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Application of the Free Minor Closed Classes in the
Context of the Four Color Theorem

Dainis ZEPS ?

Abstract. Four color theorem, using concept of free-planar graphs, is discussed.

1 Introduction

We have two main ideas and one observation in the ground of this treatment. Free planar
graph idea arouse considering dynamic graph partitioning into 3-connected components
[12, 13]. Secondly, free planar graphs were generalized in free minor closed classes in [7]
by Jan Kratochv́ıl. Treating in year 1984 graph’s dynamic partition into 3-connected
components we observed that this partitioning algorithm can’t be simplified if we had
intent to build only free-planar graphs. Thus, speaking in terms of this observation, planar
graphs are not more complicate than free-planar graphs, at least what concerns their re-
constructibility from 3-connected components [12]. Thus, algorithmically or what concerns
algorithmic re-constructibility of the graphs, planar graphs are not more complicate than
free-planar graph in spite of fact that free-planar graphs are only small subset of planar
graphs. Further, from four-color theorem we know that planar graph uses the same number
of colors to be colored as free-planar graph. In this article we investigate how this simple
fact could be put in the ground of some other approach in trying to prove four-color
theorem.

Further in this article we directly mention either four-color theorem is assumed already
proved or not. When it is not alleged directly then it should follow from the context.

We start with the proof what we believe should be put to ground for four-color theorem
in general.

Theorem 1. Every free planar graph is colorable using four colors.

Proof. Direct check shows that 3-connected free planar graphs are 4-colorable graphs [15].
There are only three cases to be considered. Wheel graph is 4-chromatic if odd, and 3-
chromatic when even. Envelope graph is 3-chromatic. Further, uniting 3-components of
free planar graphs, which are at most 4-colorable graphs, via virtual edges, we get again
at most 4-colorable graphs. Truly, virtual edge itself may acquire no more than two colors,
what is the maximal number of colors that may be forced upon an another component.
Here we must recall that 3-components which are unique comprise 3-component tree, i.e.,
structure without cycles [12, 13].

2 Free-k-chromatic graphs

Graph is free-k-chromatic if it is k-chromatic and for every non-edge e G+e is k-chromatic
too. More general, graph is n-free-k-chromatic if it is k-chromatic and for every non-edge
set of n edges G with these edges added remains k-chromatic. Shortly we denote this
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property by ’nfk’, saying, for example, that graph G is 2f4-graph, meaning that it is
2-free-4-chromatic graph.

Let us try to clarify how freeness of colorability could be connected with freeness of
minor closed classes. One simple result we get directly.

Theorem 2. Every k-critical graph is free-k-chromatic

Proof. Every edge may receive the lonely color and thus every non-edge may be added
non disturbing coloring.

Further, we may conclude that class of free-k-chromatic class is wider that k-critical
class. For example, graph Kk+1 with proper splitting of vertex is free-k-colorable graph,
but not k-critical graph. What concerns 4-colorability, one more large class belongs to
free-4-chromatic graphs, and this is class of free-planar 4-chromatic graphs. This follows
from the four color theorem. Actually, if we add edge to such graph, it should remain
planar and, thus, 4-chromatic according four color theorem.

But we want to prove this fact not using four color theorem.
Actually, k-chromatic free planar graphs with k < 4 can’t rouse any problems what

concerns four-color theorem. Truly, we may apply for new edge always fourth color. We
go directly to case k = 4.

But, before we need to prove simple theorem.

Theorem 3. Every atetrahedral graph is 3-colorable, and, if 3-chromatic, graph is free-
4-chromatic graph.

Proof. Atetrahedral graph itself is 3-colorable by induction: start coloring with odd cycle
as 3-component, using 3 colors; then after, as step of induction, add some connected
component to already colored part. If all cycles are even than graph should be 2-chromatic.
It is trivial that 3-chromatic atetrahedral graph is free-4-colorable.

Theorem 4. Every free planar 4-chromatic graph is free-4-chromatic graph.

Proof. If graph is 3-connected than we must check only case of odd wheel graph: adding
edge it should remain 4-chromatic, because odd wheel graph is 4-critical graph, see previ-
ous theorem. Further, we must show that arbitrary free-planar graph consisting from more
than one 3-component, where at least one component is odd wheel, remains 4-chromatic
after edge is added.

Let graph be 4-chromatic free-planar graph consisting from more than one 3-component.
Let us add edge x− y to check whether graph remains 4-chromatic.

If both ends of edge, i.e., vertices x and y, fall in the same 3-component, then we have
all proved. Edge x− y is going to contract path of 3-components, see [12, 13] (or path of
g-edges [16]). We may refer problem of coloring the contractible part of graph to problem
of coloring atetrahedral graph plus edge. But atetrahedral graph is 3-colorable, as we have
this proved already in the theorem before, and proof of theorem is completed.

We have proved that four color theorem is true what concerns free planar graphs and
even augmented with additional edge, i.e., that free planar 4-chromatic graph is free-4-
colorable too. But this evidently is not sufficient to conclude about the four color theorem
in general. Let us go further.
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Fig. 1. Idea of free-four-color theorem for case of free-planar graphs. 3-components of free-planar graph may be
replaced with 3-cycles or 4-cycles, for example, it suffices to consider triangles {x, a, b} and {y, v, w}.

Theorem may be extended. It is easy to see that in place of free planar graph class
may be taken some wider class, let it be called class PP, i.e., the class generalizing free-
planar graph class, without forbidden virtual edges in building graphs, contracting path
of 3-components according procedure in [12]. Graphs from PP have the same components
as free-planar with exception that forbidden virtual edges (for free-planarity) are now
allowed. Class PP is expected to comprise free-planar (or even free-2-planar) graphs for
projective planar , though at least one graph violates this expectation, D17, forbidden
graph for projective plane [5].

Let us define class PP precisely. Similarly as in [15], page 6, graph G from PP consists
from components, where every edge may be virtual edge, as follows:

1) Ck, k > 2;
2) Wk, k > 2;
3) C6.
It is easy to see that class PP does not have free-Hadwiger class Free(H5) [where H5

supposed without minor K5] as subclass, because forbidden graph K¯
5 belongs to PP , but

not forbidden K3,3 doesn’t belong to PP . Thus, two classes intersect. Next two theorems
speak more precisely.

Theorem 5. Class PP is minor closed class.

Proof. Checking each component separately, we may see that eliminating edge or con-
tracting edge we get some legal component. So, from Wk we get either some other wheel
or polygons. From envelope graph C6 we get K4 and polygons.

Theorem 6. Class PP is equal to class N◦(K−
5 , K3,3).

Proof. If we added constraint as forbidden graph K−
3,3, we had PP equal to free-planar

graph class. Taking off constraints from virtual edges just means allowing minor K3,3.
Further, K−

5 can’t be obtained with allowed components. Neither K3,3 can.
In first case, largest component in K−

5 minus edge is either W4 or K4, which already are
closures for allowed set of components, i.e., can’t be obtained from allowed 3-components
with connections via virtual edges. In second case, only K−

3,3 without closure with edge
may be obtained.

Theorem 7. Every graph from class PP is free-4-chromatic
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Fig. 2. Classes comprising all free-4-chromatic graphs. One graph, proper K5¯, or K−++
3,3 has K−

3,3 as subgraph,

and belongs to class PP , but not belongs to Free(H5). Graph K−++
3,3 plus 0-critical edge remains to be 4-

critical, but does not belong to any class in the picture, except Free4CH itself. Graph proper K¯
5 = K−++

3,3

especially should be taken into account because it is the only graph that is free-4-chromatic with 0-critical edge
and would remain free-4-colorable after this 0-critical edge be added. Class Free(H5) that would be between
classes Free(Planar) and CC and intersect with class PP is not shown in the picture.

Proof. In proof of theorem 4 we may observe that it does not depend upon fact either
virtual edges have constraints as in case of free-planar graphs or not. Thus previous proof
fits for this theorem too.

It is easy to see that the proof of the last theorem would not change if in place of odd
wheels we had arbitrary 4-critical graph. Let us use this fact and with purpose to widen
the observable class of free-4-chromatic graphs define class CC which is modified class
PP with 4-critical graphs allowed in place of odd wheels. Then we formulate as corollary
what follows, because previous proof fits as before.

Corollary 8. Every graph from class CC is free-4-chromatic.

Let us denote by FreekCH class of all free-k-chromatic graphs. We may conclude the
following corollary.

Corollary 9. Free(Planar) ⊂ Free(H5) ⊂ 〈K3,3 : K¯
5 〉 ⊃ PP ⊂ CC ⊂ Free4CH,

where ⊂ 〈G1 : G2〉 ⊃ denotes symmetric property saying that classes intersect with at
least G1 not belonging to right part, and G2 not belonging to left part.

Here we have one exceptional graph, proper K¯
5 plus non-planar edge, which does not

fit in any of classes above, but it is free-4-chromatic. This same graph may be reconstructed
as K−++

3,3 , i.e., K3,3 minus edge plus two edges not affecting planarity, and then removed
edge restoring.

We define 0-critical edge to be such non-edge in graph that for all colorings it may be
added to graph no affecting these colorings. 1-critical edge then let be such non-edge that
for no coloring it may be added without affecting total coloring of the graph. Addition of



1-critical edge to graph raises graphs chromatic number always, whereas 0-critical edge’s
addition never changes graph’s chromatic number.

Lemma 10. Graph K¯
k+1 with split being proper, i.e., not simply edge being split off, is

free-k-chromatic. More over, it remains free-k-chromatic after edge vw is added, where v
and w are new vertices after split done.

Proof. Let new vertices in the split would be v and w. It is easy to see that vw is 0-critical
edge, because vertex before split had k+1-st color, but after split v andw should receive
their colors from mutual neighbors, i.e., different colors. Every edge may be added to this
graph; if, say, color of v is the same that some, say, vertex s, then s may change its color
with other vertex from neighbors of w. vw may be added as well. This act of adding does
not make graph not being free-k-chromatic, as it follows from previous arguments.

Conjecture 11. Graph K¯
5 (with proper split) is the only free-4-chromatic graph with

0-critical edge.

Proof. Let us have some considerations in favor of this conjecture. Let us consider at least
these classes which we build here. We have to prove that other free-4-chromatic graphs
do not have 0-critical edges. If added edge falls into single component, say, some k-critical
graph, k < 5, then it is not 0-critical. If edge falls in different components then vertices
via virtual edges can’t be forced to have or not to have different color.

In other cases, only uniquely colorable graphs or subgraphs may force 0-critical edges,
but we have opposite, free-colorable graph.

Graph K¯
5 is not the only graph that would belong to class Free2

4CH, there at least
one more such graph may be given, i.e. D17 from forbidden subgraphs of projective plane
[5, 17]. Further we would see that all critical graphs behave the same way.

Let us ’configure’ our graph proper K¯
5 , or K−++

3,3 , in the sequence of subsets in corol-
lary 9.

Corollary 12. K−++
3,3 6∈ Free(H5), K−++

3,3 ∈ PP , K−++
3,3 plus 0-critical edge is not in PP ,

and K−++
3,3 plus 0-critical edge is in Free4CH.

Class CC hardly could be expected to be characterizable with forbidden components.
But some more special case is possible. Graphs G2k+1, with k > 1, from [18] that there
are called higher order wheels, are 4-critical, does not have minor K¯

5 and thus this class
is subclass of class N◦(K¯

5 , K3,3). If we would like to constrain our class CC to these
4-critical graphs then all class became subclass of this class.

By the way, these higher order wheels G2k+1 have O−, where O is octahedron graph,
as minor. But, O itself is forbidden graph for all class of G2k+1, k > 1. Let us formulate
it as nice corollary.

Corollary 13. For the family of higher wheels octahedron minus edge is proper grandson
and octahedron itself is proper grandfather.

In [18] defined minor brackets allow to characterize this situation. For higher wheels
pair (O−, O) is proper minor bracket.

Let us add to class’s CC, calling it completed CC, graph with as allowed components
linear graphs lk, i.e., paths of length k − 1 > 0, where each vertex may serve as virtual
vertex.



Let us define class of graph 4M as follows: graph G belongs to 4M if its spanning
subgraph belongs to completed CC.

Theorem 14. If four color theorem is correct class 4M contains all planar graphs.

Proof. Let graph be 4-colorable. Let us reduce edges until it is free-4-colorable. Graph
belongs to 4M .

Of course, we must be content with the fact that class CC can’t be minor closed.
Either whole class of free-4-colorable graphs can’t be expected to be minor closed.

Theorem 15. If four color theorem is true, in 4-chromatic planar graph edge to be added
is either non-1-critical and planar or 1-critical and non-planar.

3 Closures of components

In [16] we introduced notion of component path closure and proved Kuratowski theorem
analogue for 3-components. Let us remind some definitions from there.

Components we discuss are the same as in theory of graphs dividing into 3-connected
components, i.e., polygons, bonds [if necessary], three connected graphs, with as many
virtual edges as necessary. In considering free-planar graphs, our allowed components
should be these allowed in building free-planar graphs, and so on. We add as very useful
notion generalized vertex and edge,or g-vertex and g-edge. g-vertex is either single vertex
or two distinct vertices in the graph. If not told otherwise, we would assume that with
g-vertex virtual edge is connected, i.e., if {v, w} is g-vertex then {v, w} is virtual edge in
G too. In case g-vertex is single vertex, it is virtual vertex too. g-edge is always pair of
g-vertices, i.e., if not told otherwise, pair of virtual edges, or edge or vertex, or virtual
vertices. Thus, g-edge may consist from four vertices, or three vertices, i.e. vertex and
edge, or two edges with common vertex, or two vertices, i.e., vertex and vertex.

We are saying that component C is marked with g-vertex v = a or v = a, b, saying
v : C is formed, when some g-vertex v is distinguished in C, and v is virtual vertex in C.
Distinguishing two distinct g-vertices in C, we may speak about g-edge being distinguished
in C, denoting it vw : C or e : C, where vw and e is g-edge.

Let us call closure union two components by common g-vertex, that is simple vertex.
For example, we may write C1 : e : C1, assuming that two marked components e : C1 and
e : C2 have common g-vertex e, and say that components are forming closure by uniting
two g-vertices in common g-vertex e. If order of e is one, i.e., it is simple vertex, then we
call closure 1-closure, first order closure. If order of e is two, i.e., it pair of vertices, then
we call closure 2-closure, or second order closure. Further, we may form paths of closures
C1 : e1 : C2 : e2 : ...ek−1Ck with k > 1. Yet more, we may cycle in this path, speaking
about new type of closure, i.e., if we cycle in path of first order closures, then we say that
we did 2-closure from 1-closures, and, if we cycle in path of second order closures, i.e., at
least one closure in the path was second order, then we say, that we did 3-closure from
2-closures.

3.1 Building 4-critical graphs

First order 4-chromatic higher order wheels In [18] higher order wheels were intro-
duced, that were 4-critical graphs. We may now illustrate on these wheels in what way
3-closures from component 2-closures path may be very useful.
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Fig. 3. Resulting graph is formed as 3-closure of path of 2-closures C1 : {2, 7} : C2 : {3, 7} : C3 : {1, 7} :.
Actually, cycle of g-edges is {17, 27}, {27, 37}, {37, 17}, but we may in place of it considering corresponding cycle
of g-vertices 17, 27, 37.

Figure 3 explains in example how closure of path of closures is used to build 3-
connected graphs.

Let for a while us consider only wheels as components. Then graph performed from
simple wheels as closure of path of closures may be characterized as sequence n1, ...nl,
l >= 3, where ni, 1 <= i <= l, is order of i-th wheel.

Theorem 16. Graph obtained as closure of path of wheels as components is 4-critical iff
l is odd and every ni in the characteristic sequence of the closure is odd and at least three.

Proof. Let l = 3, and wheel be minimal. Common vertex in virtual g-edges in cycle of
closures should receive colors (A ∨ B) ∧ (B ∨ C) ∧ (C ∨ A) which gives Falce, thus new
color should be generated. Every edge in construction is crucial.

Let wheel be arbitrary. The same coloring as for simple case is now possible too.
Every edge is crucial in the construction by the argument that follows. For absent rim
edge, rim vertices may be colored with, say, colors A and B. For absent outer and inner
spike non-spike’s both ends colors with the same color.

Thus, chromatic criticality rises from the condition that every edge is necessary in the
construction.

Case for arbitrary odd l generalizes obviously: condition for center of wheel could be
made (A ∨B) ∧ (B ∨ A) ∧ (A ∨B)...(B ∨ C) ∧ (C ∨ A).

It is easy to see that, if in sequence n1, ...nl, l >= 3, at least one number not excluding
l is not odd, then graph constructed may be colored with three colors.

In the article [18] graphs considered were 3 − 3 − 3 (G3), see figure 3, 3 − 3 − 5
(G5),3− 5− 5 (G7), and 5− 5− 5 (G9), see figure 4.

Class of non-three-connected 4-critical graphs In [16] graph in fig. 6 was wheel
graph W5 with split one edge what may be considered as smallest non-free-planar 4-
critical graph. Either it is example of smallest application of Hajós sum [2]. See fig. 9.
This construction may generalized to give augmentable class of similar graph that would
be non-tree-connected, but nevertheless 4-critical.

In place of two components K4, there may be even number of K4. It is easy to see that
such graph should be 4-critical. It has general cycle of odd length. Next, on this cycle one
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Fig. 4. Graph 5− 5− 5 (G9 in [18])
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vertex should receive ’third color’, and, as a consequence, in that component fourth color
should appear.

Graphs of this class are characterized by number of components K4, divided by two,
calling it graph’s order. Thus, in fig.9 there are graphs of first and third order of the type.

3.2 Closures of paths of closures

Further, components in paths in closures may be arbitrary, i.e., not only wheels.

Theorem 17. Let A be arbitrary class of graphs which is generated from some set of
allowed possibly marked components without yet applied closure of paths of closures, and
graphs of this class are free-4-chromatic. Let us build new graph where one closure of path
of closures is applied. Then the graph is free-4-chromatic too.

Proof. Proof is omitted here.

It may be expected that previous theorem may be generalized to case when paths are
built in a way when cycles only intersect but do not touch in sort of edges. Formally,
it should be done carefully. It is clear that overall generalization with whatever possible
closures should give graphs that are not free-4-chromatic. It is obvious. Because, using
this technics we may construct arbitrary graphs, but not every graph is free-4-chromatic.

Fig. 6. Example of map with split [red] edges. Graph becomes free planar. In this case virtual edges should
coincide with real edges.

3.3 Planar graph’s reduction to free-planar graph

Pictures 9 and 11, using one Grinberg’s graph [6], demonstrate way, how graph may be
split in a way it becomes free-planar. In first case splits are done via edges, i.e., in that
case, according Tutte’s theory of division into three-connected components [11, 13], virtual
bonds with one real edge and virtual edges should appear. In another case splits are done,
no affecting real edges in the graph. Both types of splits may be combined together, but
we would prefer second type of splits and use only them in order to simplify theoretical
outline.



Fig. 7. Graph becomes free planar after four edge-type splits and one vertex-type split.

3.4 Another simple proof of four-color theorem. What’s wrong with it?

Let us have planar graph G with m edges and one edge take out, and let us, under
induction assumption, it’s vertices color in four colors, and let us split it, using second
way, until it becomes free-planar, remembering vertex colorings. Now we have graph that
is free-planar and free-4-chromatic. We may add eliminated edge, and graph is with m,
and proof almost done.

What’s wrong with this proof? Free-4-chromatic graph after adding edge should be,
in general, recolored. The operation of recoloring may affect end g-vertices that should
be conditioned by some border condition, according which split vertices or edges should
preserve coloring, that is in concordance with coloring in graph without splits. If recoloring
is possible with the preserving of this border condition, then proof would be done too.
Let us say that graph may be colored in 4 colors if this border condition problem may be
solved, and call it border condition problem. Let us formulate this as theorem.

Theorem 18. Border condition problem may be solved iff four color theorem is correct.

Formulating this theorem we want to express significant principal fact. What concerns
number of colors, needed in coloring, coloring planar graph is as complex as coloring free
planar graph. I.e., four colors are needed in both cases.

3.5 Discussion of border condition problem

How to attack border condition problem? We may show up two encouraging facts. First, in
[6] Grinberg mentions significant fact that only possible counterexamples of 4CT may be
quasi-five connected graphs. Thus, in the border condition problem this fact should play
some role. Second, if in traditional proof outline of 4CT we must consider 5-critical graph,
then in our case we should consider 5-critical free-planar graph with border condition. But
graph is free-planar nevertheless, where only wheels play any significant role, thus, our
5-critical graph consist from wheels connected by polygons or envelopes and with border
condition.



3.6 4CT proof

Let us start as before with induction assumption, but assuming that two edges are taken
out and adding one, border condition problem is solved by induction assumption.

Let us consider the only critical situation, odd wheel, where two edges being absent,
it colored using four colors, in general in several ways. Adding one edge we always solve
border condition problem by induction assumption, in general with several possible col-
orings of the graph with n − 1 edges. There remains one edge to be added. Both edges
may be interchanged, by symmetry assumption. If wheel had 2k + 1, k ≥ 1, spokes, then
4k(2k + 1 cases are possible. By the way, situation in general, as described above, has
evident central symmetric symmetry. Is border condition problem the same, i.e., with the
same symmetry? Seems not, but something like what could be expected in outer planar
graph.

Let us go further. In spe.

4 n-free-k-chromatic graphs and unique colorable graphs

Free minor closed classes may be characterized by forbidden minors of classes against
which class is made free. This is made via Kratochvil’s theorem [7, 15].

In [7] Kratochv́ıl proved very powerful theorem :

F (Free(A)) = bF (A)− ∪ F (A)¯c,

where B− .
= {G − e | G ∈ B, e ∈ E(G)} and B¯ .

= {H | H ∼= G ¯ v,G ∈ B, v ∈ V (G)}
and operation ¯ [in its application G ¯ v] denotes a non unique splitting of vertex v in
G, which is the opposite operation to edge addition and its contraction [in result giving
vertex v].

We may try to characterize classes FreekCH similar as in case of free minor closed
classes with forbidden minors, but now we expect not to use minors but subgraphs.
Forbidden subgraph for 4-chromatic graph is K5, for example, next to it arbitrary 5-
critical graph, and, if four color theorem is not correct supposedly, let us say, then H, the
smallest counterexample to four color theorem, that should be 5-critical graph, is similarly
forbidden subgraph for 4-chromatic graphs.

Let us fix an almost trivial assertion as corollary and then generalize it as non-trivial
theorem.

Corollary 19. Graph G is k-chromatic iff it does not contain as direct subgraph k+1-
critical subgraph and χ(G) ≮ k.

Proof. If G has as direct subgraph k+1-critical graph, it can’t be k-critical.
Let G be k-chromatic. Then it can’t have as direct subgraph k+1-critical graph. Let

G be without direct subgraph k+1-critical graph, χ(G) ≮ k. Then eliminating edges we
must stop to subgraph that is k-critical but not k+1-critical.

Theorem 20. Let n < k(k + 1)/2. Graph is n-free-k-chromatic iff it does not contain as
direct subgraph k+1-critical subgraph minus n edges and χ(G) ≮ k.

Proof. Let G has property nfk. Then, if assuming opposite it had k+1-critical subgraph
minus n edges, adding n edges gave graph that where not k-chromatic. Trivial.
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5 . It is easy to sea that graph may be rebuilt using algorithm given in [10] and[4],
page 12: K4 {1,4,5,6} and sequence of vertices 2, 8, 7, 3 do this.

Let us assume that graph G doesn’t contain such subgraph that were k+1-critical
minus n edges, but χ(G) ≮ k. We must prove that graph has property nfk. Let us assume
opposite. Graph doesn’t possess property nfk and adding n edges gave k+1-chromatic
graph [where number of deleted edges satisfies n < k(k + 1)/2]. In that case we could
start taking off edges, not moving n edges that were added, until graph is k+1-critical. It
is possible, because in case all possible edges are removed remaining n edges can’t give
subgraph Kk+1 because of condition on number n, n < k(k + 1)/2, that does not allow
Kk+1 be created. Removing added n edges we receive subgraph of G that is k+1-critical
minus n edges, and come to contradiction.

4.1 Unique coloring graphs and subgraphs

To go forward we need to consider graphs with forced or unique coloring. Uniquely col-
orable graph is such that has only one partitioning of colored vertices into sets of one
color. See [4] on this matter. Fig. 8 shows an excellent example of such graph, graph B7

from forbidden subgraphs of projective plane. This graph has as subgraph K−
5 three direct

subgraphs and thus it is forced to have only one coloring.
There is simple algorithm that reconstructs every uniquely 4-colorable graph. Take a

subgraph K4 and add successively new vertex of degree three. This fact follows from the
fact that every edge 3-colorable graph with unique coloring must have at least one triangle.
This fact is know as Fiorini-Wilson-Fisk conjecture and is proved by Robin Thomas and
Thomas G. Fowler in [4]. We would refer to it as FWF conjecture. In the example of fig.
8 as K4 generating set should be taken {1, 4, 5, 6} and as all graph generating sequence
sequence of vertices 2, 8, 7, 3.

FWF conjecture deals with planar graphs, but our example B7 is non-planar. This
example shows that conjecture might work outside planarity too. We are not going to
try to find out how far it reaches, but use this fact as follows: let us call graph FWF-
reconstructible if it may be reconstructed by FWF algorithm. Thus, we know, according
[4], that FWF-reconstructibles are planar graphs and some non planar too, for example,
B7. Trivial FWF-reconstructible graph let us call graph K4.

Lemma 21. If 4-chromatic graph is nontrivial FWF-reconstructible, then it contains
subgraph K−

5 .



Fig. 9. Forbidden minor for projective plane E27 [5]. Graph has at least three cycles of order five, but not triangles.
The part that causes odd cycles is drawn bold. Non bold edges does not affect odd cycles in the graph. This graph
is 3-chromatic, but free-3-chromatic too. Bold subgraph is of course free-3-chromatic. Added edges can be colored
arbitrary, thus, graph retains its free-colorability’s feature.

Proof. Let start FWF construction, take K4 and add vertex. This graph is K−
5 .

Theorem 22. If graph is nontrivial FWF-reconstructible, then each its vertex goes into
some minor K−

5 .

Proof. In case graph is planar, the FWF-construction gives only triangulations, and every
new vertex fall into some subgraph, not only minor, K−

5 . In case of non-planarity first
built K4 plus last vertex with three edges are into minor K−

5 , because three distinct paths
should be from last vertex to one vertex of K4, because graph is always 3-connected.

We should have use of some reverse assumptions.

Theorem 23. If 4-chromatic planar graph does not have subgraph K−
5 , then it is not

uniquely colorable. More over, no part of the graph taken as induced subgraph may be
uniquely colorable graph.

Proof. First part of assertion follows from fact that uniquely 4-colorable planar graph
is FWF-reconstructible. Second part follows straight in case subgraph is 4-chromatic. In
case it most 3-chromatic, one excessive color may be interchanged with whatever color
from these most three colors.

4.2 Direct subgraphs

It is easy to see that graphs we have constructed as 4-critical graphs does not contain K−
5 ,

though have it as minor, thus, they may not be uniquely colorable graphs and no part of
graph taken as some subgraph may be colored uniquely. We want to conclude from there
that k-critical graphs all have property not containing as subgraphs k+1-critical graphs
minus edge.

Further we expect that planar 4-critical graph has as direct subgraph K¯
4 which is K4

with split off edge. General proposition is in Conjecture 35
Let take for example graph E27 from forbidden graphs of projective plane. It is 3-

chromatic and is free-3-chromatic, because does not have subgraph K−
4 , but it has of

course homeomorphic subgraphs K−
4 , not being atetrahedral graph. The same applies for

projective plane forbidden graphs E11, E6 and F4 too. Neither of them have K−
4 as direct

subgraph and they are 3-chromatic. Thus, they are free-3-chromatic.
Two technical lemmas are needed.

Lemma 24. Every non-edge in critical graph may be colored with different colors.



Fig. 10. E27 see [5].

Proof. Let one vertex of this non-edge be colored with the lonely color.

Lemma 25. Every non-edge in critical graph may be colored with the same color.

Proof. Let one vertex of this non-edge [vw], say, vertex v, be colored with the lonely color.
Let recolor other vertex with the same color.

Both lemmas may be generalized.

Lemma 26. Every independent set of vertices in critical graph may be colored with the
same color.

Proof. Let one vertex of this non-edge [vw], say, vertex v, be colored with the lonely color.
Let recolor other vertices with the same color.

Lemma 27. Every independent set of at most k − 1 vertices in k-critical graph may be
colored with different colors.

Proof. In case this set of vertices is separating graph into parts, proof follows straightfor-
ward. Otherwise let us use induction. Let us split graph along these vertices letting graph
be hold together with what it is hold together. As a basis of induction we may take graph
with, say, k +1 vertices which should be different from K−

k+1, which must be absent at all
in critical graph.

Lemma 28. Let in critical graph k distinct vertices for all colorings have k distinct colors,
i.e., they color differently, then subgraph Kk is in the graph.

Proof. Let us suppose opposite and these k vertices have some non-edge. But, according
lemma 25, every non-edge in critical graph may be colored with one color, thus, Kk on
these vertices must have less than k colors in this coloring.

Lemma before may be generalized. By the way, we must observe that Kk is uniquely
colorable graph.

Theorem 29. In k-critical graph n distinct vertices for all colorings receive n different
colors iff induced subgraph on these vertices is Kn.



Proof. In one direction assertion is trivial. Let us assume that in k-critical graph exist such
subgraph induced by n vertices that in all colorings it receive n colors. Let us assume, to
the contrary to what theorem says, that this graph is different from Kn and thus has same
non-edge vw. But, according lemma there exist coloring were v and w receive different
colors, thus, this subgraph is not uniquely colorable graph. Even more, there does not
exist pair of vertices that for all colorings would reside in common color subset. Thus,
this graph can’t even have some subgraph in it that were uniquely colorable, or it is itself
uniquely colorable graph Kn. If subgraph has at least one edge, then it must coincide with
Kn, starting with K2. In case it does not have edges, then lemma says that graph can be
colored either with one color or at least two colors.

We may generalize the theorem as follows.

Theorem 30. In k-critical graph G vertices from proper vertex subset S with m vertices
for all colorings receive n different colors iff m = n and induced subgraph on these vertices
is Kn, or graph G as subgraph has bipartite graph with vertices S in one of its sides.

Proof. Let arbitrary vertices x and y correspondingly inside and outside of induced sub-
graph G(S). Then either every such pair must be united by edge to exclude possibility to
color, say, x with lonely color and other end recolor with the same color, or every vertex
of G(S) by colorings must go into its own color subset, i.e., G(S) is isomorphic to Kn.

Thus, theorem allows case when G is taken odd wheel W2n+1 and as S is taken its rim.
Technical lemmas 26 and 27 say that there is possible colorings with any independent

set colored either in one color or as many as number of vertices in this independent set
not exceeding k− 1. If independent set in subgraph is not less than chromatic number of
subgraph extracted, i.e. not greater than two, then complementary graph of this subgraph
should be tree or forest. Two cases, either subgraph contains odd cycles, n = 3, or doesn’t,
n = 2. Technical lemma exclude case when subgraph is independent set. Cases solve
trivially.

Corollary 31. Belonging to its own Hadwiger class k-critical graph has Kk−1 as subgraph.

Let us try to prove it for K < 5. For case k = 3 it is right of course.

Corollary 32. Planar 4-critical graph has K3 as its direct subgraph.

Proof. Let us assume that planar graph exist that do not have K3. We can’t make such
graph using Hajós construction, because we would need for this reason minimal block with
such property, but just that what is missing. Only critical graphs without this property
ar non-planar. Either the construction used in this paper in chapter cannot give graphs
without K3. The graph we are trying to find must be at least 4-connected. ....Proof must
proceed.

This fact is known as Grötzsch’s theorem which says: every triangle-free planar graph
is 3-colorable. See [3] p. 406.

Conjecture 33. In k-critical graph every vertex either goes in some Kk−1 or belongs to
nontrivial, i.e., with at least three members, independent set of vertices.

The two famous non-planar 4-critical graphs, Chvátal’s graph with 12 vertices and
Grötzsch graph with 11 vertices don’t have triangles at all, but in both graphs every
vertex belongs to independent set with at least three vertices, (see [3] pages 362 and 366).
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Fig. 11. Wheel graph of order four can’t be subgraph of any 4-critical graph.

Corollary 34. nfk graph does not have as subgraph k+1-critical graph without n edges.

Conjecture 35. Belonging to its own Hadwiger class k-critical graph does not have Kk

as subgraph, but has K−
k or K¯

k as subgraph.

Proof. Let us give arguments in favor of this supposition. If we do vertices merging opera-
tion that subgraph K¯

k becomes Kk then graph remains k-chromatic but it is not k-critical
because vertex split does not affect its chromatic number. Thus, Kk can’t be direct sub-
graph of k-chromatic graph. Doing as if all possible such splits, graph is reduced in some
minimal state. Formal proof should establish this, whether it is correct consideration.

If this conjecture where true, then we were to account for derivations of Kk+1 as
possible forbidden subgraphs for k-critical graphs that belong to its own Hadwiger class.
Other k+1-critical subgraphs were ’eaten up’ by the simplest critical graph, all other
critical graph contained as parts this simplest graph, thus not necessary to account in the
list of eventual forbidden graphs.

In the construction above where we were building 4-critical graphs, it is easy to see
that they are actually 2-free-4-chromatic. I.e., to make subgraph K−

5 in them, two edges
at least should be added.

We show it there.

Lemma 36. 4-critical graph does not have W4 as subgraph.

Proof. . W4 is uniquely 3-colorable graph. Hub of the wheel may be removed without
affecting other coloring of graph in all colorings, except these where probably hub vertex
were colored using lonely color. Let us in these cases in place of all vertex with edges as
spokes of the wheel remove only one spoke which can’t affect these colorings.

Lemma gives what follows.

Theorem 37. Every 4-critical graph is at least 2-free-4-chromatic.

Proof. Lemma before shows that 4-critical graph can’t have W4 as subgraph. Neither other
case, W3 plus C3, that is other possible division of K−

5 minus edge, is possible in 4-critical
graph. These two cases exhaust ways of K−

5 minus edge division into components. Thus,
4-critical edge does not have K5 with two eliminated edges, and it is 2-free-4-chromatic
according theorem 34.
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Fig. 12. 4-critical graph characterized by 3 − 3− 3 is 3-free-4-critical, because it does not contain any subgraph
K5 minus three edges.

But some classes of 4-critical graphs may be 3-free-4-critical too. Not-3-connected 4-
critical graphs built above are such. Graph from class of three-connected graphs built
above characterized by 3− 3− 3 is 3-free-4-critical, see fig. 13.

We know that 4-critical graphs can’t contain K−
k , even stronger condition being work-

ing. We are interested in question about other k+1-critical graphs minus minimum n edges
possibly being present in k-critical graphs. What we know is that for K5 n = 3. What is
the general number n(4)?

We must the same question put on 5-critical graphs against 6-critical graph minus pos-
sible minimum n edges presence in them. What is the number n(5), and can’t knowledge
of these facts lead to ultimate proof of 4CT?

5 On supposed counterexample to 4CT

Let for χ(G)-critical graphs G function n : N → N : χ(G) 7→ n, where n is minimal that
G can’t contain any χ(G) + 1-critical graph minus n edges.

Ordinary planar graphs that are not 4-critical all are free-4-chromatic with respect set
of planar edges but not with respect all, i.e., non-planar edges too. In best case it may be
free-4-chromatic but not free2-4-chromatic. What does it mean? Critical graphs may be
built from free-planar parts with some amount of closures. If in place of free-planar graphs
graphs from class PP are taken, it can not affect result for 4-critical graphs, because all
non-planar 3-blocks coming as ballast should be eliminated if we want obtain 4-critical
graph. If we wanted to use PP graphs essentially we would get only non-planar graphs. Is
there some class between PP and free-planar graph class that could spoil situation around
four color theorem? Free-Hadwiger five class. But it comes only with some special cases
with comparing with class PP. Thus, free-planar graph class is that that guides ways
of building of class of 4-critical graphs. But this was under assumption that four color
theorem is right. We need other way considered too.

If four color theorem is supposedly wrong then smallest counterexample 5-critical
planar graph H must be free-5-chromatic at least. May it be built from free-planar graphs
and then closures applied?

Let us find planar subgraphs of K6 with minimum edges eliminated.

Lemma 38. H must be at least free3-5-chromatic.

Proof. Smallest planar subgraphs of K6 are obtainable eliminating at least three edges.



Fig. 13. Cases of subgraphs of K6 to be considered. Subcases with bold edges not present are to be considered
too.

But two more edges may be more than possible in K6 subgraphs in H, because just
two edges are excessive for graph to be obtainable from free-planar graphs.

It looks like following proposition must be true. We are going to check it further.

Lemma 39. H must be at least free5-5-chromatic.

Proof. Smallest free-planar subgraphs of K6 are obtainable eliminating at least five edges.

Next, cases shown in fig. 13 must be considered to the effect that they are not possible
in 5-critical graph.

We must end with theorem, in spe.

Theorem 40. Planar 5-critical graph H does not exist.

Proof. Proof should be based on excluding cases from above.
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