N
N

N

HAL

open science

Timed diagnostics and test case minimization for
real-time systems

Ismail Berrada, Richard Castanet, Rachida Dssouli, Abdeslam En-Nouaary,
Patrick Felix, Ferhat Khendek, Aziz Salah

» To cite this version:

Ismail Berrada, Richard Castanet, Rachida Dssouli, Abdeslam En-Nouaary, Patrick Felix, et al..
Timed diagnostics and test case minimization for real-time systems. 2006. hal-00408442

HAL Id: hal-00408442
https://hal.science/hal-00408442

Preprint submitted on 30 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00408442
https://hal.archives-ouvertes.fr

Timed Diagnostics and Test Case Minimization
for Real-Time Systems™*

Ismail Berrada !, Richard Castanet !, Rachida Dssouli 2, Abdeslam
En-Nouaary 2, Patrick Félix !, Ferhat Khendek 2, and Aziz Salah 3

! LaBRI - CNRS - UMR 5800 Université Bordeaux 1
33405 Talence cedex, France
{berrada,castanet,felix}@labri.fr

2 Electrical and Computer Engineering, Concordia University
1455 de Maisonneuve W., Montreal
Quebec H3G 1M8, Canada
{dssouli,ennouaar,khendek }@ece.concordia.ca

3 Département d’Informatique, Université du Québec a Montréal
201, avenue du Président-Kennedy, Montreal
Quebec H2X 3Y7, Canada
aziz.salah@Qugam.ca

Abstract. Real-Time systems (RTS for short) are those systems whose
behavior is time dependent.Reliability and safety are of paramount im-
portance in designing and building RTS because a failure of a RTS put
the public and/or the environment at risk. For the purpose of effective
error reporting and testing, this paper considers the trace inclusion prob-
lem for RTS: given a path p (resp. p’) of length n of a timed automaton
A (resp. B), find whether the set of timed traces of p of length n are
included in the set of timed traces of p’ of length n such that p is known
(the different constraints and clock updates of p are given) and p’ is un-
known (only the set of traces is given and the different constraints and
clock updates of p’ are unknown). The solution proposed to this problem
is based on the identification of the timed diagnostics of bounds. These
latter give a finite representation of the trace space corresponding to a
path. Their number varies between 1 and 2 x (n + 1). The the problem
of trace inclusion is then reduced to the inclusion of timed diagnostics of
bounds. By the way, the paper shows how to use these results to mini-
mize the number of test cases considered when testing RTS.

Keywords: Timed Input Output Automata, Trace Inclusion, Analyze,

Black-Box Testing, Timed Diagnostic, Conformance.

* This research has been supported by the French RNTL project Avérroes and the
Marie Curie RTN TAROT (MCRTN 505121).

1 Introduction

Nowadays, real-time systems (RTS for short) span various domains. We en-
counter them in our daily life such as telephone systems and video movies as
well as in hospitals for patient monitoring and in airport for controlling air traf-
fic. All these systems are time sensitive. That is, their behavior does not only
depend on the logical result of the computation but also on the time at which
the inputs are entered and the time at which the results are produced. It is
well-known to RTS research community that the misbehavior of a RTS is gen-
erally due to the violation of the time constraints that govern the behavior of
the system. Such malfunctioning may have catastrophic consequences on both
human lives and environment. Therefore, it is very necessary to make sure that
the implementation of a RTS is error-free before its deployment.

Two formal techniques are usually used to ensure error-free real-time systems,
namely verification and testing. Verification deals with the specification of the
system under consideration and aims at making sure that some functional and
timing requirements are satisfied. However, testing deals with the implemen-
tation of the system being considered (usually referred to as Implementation
Under Test or IUT for short) and checks its conformance to the specification of
the system. To do so, three steps are required. First of all, test cases should be
generated. Then, those test cases are executed against IUT and the reactions of
the latter are logged. Finally, the verdict is concluded by analyzing the reactions
of the TUT: if for each test case, the outputs of the IUT match the expected
ones (i.e. those derived from the specification) then the IUT is said conform to
its specification; otherwise the IUT is said faulty and the diagnosis process is
started to locate and fix the fault.

In this paper, we study the following problem:

Trace inclusion problem. Consider a path p (resp. p') of length n € N of a
timed automaton A (resp. B). How to show that TTrace(p) C TTrace(p’) such
that:

— p is known: the different constraints and clock updates of p are given.
— p’ is unknown: only the set TTrace(p’) is given (the different constraints and
clock updates of p’ are unknown).

with TTrace(p) are the timed traces of p of length n 1.

Our motivations for studying this problem are:

1. Testing. The testing research community distinguishes between three main
testing strategies: black-box testing, white-box testing, and grey-box test-
ing. Those testing strategies differ from each other on the way the test cases

LA formal definition of TTrace() is given in section 3.

are generated. In the case of black-box testing of RTS, the code of IUT is
unknown and only its timed traces are given. Black-box testing consists then
of deriving test cases based solely on the specification of the IUT. The use of
so called conformance relations give formal characterizations of conditions
under which an IUT can be considered as conformant to its specification.
Checking a conformance relation can be reduced, in general, to the trace
inclusion problem between the implementation and the specification. By
studying this problem, the paper gives necessary and sufficient conditions
to check a conformance relation based on trace inclusion.

2. Verification. When checking a system against a property, a simple yes/no
answer is not often satisfactory. Diagnostics are any kind of supplementary
information (for instance, states, executions,...) which helps the user to un-
derstand why verification fails or succeeds. Diagnostics are important for the
following reasons [19]:

(a) Without them no confidence in the system’s model can be gained. For
instance, in case the property is not satisfied by the model, it might be
that it is not the system which is wrong, but the modeling.

(b) Even if the model is correct, the fault cannot be easily located without
any guidance.

In the case of RTS, there is a need for timed diagnostics, containing infor-
mation both about the discrete state changes of the system, as well as the
exact time delay between two discrete transitions.

The main contribution of this paper is the proposition of a solution to the trace
inclusion problem. The proposed solution is based on the identification of the
timed diagnostics of bounds corresponding to a path. These latter consider only
the behaviors of the RTS on the constraint bounds. Their number varies between
1 and 2 x (n+ 1), where n is the length of the path. The proof of the existence
of those diagnostics 1) considers the constraint polyhedron corresponding to the
set of constraints that each timed trace of the path has to satisfy and 2) uses
some graph transformations that preserve the positivity of the graph cycles. By
the way, the paper shows that the problem of trace inclusion can be then reduced
to the inclusion of timed diagnostics of bounds. This result has a great influence
on the test cases to considered while testing RTS. In fact, the paper provides a
method to reduce the number of test cases used by using timed diagnostics of
bounds.

The rest of this paper is structured as follows. Section 2 introduces the theoret-
ical background of the paper. Section 3 presents the model of timed automata
and its corresponding notations. Section 4 corresponds to the core of this paper
and shows how to generate timed diagnostics from a path. Section 5, based on
the result of section 4, outlines a method for minimizing the number of test cases
considered while testing RTS. Section 6 presents the related work. Finally, we
conclude and draw some perspectives in section 7.

2 Background

Through-out this paper, we write R, RZ% N for the sets of reals, nonnegative
reals and naturals, respectively. +o0o (resp. —o0) is the positive infinity (resp.
negative) such that: t € R, —oo <t < +o00, t + (+00) = (+00) +t = 400 and
t+ (—00) = (—o0) +t = —co. R is the set RU {+00, —00}. For a set P, 2% is
the powerset of P and for a given order on P, min(P) is the smaller element of
P. Logical and and or or are written A and V, respectively.

2.1 Timed event and timed sequence

Let X be a finite set of symbols. As usual, X* will denote the set of finite
sequences and € € X* the empty sequence. 7 will denotes an action not in X
and X, will denote the set X U {7}. Let o be a sequence. Then |o| will denote
the length of o (i.e. number of elements), o; will denote the ith element of o (i
ranges from 0 to |o| — 1). For X C ¥, o|x will denote the sequence obtained by
erasing from ¢ all symbols not in X (projection on X).

A timed event over X is a pair u = (a,d) such that a € X and d € R=%. If a is
interpreted to denote an event occurrence then ¢ is interpreted as the timestamp
of occurrence of a. event(u) will denote the untimed event a associated to v and
time(u) the real d. A timed sequence o = (ay,d1)...(an, dy,) over X' is a member
of (X' x RZ%)* such that the sequence of timestamps is monotonically increasing.
For example, o = (a1,3).(az,5) is a timed sequence, however ¢’ = (a1, 3).(azg, 2)
is not. The set of timed sequences over X is noted T'S(X).

2.2 Valuations and Polyhedra

Valuations. Let V be a finite set of variables ranged over RZ%. A valuation
v over V is a function v : V +— RZ0 that assigns to each variable a real value.
V(V) will denote the set of valuations over V. Let X CV,d € R and v € V(V).
Then v[X := 0] is the valuation defined by v[X := 0)(z) = v(z) if + ¢ X and
v[X := 0](z) = 0 otherwise. Intuitively, v[X := 0] assigns to each variable in
X the value 0 and leaves the rest of variables unchanged. v 4 d is the valuation
such that for all z € V, (v +d)(z) = v(x) + d. Intuitively, v + d is obtained from
v by advancing all variables by d.

Polyhedra. An atomic constraint on V is an expression of the form z < n and
x —y <A m where z,y € V and n,m € N. The set of formulas that are finite
conjunctions of atomic constraints (resp. constraints of the form z < n) will be
denoted by &(V') (resp. €1(V)). Elements of #(V') are called polyhedra. We write
false for () and true (resp. zero) for A\, ., > 0 (resp. Ayoey = 0A Ay, @ <
0). Let v € V(V) and Z € ®(V). Then v satisfies Z, noted v € Z, if v satisfies
all constraints of Z. Z is bounded iff there is d € N such that for all v € Z,
v+d ¢ Z. Zis equivalent to Z’, noted Z ~ Z', iff for all (v,v') € Z x Z', we
have v € Z' and v/ € Z. Intuitively, Z and Z’ represent the same portion of
space.

2.3 Graphs and paths
Graphs. A directed labeled graph (DLG for short) G is a triple (V, E, w), where

— V is a finite set of elements {v1,vq,- - , v} called vertexes,

— F is the set of couples of distinct elements of the cartesien product V x V'
called edges (E = {(vi,v;)|vi,v; € V ANv; # vj}),

— wg : E— Ris a function that assigns to each edge a weight.

The couple (v;,v;) € E, noted v; — v;, represents the edge of source v; and
target v;. Note that G is a complete graph.

Paths. Let G be a DLG. A finite/infinite path p is a sequence of edges e;1.es...e, (...
(e; is an edge). A path of length n is a path of n edges. The weight of p,
noted w(p), is the sum of the weights of (e;)ie(1,n): w(P) = D ;e wles). Let
e = v; — v; be an edge. Then, path(e) denote the set of paths of source v; and
target v;. A cycle with root v; is path from v; to itself. An elementary cycle
(e-cycle for short) is a cycle does not visit a vertex twice, except from the root
vertex. Let G = (V, E,w) be a DLG. G is said:

— nonnegative if the weight of each cycle of G is nonnegative. Formally, for all
cycle ¢, w(c) > 0.

— minimal if the weight of each edge e is less then or equal to the weight of each
path of path(e). Formally, for all e € E, for all p € path(e), w(e) < w(p).

Next, we will use the term graph to denote a DLG.

3 Timed Automata

A clock is a variable that allows to record the passage of time. It is ranged over
RZ9, and the only assignment allowed is clock reset of the form z := 0.

Timed automata [1]. A timed automaton (TA) A over X is a tuple A =
(L,lo, X, C,I,—) such that:

— L is a finite set of locations,

— lp is the initial location,

— X is an alphabet of actions,

— (' is a finite set of clocks,

— I :Lw— &;(C) is a mapping that assigns invariants to locations, and

—C L x &(C) x X, x 2¢ x L is the set of edges, where an edge contains
a source, a label, a guard, a set of clocks to be reset with this edge, and a
target.

The labels in X represent the observable interactions of a system; the spe-
cial label 7 ¢ X' represents an unobservable, internal action. A transition ¢t =
(I, Z,a,r,l') €= is noted by 1 225 ', T A(X) will denote the set of all TAs over
.

Semantics. The semantics of a TA A is defined by associating a labeled tran-
sition system (LTS) S(A) = (S, s, I, —4). A state of S(A) is a pair (l,v) € Q
such that [is a location of A and v is valuation for C' such that v satisfies the
invariant I(I). The initial state so of S(A) is (lp,v) where v € zero. Labels I'
are included in X U {e(d) | d € R} such that {e(d)|d € R} corresponds to the
elapse of time (Waiting d units of time is noted e(d)). There are two types of
transitions in S(A):

— State change due to elapse of time: for a state (I,v) and d € R=° (I,v) 9,

(Lv+d)ifforall 0<d' <d,v+d €I(l) (a timed transition).
— State change due to a location-edge: for a state (I, v) and an edge (1, Z, a,r,l'),
(Lv) Sa (U,v[r==0)) if v € Z and v[r := 0] € I(') (a discrete transition).

Remark 1. We assume that TA we are working with have non Zenon behavior,
i.e. the automata should not enforce infinity many events in a finite interval of
time. This implies the absence of computation with infinitely many actions with
finite cumulative delay. We also assume the requirement of progress, i.e. systems
are supposed to execute forever.

Runs. Let A = (L,lp, ¥,C,I,—) beaTA and o € T'S(X;) be a timed sequence
such that |o| = n. A run r of A over o, denoted by ({,7), is a finite sequence of
the form:

on

r: (lo,v0) =5 (L, v1) von (1, V1) = (bny vn)

with [; € L, and v; € V(C), for all i € [0, n], satisfying the following requirements:

1. Initiation: for all z € C, vy(x) = 0.
2. Consecution: for all ¢ € [1,n], there is an edge t; = (li—1, Zi, event(0s),73,1;)
of A, such that:

— vi—1 + (time(oi) — time(oi—1)) € Z;.
— v; equals to (v;—1 + (time(o;) — time(oi—1)))[ri := 0].
—vi1+de 1(8171) holds for all 0 <d< time(ai) — time(m,l).

Intuitively, at the initial state [y, the values of clocks are defined to be zero. When
the transition t;11 from state I; to l;41 occurs, we use the value v; +time(o;11) —
time(o;) to check the clock constraints, however, at time time(o;41), the value
of clocks reseted in ¢;41 are defined to be 0. By convention, time(og) is equal to
0.

Ezample 1. Consider the TA A of the Fig.1 and the timed sequence (a, 2)(b, 3.7).
The run corresponding to this sequence is given below. A clock interpretation is
represented by listing the values [z, y].

(11, [0,0]) 25 (15, [2,01) L2 (15, (3.7, 1.7).

Fig. 1. Timed automata.

The set of timed sequences of A, noted Run(A), is defined by:
Run(A) = {o | A has a run over o € TS(X,)}.

The set of timed traces of A, noted TTrace(A), is defined by:

TTrace(A) = {o | 30’ € Run(A), 0 = o(5}.

Finally, for a path p of A, we use TTrace(p) to denote the set of timed traces
of length n of the automaton A, induced by p 2.

4 Timed diagnostic of a path

Let A be a TA. A timed diagnostic of A is an element of TTrace(A). In this
part, we provide an approach to extract timed diagnostics from a given path p.
As we will see in the next section, timed diagnostics can be used to improve the
confidence in the system’s model or to test a RTS.

The idea behind our approach is as follows: to the path p, we can associate
a constraint polyhedron Z, which define the set of constraints to be satisfied
by each element of T'Trace(p). The polyhedron Z, can be then represented as a
graph G,,. This graph has nonnegative cycles iff the polyhedron Z, is not empty.
By defining some transformations on the graph G, that preserve its positivity,
we identify some timed diagnostics of p called the timed diagnostics of bounds.
These latter give a finite representation of the trace space of p.

For the rest of this paper, p = t;---t, will denote a path of A such that
ti = (lic1, Ziy a4, 14, 1;), for all 4 € [1,n]. V = {v1,va,- - ,v,} will denote a set
of variables ranged over RZ°, Vo = V U {vg} the set V extended with a fictive
variable vy equals to 0 all time. We will confound elements of ¢(V') with elements
of #(V,) and a valuation over V with a valuation over V.

2 A, has the same states and transitions as p.

4.1 Graph-theoretic formulation

Constraint polyhedron. Let o0 = (a1,d1) - - (an,dy) € TTrace(p). According
to the definition of TTrace(p), the difference instants (d;);c[1,n) satisfy a set of
constraints related to the transitions of p as shown in next example.

Ezxample 2. Consider the path p of the automaton of Fig.1, defined by:

z<5/a/y:=0 z>3Ay<4/b/—

L

lo ls.

such that I(l1) = x < 8 and I(l1) = I(l2) = true. Let v;, i € [1, 2], be the instant
of firing, according to a global clock, of the transition of source l;_; and target
l;. Then, the location Iy is reachable if only if the system:

0<v <9
’Ul§8

S = 1)1§5
1)223
vy — v < 4

has a solution. In other words, the polyhedron Z, defined by:
Zp = OS’Ul/\’Ul S’Ug/\’Ul §5/\’U2 23/\1)2—1}1 §4

is not empty. By consequence, o = (a,dy).(b,d2) € TTrace(p) iff the valuation
v defined by v(v1) = di, v(v2) =dz is in Z,. O

In a more general case, we can associate to p, a constraint polyhedron Z, over
variables Vo = {wvo,v1,- -+ ,v,} such that: o € TTrace(p) iff the valuation v €
V(Vo) defined by v(v;) = time(o;) is in Z,, for all Vi € [0,n]. The construction
of Z, is illustrated in the Fig. 2.

Let last? be the index of the transition where the clock = has been reset most
recently before ¢ (i € [0,n]). Recall that e {<, >}, Vi = {vo, -+ ,v,} and all
clocks are reseted at the initial location ly. For all ¢ € [0,n], v; represents the
instant of firing ¢; according to a global clock. By convention, we assume the
existence of a transition ¢y where all clocks are rested at instant vy = 0. Initially,
Z, is equal to true (line 1) and the suite (v;);c[o,n) is monotonically increasing
(line 3). At step i € [1,n] of the algorithm, if #; has term over x of the form
x > k (line 5) then, the constraint v; — v; pa k is added to Z,, where z is last
rest in j (line 6). If ¢; has term of the form x —y < k (line 7) then, the constraint
vp — vy X k is added to Z,, where last? = q et last! = p (line 8). In fact, the
time elapsed since the last reset of x (resp. y) in the transition ¢, (resp. t,) is
equal to v; — vy (resp. v; — vp). Thus, . —y = (v; — vg) — (v; —vp) = Vp — V.
Finally, the same approach is applied to the invariant of a state (lines 9-10).

Input : p=t1--tn, ti = (li=1, Zs,ai,73,1;), for all i € [1,n].
Output : Z, € &(Vp)

Begin
1. Z, = true
2. For i :=1 to n do
3. Zp = Zp Avi—1 < v;
4. For z € C do
5. If the guard of ¢; has a term of the form x < k then
6. Zy = Z, Nv; — vj X k, where j = last].
7. If the guard of ¢; has a term of the form = — y > k then
8. Zy = Zy Nvp — vg X k, where g = last{ and p = last?.
9. If the invariant of I;_1 has a term of the form z <t k then
10. Z, = Z, Nvi — v; X k, where j = last].

End

Fig. 2. Constraint polyhedron.

Convention. Without losing generality and for simplicity reasons, we assume
that Z, can be written syntaxely as:

Z, = /\ (’Ui — vy < lij), lij S R.

v;,05 €Vo,v; AV;

In fact, a constraint of the form v; < ¢ can be written as v; — vy < ¢ (vp is equal
to 0) and v; < cAv; < ¢ can be written as v; —vg < min(c, ¢'). Furthermore, if v;
does not have upper bound in Z,, then we can add the constraint v; —vg < +o00.
These remarks hold for a constraint of the form v; —v; <c.

Constraint graph. Let Z, = A\, , cv; v,0,(Vi = Uj < li;) be the constraint
polyhedron associated to p. The constraint graph G, = (Vo, E, w) associated to
Z, is the graph defined by:

w(vy = v) =lLij Av; = v; € E <= v; —v; <lj; is a term of Z,,.
Theorem 1. 7, # false iff G, is nonnegative. ad

Intuitively, the set TTrace(p) is not empty iff the constraint graph G, does not
contain negative cycles. The proof of the theorem can be found in [8]. We will
said that Z, is in its canonical form if the graph G, is minimal.

Until now, we have showed that we can associate to p a constraint graph G/, such
that TTrace(p) is not empty iff G, does not contain negative cycles. In order to
proof the main theorem of subsection 4.3, we need to define some transformation
on G,. Subsection 4.2 introduces three transformations that keep the positivity
and/or the minimality of the transformed graph. To save space we omitted the
proof of lemmas in this subsection, but they are based on the comparison of the
weights of e-cycles, and can be found in [3].

4.2 Graph transformation

Transformation m(). Let m() the function that associate to each graph G =
(V, E,wg) the graph G’ = (V, E, wg) such that: for each edge v, — v, € E,

war (vp — vg) = min({wa(p) |p € path(vy, — vg)}).

Intuitively, the weight of e = v, — vg, in G’, is equal to the minimal weight,
in G, of all path of source v, and target v,. This weight is either reached by a
path, i.e. there exist p € path(e) such that wg(e) = wa(p), or wa(e) = —o0
when {wg(p) |p € path(e)} is not bounded. Note that, G’ is a minimal graph.
This transformation preserves the positivity of cycles as established in the next
lemma.

Lemma 1. G is a nonnegative graph iff m(G) is not. a

Transformation R;_,.(). Let R;_,.() the function that associate to each graph
G = (V, E,wg) the graph G’ = (V, E, wer) such that: for each edge v, — v, € E,

vl apy — {wet =) i =
wea (vp — vq) otherwise

Intuitively, if v, — v, is not an incoming edge of the vertex v; then, this edge
keeps the same weight in G and G’. Otherwise, the weight of v, — v, is replaced,
in G’, by the opposite weight of the outgoing edge v; — v, of v;. The next lemma
establishes some properties of this transformation related to the minimality and
the positivity of the transformed graph.

Lemma 2. Let G be a nonnegative graph and i € [1,n]. Consider the graph
G' = m(R;—«(Q)). Then,

1. R;_..(Q) is a nonnegative graph.
2. If G is minimal then, for all edge v, — vy € I :

we(vp — vq) if vp =1
war (vp = vg) = § —we(vg — vp) if vg =i

—wa(v; = vp) + wa(v; — vg) otherwise
O
Intuitively, the transformation R;_,.() preserves the positivity of cycles. When

G is minimal and nonnegative, the second point of the lemma gives a method
to compute the minimal graph associated to R;_,.(G) using the weights of G.

Transformation R._.;(). This transformation is similar to R;.(). For a
graph G = (V, E,wg), the transformed graph G’ = (V, E,w¢r) is defined by:
for each edge v, — v4 € E,

vty o= { e

wa(vp — vg) otherwise

Intuitively, the only difference between G and G’ is in the weights of outgoing
edges of vertex v;: for all v; — vy € E, wgr(v; — vq) is equal to the opposite
weight of wg(vy — v;). The next lemma reports properties similar to those of
Ri—..(G).

Lemma 3. Let G be a nonnegative graph and i € [1,n]. Consider the graph
G’ = m(R.—i(Q)). Then,

1. R._;(G) is a nonnegative graph.
2. If G is minimal then, for all edge v, — vy € E :

we (vp — vq) if vg=1;
war (vp — vg) = § —wa(vg — vp) if vp =y

wa(vp — v;) —we(vg — v;) otherwise

4.3 Main result

Until now, we have defined the constraint polyhedron Z, (resp. graph G,) as-
sociated to p and we have defined some transformations over positive graphs.
These results allow us to introduce the next theorem. Before that, let m(G,) =
(Vo, E, wy,) the minimal graph of G,,. The canonical form of Z,, noted cf(Z,),
is the polyhedron defined by:

Cf(Z) = /\ (’Ui — vy < lz]) such that Vj — Vj € E, wm(vj — ’Ui) = lij.
Yvi,vj €V, viF#v;

Note that cf(Z,) and Z, represent the same space portion.

Theorem 2. Let p be a path and cf(Z,) = /\vi’vjevo’v#vj (vs —vj < l;j) be the
canonical form of its constraint polyhedron. Assume that Z, is bounded and not
empty (Z, false). Then, for all k € [0,n] :

1. There is a valuation v (Z,) of Z, such that: for all i € [0,n], i # k,
VIJcW(Zp)(Ui) - Vljcw(Zp)(’Uk) = lig.

2. There is a valuation vj'(Z,) of Z, such that: for all i € [0,n], i # Kk,
v (Zp) (o) = v (Zp)(0i) = i O

Intuitively, if Z, is bounded and nonempty, then for each variable v € Vj, there
is a valuation vp!(Z,) (resp. vj"(Z,)) which reaches the bounds (Lix)kziic(0.n]
(resp. (Iki)ki,ic(o,n)) Of ¢f(Z,) constraints, where vy, is a right (resp. left) mem-
ber. We have assumed that Z, is bounded to ensure the existence of v} (2).
The valuations v} (Z) exist even Z, is not bounded because variables of V; are
ranged over R=0.

Proof. To proof the theorem, it is equivalent to show that, for all k£ € [0, n], the
polyhedra:

zM = /\ (vi—vk < lig Ao — v < —lig) A /\ (vi —v; < lij)
v; Vo, vi £ vk V3,05 €V, vi AV AUk

and

" = /\ (v — v <l Avg — v < —=lgi) A /\ (vi —vj < lij)
v Vo, vi #vk vi,05 € Vo, vi v vk

are not empty sets (ZM + false and Z* + false). In fact, let G, be the
constraint graph of cf(Z,) and k € [0,n]. ¢f(Z,) is canonical then G, is mini-
mal. Z, o false implies that G, is a nonnegative graph (theorem 1). Now, one
can notice that the constraint graph G(ZM) (resp. G(ZI")) associated to ZM
(resp. Z}*) is nothing else than the graph obtained from G, by the transfor-
mation Ry_.() (resp.R._x()) defined above: G(ZM) = Ri—..(G,) et G(ZI") =
R._.x(G)p). So, according to the first point of the lemma 2 (resp. lemma 3), we
deduce that G(ZM) (resp. G(Z")) is a nonnegative graph and by consequence,
ZM =i false (resp. Z* =+ false). Furthermore, the second point of lemma
2 (resp, lemma 3) gives a method to compute the canonical form of ZM (resp.
Zm). 0

Computation of v (Z,) and v]*(Z,). Theorem 2 establishes the existence
of valuations (v} (Z,))kej0,n] and v (Z,)kejo,n), and their unicity. Having in
mind that vg = 0, a direct application of this theorem gives: for all k € [0, n],

1. v}M(Z,) is the valuation defined by:
— If k=0 then vM(Z,)(vi) = lio.
— Else vy (Zp)(vi) = ~lo. + lix and v (Z)(vi) = ~lox
for all i € [1,n], i # k.
2. v]*(Z,) is the valuation defined by:
— If k=0 then v]*(Z,)(v;) = —lo;.
— Else v]*(Z,)(vi) = lko — ki and v (Z,)(vk) = lio
for all i € [1,n], i # k.

Ezample 3. Let Z, = 0 < vy Avy < vaAvp <H5Avy > 3ANve —wv1 <4 be
the constraint polyhedron of the example 2. Z, is bounded. Its canonical form
is defined by: cl(Z,) = (va —vo < 5) A (vg —v2 < 0) A (v1 —v9 < 9) A (vg —v1 <
—3) A (v —v2 <4) A (v2 —v1 < 2). Then,

O

Mk)

Now, consider the two suites of timed sequences (0'*)xe(o,n) and (amk)ke[om]

defined by:

— oMk = (ay,uM(Z,)(01)) -+ - (an, VM (Z,) (vn)).
— o™ = (a1, v™(Z,)(v1)) -+ (an, VI(Z,) (vn))-

Note that, for all k € [0,n], c™* € TTrace(p) and o™k € TTrace(p).

Definition 1. The timed sequences (UM’“);CE[O,”} and (omk)ke[o’n] are called the
timed diagnostics of bounds associated to p. o™M¥ (resp. 0™) is called a timed
diagnostic of minimal bounds (resp. maximal). O

The number of timed diagnostics of bounds varies between 1 et 2 X (n+ 1) (n is
the length of the path). The complexity of computing o™* or ¢™* from cf(Z,)
is O(n). The computation of the canonical form of a polyhedron depends on the
data structures used. The algorithm given in [8] allow to compute this form and
to test if a polyhedron is empty. Its complexity is O(n?).

5 Application: error reporting and testing

5.1 Error reporting

Timed diagnostics of bounds can be used to report counterexamples during tim-
ing verification: once the verification tool determines the sequence of transitions
that leads to a violation of the safety property, the timed diagnostics of bounds
provide greater diagnostic feedback.

5.2 Testing

Trace inclusion. To show that TTrace(p) C TTrace(p) is equivalent to show
that cf(Z,) C cf(Z,). We consider here the case where Z, is known and only
the set TTrace(p’) is known. We assume that Z, is bounded and not empty.

Corollary 1. TTrace(p) C TTrace(p') if and only if cM* € TTrace(p') and
o™k € TTrace(p'), for all k € [0,n)]. 0

Intuitively, the corollary gives the necessary and sufficient conditions to show
that TTrace(p) C TTrace(p’). In fact, it is sufficient to show that timed diag-
nostics of bounds of TTrace(p) are also timed diagnostics of TTrace(p’).

Proof. The proof is a consequence of TTrace(p) C TTrace(p’) iff cf(Z,) C
cf(Zy). As (W (Z,))kejo,n) and (V7 (Z,))ke(o,n) Teach all bounds of ¢f(Z,), then
if vYM(Z,) € Zy and vJ*(Z,) € cf(Z,), we can deduce that bounds of cf(Z,)
are less than bounds of cf(Z,/). The density and convexity properties of sets
cf(Z,) and c¢f(Z,) imply that all v € cf(Z,) is also in c¢f(Z,). O

Test cases and Testers. A test case (test for short) is an experience performed
on the IUT by an observer (the tester). In the case of RTS, there are different
types of tests, depending on the capabilities of the tester to observe and react
to event. Analog-clock tests [9,13] can measure precisely the real-time delay
between observed actions. Digital-clock tests can only count how many “ticks”
of a finite-granularity clock have occurred between two actions. Analog-clock
testers can measure real-time precisely, but there are difficult (if not impossible)
to implement for real-time IUT. Digital-clock testers have access to a periodic
clock/counter and are implementable for any IUT. However, they can announce
a “Pass” verdict when it is “Fail” (the reception of an event “a” after 2.7 units of
time and the same reception after 2.8 units of time will look the same for a digital-
clock tester). The use of a digital-clock testers does not mean the discretization
of time, the specification is still dense-time but the capabilities of the tester are
discrete-time. In this paper, we consider digital-clock testers. Furthermore, we
will consider static tests, i.e. the response of the digital-clock tester is the same
and known at advance.

Digital-clock test derivation. Our goal her is not to provide a complete
method to derive digital-clock tests, but only to give the broad lines of an
approach to build statically digital-clock tests. In [3] the reader can found a
complete algorithm to derive tests for digital-clock/analog-clock testers.

Simulation graph [19]. Tripakis defines a number of different abstractions for
timed automata and study the properties they preserve. These abstractions are
based on the simulation graph, which is built by forward reachability and pre-
serves all linear properties. In the simulation graph, the passage of time is hidden
and only the discrete-state changes can be observed. Let A be a TA, S = (I, 2)
be a zone (i.e. a location [of A and a polyhedron Z), and ¢t = (I, Z’,a,r,1’) be
a transition of A

post, (S, t) = {(I', close((Z N Z")[r == 0])', ¢))}

Intuitively, post() contains all states (and their c-closure) that can be reached
from state in S., by taking transition ¢ and letting some time pass. Given the
initial location ly of A, the simulation graph S(A,c) (c is a natural constant
greater than the closure of A) is generated using an depth-first search starting
from Sy = (ly,zero!) and generating for each vertex S = (I,Z) in the stack,
the successors S’ = post.(S,t), for each transition ¢t = (I, g, z,7,1') of source [
in A. The exploration of the branch leading to S; is stopped if: either S; = ()

or there is a previously generated vertex S; C S’. Otherwise, S; is added to
the set of vertexes and S = S; to the set of edges of the simulation graph. It
has been shown that S(A,c) is finite and there is a run of A from Iy to Iy if
in the simulation graph there in a vertex S = (ly, —). Moreover, for each path
So = (lo, Zo) 42,08 = (lh, Z1)... A, S, = (ln, Zy) in the simulation graph,
there is a run r = (I,7) of A such that v; € Z;, for all i € [0,n], and vice versa.

Test derivation. The idea of our approach to generate tests is to use the simula-
tion graph. As we have said, S(A, ¢) gives a finite representation of the reachable
state space; each path of it has a run of A and each run of A is inscribed in path of
S(A,c). Classical methods for untimed systems can be used, in general, to derive
a set of path from S(A,c). Let ATS(A) a set of paths derived from S(A, ¢) with
respect to a given coverage criterion (states, transitions,...). Element AT'S(A)
can not be used directly to test a given implementation of A because they are ab-
stract. Each path p € AT'S(A) define a set of timed traces TTrace(p). Corollary
1 has a great influence on test cases considered for the path p. In fact, according
to this corollary, the number of distinct tests required for the trace inclusion is
between 1 and 2 x n test cases corresponding to the timed diagnostics of bounds
of p.

Thus, compared to other works, our approach does not suffer from the explo-
sion problem, since we use only tests that meet the timed diagnostics of bounds.

6 Related Work

Regarding works in analyzing RTS, [2] have studied the problem of timestamp
generation: given a path of the automaton, we wish to check if there is a cor-
responding execution, and if so, generate a possible sequence of time values at
which the individual transitions are traversed. The solution proposed consists in
computing one timed diagnostic corresponding to the minimal accumulate delay
run. The approach of Tripakis for generating timed diagnostics presented in [19,
20] was based in a symbolic analysis. The solution proposed uses the simulation
graph to generate abstract paths. For each abstract path, the authors chose ran-
domly the instant of firing the transitions. In [14], the authors show that the
existence of timed diagnostics associated to a symbolic path, but do not provide
a method to compute them. In [10], the authors propose to use the verification
tool Uppaal to generate the optimal timed diagnostic corresponding to a path.
In [16], the authors propose several algorithms to compute the minimal timed
diagnostic that reach a given state.

To our knowledge, the identification of the timed diagnostics of bounds is a
new result, and the problem of trace inclusion has not been studied before.

Regarding works on testing, [13] propose a method to derive analog/digital-clock
test cases. The approach proposed was based on a symbolic analysis. However,
the propose method has the following problems:

1. The generation method for digital tests considers “ticks” of clocks as an
observable event. As a consequence of this choice, is the presence of long
chains of ticks in the test cases generated as reported in [13]: “Digital-clock
test can sometimes grow large because they contain a number of “chains”
of ticks”. The authors propose then a heuristic to compact chains of ticks,
but this heuristic does not give always minimal test and it is not trivial:
“Reducing the size of test representations is a non-trivial problem in general,
related to compression and algorithmic complexity theory”.

2. The choice a the instants of emission is randomly. By consequence, the num-
ber of test cases generated is important [13] : “We have obtained 68, 180,
591, and 2243 tests for depth levels 5, 6 , 7 and 8, respectively”

The solution that we have proposed was based in the use of timed diagnostics of
bounds and does not suffer from these problems. As we have show, the inclusion
of specification traces in the implementation traces can be established by the
timed diagnostics of bounds.

An extension of test theory for Mealy machines in the case of dense RTS was
proposed by Springintveld et al. [18]. The authors suggested to perform a kind of
discretization of the region graph model. Another work generating test sequences
for a discretized deterministic timed automaton is given by En-Nouaary et al. in
[7]. The authors propose to build a grid automaton from the region graph, and
use a Wp method for the generation assuring a good coverage of the initial spec-
ification, but the number of generated test cases can be large. In [5], an implicit
clock is used, the time is discrete and the proposed model is a temporized tran-
sition system. In [12], the authors have chosen as model temporized automata
with discrete time. The model is transformed into automaton without time, but
with two special events on clocks: set and expire. In [6], the system specifica-
tion is based on a constraint graph. From a fault model, the authors define test
criteria and generate test cases according to the test criteria. Since constraint
graph is used as a model, only delays can be expressed between two successive
events, and the coverage of faults cannot be complete. In [15], the generation of
test cases is produced from logic formula (time is expressed by using two con-
structors: future and past). A unique clock is used and the temporal domain is
discrete. [11] propose a generation method based on must/may traceability. The
authors propose to test first, the correctness of the implementation of states and
transitions. For that, they transform the specification into a FSM, and use the
UIOv-method to derive test cases. [17] use symbolic analysis for event-recording
automata inspired by the Uppaal model-checker.

All of these methods successfully generate timed test cases but most of them
suffer from an exorbitant number of test cases.

7 Conclusion

In this paper, we have studied the trace inclusion problem of RTS. Our solution
was based on the identification of the timed diagnostics of bounds corresponding

to a given path. The trace inclusion problem is then reduced to the inclusion of
the timed diagnostics of bounds between.

Timed diagnostics of bounds can be used to report counterexamples during
timing verification. Regading testing, our solution was based on the use of the
simulation graph of Tripakis to derive abstract tests, and to generate from each
abstract test, the set of test cases corresponding to the timed diagnostics of
bounds. In this way, the number of tests generated still lower.

To have a complete coverage of the timed trace space of the specification while
testing (according to corollary 1), the assumption of the event determinism of
the specification and the implementation is required. This model is quite restric-
tive, and the generalization will benefit many RST. Espacially, the determinism
assumption may be broken by the on-the-fly determinisation techniques.

References

1. R. Alur and D. Dill. A theory of timed automata, Theoretical Computer Science,
126:183-235, 1994.

2. R. Alur, R. Kurshan and M. Viswanathan. Membership problems for timed and
hybrid automata. 19th IEEE Real-Time Systems Symposium, 1998.

3. Ismail Berrada. Modélisation, Analyse et Test des Systémes Communicants & Con-
traintes Temporelles : Vers une Approche Ouvert du Test. Phd thesis, Université
Bordeauz 1, Bordeaux, France, 14 December, 2005.

4. Laura Brandan and Ed Brinksma. A test generation framework for quiescent real-
time systems. Proceedings of the 4rd International Workshop on Formal Approaches
to Testing of Software, FATES200/, Linz, Austria September 21, 2004.

5. Rachel Cardell-Oliver. Conformance testing of real-time systems with timed au-
tomata specifications. Formal Aspects of Computing, 12(5):350-371, 2000.

6. Duncan Clarke and Insup Lee. Automatic test generation for the analysis of a real-
time system: case study. In 3rd IEEFE Real-Time Technology and Applications Sym-
posium,

7. A. En-Nouaary, R. Dssouli, F. Khenedek and A. Elqortobi. Timed test cases gener-
ation based on state characterization technique. In 19th IEEE Real Time Systems
Symposium (RTSS’98), Madrid, Spain, 1998.

8. Robert W. Floyd. Algorithm 97 (shortest path). Communications of the
ACM,18(3):165-172, 1964.

9. T. Henzinger, Z. Manna and A. Pnueli. What good are digital clocks?. ICALP’92,
LNCS 623, 1992.

10. Anders Hessel, Kim G. Larsen, Brian Nielson, Paul Pettersson and Arne Skou.
Time-optimal real-time test case generation using Uppaal. In FATES2003, Montreal,
Quebec, Canada, October, LNCS 2931, pp. 118-135, Springer.

11. T. Higashino, A. Nakata, K. Taniguchi and A. Cavalli. Generating test cases for a
timed i/o automaton model. TESTCOM99, Budapest, Hungary, September 1999.

12. A. Koumsi, M. Akalay, R. Dssouli, A. En-Nouaary, L. Granger. An approach for
testing real time protocols, TESTCOM, Ottawa, Canada, 2000.

13. M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems.
In SPIN 2004, Spring-Verlag Heidelberg, pp. 109-126, 2004.

14. Kim G. Larsen, Paul Pettersson and Wang Yi. Diagnostic model-checking for real-
time systems. In Proc. of WVCHS I1I, number 1066 in LNCS, pp. 575-586. Springer-
Verlag, October 1995.

15. Dino Mandrioli, Sandro Morasca and Angelo Morzenti. Generating test cases for
real-time systems from logic specifications. ACM Transactions on Computer Sys-
tems, 13(4):365-398, 1995.

16. P. Niebert, S. Tripakis and S. Yovine. Minimum-time reachability for timed au-
tomata. In Mediterranean Conference on Control and Automation, 2000.

17. B. Neilson ans A. Skou. Automated test generation for timed automata. TACAS 01,
LNCS 2031, Springer 2001.

18. Jan Springintveld, Frits Vaandrager and Pedro R. D’Argenio. Testing timed au-
tomata. Theoretical Computer Science, 252(1-2):225-257, March 2001.

19. Stavros Tripakis. The formal analysis of timed systems in practice. PhD thesis,
Université Joseph Fourier de Grenoble, 1998.

20. Stavros Tripakis. Timed diagnostics for reachability properties. In Tools and Al-
gorithms for the Construction and Analysis of Systems, TACAS’99, Amsterdam,
Holland, 1999.

