
HAL Id: hal-00408368
https://hal.science/hal-00408368

Submitted on 30 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From the feasibility analysis to real-time test generation
Ismail Berrada, Richard Castanet, Patrick Felix

To cite this version:
Ismail Berrada, Richard Castanet, Patrick Felix. From the feasibility analysis to real-time test gener-
ation. Studia Informatica Universalis, 2004, 3 (2), pp.141-168. �hal-00408368�

https://hal.science/hal-00408368
https://hal.archives-ouvertes.fr

“main”
2004/3/5
page 1�

�

�

�

�

�

�

�

1

FROM THE FEASIBILITY ANALYSIS TO REAL-TIME
TEST GENERATION

ISMAIL BERRADA, RICHARD CASTANET AND PATRICK FÉLIX

Abstract. Testing real-time systems is an important and not obvious step in the validation process
of critical systems. This paper proposes an efficient ���������
	���
�� algorithm for solving the feasi-
bility problem corresponding to a path of length � in a timed automaton, with 	 clocks. The given
solution, combined with synchronous product, allows in particular, generating both the fastest and
the slowest timed test cases for a given test purpose.

1. Introduction

The behavior of a real-time system is highly dependent on the temporal per-
formances of target hardware platforms used for the implementation. These
temporal constraints should be taken into account at the earliest stage of devel-
opment process. But, we should notice the increasing implementations com-
plexity, due to their algorithms and time constraints. Since systems must be
delivered faultless, one way to increase their security is through conformance
testing.

1.1. Conformance Testing

A general definition of conformance is to compare the implementation behav-
ior with the specification one, in order to find errors. This verification consists
in the definition of some test sets, their submission to the system under test
(IUT), and the observation of their executions with a verdict (oracle) based on
the specification, whether they are successful or not. The definition of the test
set can be based on the specification (black-box), on the structure of the im-
plementation (glass-box), or both. Usually, the development of conformance
testing procedures is mostly based on the designers experience. A potential
improvement that is being examined is to make testing a formal method and to
provide tools that automate test cases generation.

Studia Informatica Universalis

“main”
2004/3/5
page 2�

�

�

�

�

�

�

�

2 I. Berrada - R. Castanet - P. Félix

1.2. Test Based Approach

The most known approaches to test selection in the black-box conformance
testing framework are:

Coverage Criteria. The most used coverage criteria are based on the specifi-
cation model. In the case of timed automata, some authors proposed transition,
state or variable coverage approaches.

Test Assumptions. Various test assumptions can be formulated and com-
bined until a finite test set is obtained. In the case of input/output timed au-
tomata, some authors assume that the specification and the IUT are determin-
istic, output enabled, and deadlock and livelock free.

Test Purposes. The user chooses behaviors which have to be analyzed,
hence the specification exploration reduction. Using the specification and test
purposes, a finite number of test cases are generated.

1.3. Our Contribution

Generating a test case for a path assumes that we are already able to decide the
reachability of some states for this path. In this paper, we consider the follow-
ing feasibility problem: if a given path of the automaton has executions, we
wish to determinate which constraints, every execution of this path has to ver-
ify. Our motivation for studying this problem is test cases generation: once the
feasibility conditions over a path are calculated, they allow in particular, gener-
ating both the fastest and the slowest timed executions. While these executions
are not unique, we will identify two versions for each fastest and slowest timed
executions. The contributions of this paper are: a �

���������
	��
	
time solution for

the feasibility problem, generation of the slowest and the fastest timed execu-
tions for a path, introduction and formalization of the strong/weak feasibility
concept, and an application to test cases generation.

1.4. Related Work

An extension of test theory for Mealy machines in the case of dense real-time
systems was proposed by Springintveld et al. [18]. The authors suggested to
preform a kind of discretization of the region graph model. The discretiza-
tion step size takes into account the number of clocks as well as the timing
constraints. From the generated model, they derive test cases. This extension
yields to a finite and complete set of test but the method is highly exponen-
tial and is not usable in practice. Another result generating test sequences for
a discretized deterministic timed automaton is given by En-Nouaary et al. in
[9]. The authors propose to build a grid automaton from the region graph, and

SIU 2003

“main”
2004/3/5
page 3�

�

�

�

�

�

�

�

A Formal Approach for Real-Time Test Generation 3

use a Wp method for the generation assuring a good coverage of the initial
specification, but the number of generated test cases can be large. In [14], the
authors have chosen as model temporized automata with discrete time. The
model is transformed into automaton without time, but with two special events
on clocks: set and expire. The advantage of the method is combinatorial ex-
plosion limitation. A drawback of this approach is the possibility of generating
some test cases that contain non-executable sequences with the events set and
expire.

In [7], an implicit clock is used, the time is discrete and the proposed model
is a temporized transition system. The test concerns only time domains(not
events coming at a precise time). In [8], the system specification is based on
a constraint graph. From a fault model, the authors define test criteria and
generate test cases according to the test criteria. Since constraint graph is used
as a model, only delays can be expressed between two successive events, and
the coverage of faults cannot be complete. In [16], the generation of test cases
is produced from logic formula (time is expressed by using two constructors:
future and past). A unique clock is used and the temporal domain is discrete.
This model is not sufficient to represent complex real-time systems and the
generated test suite covers only integer values of time.

We also mention another interesting contribution [12] that proposes a gener-
ation method based on must/may traceability. The authors propose to test first,
the correctness of the implementation of states and transitions. For that, they
transform the specification into a FSM, and use the UIOv-method to derive test
cases. For the correctness of the implementation of transition conditions, they
assume that faults are restricted to some typical ones and use the must/may
traceability method to generate test cases.

In [6, 10, 17], the authors propose first to enlarge the regions of the graph
and to build dynamically the region graph according to test purposes. Our ap-
proach [13] uses timed automata model and a synchronous product between
the specification and a test purpose as in [15]. A reachable path is dynamically
calculated by resolving inequalities on time constraints. This method avoids
combinatorial explosion of the region graph, but don’t give a complete cover-
age of faults.

The remainder of this paper is structured as follows: After the introduc-
tion of timed automata with global clock (TAGC) model, and formalization of
the feasibility problem, chapter 2 and 3, we will present, in chapter 4, a solu-
tion for reached values computation of the global clock. The identification of
both, the fastest/slowest timed execution, and strong/weak feasibility is done
in chapter 5. In chapter 6, the reached values computation algorithm for any
clock is exposed. An application, of the results proposed in this paper, to test

SIU 2003

“main”
2004/3/5
page 4�

�

�

�

�

�

�

�

4 I. Berrada - R. Castanet - P. Félix

cases generation is presented in chapter 7. The last chapter summarizes the
contributions of the paper and presents future works.

2. Timed Automaton Modeling

Timed automata [2] were introduced as a formal notation to model the behavior
of real-time systems. This section presents the timed automaton model and
some basic definitions in order to specify notations.

2.1. Preliminaries

Let � � denote the set of reals, � ��� the set of nonnegative reals, and � ��� the set
of nonnegative reals with the single element � . We extend the standard partial
ordering � , the addition operator � , and the subtraction operator � over � � �
to � � � in the usual way: for every �
	 � � � , �
��� , ���
�������������
and ��������� . An interval I of � � � is a dense set over � � � denoted by� ����� �

where
�!����� 	 	 � � �

�
. a (resp. b) is the lower (resp. upper) bound of

I: we write " �$# �!% 	 � �
and &('*) �+% 	 � �

.
%

denotes the complementary of I

in � � � . For
�+,-�/. 	 	 � � � , 01" � �+,-�/. 	 (resp. 0 �*2 �!,3�/. 	

) is the smallest (resp.
greatest) of

,
and

.
. For 45� � 4�687 	 6!9;:=<>7?9A@ , 4CBD� � 4EB6F7 	 6>9;:=<G7?9A@ and HI	I� � � :

H � 4J� � H � 4�6F7 	 6>9;:=<>7?9A@ , and 4K�L4 B � � 4M687N�O4 B6F7 	 6>9;:=<G7?9A@ . For a finite setP
, the Q �*R-. � P 	

is the number of elements of
P

.

Clocks, Constraints and Interpretations.

A clock is a variable that allows to record the passage of time. It can be set to
a certain value and inspected at any moment to see how much time has passed.
In the Alur-Dill model [2], clocks increase at the same rate, they are ranged
over � � � and the only assignments that are allowed are clocks reset of the form2TS �JU . For a set C of clocks, the set V � Q 	

of clocks constraints W is defined
by the grammar:

W S � 2 � ,YX=, � 2IX W[Z]\1W �
where x is a clock in C and c is a constant in ^ . A clock interpretation _ for
a set C of clocks is a mapping from C to � � � that assigns a real value to each
clock.

2.2. Timed Automaton

Definition 1 (Timed Automaton). A timed automaton (TA) A is a tuple

SIU 2003

“main”
2004/3/5
page 5�

�

�

�

�

�

�

�

A Formal Approach for Real-Time Test Generation 5

�������M� Q ��� 6��36�� �
	 	 where,
� �

is a finite set of locations,
� � 6��;6�� is an initial location,
� �

is a finite set of labels,
� Q is a finite set of clocks,
� 	�
�� ��� ����� � V � Q 	 ���

is a set of transitions. � 6$� � & � � � W ���$� & B 	
represents an edge from location s to location &-B on symbol a. W is a
clock constraint over C that specifies when the transition is enabled, and
the set

��
 Q gives the clocks to be reset with this transition. For a
transition � 6 and a clock x, Q � � 6 	 denotes the set of clocks that belong to
� 6 , and

� Q � � 6 � 2 	 the specification constraint over x: W �>2 	 .
Definition 2 (TA with Global Clock). A timed automaton with global clock
(TAGC) A is:

� A timed automaton.
� There is a clock h of A without reset in any transition except for a transi-

tion which leads to the initial state.

The notion of the clock h is implicit in the Alur-Dill model and explicit in
the P-automaton [5]. The choice of TAGC model is justified by the context of
black-box testing in which all events are seen according to a global clock, and
by comprehension and clarity reasons.

1

C2[2,6]

2

3

4 5

6

R(C2)

!a

!c

?d

R(C1)

!x!y

?b

h[0,2]

C2[0,1]
C1[0,2]

h[2,7]
C1[2,5]

h[3,13]

h[5,13]
C2[3,7]
C1[3,6]

h[8,9]
C2[0,1]

R(C1)

h[6,14]

C2[0,1]
C1[5,8]

h[4,+INF]
C1[0,2]

h[3,6]
C1[0,2]

Figure 2.1: Timed automaton A with global clock h.

Let A be the automaton with global clock h of Fig. 2.1. This automaton
has 6 states, 8 transitions and 3 clocks. R(C1) means that clock C1 is reset in
this transition. Each transition has some clock’s constraints and events. For

SIU 2003

“main”
2004/3/5
page 6�

�

�

�

�

�

�

�

6 I. Berrada - R. Castanet - P. Félix

this automaton, Q ��� Q�� � Q � ����� , Q � � Z��
	 � 	 ��� �$� Q�� � Q ��� , Q � ��
 �
	�� 	 �
� �$� Q ��� , � Q � � Z��
	 � � Q�� 	 � � U ���-� , and

� Q � ��
 ��	�� � Q � 	 � � � ���-�
.

Definition 3 (Timed Execution). Let A be a TA. A path �
����Z���� � � of A is
a suite of transitions that form an arc in the graph associated with A. A timed
execution (TE) 4 of � is a two-dimensional real array of size

� � Q �*R . � Q � � 	 	 Z
that satisfies:

� Rule 1: � 2 	IQ , ��" 	 � � � � � : 4 � � 6 �/2 	 is the valuation of x in � 6 .
� Rule 2: ��"]	 � � ��� � , 4 � � 6 � 2 	 	 � Q � � 6 �/2 	 .
� Rule 3: ��"]	 � � ��� ��� � , 4 � � 6 �/2 	 � 4 � � 6 � Z � 2 	 if x is not reset in � 6 .
� Rule 4: For every clock y in Q :

– If x and y are not reset in the transition � 6 , then 4 � � 6 � Z � 2 	 �
4 � � 6 �/2 	
� 4 � � 6 � Z ���
	 � 4 � � 6 ���
	 .

– If y alone is reset in � 6 , then 4 � � 6 � Z �/2 	 � 4 � � 6 �/2 	 �
4 � � 6 � Z ���
	 .
– If x alone is reset in � 6 , then 4 � � 6 � Z �/2 	 �
4 � � 6 � Z ���
	 � 4 � � 6 ���
	 .
– If both x and y are reset in � 6 , then 4 � � 6 � Z � 2 	 ��4 � � 6 � Z ���
	 .

While all clocks increase at the same rate, these four rules ensure this hy-
pothesis. From now on, we assimilate execution and timed execution.

Notation 2.1. For a path � �
� Z � � � ����� � � of a TAGC � , � 6 �
� Z � � � ����� � 6 is a sub-
path of � . 4 � � � 	 is the set of all executions of � . If for every " in

� � ��� � , � 6 is
the event associated to � 6 , then:

�!. Z �/� Z 	 � �!. � � � � 	 ����� �!. � � � � 	 , such that
. 6�	 � � ,

is the execution 4 defined by:
� For every " in

� � ��� � , 4 � � 6 ��� 	 � . 6 .
� For every " in

� � ��� � , for every clock
2

in Q � � 6 	 last reset in �� , 4 � � 6 � 2 	 �. 6 � . .
In the reset of the paper, we assume that � � � Z���� � � is a path of a given

TAGC A from the initial state, and
�

is the last state of this path.

3. Feasibility of a Path

In the feasibility problem, we wish to determine the reachability of transition
� � . That is, we are interested in the computation of suitable constraints over �
for firing � � . Section 3.1 formalizes this problem by introducing the reached
values concept and Section 3.2 introduces well-formed (WF) suites, out reach
intervals and some properties of these intervals.

!�" ��#�� is the set of clocks that appear in # .

SIU 2003

“main”
2004/3/5
page 7�

�

�

�

�

�

�

�

A Formal Approach for Real-Time Test Generation 7

3.1. Reached Values of a Constraint in a Transition

Definition 4. Let ��� � � 6 � 2 	�� denote a subset of
� Q � � 6 � 2 	 . ��� � � 6 � 2 	�� is the

reached values set of the clock
2

in transition � 6 if:

1. For every H 	���� � � 6 �/2 	�� , there is an execution 4 	 4 � � � 	 such that:
4 � � 6 � 2 	 ��H .

2. For every execution 4�	 4 � � � 	 , 4 � � 6 �/2 	 is in ��� � � 6 � 2 	�� .
The reached values of a constraint in a given transition depend on the chosen

path. The feasibility problem consists then, in the reached values computation
for every clock in every transition of this path. When there is no confusion on
the path � , ��� � � 6 �/2 	 � will be noted ��� � � 6 �/2 	 .
Corollary 1. The state

�
is a reachable state of � iff for every " in

� � ��� � ,
��� � � 6 ��� 	 is a non empty set. In this case, we say that � is a feasible path.

Lemma 2. For every " in
� � ��� � , for every

2
in Q � �/6 	 , ��� � � 6 � 2 	 is an interval

over � � � .

Proof. From the definition of an execution and the grammar constraints (a con-
straint over a clock is a dense set), it is easy to see that from two executions of
� , 4 Z and 4 � , and a given �
	 � U � � � , the execution E defined by:

��" 	 � � � � � � � 2 	OQ � � 6 	?� 4 � � 6 � 2 	 �	� � 4 Z � � 6 �/2 	 � � � ��� 	 � 4 � � � 6 �/2 	
is an execution of � . Then ��" 	 � � � � � , � 2 	�Q � �/6 	 , ��� � � 6 �/2 	 is a dense set
over � � � .

Remark 3.1. If � B is a path of a TA where the clock h is implicit, and 4 is an
execution of � B , then the clock

�
values of 4 in every transition can be com-

puted. In fact, ��" 	 � � � � � , � 2 	 Q � � 6 	 : 4 � � 6 ��� 	 ��
 67
�
������� �������(< ��� 4 � � 7 �/2 	 ,
where ���-&�� � � � 7 �/2 	 means that the clock x is last reset in transition � 7 with��� " . Now, if for two executions of � B , 4YZ and 4 � , there is �E	 � U � � � such that
��" 	 � � ��� � , � 2��� � 	LQ � � 6 	 , 4 � � 6 �/2 	 � � � 4 Z � � 6 �/2 	 � � �M��� 	 � 4 � � � 6 �/2 	 ,
then: 4 � � 6 ��� 	 �!
 67
�
������� �������=< ��� � � � 4 Z � � 7 � 2 	 � � �
�	� 	 � 4 � � � 7 �/2 	�	�"
4 � � 6 ��� 	 �#� � 4 Z � � 6 ��� 	 � � � �$� 	 � 4 � � � 6 ��� 	 . Conclusion, ��� � � 6 ��� 	 is also

a dense set over � � � if h is implicit.

3.2. Out Reach Intervals

Definition 5. Let
% � � � ��� �

and %T� � ,-�/.;�
be two intervals of � � � . The sum%'& % of

%
and % is the interval defined by:

%'& %I� � � � ,3� � � .;�
.

SIU 2003

“main”
2004/3/5
page 8�

�

�

�

�

�

�

�

8 I. Berrada - R. Castanet - P. Félix

Definition 6 (Out Reach Intervals). The out reach interval of a transition is
the time interval outside of which the transition must happen

�
, in order to be

in agreement with � time constraints. If a transition happens in this interval,
we know that at least one constraint of � is violated. Formally we define:� � ��� 	 � � U � U � � � U � � � �� � � 6 	 � � �39 � ����� � � � � �� 	 & � Q � � 6 � 2 	

where x is last reset in �� � � � � � "), and
� � � 6 	 the complementary of

� � � 6 	 .
Example 3.1. Let � (Fig. 3.2) be the path extracted from the automaton of
Fig. 2.1.

1 5432

h[0,2]
C1[0,2]
C2[0,1]

!a

R(C1)

h[2,7]
C1[2,5] C2[2,6]

?b

R(C2)

t1 t2 t3 t4

!c ?d

h[3,13]
h[5,13]
C1[3,6]
C2[3,7]

Figure 3.2: Out reach intervals.

First, we add a new transition � � in which all clocks are reset:
� � � � 	 � � U � U � .

For �/Z , all clocks are reset in � � , then:� � �/Z 	 � � � � � � 	 & � U � � � 	�� � � � � � 	 & � U � � � 	�� � � � � � 	 &
� U � � � 	 � � U � � � �
For � � , C1 is reset in �/Z , then:� � � � 	 � � � � � Z 	 & � � �
	 � 	�� � � � ��� 	 & � � ��� � 	 � � � ���3�

.
For ��
 , C2 is reset in � � , then:� � ��
 	 � � � � � � 	 & � � ���-� 	�� � � � ��� 	 & � � � � �-� 	 � �
 � � �-� .
At the end, in ��� , C2 is reset in � � and C1 in � Z then:� � ��� 	 � � � � � Z 	 & � � ���-� 	�� � � � � � 	 & � � ��� � 	�� � � � ��� 	 &
� 	 � � �-� 	 � � 	 ��� �

.

Definition 7 (Well-formed Suite). Let
�+% 6 	 6!9�� Z�< ��� be a suite of non empty inter-

vals over � � ,
% 6 � � " �$# �!% 6 	 � &='A) �!% 6 	 � . �+% 6 	 6!9�� Z < ��� is a well-formed (WF) suite if

for every " in
� � � � � � � , " �$# �!% 6 	 � " �$# �+% 6 � Z 	 , &='A) �!% 6 	 ��&='*) �+% 6 � Z 	 .

Definition 8.
�!% 6 	 6>9�� Z < ��� accepts a WF sub-suite

� % 6 	 6!9�� Z < ��� if for every " in� � ��� � , % 6�� % 6 , and
� % 6 	 6>9�� Z < ��� is WF.

The next lemma gives a relation between
� ��� � � 6 ��� 	 	 6!9�� Z < ��� intervals, con-

sequence of path clocks reset.
Lemma 3. � is feasible iff there is a suite of intervals

�!% 6 	 6!9�� Z�< ��� such that:

1.
�+% 6 	 6!9�� Z�< ��� is a WF suite.

2. For every " in
� � ��� � , % 6�� � � � 6 	 .

 According to the clock h.

SIU 2003

“main”
2004/3/5
page 9�

�

�

�

�

�

�

�

A Formal Approach for Real-Time Test Generation 9

3. For every " in
� � ��� � , for every

2
in Q � � 6 	 being last reset in � 7 � ��� " :

� For every H 7 in
% 7 , there is H 6 in

% 6 such that H 6 � H 7 	 � Q � � 6 �/2 	 .
� For every H 6 in

% 6 , there is H 7 in
% 7 such that H 6 � H 7 	 � Q � � 6 �/2 	 .

Moreover, if for every " in
� � ��� � , % 6 � � � � 6 	 is the largest interval verifying the

third condition, then
�!% 6 	 6!9�� Z�< ��� is the wanted suite

� ��� � � 6 ��� 	 	 6!9�� Z < ��� .
Proof.

"
: From the definition of an execution, reached values and the defini-

tion 7, the suite
� ��� � � 6 ��� 	 	 6!9�� Z < ��� verifies the theorem.� : If there is a suite

�+% 6 	 6>9�� Z < ��� that verifies the theorem, then the execution
4 defined by: ��" 	 � � ��� � , � 2 	LQ � � 6 	 being last reset in � 7 � � � " : 4 � � 6 ��� 	 �
&='A) �!% 6 	 � 4 � � 6 � 2 	 � &='A) �!% 6 	 � &='A) �!% 7 	 , is an execution of � . Therefore � is
feasible.

For two suites
�+% 6 	 6!9�� Z�< ��� and

� %*6 	 6>9�� Z < ��� that verify the theorem, the suite��� 6 	 6!9�� Z�< ��� defined by: for every " in
� � ��� � , " �$# ��� 6 	 ��" �$# � " �$# �!% 6 	 � " �$# � %A6 	�	 ,

&='A) ��� 6 	 � &='A) � &='A) �!% 6 	 � &='A) � %A6 	�	 , verifies also the theorem. Then the largest
suite that verifies 3) is the suite

� ��� � �/6 ��� 	�	 6>9�� Z < ���
Corollary 4 gives a necessary condition for the feasibility of the path, con-

sequence of lemma 3.

Corollary 4. If � is feasible then the suite of the complementary of out reach
intervals of � has a WF sub-suite.

4. Computation of the Reached Values of Clock h

In the preceding section, we have introduced the reached values of a constraint.
We showed that path feasibility depends on the reached values of the global
clock. Section 4.1 presents the constraints graph associated to a two variables
inequalities system, Section 4.2 develops an algorithm for the computation of
the reached values of the clock

�
, and Section 4.3 discusses the complexity of

this algorithm.

4.1. Constraints Graph.

For a two variables inequalities system, we associated a constraints matrix. For
example, � is the constraints matrix associated to system

�
.

� �
�� � � � 2 � �

2 � � � �
�	� 	 � ��
� U � � � 	

� U �

� � U

�
A system of inequalities can be represented as a graph where every node is a
variable and every edge is a constraint over these variables.

SIU 2003

“main”
2004/3/5
page 10�

�

�

�

�

�

�

�

10 I. Berrada - R. Castanet - P. Félix

Definition 9 (Constraints Graph.). Let � be a set of variables and W � a con-
junction of atomic terms of the form

2 � 2 B � ,
, with

�!2$� 2 B 	 	���� � U � and, 	 ^ . The constraints graph associated to W � is a valuated directed graph� � W � 	 � ����� � U �A� � � defined by:
� ��� � U � is the graph vertexes set.
� � �

� ����� � U � � � � �
��� � U � 	 � 	 is the graph edges set. We denoted

by
2
	� 2 B every edge of � .2 	� 2 B 	 � � " �>2 � 2 B � , 	 " & � W � ��� R 0

A two variables inequalities system admits a solution if its constraints graph
does not contain a negative cycle.

4.2. Algorithm

Given a TAGC A and a path � � � Z���� � � of A from an initial state, the computa-
tion algorithm of the suite

� ��� � � 6 ��� 	 	 6!9�� Z�< ��� is outlined in Fig. 4.3. The input
of the algorithm is a path � � � Z���� � � , an empty system

� �
and a vector H of

�

reals. The algorithm consists in three steps: First, a checking step in which we
compute

� � � � 6 	 	 6!9�� Z < ��� . If
� � � � 6 	�	 6>9�� Z < ��� does not have a WF sub-suite then the

path is not feasible (Corollary 4). Second, a system construction step in which
the relations between clocks are formulated (Lemma 3). Finally, a solving step
of the system constructed

� �
.

4.3. Complexity Analysis: Modified Timestamps Generation Algo-
rithm

The algorithm Fig. 4.3 introduces a linear system of inequalities. In [3], the au-
thors give an efficient algorithm, of complexity �

��� � � � 	
, for generating a pos-

sible sequence of time values at which the individual edges are traversed. The
algorithm computes the shortest cost path & � � R ���-&=�
� � U � " 	 from node U to node
" in the digraph

�
associated to the system

� �
. This solution can be modified to

solve the feasibility problem. In fact, the shortest cost path & � � R ���-&=��� � U � " 	 in
our case corresponds to " �$# � ��� � � 6 ��� 	 	 : " �$# � ��� � � 6 ��� 	�	 � ��& � � R ���-&(��� � U � " 	 .
If now we consider the digraph

� B obtained from
�

by reversing edges, by ap-
plying the same algorithm to

� B , we have & � � R ���-&(� � B
� U � " 	 � & � � R ���-&=��� � " � U 	 �

&='A) � ��� � � 6 ��� 	�	 .
Theorem 5. Given a path � from the initial state of a TAGC � , with

�
transi-

tions and
�

clocks, the computation of the reached values of the global clock
�

can be solved in time �
��� � �
� 	

.

SIU 2003

“main”
2004/3/5
page 11�

�

�

�

�

�

�

�

A Formal Approach for Real-Time Test Generation 11

Input: A timed path � .
Output: The reached values of clock � .
Data Structure: A system ��� , and a vector � of � variables ��� .
Begin
Phase One: Checking the feasibility of � .

/* � � is empty at the beginning*/
/* Checking if 	 �
	�� ��
�
 ����� !�� ��� has a WF suite * /
Compute the suite 	 �
	�� ��
�
 ����� !�� ��� ;
If 	 ��	�� ��
�
 ����� !�� ��� does not have a WF sub suite Then exit;
For ��� ��� To � Do

�! "	��#�#$%�
 � � �
	��#�
 ;
End For

Phase Two: Filling � � .
/* Adding relation inequalities (Lemma 3) */
For ��� �&� To � Do

If �('�)� Add � ��* !(+ � � To � � ;
Add ����,
	��- "	�� � $%�
�
 + � � +/.1032 	��- "	�� � $%�
�
 To � � ;
For 4656 "	����
 Add To ���

/* x was last reset in ��7 */
����,
	��- "	�� � $�4
�
 + � ��8 � 7 +/.90:2 	��- "	�� � $�4
�
 ;

End For
End For
/* Solving step */

Phase Three: Solve � � .
Solve ��� ;

End;

Figure 4.3:
� ��� � � 6 ��� 	 	 6!9�� Z�< ��� computation algorithm.

5. Fastest and Slowest Accumulate Delay Executions

Generating the fastest and the slowest accumulate delay executions are interest-
ing for several reasons. Firstly, they allow testing the implementation behavior
in critical situations. Secondly, it is generally useful that regression testing can
be executed as quickly as possible in order to improve the turn around time
between changes [11]. Since these executions are not unique, in this section,
we will identify two versions for each fastest and slowest timed execution: the
fastest and the slowest timed executions according to every transition crossed
(Section 5.1), and the fastest and the slowest timed executions according to ev-
ery clock of a transition (Section 5.3). Section 5.2 introduces and formalizes
the strong/weak feasibility concept.

SIU 2003

“main”
2004/3/5
page 12�

�

�

�

�

�

�

�

12 I. Berrada - R. Castanet - P. Félix

Recall. For a path � � � Z � � � ����� � � of a TAGC � , � 6 � � Z ����� � 6 is a sub-path of � .
4 � � � 	 is the set of all executions of � .

5.1. Fastest and Slowest Timed Executions According to every Tran-
sition Crossed

One way to reach a state of a path in an early (resp. late) time is to reach every
state between this one and the initial state as soon (resp. late) as possible. This
observation is formulated below.
Lemma 6. Let us assume that � is a feasible path.

1. If for every " in
� � � � � , ��� � � 6 ��� 	 is bounded, then there is a single

execution 4�� 	 4 � � � 	 such that: for every " in
� � ��� � , 4�� � � 6 ��� 	 �

&='*) � ��� � � 6 ��� 	�	 .
2. There is a single execution 4�� such that: for every " in

� � ��� � , 4�� � � 6 ��� 	 �
" �$# � ��� � � 6 ��� 	�	 .

Proof. See Appendix A.

5.2. Weak and Strong Feasibility

Problem 5.1. The problem treated here is: under what constraints over a fea-
sible path, if a transition is fired, the next transition can be also fired until the
last transition of this path.

1 32

h[0,2]
C1[0,2]
C2[0,2]

a

R(C1)

h[2,4]
C1[2,4] C1[4,5]

b

R(C2)
t1 t2 t3

c

h[4,5]

C2[2,4] C2[1,2]

4

Figure 5.4: A weakly feasible path.

Let us take the example of Fig. 5.4. If the transition � � is fired at moment
2, and � � at 4, we notice that � � can not be then fired according to its path
constraints. Now, let us take the example of Fig. 5.5. For this path, each time a
transition is fired respecting its constraints, the next transition can be fired.
Definition 10. The feasible path �I� � Z � � � ����� � � is said to be strongly feasible
if for every natural " 	 � � ��� � , and for every execution 4 B 	 4 � � � 6 	 , there
is an execution 4 	 4 � � � 	 that meets 4
B . On the opposite (i.e. there is
4 B 	O4 � � � 6 	 , such that for every 4 	O4 � � � 	 , 4 does not meet 4 B), � is said
to be weakly feasible.

SIU 2003

“main”
2004/3/5
page 13�

�

�

�

�

�

�

�

A Formal Approach for Real-Time Test Generation 13

1 32

h[0,1]
C1[0,1]
C2[0,1]

a

R(C1)

h[2,4]
C1[2,4] C1[4,5]

b

R(C2)

t1 t2 t3

c

h[4,5]

C2[2,4] C2[1,2]

4

Figure 5.5: A strongly feasible path.

Typically, � is strongly feasible if: for every " in
� � � � � , for every execution

4CB in 4 � � �*6 	 , there is 4 in 4 � � � 	 such that: for every � in
� � � " � , for every

2
in Q � � 7 	 , 4 � � 7 � 2 	 ��4EB � � 7 �/2 	 .

The strong feasibility allows deciding at advance if the running behavior of
the system will reach the needed target behavior. The latter is capital during
test applications on real implementations. The tester will be then able to decide
stopping, at each time, the implementation execution, and not to await the end
of the test case. Lemma 7 gives a necessary and a sufficient condition for the
strong feasibility.

Lemma 7. Let �O� � Z � � � ����� � � be a feasible path. � is strongly feasible iff for
every " in

� � � � � , for every clock
2

in Q � � 6 	 , � 6 is fired in ��� � � 6 � 2 	�� .
The idea of the proof is to replace the specification constraints by the reached

values and to proceed by induction.

Proof. See Appendix B.

5.3. Fastest and Slowest Executions According to every Clock of a
Transition

As the fastest and slowest executions are not unique, in this subsection, we will
present other executions that also allow computation of the fastest and slowest
delay for reaching a path target state.

1 32

h[0,1]
C1[0,1]
C2[0,1]

a

R(C1)

h[2,6]
C1[2,6] C1[4,9]

b

R(C2)

t1 t2 t3

c

h[4,9]

C2[2,6] C2[2,3]

4

Figure 5.6: Temporal path example.

SIU 2003

“main”
2004/3/5
page 14�

�

�

�

�

�

�

�

14 I. Berrada - R. Castanet - P. Félix

Let be the path of Fig. 5.6. We can verify that, ��"�	 � � � �-� , � 2 	 Q � � 6 	 ,
��� � � 6 � 2 	 � � Q � � 6 �/2 	 . The slowest execution according to every transi-
tion crossed 4 �
 corresponding to this path is

� � �/� 	 � � � � � 	 � ��� � , 	 . For this
execution, 4 � � ��
 � Q Z 	 ��� , 4 � � ��
 � Q � 	 � �

, and 4 � � ��
 ��� 	 � �
. Let us

now consider 4 , the execution given by
� U � � 	 � � � ��� 	 � ��� �/, 	 . This execution is

also a slowest execution, and we have 4 � ��
 � Q Z 	 � �
, 4 � ��
 � Q � 	 � �

, and
4 � �
 ��� 	 � �

. As we can see, 4 takes simultaneously the &('*) � ��� � �
 � Q Z 	 	 ,
&='A) � ��� � �
 � Q � 	�	 and &('*) � ��� � �
 ��� 	�	 . Next, we will prove that this result
holds for every path in every transition.

Lemma 8. Let us assume that � is feasible. If Q �AR-. � Q � �
� 	�	 ��0 : �

1. If for every " in
� � ��� � , ��� � � 6 ��� 	�� is bounded. Then there is an execution

that takes simultaneously the &='*) � ��� � � � �/2 	�� 	 , for every
2

in Q � � � 	 .
2. There is an execution that takes simultaneously the " �$# � ��� � � � � 2 	�� 	 ,

for every
2

in Q � � � 	 .
The proof of the lemma is done by induction over the number of transition

clocks, using the constraints graph associated to a path.

Proof. See Appendix C.

We have showed that there is an execution that takes simultaneously the� " �$# � ��� � � � � 2 	�	�	 �39 � ����� � (resp.
� &='*) � ��� � � � �/2 	 	�	 �;9 � ����� �), for transition � � .

In fact, this result holds for every transition of � .

Lemma 9. Let us assume that � is feasible. For all
�

in
� � ��� � we have :

1. If for every " in
� � � � � , ��� � � 6 ��� 	�� is bounded, then there is an execution

of � that takes simultaneously the &='A) � ��� � � 7 � 2 	�� 	 , for every
2

in Q � � 7 	 .
2. There is an execution of � that takes simultaneously the " �$# � ��� � � 7 � 2 	�� 	 ,

for every
2

in Q � � 7 	 .
Proof. Let us consider the path � 7 , such that: for every

�
in

� � � � � , and for every2
in Q � � 	 , � Q � � � 2 	YS � ��� � � �/2 	�� . According to lemma 8, for � 7 , there is

an execution 4�	O4 � � �A7 	 that takes simultaneously the &='A) � ��� � � 7 � 2 	 � 	 , for
every clock

2
in Q � � 7 	 . Now, according to lemma 7, this execution can be

extended to an execution of � due to the strong feasibility of � (every transition
of �37 is fired according to the reached values sets of �).

We have proved the existence of an execution 4 (resp. 4 B) of � that takes
simultaneously the maximal (resp. minimal) values of ��� � � 7 �/2 	 , for every� in

� � ��� � . Let 4YZ (resp. 4 �) be an execution that meets 4 (resp. 4
B), for
�
See lemma 6.�
m less than

"	��

� � " ��#���� .

SIU 2003

“main”
2004/3/5
page 15�

�

�

�

�

�

�

�

A Formal Approach for Real-Time Test Generation 15

every "C� � , and fires as soon (resp. late) as possible transitions after � 7 (the
existence of 4 Z and 4 � are ensured by the strong feasibility of �). For these
executions, the delay between the instant of firing � 7 and the instant of firing
every transition � 6 , � ��" , is less (resp. more) than the delay between � 7 and � 6
for any other execution of this path. This result is proved in the next lemma.

Lemma 10. Let us assume that � is feasible. Let 4 Z 	 4 � � � 	 (resp. 4 � 	
4 � � �) be the execution that takes simultaneously the maximal (resp. the min-
imal) values of ��� � � 7 �/2 	 , for a

�
in

� � ��� � , and for every
2

in Q � � 7 	 , while
making the possible minimum (resp. maximum) delay between transitions af-
ter � 7 . Then, for every execution 4 	 4 � � � 	 :

1. For every " , � � " , 4YZ � � 6 ��� 	 � 4 Z � � 7 ��� 	 ��4 � � 6 ��� 	 � 4 � � 7 ��� 	 .
2. For every " , � � " , 4 � � 6 ��� 	 � 4 � � 7 ��� 	 ��4 � � � 6 ��� 	 � 4 � � � 7 ��� 	 .

Proof. See Appendix D.

6. Computation of the Reached Values of any Clock

In this section we will introduce a computation method of the reached values
of any clock by using the two versions of each fastest and slowest timed exe-
cutions.

Algorithm:

We assume that used clocks are
�

,
2 Z , 2 � ,..., 2

������� � � � � � � . The algorithm for
computing the reached values for every clock is outlined in Fig. 6.7. At the
beginning of the algorithm,

��� � �*� � � � contains the lower bound of the specifi-
cation constraint over

2
(i.e. " �$# ��� Q � �� � 2 7 	�), and

�
	 � �*� � � � the upper bound
of the specification constraint over

2
(i.e. &='*) ��� Q � �� �/2 7 	�). In the first phase,

the algorithm computes the reached values of the global clock. For every clock2
in a transition � 6 , last reset in the initial state, its reached values are the one

of the clock
�

(i.e. ��� � � 6 �/2 	 S �	��� � � 6 ���). ��� and
�
	

are then updated.
The second phase consists in a loop on transitions starting from � Z . For ev-

ery transition, we check the emptiness of the set of associated clocks reset. If
it is empty then we increase the current transition index � 6 . In the opposite,
we start computing the maximal and the minimal delay from the currant tran-
sition to any transition of the path. This is done by computing the reached
values of

�
for paths � Z and � � . We notice that � Z and � � are defined such

that 4 � � � Z 	 and 4 � � � � 	 contain all executions that take simultaneously, re-
spectively the maximal and minimal reached values over clocks of the current
transition � 6 (Sets 4 � � � Z 	 and 4 � � � � 	 are non empty according to lemma 9).

SIU 2003

“main”
2004/3/5
page 16�

�

�

�

�

�

�

�

16 I. Berrada - R. Castanet - P. Félix

Input: A feasible timed path � �/� !������ � � with � states and
�

clocks.
Output: Computation of reached values for every clock.
Data Structure: ��� and ��� a two dimensional arrays of size �	� � .
Temporary Variables: Two paths � ! �/� !
����� � � and �
 �/� !������ � �
Begin:
Phase One: Filling ��� and ��� with reached values of clocks last reset in the
initial state.

Compute 	�
�� 	�� � $%�
#��
 � � � !�� ��� ;
For ��� ��� To � Do

For every 4�� 5 "	��
 , if 4�� is last reset in the initial state Then
����� ����� � � � �&����,
	�
�� 	��#�#$%�
�
 ; ����� ����� � � � � .1032 	�
�� 	����#$%�
�
 ;

Phase Two: Filling � � and � � with the other reached values.
For ��� ��� To � Do

If there is clocks reset in ��� Then
For � ! : � 4�� 5 "	��
 , �- "	����#$�4��
 � ��� ����� ����� � ��$������ ����� � ��� ;
For �
 : � 4�� 5 "	��
 , �- "	�� � $�4��
 � ��� � � � ����� � ��$�� � � ����� � ��� ;
/* The feasibility of � ! and �
 are ensured by lemma 9.*/
Compute 	�
�� 	����#$%�
 �!
 � � � !�� ��� ;
Compute 	�
�� 	�� � $%�
#�#":
 � � � !�� ��� ;
For $ � �&� To � Do

For every 4�� 5 "	��
 Do
/* Updating ��� and ��� */
If 4 � 5 � 7 is last reset in � � Then:
� � � $%��� � � � �&����,
	�
�� 	�� 7 $%�
#��"�
 8 ����,
	�
�� 	�� � $%�
#�#"�
 ;
����� $%��� � � � � .1032 	�
&� 	�� 7 $��
 ��
 8 .1032 	�
�� 	����#$%�
 �!
 ;

End;

Figure 6.7: Reached values computation algorithm.

Once the reached values of
�

for � Z and � � are computed, for every clock
2

in Q � � 7 	 , such that � is greater than " , and
2 last reset in the current transi-

tion � 6 , then " �$# � ��� � � 7 � 2 	 � 	 S ��" �$# � ��� � � 7 ��� 	 � " 	 �E" �$# � ��� � � 6 ��� 	 � " 	 , and
&='A) � ��� � � 7 �/2 	 � 	 S � &='A) � ��� � � 7 ��� 	 � " 	 � &='*) � ��� � � 6 ��� 	 � " 	 . This result is a
consequence of lemma 10. At the end,

���
and

�
	
contain the minimum and

the maximum reached values of any clock.
In every transition having clocks reset, the complexity of computing the

reached values of this transition clocks is �
� � � � �
	

, then the complexity of the
algorithm is �

� � � � � 	�� 	
.

Theorem 11. Given a path � from the initial state of a TAGC � , with
�

tran-
sitions and

�
clocks, the computation of the reached values for every clock can

be solved in time �
� � � � � 	�� 	

.

SIU 2003

“main”
2004/3/5
page 17�

�

�

�

�

�

�

�

A Formal Approach for Real-Time Test Generation 17

7. Test Generation: Test Purpose Based Approach

Protocol testing consists in checking that some implementations conform to a
given specification. We assume the determinism of the specification and the
IUT. The latter are given as timed I/O automata. The architecture of the test is
given in Fig. 7.8. The tester takes the place of the environment and controls the
IUT by injecting test cases via control and observation points (COP).

 IUT

{Test cases}

Tester

COP

Figure 7.8: Test specification.

7.1. Test Purpose

A test purpose is a temporal property that one would like to observe in im-
plementation behaviors. In the case of real-time systems, such property may
include real-time features where time constraints appear explicitly. We also
model test purpose with I/O automaton.

Definition 11. A Test purpose
	��

is a deterministic, acyclic automaton with a
distinguished non empty set of accepting states.

7.2. Synchronous Product

Definition 12. Let
�) � , be a specification and

	��
a test purpose. The synchro-

nous product of
�) � , and

	 �
is the I/O automaton

���
defined as follows.

� � 6��;6�� � ��� 	�	 � ��� 6��36�� ���) � , 	 � � 6��36�� � 	�� 	 	 .
� � ����� 	

�
� � �) � , 	 � � � 	�� 	

.
� Q ����� 	 � Q ���) � , 	 � Q � 	�� 	

.
� � ����� 	 � � ���) � , 	 � � � 	�� 	 .
� � ��� 	

and
	 � ��� 	

are the smallest relations defined by the following rules:
(1)� & Z � & � 	 	 � � ��� 	 \ � & Z � ��� W Z � � Z � & B Z 	 	 	 � �) � , 	 \ � & � �/��� W � � � � � & B� 	'�	 	 � 	 � 	

� & B Z � & � 	 	 � � ��� 	 \ ��� & Z � & � 	 �/��� W Z ��� Z �
� & B Z � & � 	 	 	 	 ����� 	

SIU 2003

“main”
2004/3/5
page 18�

�

�

�

�

�

�

�

18 I. Berrada - R. Castanet - P. Félix

(2)� &-Z � & � 	 	 � ����� 	 \ � &-Z � � � W[Z ��� Z � & B Z 	 	 	 ���) � , 	 \ � & � � ��� W � � � � � & B� 	 	 	 � 	 � 	
� & B Z � & � 	 	 � ����� 	 \ ��� &-Z � & � 	 � � � W[Z�\ W � ��� Z � � � � � & B Z � & � 	�	 	 	 ����� 	

Using this synchronous product for a given test purpose
	 �

, we compute a
set of paths from the specification that coincide in events with the test purpose.
While not all of these paths respect the temporal constraints of the test purpose,
we have to select the good ones.

7.3. Example

Let the automaton of Fig. 2.1 be an example of a specification, and let us con-
sider the test purpose of Fig. 7.9.

X[0,1]

!a

R(Y)

Y[1,3]

?d

Accept

Figure 7.9: Test purpose 1.

In this test purpose, we want to test if after receiving an event ”a” in a delay
between 0 and 1 (X[0,1]), the IUT can send an event “d” in a delay between
1 and 3 (Y[1,3]) � . By using the synchronous product, the path of Fig. 3.2 syn-
chronizes with this purpose. By adding the constraints of test purpose to this
path we have Fig. 7.10:

1 5432

C1[0,2]
C2[0,1]

!a

R(C1)

C1[2,5] C2[2,6]

?b

R(C2)

t1 t2 t3 t4

!c ?d

C1[3,6]
C2[3,7]

h[5,13]
X[0,1]

R(Y)

h[0,2]

h[2,7] h[3,13]
Y[1,3]

Figure 7.10: Synchronous Product 1.

� �
	����
 ��� � $ � � .
� �
	�� !
 �)	 �
	�� �
�� � � $�� �
�	 	 �
	�� �
�� � � $��
�
�	 	 �
	�� �
�� � � $1���
�	 	 ��	�� �
�� � � $ �!�
 �
� � $9�!� �

After reseting the clock Y when receiving “a”.

SIU 2003

“main”
2004/3/5
page 19�

�

�

�

�

�

�

�

A Formal Approach for Real-Time Test Generation 19

� � 	��

 �)	 �
	�� !
 � � � $ � �
 	 	 �
	�� �
 � � � $�� �
 ��� � $�� � .
� � 	�� �
 �)	 �
	��

 � � � $�� �
 	 	 �
	�� �
 � � ��$9��� �
 ��� � $9� � � .
� � 	�� �
 �)	 �
	�� !
 � � � $�� �
 	 	 �
	��

 � � ��$��
�
 	 	 ��	�� �
 � � � $1��� �
 	 	 � 	�� !
 � � �:$	� �
 �
� � $�� � ��� $ � .

We notice that the out reach interval of transition � � is empty. We know imme-
diately that, this path does not respect the test purpose.

X[0,1]

!a

R(Y)

Y[1,5]

?d

Accept

Figure 7.11: Test purpose 2.

Let us now consider the test purpose of Fig. 7.11. The suite of out reach
intervals of the synchronous product of this path are:

� � � � 	 � � U � U � , � � � Z 	 �� U � � � , � � � � 	 � � � ���3�
,
� � �
 	 � �
 � � �-� and

� � � � 	 � � 	 ���-�
. The constraints

system associated to this path after removing redundant constraints is:

� S �
�

�

� � + � ! + � � + �
 + �

� + � � + � � � + � � + �
� + �
 8 � ! + � � + � � 8 �
 + �
� + � � 8 � ! + � � + � � 8 �
 + �

1 5432

C1[0,1]
C2[0,1]

!a

R(C1)

C1[2,5]
C2[2,6]

?b

R(C2)

t1 t2 t3 t4

!c ?d

C1[3,6]
C2[3,7]

Y[1,5]Y[0,1]

R(Y)

X[5,6]
h[0,1]

C2[2,3]

h[2,3]
X[2,3]

X[4,6]

h[5,6]
X[0,1]

h[4,6]

Figure 7.12: Phase one algorithm application.

The solution of this system is: ��� � � Z ��� 	 � � U � � � , ��� � � � ��� 	 � � � � �-�
,

��� � �
 ��� 	 � �
 ���-�
, and ��� � � � ��� 	 � � 	 ���-�

. The reached values of clocks last
reset in the initial state (Phase One) are given in Fig. 7.12.

For the computation of the maximum reached values of Q�� and � , we con-
sider the path � Z of Fig. 7.13. In this path, we have changed

� Q � ��Z � 2 	 by
" �$# � ��� � �/Z � 2 	�	 for every clock of � Z .

The reached values of
�

for this path are: ��� � � �/Z ��� 	 � � U � U � , ��� � � � � ��� 	 �� � � �3�
, ��� � � �
 ��� 	 � �
 � 	 �

, and ��� � � � � ��� 	 � � 	 �
	 �
. It means that:

� &('*) � ��� � � � � � Q�� 	�	 � &('*) � ��� � � � � ��� 	 	 � &='*) � ��� � � �/Z ��� 	�	 � �
.

SIU 2003

“main”
2004/3/5
page 20�

�

�

�

�

�

�

�

20 I. Berrada - R. Castanet - P. Félix

1 5432

C1[0,0]
C2[0,0]

!a

R(C1)

C1[2,5]
C2[2,6]

?b

R(C2)

t1 t2 t3 t4

!c ?d

C1[3,6]
C2[3,7]

Y[1,5]Y[0,0]

R(Y)

X[5,6]
h[0,0]

C2[2,3]

h[2,3]
X[2,3]

X[4,6]

h[5,6]
X[0,0]

h[4,6]

Figure 7.13: Phase two algorithm application.

� &='*) � ��� � � �
 � Q�� 	 	 �
&='*) � ��� � � �
 ��� 	�	 � &='*) � ��� � � �/Z ��� 	�	 � 	
.

� &='*) � ��� � � � � � Q�� 	 	 �
&='*) � ��� � � � � ��� 	�	 � &='*) � ��� � � �/Z ��� 	�	 � 	
.

In the same way, after computing the reached values of this path, we obtain
Fig. 7.14.

1 5432

C1[0,1]
C2[0,1]

!a

R(C1)

C1[2,3]
C2[2,3]

?b

R(C2)

t1 t2 t3 t4

!c ?d

C1[5,5]
C2[3,3]

Y[5,5]Y[0,1]

R(Y)

X[5,6]
h[0,1]

C2[2,3]

h[2,3]
X[2,3]

h[4,6] h[5,6]
X[0,1]

Y[2,3]
X[4,6]

C1[4,5]
Y[4,5]

Figure 7.14: The reached values of the synchronous product.

We note by :
� FETC / SETC: Fastest/Slowest execution according to every transition

crossed.
� FECT / SECT: Fastest/Slowest execution according to every clock of

transition.

Table 7.15 summarizes the FETC, SETC, FECT and SECT of this path. For
this example, the FETC for every transition is the same as the FECT. Transi-
tion � � has a SETC different from the SECT one. The total number of different
executions of FETC, SETC, FECT and SECT, is between 1 and

� �
. The num-

ber the We notice that for
� 	 � U � � � , and for two executions 4 and 4 B of

executions given in table 7.15,
� � 4 � � � � � 	 � 4 B is also an execution of

this path. All these executions can be used as test cases.

SIU 2003

“main”
2004/3/5
page 21�

�

�

�

�

�

�

�

A Formal Approach for Real-Time Test Generation 21

Transitions FETC FECT� ! ������� � ��� �
	�����
 ��� ������� � ��� ������� � � ������� � ��� �
	�����
 ��� ������� � ��� ������� � ��

 ������� � ��� �
	�����
 ��� ������� � ��� ������� � � ������� � ��� �
	�����
 ��� ������� � ��� ������� � �� � ������� � ��� �
	�����
 ��� ������� � ��� ������� � � ������� � ��� �
	�����
 ��� ������� � ��� ������� � �� � ������� � ��� �
	�����
 ��� ������� � ��� ������� � � ������� � ��� �
	�����
 ��� ������� � ��� ������� � �

Transitions SETC SECT� ! ������� � ��� �
������
 ��� �
����� � ��� ������� � � ������� � ��� �
������
 ��� �
����� � ��� ������� � ��

 ������� � ��� �
������
 ��� �
����� � ��� ������� � � ������� � ��� �
������
 ��� �
����� � ��� ������� � �� � ������� � ��� �
������
 ��� �
����� � ��� ������� � � ������� � ��� �
������
 ��� �
����� � ��� ������� � �� � ������� � ��� �
������
 ��� �
����� � ��� ������� � � ������� � ��� �
������
 ��� �
����� � ��� ������� � �

Figure 7.15: Test cases.

8. Discussion and Future Work

In this paper, we have presented a solution to the feasibility problem for a path
in time �

����� � � 	 � 	
. By introducing a global clock to a given timed automa-

ton
�
, the analysis of the feasibility problem becomes easier to solve. The use of

this clock allows us to compute both the two versions of the fastest and slowest
timed executions

�
,and to introduce the strong/weak feasibility concept. Stan-

dard algorithms [4, 1] solve a two-terms inequalities in �
� � � � �
	
 	 time, and

not allow the computation of the reached values for every clock except the
global clock.

Applying our method to a synchronous product of the specification and the
test purpose, we can have all test verdicts: conformance to specification and
test purpose (pass verdict), conformance to specification but not to the test (in-
conclusive verdict) and conformance to test purpose but not to the specification
or no conformance to specification and test purpose (fail verdict).

The test generation method proposed is potentially inefficient, because many
paths may have to be synthesized and thereafter rejected by the feasibility anal-
ysis. The solution here is to modify the synchronous product by adding a
checking step that consists in applying the method to every new node added
to the already calculated path, and rejecting nodes that made this path unfeasi-
ble.

Our real-time model is quite restrictive and a generalization will be of bene-
fit for real-time systems: especially the use of invariants and assignments. For
the invariant of a state s, this invariant can be seen as the guard of a transition t
that lead to s. If the specification includes constraints in the form

2 � � � ,YX

�
If this automaton does not have already one.�
If bounded intervals.

SIU 2003

“main”
2004/3/5
page 22�

�

�

�

�

�

�

�

22 I. Berrada - R. Castanet - P. Félix

, � 2 � � , by adding the inequality H �CH 7 � , X�, � H �CH 7 �
to algorithm (Fig.

4.3), we obtain the same result for the computation of the reached values of the
global clock. We are interested in building a finite and complete test set for
real-time systems as in [18]. We are working to widen the assignments, such
that for a clock x, we allow x=:a, to add variables and parameters to the model
and to see how to apply the method in the case of systems interoperability.

Appendix A. Proof of Lemma 6

Proof. For " in
� � � � � , and a clock

2 	TQ � � 6 	 , being last reset in �� , � � " , we
notice that: &='A) � ��� � � 6 ��� 	�	 � &='A) � ��� � �� ��� 	�	 	 � Q � � 6 �/2 	 � In fact, according
to lemma 3:

� For &='A) � ��� � � 6 ��� 	 	 , � H 	 ��� � � ��� 	 such that &='*) � ��� � � 6 ��� 	�	 �1H 	
� Q � � 6 � 2 	 . Then &='*) � ��� � � 6 ��� 	�	 � &='A) � ��� � � ��� 	�	 ��&='A) ��� Q � � 6 � 2 	�	 .

� For &='*) � ��� � �� ��� 	 	 , � H(6�	 ��� � � 6 ��� 	 such that H(6[� &='A) � ��� � �� ��� 	�	 	
� Q � � 6 � 2 	 . Then " �$# ��� Q � � 6 � 2 	�	 ��&('*) � ��� � � 6 ��� 	�	 � &='A) � ��� � �� ��� 	�	 .

We construct then, the execution 4�� defined by, for every " in
� � ��� � and every2

in Q � � 6 	 :
1. 4 � � � 6 ��� 	 �
&='A) � ��� � � 6 ��� 	�	 .
2. 4�� � � 6 �/2 	 �5&='*) � ��� � � 6 ��� 	 	 �K&('*) � ��� � �� ��� 	 	 , where

2
has been last

reset in �� .
The two-dimensional array 4�� is an execution of � that verifies the first as-
sertion of the lemma. We use a similar proof for the second assertion of the
lemma.

Appendix B. Proof of Lemma 7

Proof. Let us note by: for every " in
� � � � � , � 6 � ���/Z ����� � 6 the sub-path of �

obtained while replacing
� Q � � 7 �/2 	 by ��� � � 7 � 2 	 � for every � in

� � � " � . As the
lemma assumes the feasibility of � , then � 6 � is also feasible.

Now, by induction, let us prove that, � " 	 � � ��� � , � 4
B 	L4 � � �*6 � 	 " � 4 	
4 � � � 	 such that � � 	 � � � " � , � 2 	IQ � � 7 	 , 4 � � 7 � 2 	 ��4CB � � 7 � 2 	 .

For " � � , and 4EB 	L4 � � � Z � 	 . All clocks are reset in the initial state, then
� 2 	 Q � � Z 	 " 4 B � � Z � 2 	 ��4 B � � Z ��� 	 . Let

� 	 � U � � � such that 4 B � � Z ��� 	 �� � 4�� � � �/Z ��� 	 � � �]� � 	 � 4�� � � �/Z ��� 	 . Then 4 S � � � 4�� � � � �]� � 	 � 4 � �
is an execution of � that meets 4 B in � Z .

�
Where x (resp. y) was last reset in � � (resp. � 7).

SIU 2003

“main”
2004/3/5
page 23�

�

�

�

�

�

�

�

A Formal Approach for Real-Time Test Generation 23

Let us assume that � 4EBE	
4 � � � � 6 �[Z�� � 	 " � 4 	
4 � � � 	 such that � � 	� � � " � � � , � 2 	 Q � � 7 	 , 4 � � 7 �/2 	 � 4 B � � 7 � 2 	 , and let us prove that �[4 B B 	
4 � � �*6 � 	�" � 4 	 4 � � � 	 such that � � 	 � � � " � , � 2 	 Q � � 7 	 , 4 � � 7 � 2 	 �
4CB � � 7 � 2 	 .

While 4 � � �*6 � 	 � 4 � � � � 6 �[Z�� � 	 , according to the induction assumption,
there is 4 	�4 � � � 	 such that � � 	 � � � " � � � , � 2 	�Q � � 7 	 , 4 � � 7 �/2 	 �
4CB B � � 7 � 2 	 . Let us define the paths � Z � �/Z ����� � � and � � � �/Z ����� � � such that:

� For � Z : � 2 	 Q � � 6 	 , � Q � � 6 �/2 	 S � � 4 � � 6 �/2 	?� 4 � � 6 �/2 	 � .
� For � � : � 2 	 Q � � 6 	 , � Q � � 6 �/2 	 S � � 4CB B � � 6 �/2 	 � 4CB B � � 6 �/2 	 � .

For these paths, we have changed the specification constraints over clocks in
transition � 6 . 4 is an execution of � Z , then the constraints graph

� � , associated
to the system

��� obtained from the algorithm of Fig. 4.3 for � Z , does not have
negative cycles. Let us prove that the constraints graph

� � " , associated to the
system

� � " does not have negative cycles. In fact, these two graphs differ only
for edges weight between vertexes H 6 and H 7 , for � less than " . For each cycle

� which passes only once by a vertex of
� � " , we have:

� If � does not pass by H 6 : � is also a cycle of
� � , and can not be a

negative cycle.
� If � passes by H=6 . Let H 7 and H be the neighbor nodes of H 6 in � . Let us

assume that there is an edge form H?7 to H(6 of weight) 7/6 and an edge from
H(6 to H of weight)�6 . We have the following cases:

– If �$� " and
� � " . From the construction of the constraints graph,

) 7/6 is negative and) 6 is positive. Now if we consider the cycle
� B from

� � which has the same nodes as � , then � and � B differ
only on the weight of the two edges from H 7 to H 6 and from H 6 to
H . Let be) B7� and)�B6� the weights of this two edges in

� � . From
the construction of the execution 4 , there is a

. 	 � � such that
� 2 	 Q � � 6 	 , 4 � � 6 �/2 	 � 4CB B � � 6 � 2 	 � .

or 4 � � 6 �/2 	 � 4CB B � � 6 � 2 	 � .
(because 4 and 4EB B have the same values in every � 7 , � less than ").
Then) 7/6;��) 6 �) B7� ��) B6 . As � B is positive then � is also positive.

– If � � " � �
or

� � " ��� . Let
2

be the clock such that
� Q � � 6 � 2 	 S

� ��) 7/6 �) 7/6 � . If � is a negative cycle. Let � BC� �/Z ����� � � be the path
such as:

� Q � � 6 � 2 	 S � � ��) 7/6 �) 7/6 � . Then � is negative cycle of � B . It
means that 4CB B � � 6 �/2 	 �) 7/6 �	 ��� � � � 6 � 2 	 is not a reached values of2

in � 6 of � . Then � is positive.
We have showed that

� � " does not have negative cycles, then � � is feasible.
Let 4 Z be an execution of � � . The execution 4 � defined by:

� For every � in
� � � " � , and for every clock

2
in Q � � 7 	 : 4 � � � 7 �/2 	 � 4CB B � � 7 � 2 	 .

SIU 2003

“main”
2004/3/5
page 24�

�

�

�

�

�

�

�

24 I. Berrada - R. Castanet - P. Félix

� For every
�

in
� "N� � ��� � , and for every clock

2
in Q � � 	 : 4 � � � � 2 	 �

4 Z � � 7 � 2 	 .
is an execution of � that meets 4
B B . We use a similar proof for the second
assertion of the lemma.

Appendix C. Proof of Lemma 8

Let
�!� Z �/� � 	 , �+� Z ��� � 	 	1� � � , and the suite � and

�
defined by:� � � �

� � �+� Z �/� � 	� Z � � Z � � � Z ��� � 	� 6 � � 0 Z 6 � 0 � 6 	 , � 6 � � � Z 6 ��� � 6 	 such that:
� 1. If 0 Z � 6 �[Z�� ��0 �*2 �!� Z � � Z 	 :

Let � � " be the greatest index such that 0 Z 7 � 0 �*2 �!� Z � � Z 	 , and
� 6 S ��0 " � � 0 Z � 6 � Z�� �

� �� ��� �� �
� ��

� 0 � 7 �
� "�� ��� �� �

� " ��
	
.

2. Else
Let ��� " be the greatest index such that 0 � 7 � 0 �*2 �+� � � � � 	 and
� 6 S ��0 " � � 0 Z 7 �

� �� ��� �� �
� �

�
� 0 � � 6 � Z�� �

� "�� ��� �� �
� " �

�
	
.

Then �T6 S � �
� �� �	�
� �

� �� � � 6 �
� "�� �	�
� �

� " �� � � 6 	 .
� 1. If

� Z � 6 � Z�� � 0 " � �!� Z � � Z 	 :
Let � � " be the greatest index such that

� Z 7 ��0 " � �!� Z ��� Z 	 and
� 6 S ��0 " � � � �� ��� �� � � �� � � Z � 6 �[Z�� � � "�� ��� �� � � " �� � � � 7 	 .

2. Else
Let � � " be the greatest index such that

� � 7 ��0 " � �!� � ��� � 	 and
� 6 S ��0 " � � � �� ��� �� � � �� � � Z 7 �

� "�� �	�
� �
� " �� � � � � 6 � Z�� 	 .

Then � 6 S � � � �� ��� �� � � �� � � 6 � � "�� ��� �� � � " �� � � 6 	 .
Lemma 12. Let be

�!� Z � � � 	 and
� � Z � � � 	 	1� � � . Then:

1. The suite � converges to
� 0 �*2 �+� Z ��� Z 	?� 0 �A2 �!� � ��� � 	 	

2. The suite
�

converges to
� 0 " � �!� Z � � Z 	 � 0 " � �!� � � � � 	�	

Proof. If we consider
� � 6 	 6 and

� P 6 	 6 such that
� 6 ��0 Z 6 if 0 Z 6 ���0 �*2 �+� Z � � Z 	

and
P 6 ��0 � 6 if 0 � 6 ���0 �*2 �!� � � � � 	 . Then we can verify that

� � 6 	 6 and
� P 6 	 6

are increasing, bounded and converge to
� 0 �A2 �!� Z � � Z 	 � 0 �*2 �!� � ��� � 	 	 .

Lemma 13. Let us assume that � is feasible. If Q �*R . � Q � ��� 	�	 � �
:

1. If for every " in
� � ��� � , ��� � � 6 ��� 	�� is bounded. Then there is an execution

that takes simultaneously the &='*) � ��� � �
� �/2 	 � 	 , for every
2

in Q � �
� 	 .
2. There is an execution that takes simultaneously the " �$# � ��� � ��� � 2 	 � 	 ,

for every
2

in Q � �
� 	 .

SIU 2003

“main”
2004/3/5
page 25�

�

�

�

�

�

�

�

A Formal Approach for Real-Time Test Generation 25

Proof. Let
2

and
�

be the two clocks of Q � � � 	 . There are two executions
of � , 4 Z and 4 � , such that: 4 Z � � � � 2 	 � &='*) � ��� � � � � 2 	�� 	 , 4 � � � � ���
	 �
&='A) � ��� � � � ���
	�� 	 . Let � � � � 6 	 6 be the suite of execution defined by:

� � � �
4 Z , ��ZM��4 � .
� �D6 � ��� � � �N6 � Z-� ��� � � � 7 , �D6 � � � �/2 	 ���D6 � � � � 2 	 � � 6 , and �N6 � � � ���
	 �
�D6 � � � ���
	 � � 6 such that:
1. � 6 S � 01" � � �D6 �[Z � � � �/2 	 � � �	� ����� < � � � � � ����� < ����

� � 7 � � � ���
	 �
� � ��� �� ��� � < � � � � " � ��� � < � ��

	
, if � 6 �[Z � � � �/2 	 ��&('*) � ��� � � � �/2 	�	 . � � " is

the greatest index such that �$7 � � � � 2 	 � &='*) � ��� � � � � 2 	 � 	 .
2. � 6 S � 01" � � �[7 � � � � 2 	 � � ��� �����*< ��� � � � ����� < ���� , �D6 �[Z � � � ���
	 �
� � ��� �� ��� � < � � � � " � ��� � < � ��

	
otherwise. � � " is the greatest index such

that � 7 � � � ��� 	 � &='A) � ��� � � � ���
	�� 	 .
According to lemma 12, the suite � converges to an execution 4 such that

4 � � � � 2 	 ��&='*) � ��� � � � �/2 	�� 	 and 4 � � � ���
	 ��&='A) � ��� � � � ���
	�� 	 . We have a
similar proof for the second result.

After proving the result of this lemma, we will use the induction to general-
ize to 0 used clocks.
Proof of Lemma 8. We present here the proof of the lemma in the case of
Q �*R-. � Q � � � 	 	 � �

. For any 0 less than the number of clocks, the same proof
holds by induction. We assume that the clocks of Q � ��� 	 are respectively

2
,
�

and
�

. Let us note by:
� � S �
&='A) � ��� � � � ��� 	 � 	
��� S �
&='A) � ��� � � � � 2 	 � 	
� Q S � &='*) � ��� � � � ��� 	 � 	

Let 4 Z , 4 � and 4
 be three executions of � such that: 4 Z � � � ��� 	 ��� ,
4 � � � � �/2 	 � � and 4
 � � � ��� 	 �5Q . Now we define three paths � Z , � � and ��

such that:

� � Z is the path � without the constraint over
�

, and
� Q � ��� �/2 	MS � � � � � �

,� Q � � � ���
	 S � � Q � Q �
.

� � � is the path � without the constraint over
2

, and
� Q � � � ��� 	MS � � � � � �

.
� Q � � � ���
	 S � � Q � Q �

.
� �
 is the path � without the constraint over

�
, and

� Q � � � ��� 	MS � � � � � �
,

� Q � � � �/2 	 S � � � � � �
.

All these paths are feasible. In fact, if � B Z is the path � without the constraint
over

�
, then 4 � and 4
 are executions of � B Z . According to lemma 13, for this

path there is an execution 4EBZ of � B Z such that : 4EBZ � � � � 2 	 � � and 4EBZ � � � ���
	 �

SIU 2003

“main”
2004/3/5
page 26�

�

�

�

�

�

�

�

26 I. Berrada - R. Castanet - P. Félix

h_n

0
h_i

h_j

h_kh_p

h_q

h_t

−A

A

−C
C

Figure
C.16: Constraints
graph as-
sociated to��� .

h_n

0
h_i

h_j

h_kh_p

h_q

h_t

B

−B

−C
C

Figure
C.17: Constraints
graph as-
sociated to��� .

h_n

0
h_i

h_j

h_kh_p

h_q

h_t

−A
B

−B
A

Figure
C.18: Constraints
graph as-
sociated to��� .

�
. Then � 	� is an execution of � � . We have the same result for �
� and � � . Let

us consider now, the path � 	 	 defined by:
��� 	 	 is the path � such that
 ������������������� !�� #"

,
 �����$���&%��'����� ()��(*"
and

 ����� � �+�,�����-� �.���/"
.

h_n

0
h_i

h_j

h_kh_p

h_q

h_t

−A
B

−B
A

−C
C

Figure C.19: Constraints graph associated to � 	 	 .

Let us prove that � 	 	 is feasible. In fact, let
1032 ,
40+5 ,
40+6 and
 0 	 	 be the
constraints systems obtained from the algorithm of Fig. 4.3 respectively for
paths ��� , � � , ��� and � 	 	 . Let 7*032 , 7*0+5 , 7*0+6 and 7 0 	 	 be the constraints graphs
respectively associated to
1032 ,
40+5 ,
40+6 and
 0 	 	 . The graphs 7*032 , 7*0�5 , 7*0+6

SIU 2003

“main”
2004/3/5
page 27�

�

�

�

�

�

�

�

A Formal Approach for Real-Time Test Generation 27

(Fig. C.16, Fig. C.18 and Fig. C.17) do not have a negative cycle because theirs
paths are feasible. The graph

� �
B B (Fig. C.19) does not have either a negative

cycle. In fact, if there is a negative cycle then there is at least one cycle � which
passes one time by some nodes of the graph. If � passe by

� �
, then one of

the graphs
� � , � � " , � ��� has a negative cycle. We use a similar proof for the

second assertion of the lemma.

Appendix D. Proof of Lemma 10

Proof. Let 4 be in 4 � � � 	 . Let us prove, by induction, ��" � � , 4�Z � � 6 ��� 	 �
4 Z � � 7 ��� 	 ��4 � � 6 ��� 	 � 4 � � 7 ��� 	 .

For " � � � � , since 4YZ is making the minimum delay between transitions
after � 7 , then it takes the minimum of the interval of a clock

�
in � 7 � Z .

� If
�

is last reset in � 7 , then we have 4YZ � � 7 � Z ���
	 ��4 � � 7 � Z ���
	 . Since
4 Z � � 7 � Z ��� 	 � 4YZ � � 7 ��� 	 � 4YZ � � 7 � Z ���
	 et 4 � � 7 � Z ��� 	 � 4 � � 7 ��� 	 �
4 � � 7 � Z ��� 	 , we have then the result of the lemma.

� Else, Since 4 � � 7 ���
	 ��4 Z � � 7 ���
	 and 4 Z � � 7 � Z ���
	 � 4 � � 7 � Z ��� 	 , then
4 Z � � 7 � Z ���
	 � 4 Z � � 7 ��� 	 � 4 � � 7 � Z ���
	 � 4 � � 7 ���
	 , which means that
4 Z � � 7 � Z ��� 	 � 4 Z � � 7 ��� 	 � 4 � � 7 � Z ��� 	 � 4 � � 7 ��� 	 .

Now, let us us assume the lemma for �	� " and let us prove the lemma for
"]� � . Since 4 Z is making the minimum delay between transitions after � 7 ,
then it takes the minimum of the interval of a clock

�
in � 6 � Z : 4 Z � � 6 � Z ���
	 �

4 � � 6 � Z ���
	 .
� If

�
is last reset in � , � � � . While:

4 � � 6 � Z ��� 	 � 4 � � 7 ��� 	 �
4 � � 6 � Z ��� 	 � 4 � � ��� 	 �K4 � � ��� 	 � 4 � � 7 ��� 	 ,
4 Z � �� ��� 	 �M4YZ � � 7 ��� 	 � 4 � �� ��� 	 �M4 � � 7 ��� 	 , and 4 � � 6 � Z ���
	 �
4 � � 6 � Z ��� 	 �
4 � �� ��� 	 � 4 � � 6 � Z ���
	 ��4 � � 6 � Z ��� 	 � 4 � �� ��� 	 , then 4YZ � � 6 � Z ���
	 �
4 Z � � 7 ���
	 ��4 � � 6 � Z ���
	 � 4 � � 7 ���
	

� Else,
�

is last reset in �� , � � � . While 4 � � 7 ���
	 � 4 Z � � 7 ���
	 and
4 Z � � 6 � Z ��� 	 ��4 � � 6 � Z ���
	 , then 4 Z � � 6 � Z ���
	 ��4 Z � � 7 ���
	 ��4 � � 6 � Z ��� 	
�M4 � � 7 ��� 	

We use a similar proof for the second assertion of the lemma.

References

[1] Robert W. Floyd. Algorithm 97 (shortest path),Communications of the ACM,18(3):165-172,
1964.

[2] R. Alur and D. Dill. A theory of timed automata, Theoretical Computer Science, 126:183-235,
1994.

SIU 2003

“main”
2004/3/5
page 28�

�

�

�

�

�

�

�

28 I. Berrada - R. Castanet - P. Félix

[3] R. Alur, R. Kurshan, and M. Viswanathan. Membership problems for timed and hybrid au-
tomata, 19th IEEE Real-Time Systems Symposium, 1998.

[4] B. Aspvall, Y. Shiloach. A Polynomial Time Algorithm for Solving Systems of Linear In-
equalities with two Variables per Inequalities, 20th Annual Symp. on Foundations of Computer
Sciences, Oct. 1979, 205-217.

[5] B. Bérard, P. Castéran, E. Fleury, L. Fribourg, J.-F. Monin, C. Paulin, A. Petit, and D. Rouil-
lard. Automates temporisés calife, Fourniture F1.1, Calife, 2000.

[6] S. Bloch, H. Fouchal, E. Petitjean, S. Salva. Some issues on testing real time systems. Int.
Journal of Computer and Information Science, n2, Vol. 4, December 2001.

[7] Rachel Cardell-Oliver. Conformance Testing of Real-Time Systems with Timed Automata
Specifications, Formal Aspects of Computing, 12(5):350-371,2000.

[8] Duncan Clarke and Insup Lee. Automatic Test Generation for the Analysis of a Real-Time
System: Case Study. In 3rd IEEE Real-Time Technology and Applications Symposium, 1997.

[9] A. En-Nouaary, R. Dssouli, F. Khenedek, and A. Elqortobi. Timed test cases generation based
on state characterization technique, In 19th IEEE Real Time Systems Symposium (RTSS’98),
Madrid, Spain, 1998.

[10] H. Fouchal. Adapted test cases for timed systems. Journal of Electronics and Computer Sci-
ence, n1, vol. 3, pp:1-8, December 2001.

[11] Anders Hessel, Kim G. Larsen, Brian Nielson, Paul Pettersson, and Arne Skou. Time-optimal
Real-time Test Case generation using UPPAAL, To Appear.

[12] T. Higashino, A. Nakata, K. Taniguchi, and R. Cavalli. Generating Test Cases for a Timed
I/O Automaton model, TESTCOM99, Budapest, Hungary, September 1999.

[13] O. Koné, P. Laurencot and R. Castanet. On the Fly Test Generation for Real Time Protocols.
In International Conference on Computer Communications and Networks, Louisiana U.S.A,
1998.

[14] A. Koumsi, M. Akalay, R. Dssouli, A. En-Nouaary, L. Granger. An approach for testing real
time protocols, TESTCOM, Ottawa, Canada, 2000.

[15] L. Kaiser. Interopérabilité temporelle d’automates temporisés, PhD thesis, Université H.
Poincaré, Nancy, 2002.

[16] Dino Mandrioli, Sandro Morasca, and Angelo Morzenti. Generating Test Cases for Real-
Time Systems from Logic Specifications, ACM Transactions on Computer Systems, 13(4):365-
398, 1995.

[17] E. Petitjean. Etude des méthodes de test sur les systèmes temporisés, PhD thesis, Université
de Reims, France, November 2000.

[18] Jan Springintveld, Frits Vaandrager, Pedro R. D’Argenio. Testing Timed Automata. Theoret-
ical Computer Science, 252(1-2):225-257, March 2001.

Authors addresses:
LaBRI - CNRS - UMR 5800 Université Bordeaux 1
33405 Talence cedex France
berrada@labri.fr, castanet@labri.fr, felix@labri.fr

SIU 2003

