂Vz(x;y;z;ω)
∂ z= S(x;y;z;ω)

Vx(x;y;z;ω) = ib(x;y;z)
ωξx(x) ∂P(x;y;z;ω)

∂x

Vy(x;y;z;ω) = ib(x;y;z)
ωξy(y) ∂P(x;y;z;ω)

∂y
:

Vz(x;y;z;ω) = ib(x;y;z)
ωξz(z) ∂P(x;y;z;ω)

∂ z
:

(1)

where P, Vx and Vz are the pressure and particle-velocity wavefields

respectively. S is the explosive source. K and b are bulk modulus and

buoyancy respectively. ω is angular frequency. ξi = 1+ jγi=ω are

PML functions controlling the wave absorption on all four sides of the

model and γi are damping functions in the PML layers (i=x,y and z

and j2 =�1) (Hustedt et al., 2004).

The first-order spatial derivatives in equation 1 are discretized using

second-order accurate centered staggered-grid stencils on different ro-

tated coordinate frames (e.g., Virieux (1984); Saenger et al. (2000)).

Second-order accurate staggered-grid stencils are used because their

local spatial extent limits the bandwidth of the impedance matrix to

be factorized (Jo et al., 1996). Different rotated coordinate frames are

defined for discretization. Their axis must cover as many directions as

possible in order to limit the numerical anisotropy. We have used three

main coordinate frames consistent with the staggered-grid geometry:

[1] the classic cartesian one (Figure 1a). [2] one obtained by rotation

around one cartesian axis (Figure 1b). This defines 3 basis by rotation

around x, y and z respectively, and therefore, 3 elementary FD stencils.

[3] one formed by the 4 big diagonal of a cubic cell (Figure 1c). This

defines 4 additional basis and, therefore, 4 additional stencils (Saenger

et al., 2000). Note that these coordinate frames differ from those in-

troduced by Stekl and Pain (2002) who proposed to use, in addition

to the coordinate frames [1] and [2], one coordinate frame obtained

by rotation around 2 of the Cartesian axis. This defines 6 additional

stencils which are not consistent with a staggered-grid geometry in the

sense that they would require to define more than one pressure grid.

Once the equation system 1 has been discretized with the 7 staggered-

grid FD stencils, particle velocities are eliminated from the system

leading to 7 discrete second-order wave equation in pressure. After

elimination, only the pressure wavefield remains but the underlying
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staggered-grid structure still appears in the parsimonious formulation

through the estimation of the buoyancy parameter at intermediate posi-

tions with respect to the pressure grid points. The parsimonious strat-

egy provides a systematic recipe to discretize second-order wave equa-

tion from its first-order representation. After particle-velocity elimina-

tion, the 3 discrete wave equations of the coordinate frame [2℄ can be

averaged as well as the 4 equations of the coordinate frame [3℄. We end

up with 3 discrete second-order wave equations associated with the co-

ordinate frames [1℄, [2℄ and [3℄ which define a 9-point, 19-point and 27-

point stencils respectively. The three discrete wave equations can be

linearly combined to minimize phase velocity dispersion. Moreover,

the mass term at the collocation point is replaced by its average over

the grid points involved in the 27-point stencil to improve the accuracy

of the stencil (Jo et al., 1996).

The wave equation discretized with the parsimonious mixed-grid strat-

egy can be compactly written as("
4

∑
l=1

wmlMl(x;y;z;ω)+ 3

∑
n=1

wnSn(x;y;z;ω)#P(x;y;z;ω))
i; j;k = Si; j;k

(2)

where M and S denote the discrete mass and stiffness operators re-

spectively. w denotes the weights applied to the 3 discrete wave equa-

tions associated with each coordinate frame. These weights verify

w1 +w2 +w3 = 1.

For the mass acceleration term, we have�M1

�
i; j;k = ω2

K
i; j;k�M2

�
i; j;k = ω2

K
i�1; j;k + ω2

K
i; j�1;k + ω2

K
i; j;k�1�M3

�
i; j;k = ω2

K
i�1; j�1;k + ω2

K
i�1; j;k�1

+ ω2

K
i; j�1;k�1�M4

�
i; j;k = ω2

K
i�1; j�1;k�1

(3)

where we have used the summation convention, ω2

K
i�1; j;k = ω2

K
i+1; j;k +

ω2

K
i�1; j;k . The weights wm verify wm1 +wm2=6+wm3=12+wm4=8 =

1.

The coefficients w and wm are computed by optimization such that the

phase velocity dispersion is minimized for different directions of prop-

agation. We used a simple grid search algorithm to find a first estimate

of the solution followed by a Gauss-Newtown local optimization. The

normalized phase velocity as a function of the number of grid points

per wavelength, G, is shown in Figure 2. The optimization was com-

puted for G = 4.

The pattern of the impedance matrix discretized with the 27-point sten-

cil is shown in Figure 3 for a small 3D grid of dimensions 8� 8� 8.

The order of the matrix is 83. The matrix is band diagonal with fringes.

The bandwidth of the matrix is O(n1n2) where n1 and n2 are the two

smallest dimensions of the 3D grid. The number of non zero coeffi-

cients per row is 27.

To solve the system 2, we have used the massively parallel direct

solver MUMPS which is based on a multifrontal method and dis-

tributed dynamic scheduling of tasks (Amestoy et al., 2006; MUMPS-

team, 2006). The algorithm is subdivided into 3 main phases: [i] an

analysis phase which computes a reordering of the matrix coefficients

that will reduce the fill-in of the factored matrix and a symbolic factor-

ization. For the re-ordering phase we have used the algorithm METIS

(Karypis and Kumar, 1998); [ii] the factorization based on a multi-

frontal method. The reader is referred to (e.g., Liu (1992)) for a review

on the multifrontal method; [iii] the resolution for multiple shots.
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Figure 1: Coordinate frames used for discretization of spatial deriva-

tives. An elementary cubic cell is plotted. The circles mark the ref-

erence pressure grid. Gray circles are the grid points involved in the

stencil. The triangles indicate the locations of the buoyancy required

to compute the spatial derivatives. The thick black lines indicate the

direction along which spatial derivatives are discretized. a) Cartesian

frame. b) Coordinate frame obtained by rotation around the x- axis.

Similar rotation around y and z are also used leading to a 19-point

stencil. c) Coordinate frames formed by the 4 big diagonals leading to

a 27-point stencil.
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Figure 2: Dispersion curves for different directions of plane-wave

propagation in a homogeneous medium. The direction of propaga-

tion of the plane wave is defined by 2 angles which vary between 0

and 45o in the figure.

2



1

65

129

193

257

321

385

449

1 65 129 193 257 321 385 449

Figure 3: Impedance matrix for the 27-point stencil and a 83 grid.

The accuracy of the 27-point stencil was verified by comparing [i] the

3D FDFD solution with the analytical one for a homogeneous medium

(Figure 4), [ii] the 2D FDFD solution computed in a corner-edge ve-

locity model (Hustedt et al., 2004) with the 3D FDFD one. The 3D

solution has been computed using a line source in a 2.5D extension of

the 2D model to mimic a 2D simulation (Figure 5).
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Figure 4: Comparison between graphs extracted from 4-Hz wavefields

computed analytically (black) and by FDFD (gray) in a 4km/s homo-

geneous medium. Graphs have been extracted along x, y and z. The

horizontal axis are source-receiver offset. The agreement is good ex-

cept near the zero-offset singularity of the analytical solution.

APPLICATION TO THE 3D SEG/EAGE OVERTHRUST MODEL

To assess the feasibility of 3D FDFD modeling of acoustic wave prop-

agation for realistic problems, we have computed simulations in the

3D SEG/EAGE overthrust model for a realistic 3D global-offset acqui-

sition geometry. The 3-D SEG/EAGE Overthrust model is a constant

density acoustic model covering an area of 20 km x 20 km x 4:65 km

(Aminzadeh et al., 1995). It is discretized with 25 m cubic cells, rep-

resenting an uniform mesh of 801 x 801 x 187 nodes. The dominant

frequency of the simulated seismic experiment is about 15 Hz.

For our simulations, we have used a small PC cluster of 20 bi-processor

nodes with 4Go of memory per node. Two processes were allocated

per node. We have first considered the 5 Hz frequency. This leads to a

grid interval of 100 m to verify the sampling condition of 4 grid points

per minimum wavelength. The overthrust model has been smoothed

with a Gaussian filter of horizontal and vertical correlation lengths of

150 m and undersampled with a mesh interval of 100 m. With such

grid interval, we have been able to compute simulations in a fraction

of the overthrust model of dimension 20� 10:7� 4:6 km (Figure 6).

This corresponds to a 3D rectangular grid of dimension 208�116�55
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Figure 5: Corner-edge model. Top: solution computed with a 2D

code. Bottom: solution computed with a 3D code. The plot of the

3D solution includes the absorbing PML layers on contrary to the 2D

one. Frequency is 5 Hz. P-wave velocities are 3 km/s and 5 km/s

in the upper-left and lower-right layers respectively. The corner is at

(5.2,3.6) km. The source is at (6,2.5) km.

which incorporates 4 grid points in the PML layers. We have computed

simulations for 420 sources representing an array of land stations with

a spacing of 1 km and 500 m along x- and y- respectively (thanks to

reciprocity of Green’s functions, receivers can be processed as shots in

the frame of full-waveform inversion).

The total memory that has been allocated during factorization is around

70 Go. The elapsed time for factorization and resolution for all the

420 sources is around 83 mn and 42 mn respectively leading to a to-

tal elapsed time of around 2 hours to complete the 420 simulations

(Table 1). Two examples of mono-frequency wavefields are shown in

Figure 6(c-d). A wavepath, that is the sensitivity kernel of frequency-

domain full-waveform inversion, has been computed for a short-offset

source-receiver pair. The width of the isochrones gives some insights

on the vertical resolution which would be achieved by full-waveform

inversion at 5 Hz. This resolution is of the order of 200 m and 500 m

near the surface and the bottom of the model respectively.

CONCLUSIONS AND FUTURE WORKS

These preliminary results suggest that representative seismic imaging

problems could be tackled using large cluster with up to 1.6 To of dis-

tributed memory (considering 400 processors with 4 Go of memory

each). With such an amount of memory, simulations may be com-

puted in the full overthrust model for frequencies up to 8 Hz (assum-

ing a memory requirement of O(n5)). At these frequencies, yet rather

accurate images of the overthrust model can be obtained (Figure 7 for

an illustration in the 2D case). Future works will concern [i] the use of

out-of-core memory in the factorization, [ii] the combined use of direct

and iterative solvers, [iii] the improvement of multiple-shot resolution

(out-of-core and parallelization) and, the [iii] the implementation of a

3D frequency-domain full-waveform inversion algorithm.
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Figure 6: a) 3D overthrust model after smoothing with a 2D Gaussian filter of correlation lengths 150 m. b) Example of wavepath for short-offset

source-receiver pair. The width of the isochrones gives some insights on the expected vertical resolution of full-waveform inversion for the 5 Hz

frequency. (c-d) Examples of 5 Hz monochromatic pressure wavefields.

Computational cost of the overthrust simulation

nx ny nz MEMtot MEMproc ETF ETR

208 116 55 71474 2232 4994 5.7

208 116 55 69976 2166 5101 8.8

Table 1: (nx;ny;nz): dimensions of the 3D velocity grid. MEMtot :

Total memory allocated during factorization. MEMproc: Maximum

memory allocated to one processor. ETF: elapsed time for factoriza-

tion. ETR: Elapsed time for resolution per shot. Two simulations have

been computed with (first line) and without (second line) involving the

master processor in the factorization.
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