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Combinatorial map as multiplication of combinatorial knots

Dainis ZEPS ∗

Abstract

We show that geometrical map can be expressed as multiplication of combinatorial maps, i.e. map
P is equal to multiplication of its knot, inner knot’s square and trivial knot (= µ · ν2 · π1).

1 Introduction

We proceed with building combinatorial map theory that from different points of view and formulations
is considered in from [1] to [35].

We multiply permutations from left to right. Geometrical combinatorial map is pair of permutations,
vertex and face rotations, (P, Q) acting on set of elements C if P · Q−1 = ρ edge rotation or inner edge
rotation π = Q−1P is involution without fixed elements. We consider set of maps with fixed π calling
them normalized maps. Mostly we use one particular choice of π equal to (12) ... (2k − 1 2k), k > 1. If
so, map may be characterized with one permutation, say vertex rotation P .

In [30] we saw that particular choice of ρ by fixed π induces partitioning of the set C into to subsets

C1 and C2 [in general in several ways] so that the knot µ =
{

C1 : π
C2 : ρ

is defined. Here, knot µ as

permutation has 2k choices if k is number of cycles in it. Rightly, changing direction of some cycle of µ
we get another possible value for knot µ. Moreover, ρ with choice of particular µ partitions π into π1 ·π2,
where we call π1 cut edges and π2 cycle edges, so that P · π1 : C1 7→ C2 and P · π2 : C1 7→ C1. In [31]
was shown that by fixing µ map P may be expressed as multiplication γ1 · γ2 · π2, where γ1 acts within
C1 and γ2 acts within C2.

In [30] was shown that normalized map always may be expressed as P = µ · α, where α is called
knotting and it is selfconjugate map in sense that απ = α. In [32] we got formulas for µ and α, i.e.,

µ = γ2πγ−1
1

and
α = γ1γ

π
1 .

From [30] we know that α’s form a group Kπ with respect to multiplication of maps. Moreover, classes
of maps with fixed ρ’s, denoted as Kρ, are cosets (left and right) of Kπ.

2 Main part

We are going to regain main formulae from introduction.
Let us prove some theorems that leads us to the main result.

Theorem 1. ρ · π [or π · ρ] is equal to some combinatorial knot µ squared and one or other color cycles
induced from this knot reversed.

Proof. Let us write knot µ in the form
{

C1 : π
C2 : ρ

. Then square of µ we would get applying π · ρ for

one color corners and ρ · π for other color corners.

Theorem 2. By fixing the square of the knot it has 2k knots in correspondence [in general for different
maps] where k is the number of cycles in the knot.

Proof. Two joined cycles of square of knot may be combined in the cycle of knot in two ways, and thus,
k independent operations give 2k results.
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Theorem 3. [µ · π is knot’s half-square]
1) µ · π contains squared knot’s cycles of only one color.
2) For vertex rotation µ · π corresponding face rotation and knot are equal to µ, and knotting equal to π.
γ1 = id, γ2 = µ · π, and π1 = π, because all edges of this map are cut edges.

Proof. 1) µ expressing as
{

C1 : π
C2 : ρ

, and multiplying by π, we get
{

C1 : π · π
C2 : ρ · π and using theorem

1 what was to be proved.
2) Corresponding graph to this map is set of star graphs as many as cycles in µ. Direct calculation gives
what is stated by theorem.

Theorem 4. Map P can be expressed as Pπ1 = γ1γ2π = γ2γ1π with µ(P ) = γ2πγ−1
1 [= γ1ργ−1

2 ] and π1

as inner cut edge rotation and π2 inner cycle edge rotation.

Proof. Let knot µ = µ(P ) be fixed. Then set of corners is partitioned into two sets C1 and C2. From
form of µ(= γ2 · π · γ−1

1 ) we directly judge that γ1 belongs to, say, C1 and γ2 to C2. Thus, γ1 and γ2

commute by multiplying. Let us choose vertex rotation with this fixed knot and π1 = id, i.e., with all
edges being cycle edges. Then vertex rotation is alternation of corners from C1 and C2 respectively, and
face rotation’s cycles are correspondingly of one color. Then form of µ = γ2 · π · γ−1

1 shows directly that
P · π1 must be equal to γ1 · γ2(= γ2 · γ1). Finally, in general we get

µ =
{

C1 : π
C2 : ρ

=
{

C2 : γ2πγ−1
1

C1 : γ1ργ−1
2

.

Theorem 5. Map P · π1 can be expressed as
{

C1 : β1

C2 : β2
, where involutions β1 and β2 are equal to

β1 = π−γ1 and β2 = π−γ2 . Moreover, β1 = γ1γ
−1
2 µ and β2 = γ2γ

−1
1 µ. Moreover, β1β2 is squared knot

µ(..., β1) with one color cycles reversed. See theorem 1. δ = πγ1 . P = γ1γ2π2.

Proof.

Pπ1 =
{

C1 : β1

C2 : β2
=

{
C1 : γ1πγ−1

1

C2 : γ2πγ−1
2

= (
{

C1 : γ1

C2 : γ2
) · π = γ1γ2π.

Corollary 6. Map Pπ1 is a knot for inner edge rotation β1 and edge rotation β2.

Theorem 7. Let for some fixed knot the map P be equal to µα. Then α is equal to γ1πγ1π2 or γ1γ
π
1 π1.

Proof. α = µ−1Pπ1 = γ1πγ−1
2 γ2γ1π = γ1πγ1π = γ1γ

π
1 . This α is knotting for Pπ1. For map P knotting

is γ1πγ1π2 or γ1γ
π
1 π1.

Corollary 8. απ = α. Selfconjugate α’s comprise group.

Proof. απ = (γ1γ
π
1 π1)π = γπ

1 γππππ
1 = γ2γ1π1 = α.

Theorem 9. γ1γ
π
1 is some knot’s square.

Proof. Let us denote this knot by ν. Direct observation shows that theorem is correct. Then fixed knot
µ induces α and it determines fixed ν such that ν2 = γ1γ

π
1 .

Theorem 10. Every combinatorial P can be expressed as multiplication of knots in the form

P = µ · ν2 · π1.

Proof. It directly follows from previous theorems. Really, P = µα = γ2πγ−1
1 γ1γ

π
1 π1 = γ2γ1π2 =

µ(γ1π)2π1 = µν2π1.

It must be noted that π1 is some knot too. We call this knot trivial knot. Let us call knot ν map’s
inner knot.

Corollary 11. Map is multiplication of its knot with its inner knot’s square and with its trivial knot.
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Theorem 12. For Pπ1 µ commutes with α, i.e.,

Pπ1 = µ · α = α · µ.

In general,
P = µα = αµπ1 .

Proof. For Pπ1, µα = (γ2πγ−1
1 )γ1πγ1π. Further, γγ1πγ1π

2 = γπ·π
2 = γ2, because corners of γ1 and γ2 do

not intersect. The same is true for the member γ−1
1 . Further, πγ1πγ1π = πα = π. Thus, we get µα = µ.

Theorem 13. For partial map [P, µ] its inner edge rotation is α.

Proof. Direct observation.

3 Conclusions

There are four types of permutations that are used to build ”all” in combinatorial map theory, i.e.,
knot-type, knot-square-type, knot-square-with-reversed-cycles-type, two-color-involutions. Comprehen-
sive algebra of all these types should be ground for combinatorial map theory.
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