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Abstract

We consider the generalized Korteweg-de Vries equation

∂tu + ∂
3

xu + ∂x(up) = 0, (t, x) ∈ R
2
,

in the supercritical case p > 5, and we are interested in solutions which converge to a soliton in
large time in H1. In the subcritical case (p < 5), such solutions are forced to be exactly solitons
by variational characterization [1, 19], but no such result exists in the supercritical case. In
this paper, we first construct a ”special solution” in this case by a compactness argument, i.e.

a solution which converges to a soliton without being a soliton. Secondly, using a description
of the spectrum of the linearized operator around a soliton [17], we construct a one parameter
family of special solutions which characterizes all such special solutions.

1 Introduction

1.1 The generalized Korteweg-de Vries equation

We consider the generalized Korteweg-de Vries equation:
{
∂tu+ ∂3

xu+ ∂x(up) = 0

u(0) = u0 ∈ H1(R)
(gKdV)

where (t, x) ∈ R2 and p > 2 is integer. The following quantities are formally conserved for solutions
of (gKdV):

∫
u2(t) =

∫
u2(0) (mass), (1.1)

E(u(t)) =
1

2

∫
u2

x(t) − 1

p+ 1

∫
up+1(t) = E(u(0)) (energy). (1.2)

Kenig, Ponce and Vega [9] have shown that the local Cauchy problem for (gKdV) is well posed
in H1(R): for u0 ∈ H1(R), there exist T > 0 and a solution u ∈ C0([0, T ], H1(R)) of (gKdV)
satisfying u(0) = u0 which is unique in some class YT ⊂ C0([0, T ], H1(R)). Moreover, if T ∗ > T
is the maximal time of existence of u, then either T ∗ = +∞ which means that u(t) is a global
solution, or T ∗ < +∞ and then ‖u(t)‖H1 → +∞ as t ↑ T ∗ (u(t) is a finite time blow up solution).
Throughout this paper, when referring to an H1 solution of (gKdV), we mean a solution in the
above sense. Finally, if u0 ∈ Hs(R) for some s > 1, then u(t) ∈ Hs(R) for all t ∈ [0, T ).

In the case where 2 6 p < 5, it is standard that all solutions in H1 are global and uniformly
bounded by the energy and mass conservations and the following Gagliardo-Nirenberg inequality:

∀v ∈ H1(R),

∫
|v|p+1

6 CGN(p)

(∫
v2

x

) p−1
4
(∫

v2

) p+3
4

(1.3)
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with optimal constant CGN(p) > 0. In the case p = 5, the existence of finite time blow up solutions
was proved by Merle [16] and Martel and Merle [13]. Therefore p = 5 is the critical exponent for
the long time behavior of solutions of (gKdV). For p > 5, the existence of blow up solutions is an
open problem.

We recall that a fundamental property of equations (gKdV) is the existence of a family of
explicit traveling wave solutions. Let Q be the only solution (up to translations) of

Q > 0, Q ∈ H1(R), Q′′ +Qp = Q, i.e. Q(x) =

(
p+ 1

2 cosh2
(

p−1
2 x

)
) 1

p−1

.

Note that Q is the unique minimizer of the Gagliardo-Nirenberg inequality (1.3) (see [2] for the
case p = 5 for example), i.e. for v ∈ H1(R):

‖v‖p+1
Lp+1 = CGN(p)‖vx‖

p−1
2

L2 ‖v‖
p+3
2

L2 ⇐⇒ ∃(λ0, a0, b0) ∈ R
∗
+ × R × R : v(x) = a0Q(λ0x+ b0). (1.4)

For all c0 > 0 and x0 ∈ R, Rc0,x0(t, x) = Qc0(x− x0 − c0t) is a solution of (gKdV), where

Qc0(x) = c
1

p−1

0 Q(
√
c0x).

We call solitons these solutions though they are known to be solitons only for p = 2, 3 (in the
sense that they are stable by interaction).

It is well known that solitons are orbitally stable (see definition 2.7) for p < 5 and unstable
for p > 5. An important fact used by Weinstein in [19] to prove their orbital stability when
p < 5 is the following variational characterization of Qc0 : if u is a solution of (gKdV) such that
E(u) = E(Qc0) and

∫
u2 =

∫
Q2

c0
for some c0 > 0, then there exists x0 ∈ R such that u = Rc0,x0 .

As a direct consequence, if now u(t) is a solution such that

lim
t→+∞

inf
y∈R

‖u(t) −Qc0(· − y)‖H1(R) = 0 (1.5)

(i.e. u converges to Qc0 in the suitable sense), then u = Rc0,x0 . For p = 5, the same is true for
similar reasons (see [20]).

In the present paper, we focus on the supercritical case p > 5. Some asymptotic results
around solitons have been proved: orbital instability of solitons by Bona et al. [1] (see also [7])
and asymptotic stability (in some sense) by Martel and Merle [15] for example. But available
variational arguments do not allow to classify all solutions of (gKdV) satisfying (1.5). In fact,
in section 3, we construct a solution of (gKdV) satisfying (1.5) which is not a soliton (we call
special solution such a solution). In section 4, by another method, we construct a whole family of
such solutions, and we completely characterize solutions satisfying (1.5). This method is strongly
inspired of arguments developed by Duyckaerts and Roudenko in [5], themselves an adaptation of
arguments developed by Duyckaerts and Merle in [4]. For reader’s convenience, we recall in the
next section the results in [5] related to our paper.

1.2 The Non-Linear Schrödinger equation case

We recall Duyckaerts and Roudenko’s results for (NLS). They consider in [5] the 3d focusing cubic
non-linear Schrödinger equation:

{
i∂tu+ ∆u+ |u|2u = 0, (x, t) ∈ R3 × R,

u|t=0 = u0 ∈ H1(R3).
(NLS)

This equation is Ḣ1/2-critical, and so L2-supercritical like (gKdV) for p > 5, while [4] is devoted
to the Ḣ1-critical equation. Similarly to (gKdV), (NLS) is locally well posed in H1, and solutions
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of (NLS) satisfy the following conservation laws:

ENLS[u](t) =
1

2

∫
|∇u(x, t)|2 dx − 1

4

∫
|u(x, t)|4 dx = ENLS[u](0),

MNLS[u](t) =

∫
|u(x, t)|2 dx = MNLS[u](0).

Moreover, if Q is the unique (in a suitable sense) solution of the non-linear elliptic equation

−Q+ ∆Q+ |Q|2Q = 0, then eitQ(x) is a soliton solution of (NLS).
Theorem 2 in [5] states the existence of two radial solutionsQ+(t) andQ−(t) of (NLS) such that

MNLS[Q
+] = MNLS[Q

−] = MNLS[Q], ENLS[Q+] = ENLS[Q−] = ENLS[Q], [0,+∞) is in the time
domain of definition of Q±(t), and there exists e0 > 0 such that: ∀t > 0,

∥∥Q±(t) − eitQ
∥∥

H1 6

Ce−e0t. Moreover, Q−(t) is globally defined and scatters for negative time, and the negative time
of existence of Q+(t) is finite.

They also prove the following classification theorem [5, theorem 3]:

Theorem ([5]). Let u be a solution of (NLS) satisfying ENLS[u]MNLS[u] = ENLS[Q]MNLS[Q].

(a) If ‖∇u0‖L2‖u0‖L2 < ‖∇Q‖L2‖Q‖L2 , then either u scatters or u = Q− up to the symmetries.

(b) If ‖∇u0‖L2‖u0‖L2 = ‖∇Q‖L2‖Q‖L2 , then u = eitQ up to the symmetries.

(c) If ‖∇u0‖L2‖u0‖L2 > ‖∇Q‖L2‖Q‖L2 and u0 is radial or of finite variance, then either the
interval of existence of u is of finite length or u = Q+ up to the symmetries.

In particular, if limt→+∞
∥∥u(t) − eitQ

∥∥
H1 = 0, then u = eitQ, Q+ or Q− up to the symmetries.

Among the various ingredients used to prove results above, one of the most important is a sharp
analysis of the spectrum σ(LNLS) of the linearized Schrödinger operator around the ground state
solution eitQ, due to Grillakis [6] and Weinstein [18]. They prove that σ(LNLS)∩R = {−e0, 0,+e0}
with e0 > 0, and moreover that e0 and −e0 are simple eigenvalues of LNLS with eigenfunctions

YNLS
+ and YNLS

− = YNLS
+ . This structure, which is similar for (gKdV) according to Pego and

Weinstein [17], will also be crucial to prove our main result (exposed in the next section).

1.3 Main result and outline of the paper

In this paper, we consider similar questions for the (gKdV) equation in the supercritical case p > 5.
Recall that similarly to the (NLS) case, Pego and Weinstein have determined in [17] the spectrum
of the linearized operator L around the soliton Q(x − t): σ(L) ∩ R = {−e0, 0,+e0} with e0 > 0,
and moreover e0 and −e0 are simple eigenvalues of L with eigenfunctions Y+ and Y− which are
exponentially decaying (see proposition 4.2 and corollary 4.4). We now state precisely our main
result:

Theorem 1.1. Let p > 5.

1. (Existence of a family of special solutions). There exists a one-parameter family (UA)A∈R

of solutions of (gKdV) such that

lim
t→+∞

∥∥UA(t, · + t) −Q
∥∥

H1 = 0.

Moreover, for all A ∈ R, there exists t0 = t0(A) ∈ R such that for all s ∈ R, there exists
C > 0 such that

∀t > t0,
∥∥UA(t, · + t) −Q−Ae−e0tY+

∥∥
Hs 6 Ce−2e0t.

2. (Classification of special solutions). If u is a solution of (gKdV) such that

lim
t→+∞

inf
y∈R

‖u(t) −Q(· − y)‖H1 = 0,

then there exist A ∈ R, t0 ∈ R and x0 ∈ R such that u(t) = UA(t, · − x0) for t > t0.
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Remark 1.2. From theorem 1.1, there are actually only three different special solutions UA up
to translations in time and in space: U1, U−1 and Q(·− t) (see proposition 4.12). This is of course
related to the three solutions of (NLS) constructed in [5]: Q+(t), Q−(t) and eitQ.

From section 4.5, we can chose the normalization of Y± so that for A < 0,
∥∥∂xU

A
∥∥

L2 < ‖Q′‖L2 .

Then U−1(t) is global, i.e. defined for all t ∈ R. It would be interesting to investigate in more
details its behavior as t→ −∞. On the other hand, the behavior of U1(t) is not known for t < t0.

Remark 1.3. By scaling, theorem 1.1 extends to Qc for all c > 0 (see corollary 4.11 at the end
of the paper).

The paper is organized as follows. In the next section we recall some properties of the solitons,
and in particular we recall the proof of their orbital instability when p > 5. This result is well
known [1], but our proof with an explicit initial data is useful to introduce some suitable tools to
the study of solitons of (gKdV) (as modulation, Weinstein’s functional, monotonicity, linearized
equation, etc.). Moreover, it is the first step to construct one special solution in section 3 by
compactness, similarly as Martel and Merle [15]. This proof does not use the precise analysis of
the spectrum of L due to Pego and Weinstein [17], and so can be hopefully adapted to equations
for which the spectrum of the linearized operator is not well known. To fully prove theorem
1.1 (existence and uniqueness of a family of special solutions, section 4), we rely on the method
introduced in [4] and [5].

Acknowledgements. The author would like to thank Nikolay Tzvetkov for suggesting the prob-
lem studied in this work, and for pointing out to him reference [17]. He would also like to thank
Luc Robbiano and Yvan Martel for their constructive remarks.

2 Preliminary results

We recall here some well known properties of the solitons and some results of stability around
the solitons. We begin by recalling notation and simple facts on the functions Q(x) and Qc(x) =

c
1

p−1Q(
√
cx) defined in section 1.1.

Notation. They are available in the whole paper.

(a) (·, ·) denotes the L2(R) scalar product, and ⊥ the orthogonality with respect to (·, ·).

(b) The Sobolev space Hs is defined by Hs(R) = {u ∈ D′(R) | (1 + ξ2)
s/2
û(ξ) ∈ L2(R)}, and in

particular H1(R) = {u ∈ L2(R) | ‖u‖2
H1 = ‖u‖2

L2 + ‖u′‖2
L2 < +∞} →֒ L∞(R).

(c) We denote ∂
∂xv = ∂xv = vx the partial derivative of v with respect to x, and ∂s

x = ∂s the
s-order partial derivative with respect to x when no confusion is possible.

(d) All numbers C,K appearing in inequalities are real constants (with respect to the context)
strictly positive, which may change in each step of an inequality.

Claim 2.1. For all c > 0, one has:

(i) Qc > 0, Qc is even, Qc is C∞, and Q′
c(x) < 0 for all x > 0.

(ii) There exist K1,K2 > 0 such that: ∀x ∈ R, K1e
−√

c|x| 6 Qc(x) 6 K2e
−√

c|x|.

(iii) There exists Cp > 0 such that for all j > 0, Q
(j)
c (x) ∼ Cpe

−√
c|x| when |x| → +∞.

In particular, for all j > 1, there exists Cj > 0 such that: ∀x ∈ R, |Q(j)
c (x)| 6 Cje

−√
c|x|.

(iv) The following identities hold:

∫
Q2

c = c
5−p

2(p−1)

∫
Q2 ,

∫
(Q′

c)
2

= c
p+3

2(p−1)

∫
Q′2. (2.1)
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2.1 Weinstein’s functional linearized around Q

We introduce here the Weinstein’s functional F and give an expression of F (Q + a) for a small
which will be very useful in the rest of the paper. We recall first that the energy of a function
ϕ ∈ H1 is defined by E(ϕ) = 1

2

∫
(∂xϕ)2 − 1

p+1

∫
ϕp+1.

Definition 2.2. Weinstein’s functional is defined for ϕ ∈ H1 by F (ϕ) = E(ϕ) + 1
2

∫
ϕ2.

Claim 2.3. If u0 ∈ H1 and u(t) solves (gKdV) with u(0) = u0, then for all t ∈ [0, T ∗), F (u(t)) =
F (u0). It is an immediate consequence of (1.1) and (1.2).

Lemma 2.4 (Weinstein’s functional linearized around Q). For all C > 0, there exists C′ > 0
such that, for all a ∈ H1 verifying ‖a‖H1 6 C,

F (Q+ a) = F (Q) +
1

2
(La, a) +K(a) (2.2)

where La = −∂2
xa+ a− pQp−1a, and K : H1 → R satisfies |K(a)| 6 C′‖a‖3

H1 .

Proof. Let a ∈ H1 be such that ‖a‖H1 6 C. Then we have

E(Q+ a) =
1

2

∫
(Q′ + ∂xa)

2 − 1

p+ 1

∫
(Q+ a)

p+1

= E(Q) +
1

2

∫
(∂xa)

2
+

∫
Q′ · ∂xa−

1

p+ 1

∫ [
(p+ 1)Qpa+

(p+ 1)p

2
Qp−1a2 +R(a)

]

= E(Q) +
1

2

∫
(∂xa)

2 −
∫
Qa− p

2

∫
Qp−1a2 − 1

p+ 1

∫
R(a)

since Q′′ +Qp = Q, and where R(a) =
∑p+1

k=3

(
p+1

k

)
Qp+1−kak. Since ‖a‖∞ 6 C‖a‖H1 6 C, then

|R(a)| 6 C|a|3 6 C‖a‖∞|a|2, and so K(a) = − 1
p+1

∫
R(a) verifies |K(a)| 6 C′‖a‖3

H1 . Moreover,

we have more simply:
∫

(Q+ a)
2

=
∫
Q2 +

∫
a2 + 2

∫
Qa. Finally we have

F (Q+ a) = F (Q) +
1

2

∫
a2 +

1

2

∫
(∂xa)

2 − p

2

∫
Qp−1a2 +K(a).

Claim 2.5 (Properties of L). The operator L defined in lemma 2.4 is self-adjoint and satisfies
the following properties:

(i) First eigenfunction: LQ
p+1
2 = −λ0Q

p+1
2 where λ0 = 1

4 (p− 1)(p+ 3) > 0.

(ii) Second eigenfunction: LQ′ = 0, and kerL = {λQ′ ; λ ∈ R}.

(iii) Scaling: If we denote S = dQc

dc

∣∣∣
c=1

, then S(x) = 1
p−1Q(x) + 1

2xQ
′(x) and LS = −Q.

(iv) Coercivity: There exists σ0 > 0 such that for all u ∈ H1(R) verifying (u,Q′) = (u,Q
p+1
2 ) = 0,

one has (Lu, u) > σ0‖u‖2
L2 .

Proof. The first three properties follow from straightforward computation, except for kerL which
can be determined by ODE techniques, see [18, proposition 2.8]. The property of coercivity follows
easily from (i), (ii) and classical results on self-adjoint operators and Sturm-Liouville theory.

Lemma 2.6. There exist K1,K2 > 0 such that for all ε ∈ H1 verifying ε⊥Q′:

(Lε, ε) =

∫
ε2x +

∫
ε2 − p

∫
Qp−1ε2 > K1‖ε‖2

H1 −K2

(∫
εQ

p+1
2

)2

.

Proof. By claim 2.5, we already know that there exists σ0 > 0 such that for all ε satisfying ε⊥Q p+1
2

and ε⊥Q′, we have (Lε, ε) > σ0‖ε‖2
L2 . The first step is to replace the L2 norm by the H1 one in

this last inequality, which is easy if we choose σ0 small enough. If we do not suppose ε⊥Q p+1
2 ,

we write ε = ε1 + aQ
p+1
2 with a = (

∫
εQ

p+1
2 )
(∫
Qp+1

)−1
such that ε1⊥Q

p+1
2 for the L2 scalar

product, but also for the bilinear form (L·, ·) since Q
p+1
2 is an eigenvector for L. Since Q

p+1
2 ⊥Q′,

we obtain easily the desired inequality from the previous step.
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2.2 Orbital stability and decomposition of a solution around Q

In this paper, we consider only solutions which stay close to a soliton. So it is important to define
properly this notion, and the invariance by translation leads us to consider for ε > 0 the ”tube”

Uε = {u ∈ H1 | inf
y∈R

‖u−Qc(· − y)‖H1 6 ε}.

Definition 2.7. The solitary wave Qc is (orbitally) stable if and only if for every ε > 0, there
exists δ > 0 such that if u0 ∈ Uδ, then the associated solution u(t) ∈ Uε for all t ∈ R. The solitary
wave Qc is unstable if Qc is not stable.

Theorem 2.8. Qc is stable if and only if p < 5.

Remark 2.9. 1. This theorem is proved by Bona et al. [1] for p 6= 5 and by Martel and Merle
[12] for p = 5. Nevertheless, we give an explicit proof of the instability of Q when p > 5 (i.e.
we exhibit an explicit sequence of initial data which contradicts the stability) which will be
useful to construct the special solution by the compactness method (section 3).

2. An important ingredient to prove this theorem is the following lemma of modulation close
to Q. Its proof is based on the implicit function theorem (see for example [1, lemma 4.1] for
details). The orthogonality to Q′ obtained by this lemma will be of course useful to exploit
the coercivity of the bilinear form (L·, ·). Finally, we conclude this section by a simple but
useful lemma which describes the effect of small translations on Q.

Lemma 2.10 (Modulation close to Q). There exist ε0 > 0, C > 0 and a unique C1 map α :
Uε0 −→ R such that for every u ∈ Uε0 , ε = u(· + α(u)) −Q verifies

(ε,Q′) = 0 and ‖ε‖H1 6 C inf
y∈R

‖u−Q(· − y)‖H1 6 Cε0.

Lemma 2.11. There exist h0 > 0, A0 > 0 and β > 0 such that:

(i) if |h| 6 h0 then βh2 6 ‖Q−Q(· + h)‖2
H1 6 4βh2,

(ii) if |h| > h0 then ‖Q−Q(· + h)‖2
H1 > A0.

Proof. It is a simple application of Taylor’s theorem to f defined by f(a) = ‖Q−Q(· + a)‖2
H1 .

2.3 Instability of Q for p > 5

In this section, we construct an explicit sequence (u0,n)n>1 of initial data which contradicts the
stability of Q:

Proposition 2.12. Let u0,n(x) = λnQ(λ2
nx) with λn = 1 + 1

n for n > 1. Then

∫
u2

0,n =

∫
Q2 , E(u0,n) < E(Q) and ‖u0,n −Q‖H1 −−−−→

n→∞
0. (2.3)

Proof. The first and the last facts are obvious thanks to substitutions and the dominated conver-

gence theorem. For the energy inequality, we compute E(u0,n) =
λ4

n

2

∫
Q′2 − λp−1

n

p+1

∫
Qp+1. But

2
∫
Q′2 = p−1

p+1

∫
Qp+1 by Pohozaev identities, and so

E(u0,n) − E(Q) =

[
p− 1

4
× (λ4

n − 1) − (λp−1
n − 1)

]
· 1

p+ 1

∫
Qp+1

=

[
4∑

k=2

{
p− 1

4

(
4

k

)
−
(
p− 1

k

)}
1

nk
−

p−1∑

k=5

(
p− 1

k

)
1

nk

]
· 1

p+ 1

∫
Qp+1.

To conclude, it is enough to show that
(
p−1

k

)
> p−1

4

(
4
k

)
for k ∈ {2, 3, 4}, which is equivalent to

show that
(

p−2
k−1

)
= k

p−1

(
p−1

k

)
> k

4

(
4
k

)
=
(

3
k−1

)
, which is right since p > 5 and k > 1.
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Remark 2.13. We do not really need to know the explicit expression of u0,n to prove the in-
stability of Q: initial data satisfying conditions (2.3) and decay in space would fit. For ex-
ample, we could have chosen λn = 1 − 1

n , so that conditions (2.3) hold for n large (in fact

E(u0,n) − E(Q) ∼ (p−1)(5−p)
2(p+1)

∫
Qp+1 · 1

n2 < 0 as n→ +∞ in this case).

Theorem 2.14. Let un be the solution associated to u0,n defined in proposition 2.12. Then

∃δ > 0, ∀n > 1, ∃Tn ∈ R+ such that inf
y∈R

‖un(Tn) −Q(· − y)‖H1 > δ. (2.4)

• We prove this theorem by contradiction, i.e. we suppose:

∀ε > 0, ∃n0 > 1, ∀t ∈ R+, inf
y∈R

‖un0(t) −Q(· − y)‖H1 6 ε,

and we apply this assumption to ε0 given by lemma 2.10. Dropping n0 for a while, the situation
amounts in:

∫
u2

0 =

∫
Q2 , E(u0) < E(Q) and ∀t ∈ R+, inf

y∈R

‖u(t) −Q(· − y)‖H1 6 ε0.

The last fact implies that u(t) ∈ Uε0 for all t ∈ R+, so lemma 2.10 applies and we can define x(t) =
α(u(t)) which is C1 by standard arguments (see [12] for example), and ε(t, x) = u(t, x+x(t))−Q(x)
which verifies (ε(t), Q′) = 0 and ‖ε(t)‖H1 6 Cε0 for all t ∈ R+. Note that x(t) is usually called
the center of mass of u(t). Before continuing the proof, we give the equation verified by ε and an
interesting consequence on x′.

Proposition 2.15. There exists C > 0 such that

εt − (Lε)x = (x′(t) − 1)(Q+ ε)x +R(ε),

where ‖R(ε(t))‖L1 6 C‖ε(t)‖2
H1 . As a consequence, one has: |x′(t) − 1| 6 C‖ε(t)‖H1 .

Proof. Since u(t, x) = Q(x− x(t)) + ε(t, x− x(t)) by definition of ε and −∂tu = ∂3
xu+ ∂x(up), we

obtain
x′(t)(Q+ ε)x − εt = Qxxx + εxxx + (Qp)x + p(Qp−1ε)x +R(ε)

where

R(ε) =
∂

∂x

(
p∑

k=2

(
p

k

)
Qp−kεk

)
=

p∑

k=2

(
p

k

)[
(p− k)Q′Qp−k−1εk + kQp−kεxε

k−1
]
.

As ‖ε‖∞ 6 C‖ε‖H1 6 Cε0, we have |R(ε)| 6 C|ε|2 + C′|εxε|, and so R(ε) is such as expected.
Moreover, since La = −axx + a− pQp−1a and Q′′ +Qp = Q, we get

−εt − εxxx − p(Qp−1ε)x = Qxxx + (Qp)x − x′(t)(Q+ ε)x +R(ε)

and so −εt + (Lε)x = Qx − x′(t)(Q+ ε)x + εx +R(ε).
To obtain the estimate on x′, we multiply the equation previously found by Q′ and integrate.

Since (εt, Q
′) = (ε,Q′)t = 0, it gives with an integration by parts:

∫
(Lε)Q′′ = (x′ − 1)

∫
(Q′2 + εxQ

′) +

∫
R(ε)Q′.

Since L is self-adjoint, we can write (x′ − 1)
∫
(Q′2 + εxQ

′) =
∫
(LQ′′)ε −

∫
R(ε)Q′. Now, from∣∣∫ εxQ

′∣∣ 6 ‖εx‖L2‖Q′‖L2 6 ‖ε‖H1‖Q′‖L2 6 Cε0‖Q′‖L2 , we choose ε0 small enough so that the
last quantity is smaller than 1

2

∫
Q′2; and so we have

|x′ − 1| 6
2∫
Q′2

(∣∣∣∣
∫

(LQ′′)ε

∣∣∣∣+
∣∣∣∣
∫
R(ε)Q′

∣∣∣∣
)
.

As LQ′′ ∈ L2(R) and Q′ ∈ L∞(R), then following the estimate on R(ε), we obtain the desired
inequality by the Cauchy-Schwarz inequality.
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• Return to the proof of theorem 2.14 and now consider

ζ(x) =

∫ x

−∞

(
S(y) + βQ

p+1
2 (y)

)
dy

for x ∈ R, where S is defined in claim 2.5 and β will be chosen later. We recall that S(x) =
1

p−1Q(x) + 1
2xQ

′(x) verifies LS = −Q, and in particular S(x) = o(e−|x|/2) when |x| → +∞, since

Q(x), Q′(x) ∼ Cpe
−|x| (see claim 2.1). By integration, we have ζ(x) = o(ex/2) when x → −∞,

and ζ is bounded on R.

Now, the main idea of the proof is to consider the functional, defined for t ∈ R+,

J(t) =

∫
ε(t, x)ζ(x) dx.

The first step is to show that J is defined and bounded in time thanks to the following proposition
of decay properties of the solutions, and the second one is to show that |J ′| has a strictly positive
lower bound, which will reach the desired contradiction. Firstly, if we choose ε0 small enough, we
obtain the following proposition.

Proposition 2.16. There exists C > 0 such that for all t > 0 and x0 > 0,

∫

x>x0

(u2 + u2
x)(t, x + x(t)) dx 6 Ce−x0/4. (2.5)

Remark 2.17. Inequality (2.5) holds for all solution un of (gKdV) associated to the initial data
u0,n defined in proposition 2.12, with C > 0 independent of n. Indeed, we have u = un0 for some
n0 > 1, but the following proof shows that the final constant C does not depend of n0.

Proof. It is based on the exponential decay of the initial data, and on monotonicity results that the
reader can find in [14, lemma 3]. We recall here their notation and their lemma of monotonicity.

⋄ Let ψ(x) = 2
π arctan(exp(x/4)), so that ψ is increasing, lim−∞ ψ = 0, ψ(0) = 1

2 , lim+∞ ψ =

1, ψ(−x) = 1−ψ(x) for all x ∈ R, and ψ(x) ∼ Cex/4 when x→ −∞. Now let x0 > 0, t0 > 0
and define for 0 6 t 6 t0: ψ0(t, x) = ψ(x− x(t0) + 1

2 (t0 − t) − x0) and





Ix0,t0(t) =

∫
u2(t, x)ψ0(t, x) dx,

Jx0,t0(t) =

∫
(u2

x + u2 − 2

p+ 1
up+1)(t, x)ψ0(t, x) dx.

Then, if we choose ε0 small enough, there exists K > 0 such that for all t ∈ [0, t0], we have





Ix0,t0(t0) − Ix0,t0(t) 6 K exp
(
−x0

4

)
,

Jx0,t0(t0) − Jx0,t0(t) 6 K exp
(
−x0

4

)
.

⋄ Now, let us prove how this result can preserve the decay of the initial data to the solution
for all time, on the right (which means for x > x0 for all x0 > 0). If we apply it to t = 0
and replace t0 by t, we obtain for all t > 0:

∫
(u2

x + u2)(t, x + x(t))ψ(x − x0) dx

6 C′
∫

(u2
0x + u2

0)(x)ψ(x − x(t) +
1

2
t− x0) dx+K ′e−x0/4.
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But by proposition 2.15, we have |x′ − 1| 6 C‖ε‖H1 6 Cε0, thus if we choose ε0 small
enough, we have |x′ − 1| 6

1
2 , and so we obtain by the mean value inequality (notice that

x(0) = α(u0,n0) = 0): |x(t) − t| 6 1
2 t. We deduce that −x(t) + 1

2 t 6 0, and since ψ is
increasing, we obtain

∫
(u2

x + u2)(t, x + x(t))ψ(x − x0) dx 6 C

∫
(u2

0x + u2
0)(x)ψ(x − x0) dx+Ke−x0/4.

⋄ Now we explicit exponential decay of u0. In fact, we have clearly (u2
0x+u2

0)(x) ∼ Ce−2λ2|x| 6

Ce−2|x| when x→ ±∞. Moreover, since ψ(x) 6 Cex/4 for all x ∈ R, we have
∫

(u2
0x + u2

0)(x)ψ(x − x0) dx 6 C

∫
(u2

0x + u2
0)(x)e

x−x0
4 dx

6 Ce−x0/4

∫
(u2

0x + u2
0)(x)e

x/4 dx 6 C′e−x0/4.

⋄ Finally, we have more simply
∫

(u2
x + u2)(t, x+ x(t))ψ(x − x0) dx >

1

2

∫

x>x0

(u2
x + u2)(t, x+ x(t)) dx,

and so the desired inequality.

• Now this proposition is proved, we can easily show the first step of the proof of theorem 2.14.

1st step: We bound |J(t)| independently of time by writing

J(t) =

∫
ε(t, x)ζ(x) dx =

∫

x>0

ε(t, x)ζ(x) dx +

∫

x<0

ε(t, x)ζ(x) dx,

so that

|J(t)| 6 ‖ζ‖∞
∫

x>0

(Q(x) + |u(t, x+ x(t))|) dx +

√∫

x<0

ε2(t, x) dx

√∫

x<0

ζ2(x) dx

6 ‖ζ‖∞‖Q‖L1 + ‖ζ‖∞U + ‖ε(t)‖L2V,

where:

i) ‖ε(t)‖L2 6 ‖ε‖H1 6 Cε0 < +∞,

ii) V 2 =
∫

x<0
ζ2(x) dx < +∞ since ζ2(x) = o(ex) when x→ −∞,

iii) thanks to (2.5), we finally conclude the first step with:

U =

∫

x>0

|u(t, x+ x(t))| dx =

+∞∑

n=0

∫ n+1

n

|u(t, x+ x(t))| dx 6

+∞∑

n=0

(∫

x>n

u2(t, x+ x(t)) dx

)1/2

6 ‖u(t, · + x(t))‖L2 +
+∞∑

n=1

(∫

x>n

u2(t, x+ x(t)) dx

)1/2

6 Cε0 + ‖Q‖L2 + C
+∞∑

n=1

e−n/8 < +∞.

2nd step: We evaluate J ′ by using proposition 2.15 and by integrating by parts:

J ′ =

∫
εtζ =

∫
(Lε)xζ + (x′ − 1)

∫
Qxζ + (x′ − 1)

∫
εxζ +

∫
R(ε)ζ

= −
∫
εL(ζ′) − (x′ − 1)

∫
Qζ′ − (x′ − 1)

∫
εζ′ +

∫
R(ε)ζ

= −
∫
ε(LS + βLQ

p+1
2 ) − (x′ − 1)

∫
Q(S + βQ

p+1
2 ) − (x′ − 1)

∫
εζ′ +

∫
R(ε)ζ.
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Now we take β = −
R

QS
R

Q
p+3
2

so that the second integral is null. Note that by (iv) of claim 2.1,

d

dc

∫
Q2

c = 2

∫
Qc

dQc

dc
=

(
5 − p

2(p− 1)

)
c

5−p
2(p−1)−1

∫
Q2 < 0

since p > 5, and so by taking c = 1 we remark that β > 0. Moreover, since Q
p+1
2 is an eigenvector

for L for an eigenvalue −λ0 with λ0 > 0 (see claim 2.5), we deduce

J ′ = −
∫
ε(−Q− βλ0Q

p+1
2 ) − (x′ − 1)

∫
εζ′ +

∫
R(ε)ζ

= βλ0

∫
εQ

p+1
2 +

∫
Qε− (x′ − 1)

∫
εζ′ +

∫
R(ε)ζ.

But for the last three terms, we remark that:

a) the mass conservation
∫
u2(t) =

∫
u2

0 implies that
∫
Q2 +2

∫
εQ+

∫
ε2 =

∫
Q2 and so

∣∣∫ Qε
∣∣ 6

1
2

∫
ε2 6

1
2‖ε‖

2
H1 ,

b) thanks to proposition 2.15, we have
∣∣−(x′ − 1)

∫
εζ′
∣∣ 6 |x′ − 1|‖ε‖L2‖ζ′‖L2 6 C‖ε‖2

H1 ,

c) still thanks to this proposition, we have
∣∣∫ R(ε)ζ

∣∣ 6 ‖ζ‖∞‖R(ε)‖L1 6 C‖ε‖2
H1 .

We have finally

J ′ = βλ0

∫
εQ

p+1
2 +K(ε) (2.6)

where K(ε) verifies |K(ε)| 6 C‖ε‖2
H1 . We now use identity (2.2) which claims

F (u(t)) = F (u0) = F (Q) +
1

2
(Lε, ε) +K ′(ε)

with |K ′(ε)| 6 C‖ε‖3
H1 . In other words, we have (Lε, ε)+2K ′(ε) = 2[F (u0)−F (Q)] = 2[F (u0,n0)−

F (Q)] = −γn0 with γn0 > 0, since ‖u0,n0‖L2 = ‖Q‖L2 and E(u0,n0) < E(Q) by construction of

u0,n0 . To estimate the term (Lε, ε), we use lemma 2.6, so that if we denote a(t) =
∫
εQ

p+1
2 , we

obtain

a2(t) >
K1

K2
‖ε‖2

H1 −
1

K2
(Lε, ε) =

γn0

K2
+
K1

K2
‖ε‖2

H1 +
2

K2
K ′(ε).

Since |K ′(ε)| 6 C‖ε‖3
H1 and ‖ε‖H1 6 Cε0, then if we take ε0 small enough, we have

a2(t) > K‖ε‖2
H1 + κn0

with K,κn0 > 0. In particular, a2(t) > κn0 > 0, thus a keeps a constant sign, say positive. Then
we have

a(t) >

√
K‖ε‖2

H1 + κn0 >

√
K

2
‖ε‖H1 +

√
κn0

2
= K ′‖ε‖H1 + κ′n0

.

But from (2.6), we also have J ′(t) = βλ0a(t) +K(ε) with |K(ε)| 6 C‖ε‖2
H1 , and so:

J ′(t) > βλ0K
′‖ε‖H1 + βλ0κ

′
n0

− C‖ε‖2
H1 > βλ0κ

′
n0

= θn0 > 0

if we choose as previously ε0 small enough. But it implies that J(t) > θn0t + J(0) −→ +∞ as
t → +∞, which contradicts the first step and concludes the proof of the theorem. Note that if
a(t) < 0, it is easy to show by the same arguments that J ′(t) 6 θ′n0

< 0, so limt→+∞ J(t) = −∞
and then the same conclusion.
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3 Construction of a special solution by compactness

In this section, we prove the existence of a special solution by a compactness method. This result
is of course weaker than theorem 1.1, but it does not require the existence of Y± proved in [17].

3.1 Construction of the initial data

Now theorem 2.14 is proved, we can change Tn obtained in (2.4) in the first time which realizes
this. In other words:

∃δ > 0, ∀n > 1, ∃Tn ∈ R+ such that

{
infy∈R ‖un(Tn) −Q(· − y)‖H1 = δ

∀t ∈ [0, Tn], infy∈R ‖un(t) −Q(· − y)‖H1 6 δ
.

Remark 3.1. We have Tn −→ +∞. Indeed we would have Tn < T0 for all n otherwise (after
passing to a subsequence). But by Lipschitz continuous dependence on the initial data (see [9,
corollary 2.18]), we would have for n large enough

sup
t∈[0,T0]

‖un(t) −Q(· − t)‖H1 6 K‖u0,n −Q‖H1 .

But since ‖u0,n −Q‖H1 −−−−→
n→∞

0 by (2.3), we would have infy∈R ‖un(t) −Q(· − y)‖H1 6
δ
2 for n

large enough and for all t ∈ [0, T0], which is wrong for t = Tn ∈ [0, T0].

Now we can take δ smaller than ε0, so that un(t) ∈ Uε0 for all t ∈ [0, Tn] and so lemma 2.10
applies: we can define xn(t) = α(un(t)) (notice that xn(0) = α(u0,n) = 0) such that εn(t) =
un(t, · + xn(t)) −Q verifies

∀t ∈ [0, Tn],

{
(εn(t), Q′) = 0
‖εn(t)‖H1 6 C infy∈R ‖un(t) −Q(· − y)‖H1 6 Cδ

.

Moreover, for t = Tn, we have more precisely

δ 6 ‖εn(Tn)‖H1 6 Cδ. (3.1)

In particular, {εn(Tn)} is bounded in H1, and so by passing to a subsequence, we can define

εn(Tn) ⇀ ε∞ in H1 (weakly) and v0 = ε∞ +Q.

Remark 3.2. 1. As announced in the introduction, one of the most important points in this
section is to prove that we have constructed a non trivial object, i.e. v0 is not a soliton
(proposition 3.4). This fact is quite natural since v0 is the weak limit of un(Tn, · + xn(Tn))
which contains a persisting defect εn(Tn).

2. Since the proof of proposition 3.4 is mainly based on evaluating L2 norms, the following
lemma will be useful.

Lemma 3.3. There exists C0 > 0 such that, for n large enough, ‖εn(Tn)‖L2 > C0δ.

Proof. It comes from the conservation of the Weinstein’s functional F in time. In fact, we can
write F (Q+ εn(Tn)) = F (Q+ εn(0)) where εn(0) = u0,n −Q verifies ‖εn(0)‖H1 −−−−→

n→∞
0 by (2.3).

Then by (2.2)

F (Q) +
1

2
(Lεn(Tn), εn(Tn)) +K(εn(Tn)) = F (Q) +

1

2
(Lεn(0), εn(0)) +K(εn(0))

where |K(a)| 6 C1‖a‖3
H1 . It comes

∫ [
(∂xεn(Tn))2 + ε2n(Tn) − pQp−1ε2n(Tn)

]
6 C‖εn(0)‖2

H1 +K(εn(0)) −K(εn(Tn))
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and so

‖εn(Tn)‖2
H1 6 C

∫
ε2n(Tn) + C‖εn(0)‖2

H1 + C1‖εn(0)‖3
H1 + C1‖εn(Tn)‖3

H1 .

Since ‖εn(0)‖H1 −→ 0, then by (3.1) we have for n large enough

‖εn(Tn)‖2
H1 6 C

∫
ε2n(Tn) + C1Cδ‖εn(Tn)‖2

H1 +
δ2

4
.

But if we choose δ small enough so that C1Cδ 6 1
2 , we obtain

δ2

2
6

1

2
‖εn(Tn)‖2

H1 6 C

∫
ε2n(Tn) +

δ2

4

and finally
∫
ε2n(Tn) > δ2

4C .

Proposition 3.4. For all c > 0, v0 6= Qc.

Proof. We proceed by contradiction: suppose that vn := un(Tn, ·+ xn(Tn)) ⇀ v0 = ε∞ +Q = Qc

weakly in H1 for some c > 0. We recall that it implies in particular that vn −→ Qc strongly in
L2 on compacts as n→ +∞.

• Decomposition of vn: Let ϕ ∈ C∞(R,R) equals to 0 on (−∞,−1] and 1 on [0,+∞). Now
let A≫ 1 to fix later and define ϕA(x) = ϕ(x+A), so that ϕA(x) = 0 if x 6 −A−1 and 1 if
x > −A. We also define hn = (1−ϕA)vn, QA

c = QcϕA and zn = ϕAvn−ϕAQc = ϕA(vn−Qc),
so that

vn = (1 − ϕA)vn + ϕAvn = hn + zn +QA
c .

• Estimation of ‖zn‖L2 :

∫
z2

n =

∫
(vn −Qc)

2ϕ2
A 6

∫ A+1

−A−1

(vn −Qc)
2 +

∫

x>A+1

(vn −Qc)
2

6

∫ A+1

−A−1

(vn −Qc)
2 + 2

∫

x>A+1

v2
n + 2

∫

x>A+1

Q2
c = I + J +K.

Notice that I −−−−→
n→∞

0 since vn −−−−→
n→∞

Qc in L2 on compacts. Moreover, thanks to exponen-

tial decay of Qc, we have K 6 Ce−2
√

cA. Finally, we have J 6 Ce−A/4 with C independent
of n by remark 2.17. In summary, there exists ρ > 0 such that

∫
z2

n 6 Ce−ρA if n > n(A).

• Mass balance: On one hand, we have by (2.3) and mass conservation
∫
v2

n =
∫
u2

0,n =
∫
Q2.

On the other hand, we can calculate

∫
v2

n =

∫
h2

n +

∫
(QA

c + zn)
2
+ 2

∫ −A

−A−1

v2
nϕA(1 − ϕA).

But since vn −→ Qc on compacts, we have 2
∫ −A

−A−1 v
2
nϕA(1 − ϕA) −−−−→

n→∞
2
∫ −A

−A−1Q
2
cϕA(1−

ϕA) 6 Ce−ρA. Consequently,

∫
Q2 =

∫
h2

n +

∫ (
QA

c

)2
+ 2

∫
QA

c zn +

∫
z2

n + aA
n

where aA
n > 0 verifies aA

n 6 Ce−ρA for n > n(A). Thanks to the previous estimation of
‖zn‖L2 and the Cauchy-Schwarz inequality, we deduce that

∫
Q2 =

∫
h2

n +

∫ (
QA

c

)2
+ a′An
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where a′An verifies |a′An | 6 Ce−ρA for n > n(A). But

∫ (
QA

c

)2
=

∫
Q2

cϕ
2
A =

∫
Q2

c +

∫
Q2

c(ϕ
2
A − 1) 6

∫
Q2

c +

∫

x<−A

Q2
c 6

∫
Q2

c + Ce−ρA

and
∫
Q2

c = c−β
∫
Q2 with β > 0 since p > 5 (see claim 2.1). In conclusion, we have the

mass balance
(1 − c−β)‖Q‖2

L2 = ‖hn‖2
L2 + a′′An (3.2)

where a′′An still verifies |a′′An | 6 Ce−ρA for n > n(A).

• Upper bound of ‖hn‖L2 : We remark that for n > n(A), ‖hn‖L2 6 C1δ. Indeed, thanks to
(3.1), we have

‖hn‖L2 6 ‖(1 − ϕA)Q‖L2 + ‖εn(Tn)‖L2 6 Ce−ρA + Cδ 6 C1δ

if we definitively fix A large enough so that e−ρA 6 δ3 (the power 3 will be useful later in
the proof).

• Upper bound of |c − 1|: Thanks to the previous point and mass balance (3.2), we have
|1 − c−β | 6 Cδ2. We deduce that c is close to 1, and so by Taylor’s theorem that |c − 1| 6

K|1 − c−β | 6 Cδ2.

• Lower bound of ‖hn‖L2 : We now prove that for n > n(A), ‖hn‖L2 > C2δ. Firstly, we have
by lemma 3.3:

C0δ 6 ‖εn(Tn)‖L2 = ‖vn −Q‖L2 =
∥∥hn +QA

c + zn −Q
∥∥

L2

6 ‖hn‖L2 + ‖zn‖L2 +
∥∥QA

c −Qc

∥∥
L2 + ‖Qc −Q‖L2 = ‖hn‖L2 + ‖Qc −Q‖L2 + bAn

where bAn = ‖zn‖L2 +
∥∥QA

c −Qc

∥∥
L2 > 0 verifies bAn 6 Ce−ρA for n > n(A). Moreover, if

we denote f(c) = ‖Qc −Q‖2
L2 for c > 0, then f is C∞ and f(c) > 0 = f(1), hence 1 is a

minimum of f , f ′(1) = 0 and so by Taylor’s theorem: f(c) 6 C(c− 1)
2
, i.e. ‖Qc −Q‖L2 6

C|c− 1|. Thanks to the previous point, we deduce that

C0δ 6 ‖hn‖L2 +Kδ2 + bAn 6 ‖hn‖L2 + Cδ2.

Finally, if we choose δ small enough so that Cδ 6
C0

2 , we reach the desired inequality.

• Energy balance: We now use the conservation of Weinstein’s functional and (2.2) to write

F (u0) = F (vn) = F (Q+ εn(Tn)) = F (Q) +
1

2
(Lεn(Tn), εn(Tn)) +K(εn(Tn))

where |K(εn(Tn))| 6 C‖εn(Tn)‖3
H1 6 Cδ3 by (3.1). Now we decompose εn(Tn) in

εn(Tn) = vn −Q = hn + zn +QA
c −Q = (Qc −Q) + (QA

c −Qc) + (zn + hn)

in order to expand

(Lεn(Tn), εn(Tn)) = (L(Qc −Q), Qc −Q) + (L(zn + hn), zn + hn)

+ (L(QA
c −Qc), Q

A
c −Qc) + 2(L(Qc −Q), zn + hn)

+ 2(L(Qc −Q), QA
c −Qc) + 2(L(QA

c −Qc), zn + hn).

We recall that (La, b) = −
∫
a′′b+

∫
ab−p

∫
Qp−1ab, and so by the Cauchy-Schwarz inequal-

ity: |(La, b)| 6 (‖a′′‖L2 + C‖a‖L2)‖b‖L2 . Since we have ‖zn + hn‖L2 6 ‖zn‖L2 + ‖hn‖L2 6

Ce−ρA + C1δ 6 Cδ, we can estimate

|(L(Qc −Q), zn + hn)| 6 (‖Q′′
c −Q′′‖L2 +C‖Qc −Q‖L2)‖zn + hn‖L2 6 C|c− 1| ·Cδ 6 Cδ3.
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Similarly, we have

|(L(QA
c −Qc), zn + hn)| 6 (‖ϕ′′

AQc‖L2 + 2‖ϕ′
AQ

′
c‖L2 + ‖(ϕA − 1)Q′′

c‖L2

+ C
∥∥QA

c −Qc

∥∥
L2)‖zn + hn‖L2

6 Ce−ρA · Cδ 6 Cδ3.

Moreover, we have by integrating by parts (La, b) =
∫
a′b′ +

∫
ab − p

∫
Qp−1ab, and so

|(La, b)| 6 C‖a‖H1‖b‖H1 . It implies that





|(L(Qc −Q), Qc −Q)| 6 C‖Qc −Q‖2
H1 6 C(c− 1)2 6 Cδ3,

|(L(QA
c −Qc), Q

A
c −Qc)| 6 C

∥∥QA
c −Qc

∥∥2

H1 6 Ce−2ρA
6 Cδ3,

|(L(Qc −Q), QA
c −Qc)| 6 C‖Qc −Q‖H1

∥∥QA
c −Qc

∥∥
H1 6 C|c− 1| · Ce−ρA

6 Cδ3,

thanks to the estimate on |c− 1| previously found. For the last term, we have

(L(hn + zn), hn + zn) = ‖hn + zn‖2
H1 − p

∫
Qp−1(hn + zn)2

and
∫
Qp−1(hn + zn)

2
6 2

∫
Qp−1h2

n + 2

∫
Qp−1z2

n 6 2

∫
(1 − ϕA)

2
Qp−1v2

n + 2‖Q‖p−1
∞

∫
z2

n

6 2

∫

x<−A

Qp−1v2
n + 2‖Q‖p−1

∞

∫
z2

n.

But ‖vn‖∞ 6 C‖vn‖H1 6 C(‖εn(Tn)‖H1 + ‖Q‖H1 ) 6 C(Kδ + ‖Q‖H1) = K ′, and so∫
x<−A

Qp−1v2
n 6 C

∫
x<−A

Qp−1 6 Ce−ρA. As
∫
z2

n 6 Ce−ρA, we have

F (u0) = F (Q) +
1

2
‖hn + zn‖2

H1 + dA
n > F (Q) +

1

2
‖hn + zn‖2

L2 + dA
n

where |dA
n | 6 Cδ3 for n > n(A). Moreover we have

‖hn + zn‖2
L2 − ‖hn‖2

L2 6 ‖zn‖2
L2 + 2‖zn‖L2‖hn‖L2 6 Ce−2ρA + 2Ce−ρA · C1δ 6 Cδ3.

Finally, energy balance provides us, for some N large enough,

F (u0) > F (Q) +
1

2
‖hN‖2

L2 + d′

with |d′| 6 Cδ3.

• Conclusion: Since F (u0) < F (Q) by hypothesis, we obtain ‖hN‖2
L2 6 Cδ3. But we also have

by the lower bound of ‖hn‖L2 : ‖hN‖2
L2 > C2

2δ
2. Gathering both information, we obtain

C2
2

C 6 δ, which is clearly a contradiction if we choose δ small enough, and so concludes the
proof of proposition 3.4.

3.2 Weak continuity of the flow

The main idea to obtain the special solution is to reverse the weak convergence of vn to v0 in time
and in space, using the fact that u(t, x) is a solution of (gKdV) if and only if u(−t,−x) is also a
solution. More precisely, we define w0 = v̌0 ∈ H1(R), i.e. for all x ∈ R, w0(x) = v0(−x).

Remark 3.5. For all c > 0 and all x0 ∈ R, we have

w0 6= Qc(· + x0).
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In fact, otherwise and since Qc is even, we would have v0(x) = Qc(x− x0). But vn −Q = εn(Tn)
and (εn(Tn), Q′) = (vn, Q

′) = 0, so by weak convergence in H1, (v0, Q
′) = 0. Thus we would have∫

Qc(x−x0)Q
′(x) dx = 0, and if we show that x0 = 0, we shall reach the desired contradiction since

we have v0 6= Qc for all c > 0 by proposition 3.4. To show this, consider f(a) =
∫
Qc(x−a)Q′(x) dx

for a ∈ R, which is odd since Qc is even and Q′ odd. In particular, f(0) = 0, and it is enough to
show that f(a) < 0 for a > 0 to conclude (because we shall have f(a) > 0 for a < 0 by parity).
But using again the parity of Qc and Q′, we have

f(a) =

∫ a

0

[Qc(a− x) −Qc(a+ x)]Q′(x) dx+

∫ +∞

a

[Qc(x − a) −Qc(x+ a)]Q′(x) dx.

Since Q′ is negative and Qc is strictly decreasing on R+, both integrals are negative, and so
f(a) < 0 for a > 0, as we desired.

Remark 3.6. 1. Now, w0 being constructed, we show that the associated solution w(t) is
defined for all t positive, and can be seen as a weak limit (proposition 3.8) in order to prove
the convergence of w(t) to a soliton.

2. The main ingredient of the proof of proposition 3.8 is the following lemma of weak continuity
of the flow, whose proof is inspired by [8, theorem 5]. This proof is long and technical, and
thus is not completely written in this paper.

Lemma 3.7. Suppose that z0,n ⇀ z0 in H1, and that there exist T > 0 and K > 0 such that the
solution zn(t) corresponding to initial data z0,n exists for t ∈ [0, T ] and supt∈[0,T ] ‖zn(t)‖H1 6 K.

Then for all t ∈ [0, T ], the solution z(t) such that z(0) = z0 exists, and zn(T ) ⇀ z(T ) in H1.

Sketch of the proof. Let T ∗ = T ∗(‖z0‖
H

3
4
) > 0 be the maximum time of existence of the solution

z(t) associated to z0, well defined by [9, corollary 2.18] since s = 3
4 > p−5

2(p−1) = sc(p). We

distinguish two cases, whether T < T ∗ or not, and we show that this last case is in fact impossible.

1st case: Suppose that T < T ∗. As z(t) exists for t ∈ [0, T ] by hypothesis, it is enough to
show that zn(T ) ⇀ z(T ) in H1. But since C∞

0 is dense in H−1 and ‖zn(T ) − z(T )‖H1 6

‖zn(T )‖H1 + ‖z(T )‖H1 6 K ′, it is enough to show that zn(T ) −→ z(T ) in D′(R). It is the
end of this case, very similar to the proof in [8] (but using a H3 regularization and so using
some arguments like in [11, section 3.4]), which is technical and not written in this paper
consequently.

2nd case: Suppose that T ∗ 6 T and let us show that it implies a contradiction. Indeed, there
would exist T ′ < T ∗ such that ‖z(T ′)‖

H
3
4

> 2K (where K is the same constant as in

the hypothesis of the lemma). But we can apply the first case with T ′ instead of T , so
that zn(T ′) ⇀ z(T ′) in H1, and since ‖zn(T ′)‖H1 6 K, we obtain by weak convergence
‖z(T ′)‖

H
3
4

6 ‖z(T ′)‖H1 6 K, and so the desired contradiction.

Proposition 3.8. The solution w(t) of (gKdV) such that w(0) = w0 is defined for all t > 0, and
un(Tn − t, xn(Tn) − ·) ⇀ w(t) in H1.

Proof. As the assumption is clear for t = 0, we fix T > 0 and we show it for this T . Since
limn→+∞ Tn = +∞ by remark 3.1, then for n > n0, we have Tn > T . As a consequence, for
n > n0 and for t ∈ [0, T ], zn(t) = un(Tn − t, xn(Tn) − ·) is well defined, solves (gKdV), and has
for initial data

zn(0) = un(Tn, xn(Tn) − ·) = v̌n ⇀ v̌0 = w0 in H1.

Moreover, we have

‖zn(t)‖H1 = ‖un(Tn − t, xn(Tn) − ·)‖H1

6 ‖εn(Tn − t, xn(Tn) − xn(Tn − t) − ·)‖H1 + ‖Q(xn(Tn) − xn(Tn − t) − ·)‖H1

6 ‖εn(Tn − t)‖H1 + ‖Q‖H1 6 Cδ + ‖Q‖H1 = K.

By lemma 3.7, we deduce that w exists on [0, T ], and zn(T ) ⇀ w(T ) in H1.
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3.3 Exponential decay on the left of w

The goal of this section is to prove an exponential decay on the ”left” of w, using the exponential
decay of un on the right. Indeed, since εn(Tn − t) = un(Tn − t, · + xn(Tn − t)) − Q verifies
(εn(Tn − t), Q′) = 0 and ‖εn(Tn − t)‖H1 6 Cδ for all t ∈ [0, Tn], then un(Tn − t) is in the same
situation as the situation of u summed up just before proposition 2.15, with δ instead of ε0 for
the small parameter. In particular, by remark 2.17, inequality (2.5) holds for un(Tn − t) with C
independent of n if we choose δ small enough. In other words, we have for all t > 0 and x0 > 0
(and n large enough):

∫

x>x0

(u2
nx + u2

n)(Tn − t, x+ xn(Tn − t)) dx 6 Ce−x0/4. (3.3)

But before passing to the limit, we have to define the ”left” of w, i.e. the center of mass xw(t) of
w(t).

Lemma 3.9. There exists C > 0 such that, for all t > 0, infy∈R ‖w(t) −Q(· − y)‖H1 6 Cδ.

Proof. Fix t > 0 and n0 > 0 such that for n > n0, Tn > t. Since Q is even, we have

εn(Tn − t, xn(Tn) − xn(Tn − t) − ·) = un(Tn − t, xn(Tn) − ·) −Q(· − xn(Tn) + xn(Tn − t)).

Now if we denote wn(t) = un(Tn − t, xn(Tn) − ·) and yn(t) = xn(Tn) − xn(Tn − t), we have

‖wn(t) −Q(· − yn(t))‖H1 = ‖εn(Tn − t)‖H1 6 Cδ.

But following the remark done at the beginning of this section, proposition 2.15 is still valid, and

so |x′n(t)−1| 6 Cδ for t ∈ [0, Tn]. We deduce that yn(t) =
∫ Tn

Tn−t x
′
n(s) ds =

∫ Tn

Tn−t(x
′
n(s)−1) ds+ t

verifies |yn(t)| 6 Cδt+ t = Ct. By passing to a subsequence, we can suppose that limn→∞ yn(t) =
y(t). But now we can write

‖wn(t) −Q(· − y(t))‖H1 6 Cδ + ‖Q−Q(· + (yn(t) − y(t)))‖H1 6 C′δ

for n > N(t, δ) by lemma 2.11. Finally, since wn(t) ⇀ w(t) in H1 by proposition 3.8, we obtain
by weak convergence ‖w(t) −Q(· − y(t))‖H1 6 C′δ, and the result follows.

We can now choose δ small enough so that Cδ 6 ε0, and so we can define xw(t) = α(w(t)) by
lemma 2.10, with notably ‖w(t, · + xw(t)) −Q‖H1 6 Cδ. But to exploit (3.3), we have to show
first that yn(t) = xn(Tn) − xn(Tn − t) is close to xw(t) for all t.

Lemma 3.10. There exists C > 0 such that: ∀t > 0, ∃n0 > 0, ∀n > n0, |xw(t) − yn(t)| 6 Cδ.

Proof. Let t > 0 and n large enough such that Tn > t. We keep notation wn(t) and yn(t) of the
previous proof , where we have already remarked that |yn(t)| 6 Ct. For the same reason, we have
|xw(t) − yn(t)| 6 Ωt. Now choose A(t) ≫ 1 such that ‖Q‖L2(|x|>A(t)−Ωt) 6 δ. Since wn(t) ⇀ w(t)

in H1, then for n > n0, we have ‖wn(t) − w(t)‖L2(|x|6A(t)) 6 δ. Moreover,

‖w(t) −Q(· − xw(t))‖H1 6 Cδ and ‖wn(t) −Q(· − yn(t))‖H1 6 Cδ,

and so by the triangle inequality: ‖Q(· − xw(t)) −Q(· − yn(t))‖L2(|x|6A(t)) 6 Cδ. We deduce that
for n > n0:

‖Q−Q(· + xw(t) − yn(t))‖L2 6
√

2‖Q−Q(· + xw(t) − yn(t))‖L2(|x|6A(t))

+
√

2‖Q−Q(· + xw(t) − yn(t))‖L2(|x|>A(t))

6 Cδ +
√

2‖Q‖L2(|x|>A(t)) +
√

2‖Q(· + xw(t) − yn(t))‖L2(|x|>A(t))

6 Cδ + 2
√

2‖Q‖L2(|x|>A(t)−Ωt) 6 Cδ.

We conclude by choosing δ small enough so that Cδ 6 A0, where A0 is defined in lemma 2.11, and
we apply this lemma to reach the desired inequality (note that the lemma holds of course with
the L2 norm instead of the H1 one).
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If we choose δ small enough so that Cδ 6 1 (for example) in lemma 3.10, we can now prove
the following proposition.

Proposition 3.11. There exists C > 0 such that, for all t > 0 and all x0 > 0,
∫

x<−x0−1

(w2
x + w2)(t, x+ xw(t)) dx 6 Ce−x0/4.

Proof. Let t > 0, x0 > 0 and n > n0 where n0 is defined in lemma 3.10. From (3.3) and the
substitution y = xn(Tn) − xn(Tn − t) − x = yn(t) − x, we obtain

∫

x<yn(t)−x0

(u2
nx + un)(Tn − t, xn(Tn) − x) dx 6 Ce−x0/4.

If we still denote wn(t) = un(Tn − t, xn(Tn) − ·), we deduce by lemma 3.10 that

∫

x<−x0−1+xw(t)

(w2
nx + w2

n)(t, x) dx 6 Ce−x0/4.

But wn(t) ⇀ w(t) in H1, so wn(t) ⇀ w(t) and wnx(t) ⇀ wx(t) in L2. Moreover, since ψ =1(−∞,−x0−1+xw(t)) ∈ L∞, then wn(t)ψ ⇀ w(t)ψ and wnx(t)ψ ⇀ wx(t)ψ in L2, thus by weak

convergence
∫

x<−x0−1+xw(t) w
2(t, x) dx 6 Ce−x0/4 and the same inequality for wx, so the result

follows by sum.

3.4 Asymptotic stability and conclusion

The final ingredient to prove that w(t) is a special solution is the theorem of asymptotic stability
proved by Martel and Merle in [15]. Indeed, thanks to lemma 3.9, we can apply this theorem with
c0 = 1 if we choose δ small enough such that Cδ < α0. We obtain c+ > 0 and t 7→ ρ(t) ∈ R such
that

‖w(t) −Qc+(· − ρ(t))‖
H1(x>t/10)

−−−−→
t→+∞

0. (3.4)

Remark 3.12. As usual, ρ(t) and c+ are defined in [15] by a lemma of modulation close to Q,
which gives the estimations:

∥∥w(t) −Qc+(· − ρ(t))
∥∥

H1 6 Cδ, |ρ′(t) − 1| 6 Cδ and |c+ − 1| 6 Cδ.
We deduce that

‖Q−Q(· + ρ(t) − xw(t))‖H1 = ‖Q(· − ρ(t)) −Q(· − xw(t))‖H1

6
∥∥Q−Qc+

∥∥
H1 +

∥∥w(t) −Qc+(· − ρ(t))
∥∥

H1

+ ‖w(t) −Q(· − xw(t))‖H1

6 K|c+ − 1| + Cδ + C′δ 6 C′′δ.

Now if we choose δ small enough, then C′′δ 6 A0 and lemma 2.11 gives |xw(t) − ρ(t)| 6 Cδ 6 1.
Finally, proposition 3.11 becomes

∀t > 0, ∀x0 > 2,

∫

x<−x0

(w2
x + w2)(t, x+ ρ(t)) dx 6 C′e−x0/4. (3.5)

We are now able to prove the main result of this section.

Theorem 3.13 (Existence of one special solution). There exist w(t) solution of (gKdV) defined
for all t > 0, c+ > 0 and t 7→ ρ(t) such that:

(i) ‖w(t) −Qc+(· − ρ(t))‖
H1(R)

−−−−→
t→+∞

0,

(ii) ∀c > 0, ∀x0 ∈ R, w(0) 6= Qc(· + x0).
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Proof. By remark 3.5, it is enough to prove (i). We have by the triangle inequality

‖w(t) −Qc+(· − ρ(t))‖2

H1(R)
6 ‖w(t) −Qc+(· − ρ(t))‖2

H1(x>t/10)
+ 2‖w(t)‖2

H1(x<t/10)

+ 2‖Qc+(· − ρ(t))‖2

H1(x<t/10)
= I + II + III.

Since |ρ′(t) − 1| 6 Cδ 6 1
10 if we choose δ small enough, then |ρ(t) − t− ρ(0)| 6 1

10 t, and so if we
denote ρ0 = ρ(0) ∈ R, we have t

10 − ρ(t) 6 − 4
5 t− ρ0. We can now estimate:

• I −−−−→
t→+∞

0 by (3.4).

• For t large enough, we have 4t
5 + ρ0 > 2, and so (3.5) gives

1

2
II =

∫

x<t/10

(w2
x + w2)(t, x) dx =

∫

x<t/10−ρ(t)

(w2
x + w2)(t, x + ρ(t)) dx

6

∫

x<−4t/5−ρ0

(w2
x + w2)(t, x + ρ(t)) dx 6 Ce−t/5 −−−−→

t→+∞
0.

• Finally, since (Q′2
c+

+Q2
c+

)(x) 6 Ce2
√

c+x for all x ∈ R (see claim 2.1), we have

1

2
III =

∫

x<t/10

(Q′2
c+

+Q2
c+

)(x− ρ(t)) dx =

∫

x<t/10−ρ(t)

(Q′2
c+

+Q2
c+

)(x) dx

6

∫

x<−4t/5−ρ0

(Q′2
c+

+Q2
c+

)(x) dx 6 C

∫

x<−4t/5−ρ0

e2
√

c+x dx 6 Ce−
8t
5

√
c+ −−−−→

t→+∞
0

which achieves the proof of theorem 3.13.

Corollary 3.14. For all c > 0, there exist wc(t) solution of (gKdV) defined for all t > 0 and
t 7→ ρc(t) such that:

(i) ‖wc(t, · + ρc(t)) −Qc‖H1(R) −−−−→t→+∞
0,

(ii) ∀c′ > 0, ∀x0 ∈ R, wc(0, · + ρc(0)) 6= Qc′(· + x0).

Proof. It is based on the scaling invariance of the (gKdV) equation: if u(t, x) is a solution, then

for all λ > 0, λ
2

p−1 u(λ3t, λx) is also a solution. For c > 0 given, we thus define wc by wc(t) =

λ
2

p−1
c w(λ3

c t, λcx) with λc =
√

c
c+

, where w and c+ are defined above. Since Qc(x) = λ
2

p−1
c Qc+(λcx),

then we have by substitution

∥∥w(t) −Qc+(· − ρ(t))
∥∥2

H1 = λ
p−5
p−1
c

(∥∥wc(t/λ
3
c , · + ρ(t)/λc) −Qc

∥∥2

L2

+
1

λ2
c

∥∥∂x[wc(t/λ
3
c , · + ρ(t)/λc) −Qc]

∥∥2

L2

)
.

We deduce that

∥∥w(t) −Qc+(· − ρ(t))
∥∥2

H1 >





λ
p−5
p−1
c

∥∥wc(t/λ
3
c , · + ρ(t)/λc) −Qc

∥∥2

H1 if λc 6 1

λ
− p+3

p−1
c

∥∥wc(t/λ
3
c , · + ρ(t)/λc) −Qc

∥∥2

H1 if λc > 1

,

and so limt→+∞
∥∥wc(t/λ

3
c , · + ρ(t)/λc) −Qc

∥∥
H1 = 0 in both cases by theorem 3.13. We finally

obtain (i) if we take ρc(t) =
ρ(λ3

ct)
λc

. For (ii), if we suppose that there exist c′ > 0 and x0 ∈ R such
that wc(0, · + ρc(0)) = Qc′(· + x0), then we get

w0 = Q c′c+
c

(
· +
(√

c

c+
x0 − ρ0

))

which is a contradiction with remark 3.5.
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4 Construction and uniqueness of a family of special solu-

tions via the contraction principle

In this section, we prove theorem 1.1. The proof is an extension to (gKdV) of the method by
fixed point developed in [4, 5]. To adapt the method to (gKdV), we use first information on the
spectrum of the linearized operator around Q(· − t) due to [17] (see proposition 4.2 in the present
paper). Secondly, we rely on the Cauchy theory for (gKdV) developed in [9, 10]. Indeed, one of the
main difficulties is the lack of a derivative due to the equation, but compensated by a smoothing
effect already used in [9, 10].

4.1 Preliminary estimates for the Cauchy problem

Theorem 3.5 of [9] and proposition 2.3 of [10] are summed up and adapted to our situation in
proposition 4.1 below. We noteW (t) the semigroup associated to the linear equation ∂tu+∂3

xu = 0.

Notation. Let I ⊂ R be an interval, 1 6 p, q 6 ∞ and g : R × I → R. Then define

‖g‖Lp
xLq

I
=

(∫ +∞

−∞

(∫

I

|g(x, t)|q dt
)p/q

dx

)1/p

, ‖g‖Lq
ILp

x
=

(∫

I

(∫ +∞

−∞
|g(x, t)|p dx

)q/p

dt

)1/q

and Lp
xL

q
I = {g | ‖g‖Lp

xLq
I
< +∞} and Lq

IL
p
x = {g | ‖g‖Lq

ILp
x
< +∞}. Finally, denote Lp

xL
q
t = Lp

xL
q
R

and Lq
tL

p
x = Lq

R
Lp

x.

Proposition 4.1. There exists C > 0 such that for all g ∈ L1
xL

2
t and all T ∈ R,

∥∥∥∥
∂

∂x

∫ +∞

t

W (t− t′)g(x, t′) dt′
∥∥∥∥

L∞

[T,+∞)
L2

x

6 C‖g‖L1
xL2

[T,+∞)
, (4.1)

∥∥∥∥
∂

∂x

∫ +∞

t

W (t− t′)g(x, t′) dt′
∥∥∥∥

L5
xL10

[T,+∞)

6 C‖g‖L1
xL2

[T,+∞)
. (4.2)

Proof. (i) Inequality (4.1) comes from the dual inequality of (3.6) in [9], i.e.

∥∥∥∥
∂

∂x

∫ +∞

−∞
W (−t′)g(x, t′) dt′

∥∥∥∥
L2

x

6 C‖g‖L1
xL2

t
.

Let t > T , we get for g̃(x, t′) = 1[t,+∞)(t
′)g(x, t′):

∥∥∥∥
∂

∂x

∫ +∞

t

W (−t′)g(x, t′) dt′
∥∥∥∥

L2
x

=

∥∥∥∥
∂

∂x

∫ +∞

−∞
W (−t′)g̃(x, t′) dt′

∥∥∥∥
L2

x

6 C‖g‖L1
xL2

[T,+∞)

and so the desired inequality since W is unitary on L2.

(ii) Inequality (4.2) comes from inequalities (2.6) and (2.8) of [10] with the admissible triples
(p1, q1, α1) = (5, 10, 0) and (p2, q2, α2) = (∞, 2, 1). In fact, if we combine (2.6) cut in time
with [0,+∞) and (2.8), we get

∥∥∥∥
∂

∂x

∫ +∞

t

W (t− t′)g(x, t′) dt′
∥∥∥∥

L5
xL10

t

6 C‖g‖L1
xL2

t
.

If we apply it to g̃(x, t′) = 1[T,+∞)(t
′)g(x, t′), we reach the desired inequality since

∥∥∥∥
∂

∂x

∫ +∞

t

W (t− t′)g(x, t′) dt′
∥∥∥∥

L5
xL10

[T,+∞)

6

∥∥∥∥
∂

∂x

∫ +∞

t

W (t− t′)g̃(x, t′) dt′
∥∥∥∥

L5
xL10

t

.
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4.2 Preliminary results on the linearized equation

4.2.1 Linearized equation

The linearized equation appears if one considers a solution of (gKdV) close to the soliton Q(x− t).
More precisely, if u(t, x) = Q(x− t) + h(t, x− t) verifies (gKdV), then h verifies

∂th+ Lh = R(h) (4.3)

where La = −(La)x, La = −∂2
xa+ a− pQp−1a is defined in section 2.1, and

R(h) = −∂x

(
p∑

k=2

(
p

k

)
Qp−khk

)
.

The spectrum of L has been calculated by Pego and Weinstein in [17]; their results are summed
up here for reader’s convenience.

Proposition 4.2 ([17]). Let σ(L) be the spectrum of the operator L defined on L2(R) and let
σess(L) be its essential spectrum. Then

σess(L) = iR and σ(L) ∩ R = {−e0, 0, e0} with e0 > 0.

Furthermore, e0 and −e0 are simple eigenvalues of L with eigenfunctions Y+ and Y− = Y̌+ which
have an exponential decay at infinity, and the null space of L is spanned by Q′.

4.2.2 Exponential decay

Exponential decay of Y+ has been proved in [17], but a generalization of this fact to a larger family
of functions will be necessary in the proof of proposition 4.6. For λ > 0, consider the operator Aλ

defined on L2 by Aλu = u′′′ − u′ − λu, and the characteristic equation of Aλu = 0,

fλ(x) := x3 − x− λ = 0.

Note σλ
1 , σλ

2 , σλ
3 the roots of fλ, eventually complex, and sorted by their real part. A simple study

of fλ shows that σλ
3 is always real, σλ

3 > 1√
3
, and (σλ

3 )λ>0 is increasing. Moreover, we have the

three cases:

(a) If λ > 2
3
√

3
, then σλ

1 and σλ
2 are two conjugate roots which verify Reσλ

1 = Reσλ
2 = −σλ

3

2 .

(b) If λ = 2
3
√

3
, then σλ

1 = σλ
2 = − 1√

3
and σλ

3 = 2√
3
.

(c) If λ < 2
3
√

3
, then σλ

1 , σλ
2 are real and: σλ

1 ∈
(
−
√

3,− 1√
3

)
; σλ

2 ∈
(
− 1√

3
, 0
)
. Moreover, (σλ

2 )λ

is decreasing, and in particular σλ
2 ր 0 when λց 0.

This analysis allows us to define

µ =
1

4
min
λ>e0

(σλ
3 ,−Reσλ

2 , e0, 1) > 0

and
H = {f ∈ H∞(R) | ∀j > 0, ∃Cj > 0, ∀x ∈ R, |f (j)(x)| 6 Cje

−µ|x|}.

Lemma 4.3. If u ∈ L2 and f ∈ H verify u′′′ − u′ − λu = f with λ > e0, then u ∈ H.

Proof. First notice that u ∈ H∞(R) by a simple bootstrap argument. Moreover, the method of
variation of constants gives us

u(x) = Aeσλ
3 x

∫ +∞

x

e−σλ
3 sf(s) ds+Beσλ

2 x

∫ x

−∞
e−σλ

2 sf(s) ds+ Ceσλ
1 x

∫ x

−∞
e−σλ

1 sf(s) ds
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with A,B,C ∈ C, if we suppose that λ 6= 2
3
√

3
. We can also notice that u′ has the same form as u,

except for three terms in f(x) which appear, and which have the expected decay by hypothesis,
and so on for u(j) for j > 2. Hence we only have to check exponential decay for u:

|u(x)| 6 A′eσλ
3 x

∫ +∞

x

e−σλ
3 s|f(s)| ds+B′eRe σλ

2 x

∫ x

−∞
e−Re σλ

2 s|f(s)| ds

+ C′eRe σλ
1 x

∫ x

−∞
e−Re σλ

1 s|f(s)| ds.

By changing x in −x and by the definition of µ, it is enough to show that if

v(x) = e−ax

∫ x

−∞
ease−µ|s| ds

with a > 2µ, then v(x) 6 e−µ|x|. Notice that one half could also have replaced one quarter in
the definition of µ, but this gain of 2 allows us to treat the case λ = 2

3
√

3
(not written here for

brevity), which makes appear a polynomial in front of the exponential in the last two terms of the
expression of u. Finally, we conclude in both cases, since a− µ > µ > 0:

• If x < 0, then v(x) 6 e−ax
∫ x

−∞ easeµs ds = Ce−ax · e(a+µ)x = Ceµx = Ce−µ|x|.

• If x > 0, then v(x) 6 e−ax
∫ x

−∞ ease−µs ds = Ce−ax · e(a−µ)x = Ce−µx = Ce−µ|x|.

The case λ = 2
3
√

3
is treated similarly.

Corollary 4.4. Y+,Y− ∈ H.

Proof. Since Y− = Y̌+, it is enough to show that Y+ ∈ H. But by definition of Y+ in [17], we
have LY+ = e0Y+ with Y+ ∈ L2, i.e.

Y ′′′
+ − Y ′

+ − e0Y+ = −p∂x(Qp−1Y+) = −p(p− 1)Q′Qp−2Y+ − pQp−1Y ′
+.

By a bootstrap argument, we have Y+ ∈ H∞(R), and in particular Y(j)
+ ∈ L∞(R) for all j > 0. If

we denote f(x) = −p(p−1)Q′Qp−2Y+ −pQp−1Y ′
+, then by exponential decay of Q(j) for all j > 0

and by definition of µ, we have |f (j)(x)| 6 Ce−(p−1)|x| 6 Ce−µ|x| and so f ∈ H. It is enough to
apply lemma 4.3 with λ = e0 to conclude.

4.3 Existence of special solutions

We now prove the following result, which is the first part of theorem 1.1.

Proposition 4.5. Let A ∈ R. If t0 = t0(A) is large enough, then there exists a solution UA ∈
C∞ ([t0,+∞), H∞) of (gKdV) such that

∀s ∈ R, ∃C > 0, ∀t > t0,
∥∥UA(t, · + t) −Q−Ae−e0tY+

∥∥
Hs 6 Ce−2e0t. (4.4)

4.3.1 A family of approximate solutions

The following proposition is similar to [5, proposition 3.4], except for the functional space, which
is not the Schwartz space but the space H described above.

Proposition 4.6. Let A ∈ R. There exists a sequence (ZA
j )

j>1
of functions of H such that

ZA
1 = AY+, and if k > 1 and VA

k =
∑k

j=1 e
−je0tZA

j , then

∂tVA
k + LVA

k = R(VA
k ) + εA

k (t), where εA
k (t) =

pk∑

j=k+1

e−je0tgA
j,k, gA

j,k ∈ H, (4.5)

and R is defined in (4.3).
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Proof. The proof is very similar to the one in [5], and we write it there for reader’s convenience.
We prove this proposition by induction, and for brevity, we omit the superscript A.

Define Z1 := AY+ and V1 := e−e0tZ1. Then by the explicit definition of R in (4.3),

∂tV1 + LV1 −R(V1) = −R(V1) = −R(Ae−e0tY+) =

p∑

j=2

e−je0tAj

(
p

j

)
∂x[Qp−jYj

+]

which yields (4.5) for k = 1, since Y+, Q ∈ H by corollary 4.4 and claim 2.1.
Let k > 1 and assume that Z1, . . . ,Zk are known with the corresponding Vk satisfying (4.5).

Now let Uk+1 := gk+1,k ∈ H, so that

∂tVk + LVk = R(Vk) + e−(k+1)e0tUk+1 +

pk∑

j=k+2

e−je0tgj,k,

and define Zk+1 := −(L− (k + 1)e0)
−1Uk+1. Note that Zk+1 is well defined since (k+ 1)e0 is not

in the spectrum of L by proposition 4.2, and moreover Zk+1 ∈ H. Indeed, we have

Z ′′′
k+1 −Z ′

k+1 − (k + 1)e0Zk+1 = −Uk+1 − p(p− 1)Q′Qp−2Zk+1 − pQp−1Z ′
k+1 ∈ H

by exponential decay of Q(j) for all j > 0 and since Z(j)
k+1 ∈ H∞(R) by a bootstrap argument.

Hence Zk+1 ∈ H by lemma 4.3 applied with λ = (k + 1)e0 > e0.
Then we have

∂t

(
Vk + e−(k+1)e0tZk+1

)
+ L

(
Vk + e−(k+1)e0tZk+1

)
= R(Vk) +

pk∑

j=k+2

e−je0tgj,k.

Denote Vk+1 := Vk + e−(k+1)e0tZk+1. Thus we have

∂tVk+1 + LVk+1 − R(Vk+1) = R(Vk) −R(Vk+1) +

pk∑

j=k+2

e−je0tgj,k.

We conclude the proof by evaluating

R(Vk) −R(Vk+1) = R(Vk) −R(Vk + e−(k+1)e0tZk+1)

= ∂x




p∑

j=2

(
p

j

)
Qp−j

(
(Vk + e−(k+1)e0tZk+1)

j − Vj
k

)

 =

p(k+1)∑

j=k+2

e−je0tg̃j,k,

which yields (4.5) for k + 1, and thus completes the proof.

4.3.2 Construction of special solutions

We now prove proposition 4.5, following the same three steps as in [5]. The main difference comes
from step 2, because of the derivative in the error term which forces us to use the sharp smoothing
effect developed in [9]. Let A ∈ R and s > 1 integer. Write

UA(t, x+ t) = Q(x) + hA(t, x).

First, by a fixed point argument, we construct a solution hA ∈ C0([tk,+∞), Hs) of (4.3) for k
and tk large and such that

∀T > tk,
∥∥(hA − Vk)(T )

∥∥
Hs 6 e−(k+ 1

2 )e0T . (4.6)

Next, the same arguments like in [5] show that hA does not depend on s and k. For brevity, we
omit the superscript A.
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Step 1. Reduction to a fixed point problem. If we set h̃(t, x) = h(t, x − t), equation (4.3) can
be written as

∂th̃+ ∂3
xh̃ = −S(h̃), S(h̃) =

∂

∂x

[
p∑

k=1

(
p

k

)
Qp−k(x− t)h̃k

]
. (4.7)

Moreover, we have by (4.5), εk(t) = ∂tVk +∂3
xVk−∂xVk +∂x

[∑p
j=1

(
p
j

)
Qp−jVj

k

]
. Now let v(t, x) =

(h− Vk)(t, x − t) and subtract the previous equation from (4.7), so that

∂tv + ∂3
xv = −S[v + Vk(t, x− t)] + S[Vk(t, x− t)] − εk(t, x − t).

For notation simplicity, we drop the space argument (x − t) for the moment. The equation can
then be written as

v(t) = M(v)(t) :=

∫ +∞

t

W (t− t′) [S(Vk(t′) + v(t′)) − S(Vk(t′)) + εk(t′)] dt′. (4.8)

Note that (4.6) is equivalent to ‖v(T )‖Hs 6 e−(k+ 1
2 )e0T for T > tk. In other words, defining





N1(v) = sup
T>tk

e(k+ 1
2 )e0T ‖v(T )‖Hs ,

N2(v) =
s∑

s′=0

sup
T>tk

e(k+ 1
2 )e0T ‖∂s′

v‖L5
xL10

[T,+∞)
,

Λ(v) = Λtk,k,s(v) = max(N1(v), N2(v)),

it is enough to show that M is a contraction on B defined by

B = B(tk, k, s) =
{
v ∈ C0([tk,+∞), Hs) | Λ(v) 6 1

}
.

Remark 4.7. The choice of the two norms N1 and N2 is related to the fact that global well
posedness of supercritical (gKdV) with initial data small in H1 can be proved with the two norms

Ñ1(v) = supt∈R
‖v(t)‖H1 and Ñ2(v) = ‖v‖L5

xL10
t

+ ‖∂xv‖L5
xL10

t
, following [10]. We could also have

used other norms from [9].

Step 2. Contraction argument. We show that M is a contraction on B for s > 1 and k, tk
sufficiently large. Throughout this proof, we denote by C a constant depending only on s, and Ck

a constant depending on s and k. To estimate N1(M(v)) and N2(M(v)), we have to explicit

S(Vk + v) − S(Vk) =
∂

∂x

[
p∑

i=1

(
p

i

)
Qp−i

(
(Vk + v)

i − V i
k

)]

=
∂

∂x

(
pQp−1v

)
+

∂

∂x

[
p∑

i=2

(
p

i

)
Qp−iv ·

i∑

l=1

(
i

l

)
V i−l

k vl−1

]

= p
∂I

∂x
+
∑

α,β,γ

Cα,β,γ
∂IIα,β,γ

∂x

where I = Qp−1v and IIα,β,γ = QαVβ
k v

γ , with: γ > 1, β + γ > 2, α+ β + γ = p > 6. We can now
write

∂sM(v) = p

∫ +∞

t

W (t− t′)
∂

∂x
[∂s(I)] dt′ +

∑

α,β,γ

Cα,β,γ

∫ +∞

t

W (t− t′)
∂

∂x
[∂s(IIα,β,γ)] dt′

+

∫ +∞

t

W (t− t′)∂sεk(t′) dt′.
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By (4.1) and (4.2), we obtain

max
(
‖∂sM(v)(T )‖L2

x
, ‖∂sM(v)‖L5

xL10
[T,+∞)

)
6 C‖∂s−1εk‖L1

xL2
[T,+∞)

+ C‖∂s(I)‖L1
xL2

[T,+∞)

+
∑

α,β,γ

Cα,β,γ‖∂s(IIα,β,γ)‖L1
xL2

[T,+∞)
. (4.9)

We treat the terms εk, I, IIα,β,γ for α = p − 2, β = γ = 1, and for α = β = 0, γ = p. All other
terms can be treated similarly: for example, II0,p−1,1 can be treated like IIp−2,1,1, etc.

For I, since Q and his derivatives have the same decay, it is enough to estimate the term
Ĩ = ‖Qp−1∂sv‖L1

xL2
[T,+∞)

6 C‖e−|x−t|∂sv‖L1
xL2

[T,+∞)
:

Ĩ 6 C‖ex−t∂sv‖L1
(−∞,T ]

L2
[T,+∞)

+ C‖et−x∂sv‖L1
[T,+∞)

L2
[T,x]

+ C‖ex−t∂sv‖L1
[T,+∞)

L2
[x,+∞)

6 C

√∫ T

−∞
e2x dx

√∫

x

∫ +∞

T

e−2t(∂sv)2 dt dx+ C

√∫ +∞

T

e−2x dx

√∫

x

∫ +∞

T

e2t(∂sv)2 dt dx

+ C

√∫ +∞

T

e−2x dx

√∫ +∞

T

∫ +∞

x

e4x−2t(∂sv)2 dt dx

by the Cauchy-Schwarz inequality. Now, by Fubini’s theorem, and since 4x − 2t 6 2t in the last
integral, we get

Ĩ 6 CeTN1(v)

√∫ +∞

T

e−(2k+1)e0t−2t dt+ 2Ce−TN1(v)

√∫ +∞

T

e−(2k+1)e0t+2t dt

6 CeTN1(v)
e−(k+ 1

2 )e0T−T

√
(2k + 1)e0 + 2

+ 2Ce−TN1(v)
e−(k+ 1

2 )e0T+T

√
(2k + 1)e0 − 2

6 CN1(v)
1√
k
e−(k+ 1

2 )e0T .

Note that since k will be chosen large at the end of the argument, we can suppose (2k+ 1)e0 > 2.

For IIp−2,1,1, we treat similarly the term ĨIp−2,1,1 = ‖Qp−2Vk∂
sv‖L1

xL2
[T,+∞)

since Vk and his

derivatives have the same decay. In fact, we have by Hölder inequality

ĨIp−2,1,1 6 C‖∂sv‖L5
xL10

[T,+∞)
‖Vk‖L

5/4
x L

5/2

[T,+∞)

6 CN2(v)e
−(k+ 1

2 )e0T ‖Vk‖L
5/4
x L

5/2

[T,+∞)

.

By the definition of Vk in proposition 4.6, we have by noting e′0 = 5
2e0 and µ′ = 5

2µ,

‖Vk‖5/4

L
5/4
x L

5/2

[T,+∞)

6 Ck‖e−e0te−µ|x−t|‖5/4

L
5/4
x L

5/2

[T,+∞)

6 Ck

∫ T

−∞

√∫ +∞

T

e−e′

0te−µ′teµ′x dt dx+ Ck

∫ +∞

T

√∫ x

T

e−e′

0teµ′te−µ′x dt dx

+ Ck

∫ +∞

T

√∫ +∞

x

e−e′

0te−µ′teµ′x dt dx

6 Cke
µ′

2 T

√∫ +∞

T

e−(e′

0+µ′)t dt+ Cke
−µ′

2 T

√∫ +∞

T

e(µ
′−e′

0)t dt

+ Ck

∫ +∞

T

e
µ′

2 x

√∫ +∞

x

e−(e′

0+µ′)t dt dx

6 3Cke
− e′0

2 T since µ < e0 by definition of µ.
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We finally deduce that ‖Vk‖L
5/4
x L

5/2

[T,+∞)

6 Cke
−e0T and so ĨIp−2,1,1 6 CkN2(v)e

−(k+ 3
2 )e0T .

For II0,0,p = vp, first remark that

∂s(vp) = p∂s−1(∂v · vp−1) = p∂sv · vp−1 + p

s−2∑

k=0

(
s− 1

k

)
∂k+1v · ∂s−1−k(vp−1)

where each term of the sum is a product of p terms like ∂sjv with sj 6 s − 1. Since H1(R) →֒
L∞(R), we can estimate the first term thanks to Hölder’s inequality:

‖∂sv · vp−1‖L1
xL2

[T,+∞)
6 ‖v‖p−5

L∞

[T,+∞)
L∞

x
· ‖∂sv‖L5

xL10
[T,+∞)

· ‖v‖4
L5

xL10
[T,+∞)

6 Ce−p(k+ 1
2 )e0TN1(v)

p−5
N2(v)

5
.

The other terms in the sum can be treated in the same way, and more simply since we can choose
any (p− 5) terms to take out in L∞

[T,+∞)L
∞
x norm, and any 5 others left in L5

xL
10
[T,+∞) norm.

For εk, we deduce by a similar calculation like above and by the expression of εk in (4.5) that

‖∂s−1εk‖L1
xL2

[T,+∞)
6 Ck

∫

R

√∫ +∞

T

e−2(k+1)e0te−2µ|x−t| dt dx 6 C′
ke

−(k+1)e0T .

Summarizing from (4.9), we have shown

max

(
e(k+ 1

2 )e0T ‖M(v)(T )‖Hs ,

s∑

s′=0

e(k+ 1
2 )e0T ‖∂s′

v‖L5
xL10

[T,+∞)

)

6 Cke
− e0

2 T +
CN1(v)√

k
+ CkN2(v)e

−e0T + Ce−(p−1)(k+ 1
2 )e0TN1(v)

p−5
N2(v)

5
.

Since v ∈ B(tk, k, s), i.e. Λ(v) 6 1, then we have

Λ(M(v)) 6 Cke
− e0

2 tk +

(
C√
k

+ Cke
−e0tk

)
Λ(v) 6

(
C√
k

+ Cke
− e0

2 tk

)
.

First, choose k so that C√
k

6
1
2 , then take tk such that Cke

− e0
2 tk 6

1
2 . Then M maps B =

B(tk, k, s) into itself.
It remains to show that M is a contraction on B. If we v, w ∈ B, we have

M(v) −M(w) =

∫ +∞

t

W (t− t′)
[
S(Vk(t′) + v(t′)) − S(Vk(t′) + w(t′))

]
dt′

and

S(Vk + v) − S(Vk + w) =
∂

∂x




p∑

j=1

(
p

j

)
Qp−j

[
(Vk + v)

j − (Vk + w)
j
]



=
∂

∂x

p∑

j=1

(
p

j

)
Qp−j(v − w)

j−1∑

i=1

(Vk + v)i(Vk + w)j−i

= p
∂

∂x

[
Qp−1(v − w)

]
+

∂

∂x

[
(v − w) ·

∑

α,β,γ,δ

Cα,β,γ,δQ
αVβ

k v
γwδ

]
.

Under this form, a similar calculation like above allows us to conclude: the first term is treated like
I, and each QαVβ

k v
γwδ can be treated like IIα,β,γ if we systematically take out the term Λ(v−w)

by Hölder’s inequality. Hence we get, since there is no term in εk,

Λ(M(v) −M(w)) 6

(
C√
k

+ Cke
−e0tk

)
Λ(v − w).
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Choosing if necessary a larger k, then a larger tk, we may assume that C√
k
< 1

2 and Cke
−e0tk 6 1

2 ,

showing that M is a contraction on B. Hence, step 2 is complete.

Step 3. End of the proof. By the preceding step with s = 1, there exist k0 and t0 such that
there exists a unique solution UA of (gKdV) satisfying UA ∈ C0([t0,+∞), H1) and

Λt0,k0,1

(
UA(t, x) −Q(x− t) − VA

k0
(t, x− t)

)
6 1. (4.10)

Note that the fixed point argument still holds taking a larger t0, and so the uniqueness remains
valid, for any t′0 > t0, in the class of solutions of (gKdV) in C0([t′0,+∞), H1) satisfying (4.10).

Finally, we can show proposition 4.5. Since UA is a solution of (gKdV), it is sufficient to show
that UA ∈ C0([t0,+∞), Hs) for any s; the smoothness in time will follow from the equation. Let

s > 1: by step 2, if ks is large enough, there exist ts and ŨA ∈ C0([ts,+∞), Hs) such that

Λts,ks,s

(
ŨA(t, x) −Q(x− t) − VA

ks
(t, x− t)

)
6 1.

Of course, we may choose ks > k0 + 1. But by construction of VA
k in proposition 4.6, we have

VA
ks

(t, x−t)−VA
k0

(t, x−t) =
∑ks

j=k0+1 e
−je0tZA

j (x−t) where ZA
j ∈ H, and so by similar calculation

like in step 2,

Λts,k0,s

(
VA

ks
(t, x− t) − VA

k0
(t, x− t)

)
6 Ce−

e0
2 ts 6

1

2

for ts large enough. Moreover, we have by definition of Λ (and since k0 6 ks − 1)

Λts,k0,s(u) 6 e−e0tsΛts,ks,s(u).

Thus, if we choose ts large enough such that e−e0ts 6
1
2 , we get by triangle inequality

Λts,k0,1

(
ŨA(t, x) −Q(x− t) − VA

k0
(t, x− t)

)
6 Λts,k0,s

(
ŨA(t, x) −Q(x− t) − VA

k0
(t, x− t)

)

6 Λts,k0,s

(
ŨA(t, x) −Q(x− t) − VA

ks
(t, x− t)

)
+ Λts,k0,s

(
VA

ks
(t, x− t) − VA

k0
(t, x− t)

)
6 1.

In particular, ŨA satisfies (4.10) for large ts. By the uniqueness in the fixed point argument, we

have UA = ŨA, which shows that UA ∈ C0([ts,+∞), Hs). By the persistence of regularity of
(gKdV) equation, UA ∈ C0([t0,+∞), Hs), where s > 1. In particular, by compactness on [t0, ts],
there exists C = C(s) such that

∀t > t0,
∥∥UA(t, x) −Q(x− t) − VA

k0
(t, x− t)

∥∥
Hs 6 Ce−(k0+ 1

2 )e0t

and so (4.4) follows, which achieves the proof of proposition 4.5.

4.4 Uniqueness

Now, the special solution UA being constructed, we prove its uniqueness, in the sense of the
following proposition, which implies the second part of theorem 1.1.

Proposition 4.8. Let u be a solution of (gKdV) such that

inf
y∈R

‖u(t) −Q(· − y)‖H1 −−−−→
t→+∞

0. (4.11)

Then there exist A ∈ R, t0 ∈ R and x0 ∈ R such that u(t) = UA(t, · −x0) for all t > t0, where UA

is the solution of (gKdV) defined in proposition 4.5.

The proof of proposition 4.8 proceeds in four steps: first we improve condition (4.11) into an
exponential convergence and we control the translation parameter, then we improve the exponen-
tial convergence up to any order, and finally we adapt step 3 of [5] to (gKdV) to conclude the proof.
A crucial argument for the first and third steps is the coercivity of (L·, ·) under orthogonality to
eigenfunctions of the adjoint of L, proved in [3].
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4.4.1 Adjoint of L
We recall that L is defined by La = −∂2

xa+ a − pQp−1a and L by L = −∂xL. In particular, the
adjoint of L is L∂x. Moreover L has two eigenfunctions Y±, with LY± = ±e0Y± where e0 > 0.

Lemma 4.9. Let Z± = LY±. Then the following properties hold:

(i) Z± are two eigenfunctions of L∂x: L(∂xZ±) = ∓e0Z±.

(ii) (Y+, Z+) = (Y−, Z−) = 0 and (Z+, Q
′) = (Z−, Q′) = 0.

(iii) There exists σ1 > 0 such that, for all v ∈ H1 such that (v, Z+) = (v, Z−) = (v,Q′) = 0,

(Lv, v) > σ1‖v‖2
H1 .

(iv) One has (Y+, Z−) 6= 0 and (Q′,Y ′
+) 6= 0. Hence one can normalize Y± and Z± to have

(Y+, Z−) = (Y−, Z+) = 1, (Q′,Y ′
+) > 0 and still LY± = Z±.

(v) There exist σ2 > 0 and C > 0 such that for all v ∈ H1,

(Lv, v) > σ2‖v‖2
H1 − C(v, Z+)

2 − C(v, Z−)
2 − C(v,Q′)

2
. (4.12)

Proof. (i) It suffices to apply L to the equality −∂x(LY±) = ±e0Y±.

(ii) We have (Y±, Z±) = ∓ 1
e0

(∂x(LY±), LY±) = 0 and (Z±, Q′) = (LY±, Q′) = (Y±, LQ′) = 0
since LQ′ = 0 and L is self-adjoint.

(iii) This fact is assertion (7) proved in [3].

(iv) If we had (Y+, Z−) = (Z+,Y−) = 0, then by (ii) we would have in fact (Y++Y−)⊥Z+, Z−, Q′

sinceQ′ is odd and Y++Y− is even, and so by (iii): (L(Y++Y−),Y++Y−) > σ1‖Y+ + Y−‖2
H1 .

But (L(Y++Y−),Y++Y−) = (LY+,Y+)+(LY−,Y−)+2(LY+,Y−) = (Z+,Y+)+(Z−,Y−)+
2(Z+,Y−) = 0, and so we would get ‖Y+ + Y−‖H1 = 0, i.e. Y+ = −Y−, which is a
contradiction with the independence of the family (Y+,Y−).

Similarly, if we had (Q′,Y ′
+) = 0, we would have (Q′′,Y+) = 0. Moreover we have (Q,Y+) =

− 1
e0

(Q, (LY+)′) = 1
e0

(LQ′,Y+) = 0, and so we would have

(Q,Z+) = (Q,LY+) = (LQ,Y+) = (−Q′′ +Q− pQp,Y+) = −p(Q−Q′′,Y+) = 0.

But we would also have (Q,Z−) = 0 since Q is even and Z− = Ž+. Since (Q,Q′) = 0,

we would finally have (LQ,Q) > σ1‖Q‖2
H1 by (iii). But a straightforward calculation gives

(LQ,Q) = (1 − p)
∫
Qp+1 < 0, and so a contradiction.

Finally, if we note η = (Y+, Z−) 6= 0, then the normalization Ỹ− = 1
ηY−, Z̃− = 1

ηZ− = LỸ−
satisfies the required properties if (Q′,Y ′

+) > 0. Otherwise, it suffices to change Y± and Z±
in −Y± and −Z± respectively.

(v) Let v ∈ H1, and decompose it as

v = αY+ + βY− + γQ′ + v⊥

with α = (v, Z−), β = (v, Z+), γ = ‖Q′‖−2
L2 [(v,Q′) − α(Y+, Q

′) − β(Y−, Q′)] and v⊥ or-
thogonal to Z+, Z−, Q′ by the previous normalization. We have by straightforward calcula-
tion (Lv, v) = (Lv⊥, v⊥) + 2αβ, and (Lv⊥, v⊥) > σ1‖v⊥‖2

H1 by (iii), so we have (Lv, v) >

σ1‖v⊥‖2
H1 − α2 − β2. Finally, we have by the previous decomposition of v that

‖v‖2
H1 6 C(α2 + β2 + γ2 + ‖v⊥‖2

H1) 6 C′(α2 + β2 + (v,Q′)
2

+ ‖v⊥‖2
H1)

and so (Lv, v) > σ1

[‖v‖2
H1

C′
− α2 − β2 − (v,Q′)2

]
− α2 − β2, as desired.
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4.4.2 Step 1: Improvement of the decay at infinity

We begin the proof of proposition 4.8 here: let u be a solution of (gKdV) verifying (4.11).

• By lemma 2.10, we can write ε(t, x) = u(t, x+ x(t)) −Q(x) for t > t0 with t0 large enough,
where ε verifies ‖ε(t)‖H1 −→ 0 and ε(t)⊥Q′ for all t > t0. We recall that we have by
proposition 2.15:

εt − (Lε)x = (x′ − 1)(Q+ ε)x +R(ε) (4.13)

where ‖R(ε)‖L1 6 C‖ε‖2
H1 and |x′ − 1| 6 C‖ε‖H1 .

• Now consider

α+(t) =

∫
Z+ε(t), α−(t) =

∫
Z−ε(t)

where Z± are defined in lemma 4.9. Since ‖ε(t)‖H1 −→ 0, we have of course α±(t) −→ 0.
The two remaining points will be to show that α±(t) control ‖ε(t)‖H1 , and have exponential
decay at infinity.

• First, we recall the linearization of Weinstein’s functional (lemma 2.4):

F (Q+ ε) = F (Q) +
1

2
(Lε, ε) +K(ε)

where |K(ε)| 6 C‖ε‖3
H1 . But F (Q+ ε) − F (Q) is a constant which tends to 0 at infinity in

time, and so is null, hence we get |(Lε, ε)| 6 C‖ε‖3
H1 . We now use (4.12), which gives since

(ε,Q′) = 0:

(Lε, ε) > σ2‖ε(t)‖2
H1 − Cα2

+(t) − Cα2
−(t)

and so σ2‖ε(t)‖2
H1 − Cα2

+(t) − Cα2
−(t) − C′‖ε(t)‖3

H1 6 0. For t0 chosen possibly larger, we
conclude that

‖ε(t)‖2
H1 6 C(α2

+(t) + α2
−(t)).

• We have now to obtain exponential decay of α± to conclude the first step. If we multiply
(4.13) by Z+ and integrate, we obtain

α′
+(t) − e0α+(t) = (x′ − 1)

∫
(Q+ ε)xZ+ +

∫
R(ε)Z+ = (x′ − 1)

∫
εxZ+ +

∫
R(ε)Z+

by integrating by parts and using (i) and (ii) of lemma 4.9. By the controls of |x′ − 1| and

R(ε), we get |α′
+−e0α+| 6 C‖ε‖2

H1 6 C(α2
+ +α2

−). Doing similarly with Z−, we have finally
the differential system {

|α′
+ − e0α+| 6 C(α2

+ + α2
−),

|α′
− + e0α−| 6 C(α2

+ + α2
−).

(4.14)

(4.15)

• Now define h(t) = α+(t)−Mα2
−(t) where M is a large constant to define later. Multiplying

(4.15) by |α−| (which can of course be taken less than 1), we get

h′(t) = α′
+(t) − 2Mα−(t)α′

−(t) > e0α+ − C(α2
+ + α2

−) + 2Me0α
2
− − 2CM |α−|(α2

+ + α2
−)

> e0h+ 3Me0α
2
− − 2Ch2 − 2CM2α4

− − C∗α2
− − 4CMh2 − 4CM3|α−|5 − 2CM |α−|3

since α2
+ =

(
h+Mα2

−
)2

6 2(h2 +M2α4
−). We now fix M = C∗

e0
, so that

h′ > e0h− 2Ch2 − 4CMh2 + α2
−

(
2Me0 − 2CM2α2

− − 4CM3|α−|3 − 2CM |α−|
)
.

Then for t large enough, the expression in parenthesis is positive, and so

h′ > e0h− cMh2.
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Now take t0 large enough such that for t > t0, we have cMh2 6
e0

2 |h|, and suppose for the
sake of contradiction that there exists t1 > t0 such that h(t1) > 0. Define T = sup{t >

t1 | h(t) > 0} and suppose that T < +∞: since h′(t) > e0

(
h(t) − |h(t)|

2

)
for all t > t0 and

of course h(T ) = 0, we would have in particular h′(T ) > 0, so h increasing near T , and so
h(t) 6 0 for t ∈ [T − ε, T ], which would be in contradiction with the definition of T . Hence
we have T = +∞, and so h(t) > 0 for all t > t1. Consequently, we would have h′(t) >

e0

2 h(t)

for all t > t1, and so h(t) > Ce
e0
2 t, which would be a contradiction with limt→+∞ h(t) = 0.

Therefore we have h(t) 6 0 for all t > t0. Since −α+ satisfies the same differential system,
we obtain by the same technique: ∀t > t0, |α+(t)| 6 Mα2

−(t).

• Reporting this estimate in (4.15), we obtain

|α′
−(t) + e0α−(t)| 6 Cα2

−(t) 6
e0
10

|α−(t)|

for t large enough. In other words, we have |(ee0tα−(t))′| 6
e0

10 |ee0tα−(t)|, and so by in-

tegration: |α−(t)| 6 Ce−
9
10 e0t. By a bootstrap argument we get |α′

−(t) + e0α−(t)| 6

Ce−
9
10 e0t|α−(t)|, and so still by integration, we get |ee0tα−(t)| 6 C for all t > t0, i.e.

|α−(t)| 6 Ce−e0t. By the previous point, we also obtain

|α+(t)| 6 Ce−2e0t (4.16)

and finally ‖ε(t)‖2
H1 6 C(α2

+(t) + α2
−(t)) 6 Ce−2e0t.

For clarity, we summarize the results obtained so far.

Lemma 4.10. If u is a solution of (gKdV) which verifies infy∈R ‖u(t) −Q(· − y)‖H1 −−−−→
t→+∞

0,

then there exist a C1 map x : t ∈ R 7→ x(t) ∈ R, t0 ∈ R and C > 0 such that

∀t > t0, ‖u(t, · + x(t)) −Q‖H1 6 Ce−e0t.

4.4.3 Step 2: Removing modulation

• From the previous point, we have in fact |(ee0tα−(t))′| 6 Ce−e0t ∈ L1([t0,+∞)), and so
there exists

lim
t→+∞

ee0tα−(t) =: A ∈ R

with |ee0tα−(t) − A| 6 Ce−e0t for t > t0 by integration. Similarly, since |x′(t) − 1| 6

C‖ε(t)‖H1 6 Ce−e0t, then ∃ limt→+∞ x(t) − t =: x0 ∈ R with |x(t) − t− x0| 6 Ce−e0t.

• Now consider the special solution UA constructed in proposition 4.5, defined for a t0 chosen
possibly larger, and still write UA(t, x+ t) = Q(x) + hA(t, x). Let

v(t, x) = u(t, x+ t+ x0) −Q(x) − hA(t, x) = u(t, x+ t+ x0) − UA(t, x+ t).

So we want to prove v = 0 to complete the proof of proposition 4.8. We first give estimates
on v using the previous estimates on ε.

• Since v(t, x) = ε(t, x− (x(t) − t− x0)) − hA(t, x) +Q(x − (x(t) − t − x0)) −Q(x), then we
simply obtain exponential decay for v for t0 large enough, by lemma 2.11 and exponential
decay of hA:

‖v(t)‖H1 6 ‖ε(t)‖H1 +
∥∥hA(t)

∥∥
H1 + ‖Q−Q(· − (x(t) − t− x0))‖H1

6 Ce−e0t + C|x(t) − t− x0| 6 Ce−e0t.
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• Moreover, we can write

u(t, x) = Q(x− x(t)) + ε(t, x− x(t)) = Q(x− t− x0) + hA(t, x− t− x0) + v(t, x− t− x0).

If we denote ω(t, x) = Q(x−(x(t)−t−x0))−Q(x)−(x(t)−t−x0)Q′(x), we have ‖ω(t)‖L∞ 6

C(x(t) − t− x0)
2

6 Ce−2e0t by Taylor-Lagrange inequality, and

v(t, x) = (x(t) − t− x0)Q
′(x) − hA(t, x) + ε(t, x− (x(t) − t− x0)) + ω(t, x).

Moreover, we have for all x ∈ R and t > t0:

|ε(t, x− (x(t) − t− x0)) − ε(t, x)| =

∣∣∣∣∣

∫ x−(x(t)−t−x0)

x

∂xε(t, s) ds

∣∣∣∣∣

6
√
|x(t) − t− x0| · ‖ε(t)‖H1 6 Ce−

3
2 e0t

by the Cauchy-Schwarz inequality. We have finally

v(t, x) = (x(t) − t− x0)Q
′(x) − hA(t, x) + ε(t, x) + ω(t, x) (4.17)

where ω verifies ‖ω(t)‖L∞ 6 Ce−
3
2 e0t.

• Following the proof (v) in lemma 4.9, we now decompose

v(t, x) = αA
+(t)Y−(x) + αA

−(t)Y+(x) + β(t)Q′(x) + v⊥(t, x) (4.18)

with

αA
+(t) =

∫
Z+v(t), α

A
−(t) =

∫
Z−v(t), β(t) = ‖Q′‖−2

L2

∫ (
v(t) − αA

+(t)Y− − αA
−(t)Y+

)
Q′.

Hence we have (v⊥, Q′) = (v⊥, Z+) = (v⊥, Z−) = 0, and so by (iii) of lemma 4.9:

(Lv⊥, v⊥) > σ1‖v⊥‖2
H1 . (4.19)

• Multiplying (4.17) by Z±, we obtain information on αA
±. Indeed, since (Z±, Q′) = 0, then

we have
αA
± = −(hA, Z±) + α± + (ω,Z±).

But |(hA, Z+)| 6 Ce−2e0t since (Y+, Z+) = 0, and |α+| 6 Ce−2e0t by (4.16), hence |αA
+| 6

Ce−
3
2 e0t. Similarly, (Y+, Z−) = 1 implies that |(hA, Z−) − Ae−e0t| 6 Ce−2e0t, and since

|α− −Ae−e0t| 6 Ce−2e0t, we also get |αA
−| 6 Ce−

3
2 e0t. To sum up this step, we have (4.18)

with the following estimates for t > t0:

|αA
+(t)| 6 Ce−

3
2 e0t, |αA

−(t)| 6 Ce−
3
2 e0t, ‖v(t)‖H1 6 Ce−e0t. (4.20)

In (4.20), it is essential to have obtained estimates better than Ce−e0t for αA
± (see next step).

4.4.4 Step 3: Exponential decay at any order

• We want to prove in this section that v decays exponentially at any order to 0. In other
words, we prove:

∀γ > 0, ∃Cγ > 0, ∀t > t0, ‖v(t)‖H1 6 Cγe
−γt. (4.21)

It has been proved for γ = e0, so that it is enough to prove it by induction on γ > e0:

suppose that ‖v(t)‖H1 6 Ce−γt and let us prove that it implies ‖v(t)‖H1 6 C′e−(γ+ 1
2 e0)t.
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• Since u and UA are solutions of (gKdV), v verifies the following equation:

∂tv − ∂xv + ∂3
xv + ∂x

[(
Q+ hA + v

)p −
(
Q+ hA

)p]
= 0. (4.22)

But

(
Q+ hA + v

)p −
(
Q+ hA

)p
= p
(
Q+ hA

)p−1
v +

p∑

k=2

(
p

k

)(
Q+ hA

)p−k
vk

= pQp−1v + ω1(t, x)v + ω2(t, x)v
2

where ω1(t, x) = p
(∑p−1

k=1

(
p−1

k

)
Qp−1−k

(
hA
)k)

and ω2(t, x) =
∑p

k=2

(
p
k

)(
Q+ hA

)p−k
vk−2.

Since
∥∥hA(t)

∥∥
L∞

6 C
∥∥hA(t)

∥∥
H1 6 Ce−e0t and ‖v(t)‖L∞ 6 C‖v(t)‖H1 6 C, we have the

estimates
‖ω1(t)‖L∞ 6 Ce−e0t, ‖ω2(t)‖L∞ 6 C, (4.23)

and (4.22) can be rewritten

∂tv + Lv + ∂x[ω1(t, x)v] + ∂x[ω2(t, x)v
2] = 0. (4.24)

• If we multiply (4.24) by Z+ and integrate, we get αA
+
′ − e0α

A
+ =

∫
ω1vZ

′
+ +

∫
ω2v

2Z ′
+, and

so

|αA
+

′ − e0α
A
+| 6 ‖ω1(t)‖L∞‖v(t)‖L∞

∥∥Z ′
+

∥∥
L1 + ‖ω2(t)‖L∞‖v(t)‖2

L∞

∥∥Z ′
+

∥∥
L1

6 Ce−(γ+e0)t + Ce−2γt
6 Ce−(γ+e0)t.

Consequently, we have |(e−e0tαA
+)′| 6 Ce−(γ+2e0)t, and since e−e0tαA

+(t) −−−−→
t→+∞

0 by (4.20),

we get by integration |αA
+(t)| 6 Ce−(γ+e0)t.

Multiplying (4.24) by Z−, we obtain similarly |αA
−
′
+ e0α

A
−| 6 Ce−(γ+e0)t, and so |αA

−(t)| 6

Ce−(γ+e0)t, since |ee0tαA
−(t)| 6 Ce−

1
2 e0t −−−−→

t→+∞
0 still by (4.20).

• We now want to estimate |(Lv, v)|. To do this, we rewrite (4.22) as

∂tv + ∂x

[
∂2

xv − v +
(
Q+ hA + v

)p −
(
Q+ hA

)p]
= 0,

multiply this equality by the expression in the brackets and integrate, to obtain
∫
∂tv ·[

∂2
xv − v +

(
Q+ hA + v

)p −
(
Q+ hA

)p]
= 0. In other words, if we define

F (t) =
1

2

∫
v2

x+
1

2

∫
v2−

∫
1

p+ 1

(
Q+ hA + v

)p+1
+

∫
v
(
hA +Q

)p
+

∫
1

p+ 1

(
hA +Q

)p+1
,

we have: F ′(t) = −
∫
∂th

A ·
[(
Q+ hA + v

)p −
(
Q+ hA

)p − pv
(
Q+ hA

)p−1
]
.

But hA verifies (4.3) by definition, so ∂th
A = −∂3

xh
A + ∂xh

A − p∂x(Qp−1hA) + R(hA).
Moreover, by proposition 4.5, there exists C > 0 such that for all t > t0, we have ‖hA(t)‖H4 6

Ce−e0t. We deduce that
∥∥∂th

A
∥∥
∞ 6 C

∥∥∂th
A
∥∥

H1 6 C‖hA(t)‖H4 6 Ce−e0t.

Therefore |F ′(t)| 6 C
∥∥∂th

A
∥∥
∞‖v(t)‖2

L2 6 Ce−(2γ+e0)t, and so |F (t)| 6 Ce−(2γ+e0)t by

integration, since limt→+∞ F (t) = 0. Moreover, by developing
(
Q+ hA + v

)p+1
in the

expression of F , we get

F (t) =
1

2

∫
v2

x +
1

2

∫
v2 − p

2

∫ (
Q+ hA

)p−1
v2 − 1

p+ 1

p+1∑

k=3

(
p+ 1

k

)∫ (
Q+ hA

)p+1−k
vk

=
1

2
(Lv, v) − 1

2

∫
ω1(t, x)v

2 −
∫
ω̃2(t, x)v

3
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where ω1 defined above and ω̃2(t, x) = 1
p+1

∑p+1
k=3

(
p+1

k

)(
Q+ hA

)p+1−k
vk−3 verify the esti-

mates ‖ω1(t)‖L∞ 6 Ce−e0t and ‖ω̃2(t)‖L∞ 6 C. Hence we have

∣∣∣∣F (t) − 1

2
(Lv, v)

∣∣∣∣ 6
1

2
‖ω1(t)‖L∞‖v(t)‖2

L2 + ‖ω̃2(t)‖L∞‖v(t)‖3
H1

6 Ce−(2γ+e0)t + Ce−3γt
6 Ce−(2γ+e0)t.

Thus, we finally obtain |(Lv, v)| 6 Ce−(2γ+e0)t.

• The previous points allow us to estimate ‖v⊥‖H1 . Indeed, we have by straightforward cal-
culation from (4.18) the identity

(Lv, v) = (Lv⊥, v⊥) + 2αA
+α

A
−,

and so |(Lv⊥, v⊥)| 6 |(Lv, v)| + 2|αA
+| · |αA

−| 6 Ce−(2γ+e0)t + Ce−(2γ+2e0)t 6 Ce−(2γ+e0)t.

But from (4.19), we deduce that σ1‖v⊥‖2
H1 6 Ce−(2γ+e0)t, and so ‖v⊥‖H1 6 Ce−(γ+ 1

2 e0)t.

• To conclude this step, it is now enough to estimate |β(t)|, since the conclusion will then
immediately follow from decomposition (4.18). To do this, we first multiply (4.24) by Q′

and integrate, so that

|(∂tv,Q
′) + (Lv,Q′)| 6 ‖ω1(t)‖L∞‖v(t)‖L∞‖Q′′‖L1 + ‖ω2(t)‖L∞‖v(t)‖2

L∞‖Q′′‖L1

6 Ce−(γ+e0)t + Ce−2γt
6 Ce−(γ+e0)t.

Moreover, by applying L to (4.18), we get Lv = −e0αA
+Y− + e0α

A
−Y+ + Lv⊥, and so

‖Q′‖2
L2β

′(t) = (∂tv − αA
+

′Y− − αA
−
′Y+, Q

′)

= (∂tv + Lv,Q′) − (−e0αA
+Y− + e0α

A
−Y+ + αA

+

′Y− + αA
−
′Y+, Q

′) − (Lv⊥, Q′)

= (∂tv + Lv,Q′) − (αA
+

′ − e0α
A
+)(Y−, Q

′) − (αA
−
′
+ e0α

A
−)(Y+, Q

′) + (v⊥, LQ
′′).

Finally, we obtain thanks to all previous estimates:

|β′(t)| 6 C|(∂tv + Lv,Q′)| + C|αA
+

′ − e0α
A
+| + C|αA

−
′
+ e0α

A
−| + C‖v⊥‖L2

6 Ce−(γ+e0)t + Ce−(γ+e0)t + Ce−(γ+e0)t + Ce−(γ+ 1
2 e0)t

6 Ce−(γ+ 1
2 e0)t

and so |β(t)| 6 Ce−(γ+ 1
2 e0)t by integration.

4.4.5 Step 4: Conclusion of uniqueness argument by contraction

• The final argument, which corresponds to step 3 in [5], is an argument of contraction in
short time. In other words, we want to reproduce the contraction argument developed in
section 4.3.2 on a short interval of time, with suitable norms.

Define w(t, x) = v(t, x− t), so that (4.22) can be rewritten

∂tw + ∂3
xw = −∂x

[(
Q(x− t) + hA(t, x− t) + w

)p −
(
Q(x− t) + hA(t, x− t)

)p]
.

If we denote Ωw(t, x) =
∑p

k=1

(
p
k

)(
Q(x− t) + hA(t, x− t)

)p−k
wk(t, x), then the equation on

w can be rewritten
∂tw + ∂3

xw = −∂x(Ωw).

Moreover, we have by previous steps: ∀γ > 0, ∃Cγ > 0, ∀t > t0, ‖w(t)‖H1 6 Cγe
−γt.
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• Now let t1 > t0, τ > 0 to fix later, and I = (t1, t1 + τ). Moreover, consider the non-linear
equation in w̃: {

∂tw̃ + ∂3
xw̃ = −∂x(Ωw̃),

w̃(t1 + τ) = w(t1 + τ).
(4.25)

Note that w is of course a solution of (4.25), associated to a solution u of (gKdV) in the
sense of [9].

• Then for t ∈ I, we have the following Duhamel’s formula:

w̃(t) = MI(w̃)(t) := W (t− t1 − τ)w(t1 + τ) +

∫ t1+τ

t

W (t− t′)∂x[Ωw̃(t′)] dt′.

Similarly as in section 4.3.2, we consider



N I

1 (w̃) = sup
t∈I

‖w̃(t)‖H1 , N
I
2 (w̃) = ‖w̃‖L5

xL10
I

+ ‖∂xw̃‖L5
xL10

I
,

ΛI(w̃) = max(N I
1 (w̃), N I

2 (w̃)),

and we prove that for t1 large enough, τ small enough independently of t1, and K > 1 to
determine, w̃ 7→ MI(w̃) is a contraction on

B = {w̃ ∈ C0(I,H1) | ΛI(w̃) 6 3K‖w(t1 + τ)‖H1}.

In other words, we want to estimate ΛI(MI(w̃)) in terms of ΛI(w̃), and as in section 4.3.2,
we estimate only the term

∂xMI(w̃)(t) = W (t− t1 − τ)∂xw(t1 + τ) +
∂

∂x

∫ t1+τ

t

W (t− t′)∂x[Ωw̃(t′)] dt′

in L∞
I L

2
x and L5

xL
10
I norms. The term MI(w̃)(t) is treated similarly.

• Firstly, for the linear term, we have

{ ‖W (t− t1 − τ)∂xw(t1 + τ)‖L2 = ‖∂xw(t1 + τ)‖L2 6 ‖w(t1 + τ)‖H1 ,
‖W (t− t1 − τ)∂xw(t1 + τ)‖L5

xL10
I

6 C‖∂xw(t1 + τ)‖L2 6 C‖w(t1 + τ)‖H1 ,

since W is unitary on L2 and by the linear estimate (2.3) of [10]: ‖W (t)u0‖L5
xL10

t
6 C‖u0‖L2 .

• For the non linear term, we have to use estimates similar to (4.1) and (4.2). We obtain easily
by a similar proof that for all g ∈ L1

xL
2
I ,

∥∥∥∥
∂

∂x

∫ t1+τ

t

W (t− t′)g(x, t′) dt′
∥∥∥∥

L∞

I L2
x

+

∥∥∥∥
∂

∂x

∫ t1+τ

t

W (t− t′)g(x, t′) dt′
∥∥∥∥

L5
xL10

I

6 C‖g‖L1
xL2

I
.

Hence we get




∥∥∥ ∂
∂x

∫ t1+τ

t
W (t− t′)∂x[Ωw̃(t′)] dt′

∥∥∥
L∞

I L2
x

6 C‖∂x(Ωw̃)‖L1
xL2

I
,

∥∥∥ ∂
∂x

∫ t1+τ

t
W (t− t′)∂x[Ωw̃(t′)] dt′

∥∥∥
L5

xL10
I

6 C‖∂x(Ωw̃)‖L1
xL2

I
.

We deduce that we only have to estimate ‖∂x(Ωw̃)‖L1
xL2

I
. There are many terms to estimate,

so as in section 4.3.2, we only treat three typical terms: A = ‖∂xw̃ · w̃4 · w̃p−5‖L1
xL2

I
, B =

‖∂xw̃ ·
(
hA
)p−1

(t, x− t)‖
L1

xL2
I

, D = ‖∂xw̃ ·Qp−1(x− t)‖L1
xL2

I
.

For A, we have by Hölder’s inequality:

A 6 ‖w̃‖p−5
L∞

I L∞

x
‖∂xw̃‖L5

xL10
I
‖w̃‖4

L5
xL10

I
6 Ce−e0t1N I

2 (w̃)
5

6 C′e−e0t1N I
2 (w̃).
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Indeed, we have
ΛI(w̃) 6 3K‖w(t1 + τ)‖H1 6 Ce−e0t1 6 1

for t1 large enough, by exponential decay of w in H1. In particular, we have N I
2 (w̃) 6 1 and

‖w̃‖p−5
L∞

I L∞

x
6 CN I

1 (w̃)
p−5

6 Ce−e0t1 since p− 5 > 1.

For B, we write similarly

B 6 ‖hA‖p−5

L∞

I L∞

x
‖∂xw̃‖L5

xL10
I
‖hA(t, x− t)‖4

L5
xL10

I
.

Moreover, we have by construction of hA (see section 4.3.2), ‖hA‖p−5

L∞

I L∞

x
6 Ce−e0t1 since∥∥hA(t)

∥∥
H1 6 Ce−e0t 6 Ce−e0t1 for t > t1 and p− 5 > 1, and

‖hA(t, x− t)‖L5
xL10

I
6 ‖hA(t, x− t)‖L5

xL10
[t1,+∞)

6 ‖(hA − VA
k0

)(t, x− t)‖
L5

xL10
[t1,+∞)

+ ‖V A
k0

(t, x− t)‖
L5

xL10
[t1,+∞)

6 Ce−(k0+ 1
2 )e0t1 + Ce−e0t1 6 Ce−e0t1 .

Note that the estimate ‖V A
k0

(t, x− t)‖
L5

xL10
[t1,+∞)

6 Ce−e0t1 follows from the paragraph on

IIp−2,1,1 in section 4.3.2.

For D, we use exponential decay of Q to write

D 6 C

∫

R

√∫

I

e−2|x−t|(∂xw̃)
2
dtdx 6 C

∫ t1

−∞
ex

√∫

I

e−2t(∂xw̃)
2
dtdx

+ C

∫ +∞

t1+τ

e−x

√∫

I

e2t(∂xw̃)2 dtdx+ C

∫

I

√∫

I

(∂xw̃)2 dtdx = D1 + D2 + D3.

But by the Cauchy-Schwarz inequality, we get





D1 6 Cet1

√∫

I

e−2t

∫

R

(∂xw̃)
2
dx dt 6 Cet1N I

1 (w̃)

√∫

I

e−2t dt 6 C
√
τN I

1 (w̃),

D2 6 Ce−(t1+τ)

√∫

I

e2t

∫

R

(∂xw̃)
2
dx dt 6 Ce−(t1+τ)N I

1 (w̃)

√∫

I

e2t dt 6 C
√
τN I

1 (w̃),

D3 6 C
√
τ

√∫

I

∫

I

(∂xw̃)2 dx dt 6 CτN I
1 (w̃).

Hence we obtain D 6 C
√
τN I

1 (w̃).

• In conclusion, we have shown that there exist K,C1, C2 > 0 such that

ΛI(MI(w̃)) 6 K
[
‖w(t1 + τ)‖H1 + C1e

−e0t1ΛI(w̃) + C2

√
τΛI(w̃)

]
.

Now fix τ = 1
9C2

2K2 and t1 such that C1e
−e0t1 6

1
3K , thus we get

ΛI(MI(w̃)) 6 K‖w(t1 + τ)‖H1 +
2

3
ΛI(w̃).

We conclude that MI maps B into itself for this choice of t1, τ,K. We prove similarly that
MI is a contraction on B, and so there exists a unique solution w̃ ∈ B of (4.25).
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• Now we identify w and w̃. It is well known for (gKdV) that for regular solutions (H2),
uniqueness holds by energy method. Since w and w̃ are both obtained by fixed point, we
get w = w̃ by continuous dependence, persistence of regularity and density. In particular,
w ∈ B, and so

‖w(t1)‖H1 6 N I
1 (w) 6 ΛI(w) 6 3K‖w(t1 + τ)‖H1 .

To conclude the proof, we fix t > t1, and we remark that a simple iteration argument and
the exponential decay at any order of w show that for all n ∈ N, we have

‖w(t)‖H1 6 (3K)
n‖w(t+ nτ)‖H1 6 Cγ(3K)

n
e−γte−γnτ = Cγe

−γt
(
3Ke−γτ

)n
.

We finally choose γ large enough so that 3Ke−γτ 6
1
2 . Thus,

‖w(t)‖H1 6
C

2n
−−−−−→
n→+∞

0,

i.e. ‖w(t)‖H1 = 0. This finishes the proof of proposition 4.8.

4.5 Corollaries and remarks

Corollary 4.11. Let c > 0.

1. There exists a one-parameter family (UA
c )A∈R

of solutions of (gKdV) such that

∀A ∈ R, ∃t0 ∈ R, ∀s ∈ R, ∃C > 0, ∀t > t0, ‖UA
c (t, · + ct) −Qc‖Hs 6 Ce−e0c3/2t.

2. If uc is a solution of (gKdV) such that limt→+∞ infy∈R ‖uc(t) −Qc(· − y)‖H1 = 0, then
there exist A ∈ R, t0 ∈ R and x0 ∈ R such that uc(t) = UA

c (t, · − x0) for t > t0.

Proof. The proof, based on the scaling invariance, is very similar to the proof of corollary 3.14.

We recall that if u(t, x) is a solution of (gKdV), then λ
2

p−1 u(λ3t, λx) with λ > 0 is also a solution.

1. We define UA
c by UA

c (t, x) = c
1

p−1UA(c3/2t,
√
cx), where UA is defined in theorem 1.1.

Since UA(c3/2t,
√
cx + c3/2t) = Q(

√
cx) + Ae−e0c3/2tY+(

√
cx) + O(e−2e0c3/2t) and Qc(x) =

c
1

p−1Q(
√
cx), then UA

c satisfies

UA
c (t, x+ ct) = Qc(x) +Ac

1
p−1 e−e0c3/2tY+(

√
cx) +O(e−2e0c3/2t).

2. Let u be the solution of (gKdV) defined by u(t, x) = c−
1

p−1 uc

(
t

c3/2 ,
x√
c

)
. Then we have

u(t, x) −Q(x− y) = c−
1

p−1uc

(
t

c3/2
,
x√
c

)
− c−

1
p−1Qc

(
x− y√

c

)

for all y ∈ R, and so like in the proof of corollary 3.14,

inf
y∈R

‖u(t) −Q(· − y)‖H1 6 K(c) inf
y∈R

∥∥∥∥uc

(
t

c3/2

)
−Qc

(
· − y√

c

)∥∥∥∥
H1

−−−−→
t→+∞

0.

Therefore by theorem 1.1, there exist A ∈ R and x0 ∈ R such that u(t, x) = UA(t, x − x0),

and so finally uc(t, x) = UA
c

(
t, x− x0√

c

)
.

Proposition 4.12. Up to translations in time and in space, there are only three special solutions:
U1, U−1 and Q. More precisely, one has (for t large enough in each case):

(a) If A > 0, then UA(t) = U1(t+ tA, · + tA) for some tA ∈ R.
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(b) If A = 0, then U0(t) = Q(· − t).

(c) If A < 0, then UA(t) = U−1(t+ tA, · + tA) for some tA ∈ R.

Proof. (a) Let A > 0 and denote tA = − ln A
e0

. Then by proposition 4.5,

U1(t+tA, x+t+tA) = Q(x)+e−e0(t+tA)Y+(x)+O(e−2e0t) = Q(x)+Ae−e0tY+(x)+O(e−2e0t).

In particular, we have limt→+∞ infy∈R

∥∥U1(t+ tA) −Q(· − y)
∥∥

H1 = 0, and so by proposition

4.8, there exist Ã ∈ R and x0 ∈ R such that U1(t+tA) = U
eA(t, ·−x0). But still by proposition

4.5, we have U1(t+ tA, x+ t+ tA) = U
eA(t, x+ t+ tA − x0) = Q(x+ tA − x0) + Ãe−e0tY+(x+

tA − x0) +O(e−2e0t), and so

Q(x+ tA − x0) + Ãe−e0tY+(x+ tA − x0) +O(e−2e0t) = Q(x) +Ae−e0tY+(x) +O(e−2e0t).

The first order imposes x0 = tA, since ‖Q−Q(· + tA − x0)‖H1 6 Ce−e0t and so lemma 2.11

applies for t large. Similarly, the second order imposes Ã = A, as expected.

(b) Since infy∈R ‖Q(· − t) −Q(· − y)‖H1 = 0, then proposition 4.8 applies, so there exist A ∈ R

and x0 ∈ R such that Q(x− t) = UA(t, x− x0). Hence we have by proposition 4.5

UA(t, x+ t) = Q(x− x0) = Q(x) +Aee0tY+(x) +O(e−2e0t).

As in the previous case, it follows first that x0 = 0, then A = 0, and so the result.

(c) For A < 0, the proof is exactly the same as A > 0, with −A instead of A.

We conclude this paper by two remarks, based on the following claim. The first one is the fact
that U−1(t) is defined for all t ∈ R, and the second one is the identification of the special solution
w(t) constructed in section 3 among the family (UA) constructed in section 4.

Claim 4.13. For all c > 0,
∥∥∂xU

A
c (t)

∥∥2

L2 − ‖Q′
c‖2

L2 has the sign of A as long as UA
c (t) exists.

Proof. • From corollary 4.11, we have

∂xU
A
c (t, x+ ct) = Q′

c(x) +Ac
p+1

2(p−1) e−e0c3/2tY ′
+(

√
cx) +O(e−2e0c3/2t)

and so

∥∥∂xU
A
c (t)

∥∥2

L2 − ‖Q′
c‖

2
L2 = 2Ac

p+1
2(p−1) e−e0c3/2t

∫
Q′

c(x)Y ′
+(

√
cx) dx +O(e−2e0c3/2t).

But
∫
Q′

c(x)Y ′
+(

√
cx) dx = c

1
p−1
∫
Q′(y)Y ′

+(y) dy > 0 by the substitution y =
√
cx and the

normalization chosen in lemma 4.9, and so
∥∥∂xU

A
c (t)

∥∥2

L2 − ‖Q′
c‖2

L2 has the sign of A for t
large enough.

• It remains to show that this fact holds as long as UA
c (t) exists. For example, suppose that

A > 0 and so
∥∥∂xU

A
c (t)

∥∥2

L2−‖Q′
c‖2

L2 > 0 for t > t1, and suppose for the sake of contradiction

that there exists T < t1 such that UA(T ) is defined and
∥∥∂xU

A
c (T )

∥∥2

L2 = ‖Q′
c‖2

L2 . Since∥∥UA
c (t, · + ct) −Qc

∥∥
H1 −→ 0, then by (1.1) and (1.2), we also have

∥∥UA
c (T )

∥∥
L2 = ‖Qc‖L2

and E(UA
c (T )) = E(Qc). In other words, we would get by scaling
∥∥UA(T )

∥∥
L2 = ‖Q‖L2 ,

∥∥∂xU
A(T )

∥∥
L2 = ‖Q′‖L2 and E(UA(T )) = E(Q).

But the two last identities give in particular
∫
UA(T )

p+1
=
∫
Qp+1, and so by (1.4)

‖UA(T )‖p+1

Lp+1 > ‖Q‖p+1
Lp+1 = CGN(p)‖Q′‖

p−1
2

L2 ‖Q‖
p+3
2

L2 = CGN(p)
∥∥∂xU

A(T )
∥∥ p−1

2

L2

∥∥UA(T )
∥∥p+3

2

L2 .
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Still by (1.4), we get (λ0, a0, b0) ∈ R∗
+ × R × R such that UA(T, x) = a0Q(λ0x + b0). But∥∥UA(T )

∥∥
L2 = ‖Q‖L2 and

∥∥∂xU
A(T )

∥∥
L2 = ‖Q′‖L2 impose λ0 = 1 and a0 ∈ {−1, 1}. Thus,

by uniqueness in (gKdV), UA(t, x) = ±Q(x − t + T + b0) for all t > T . In particular,∥∥∂xU
A
c (t)

∥∥2

L2 = ‖Q′
c‖2

L2 for t > t1, which is a contradiction. The cases A = 0 and A < 0 are
treated similarly.

Remark 4.14. Let us now notice that U−1 is globally defined, i.e. U−1(t) exists for all t ∈ R.
By the blow up criterion and the mass conservation, it is enough to remark that

∥∥∂xU
−1(t)

∥∥
L2 is

bounded uniformly on its interval of existence, which is an immediate consequence of claim 4.13
since

∥∥∂xU
−1(t)

∥∥
L2 < ‖Q′‖L2 for all t.

Remark 4.15. As noticed in remark 2.13, we can chose λn = 1 − 1
n in the definition of u0,n in

section 3. We still call w(t) the special solution obtained by this method for this new initial data.
In this remark, we prove that w = U−1

c+
up to translations in time and in space. We do not know

if U1 can be obtained similarly by a compactness method. We recall that u0,n(x) = λnQ(λ2
nx),

un(Tn, · + xn(Tn)) ⇀ w̌0 6= Qc+ and
∥∥w(t, · + ρ(t)) −Qc+

∥∥
H1 −→ 0.

• First note that
∫
u′20,n = λ4

n

∫
Q′2 <

∫
Q′2 for n > 2, and let us prove that ‖∂x(un(Tn))‖L2 <

‖Q′‖L2 for n large enough. Otherwise, there would exist n large and T ∈ [0, Tn] such that
‖∂x(un(T ))‖L2 = ‖Q′‖L2 and E(u0,n) < E(Q). But we have by (1.2),

E(u0,n) = E(un(T )) =
1

2

∫
(∂x(un(T )))

2 − 1

p+ 1

∫
up+1

n (T ) =
1

2

∫
Q′2 − 1

p+ 1

∫
up+1

n (T )

< E(Q) =
1

2

∫
Q′2 − 1

p+ 1

∫
Qp+1.

Hence, as ‖un(T )‖L2 = ‖u0,n‖L2 = ‖Q‖L2 by (1.1),

‖un(T )‖p+1
Lp+1 >

∫
up+1

n (T ) >

∫
Qp+1 = CGN(p)

(∫
Q′2
) p−1

4
(∫

Q2

) p+3
4

= CGN(p)

(∫
(∂x(un(T )))

2

) p−1
4
(∫

u2
n(T )

) p+3
4

,

which would be a contradiction with the Gagliardo-Nirenberg inequality (1.3).

• Since un(Tn, · + xn(Tn)) ⇀ w̌0 in H1, we obtain ‖w′
0‖L2 6 ‖Q′‖L2 and ‖w0‖L2 6 ‖Q‖L2 by

weak convergence. But
∥∥w(t, · + ρ(t)) −Qc+

∥∥
H1 −→ 0 implies by (1.1) and (2.1) that

‖w0‖2
L2 = ‖w(t)‖2

L2 =
∥∥Qc+

∥∥2

L2 = c
5−p

2(p−1)

+ ‖Q‖2
L2 6 ‖Q‖2

L2 ,

thus c+ > 1, and so ‖w′
0‖2

L2 6 ‖Q′‖2
L2 = c

− p+3
2(p−1)

+ ‖Q′
c+
‖2

L2
6 ‖Q′

c+
‖2

L2
by (2.1).

• Finally, since
∥∥w(t, · + ρ(t)) −Qc+

∥∥
H1 −→ 0, corollary 4.11 applies, and so there exists

A ∈ R such that w = UA
c+

up to a translation in space. But the conclusion of the previous

point and claim 4.13 impose A < 0 (note that A 6= 0 since w0 6= Qc+), i.e. w = U−1
c+

up to
translations in time and in space by proposition 4.12.
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