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Construction and characterization of solutions converging to solitons for supercritical gKdV equations

We consider the generalized Korteweg-de Vries equation ∂tu + ∂ 3

, we construct a one parameter family of special solutions which characterizes all such special solutions.

1 Introduction

The generalized Korteweg-de Vries equation

We consider the generalized Korteweg-de Vries equation:

∂ t u + ∂ 3 x u + ∂ x (u p ) = 0 u(0) = u 0 ∈ H 1 (R) (gKdV)
where (t, x) ∈ R 2 and p 2 is integer. The following quantities are formally conserved for solutions of (gKdV):

u 2 (t) = u 2 (0) (mass), (1.1) 
E(u(t)) = 1 2 u 2 x (t) - 1 p + 1 u p+1 (t) = E(u(0)) (energy). (1.2)
Kenig, Ponce and Vega [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF] have shown that the local Cauchy problem for (gKdV) is well posed in H 1 (R): for u 0 ∈ H 1 (R), there exist T > 0 and a solution u ∈ C 0 ([0, T ], H 1 (R)) of (gKdV) satisfying u(0) = u 0 which is unique in some class Y T ⊂ C 0 ([0, T ], H 1 (R)). Moreover, if T * T is the maximal time of existence of u, then either T * = +∞ which means that u(t) is a global solution, or T * < +∞ and then u(t) H 1 → +∞ as t ↑ T * (u(t) is a finite time blow up solution). Throughout this paper, when referring to an H 1 solution of (gKdV), we mean a solution in the above sense. Finally, if u 0 ∈ H s (R) for some s 1, then u(t) ∈ H s (R) for all t ∈ [0, T ).

In the case where 2 p < 5, it is standard that all solutions in H 1 are global and uniformly bounded by the energy and mass conservations and the following Gagliardo-Nirenberg inequality:

∀v ∈ H 1 (R), |v| p+1 C GN (p) v 2 x p-1 4 v 2 p+3 4
(1.3) with optimal constant C GN (p) > 0. In the case p = 5, the existence of finite time blow up solutions was proved by Merle [START_REF] Merle | Existence of blow-up solutions in the energy space for the critical generalized KdV equation[END_REF] and Martel and Merle [START_REF] Martel | Blow up in finite time and dynamics of blow up solutions for the L 2 -critical generalized KdV equation[END_REF]. Therefore p = 5 is the critical exponent for the long time behavior of solutions of (gKdV). For p > 5, the existence of blow up solutions is an open problem. We recall that a fundamental property of equations (gKdV) is the existence of a family of explicit traveling wave solutions. Let Q be the only solution (up to translations) of

Q > 0, Q ∈ H 1 (R), Q ′′ + Q p = Q, i.e. Q(x) = p + 1 2 cosh 2 p-1 2 x 1 p-1 .
Note that Q is the unique minimizer of the Gagliardo-Nirenberg inequality (1.3) (see [START_REF] Cazenave | Instituto de Matemática, and[END_REF] for the case p = 5 for example), i.e. for v ∈ H 1 (R):

v p+1 L p+1 = C GN (p) v x p-1 2 L 2 v p+3 2 L 2 ⇐⇒ ∃(λ 0 , a 0 , b 0 ) ∈ R * + × R × R : v(x) = a 0 Q(λ 0 x + b 0 ). (1.4)
For all c 0 > 0 and x 0 ∈ R, R c0,x0 (t, x) = Q c0 (x -x 0 -c 0 t) is a solution of (gKdV), where

Q c0 (x) = c 1 p-1 0 Q( √ c 0 x).
We call solitons these solutions though they are known to be solitons only for p = 2, 3 (in the sense that they are stable by interaction). It is well known that solitons are orbitally stable (see definition 2.7) for p < 5 and unstable for p > 5. An important fact used by Weinstein in [START_REF] Weinstein | Lyapunov stability of ground states of nonlinear dispersive evolution equations[END_REF] to prove their orbital stability when p < 5 is the following variational characterization of Q c0 : if u is a solution of (gKdV) such that E(u) = E(Q c0 ) and u 2 = Q 2 c0 for some c 0 > 0, then there exists x 0 ∈ R such that u = R c0,x0 . As a direct consequence, if now u(t) is a solution such that lim t→+∞ inf y∈R u(t) -Q c0 (• -y) H 1 (R) = 0 (1.5) (i.e. u converges to Q c0 in the suitable sense), then u = R c0,x0 . For p = 5, the same is true for similar reasons (see [START_REF] Weinstein | On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations[END_REF]).

In the present paper, we focus on the supercritical case p > 5. Some asymptotic results around solitons have been proved: orbital instability of solitons by Bona et al. [START_REF] Bona | Stability and instability of solitary waves of Korteweg-de Vries type[END_REF] (see also [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]) and asymptotic stability (in some sense) by Martel and Merle [START_REF] Martel | Asymptotic stability of solitons of the gKdV equations with general nonlinearity[END_REF] for example. But available variational arguments do not allow to classify all solutions of (gKdV) satisfying (1.5). In fact, in section 3, we construct a solution of (gKdV) satisfying (1.5) which is not a soliton (we call special solution such a solution). In section 4, by another method, we construct a whole family of such solutions, and we completely characterize solutions satisfying (1.5). This method is strongly inspired of arguments developed by Duyckaerts and Roudenko in [START_REF] Duyckaerts | Threshold solutions for the focusing 3d cubic Schrödinger equation[END_REF], themselves an adaptation of arguments developed by Duyckaerts and Merle in [START_REF] Duyckaerts | Dynamic of thresold solutions for energy-critical NLS[END_REF]. For reader's convenience, we recall in the next section the results in [START_REF] Duyckaerts | Threshold solutions for the focusing 3d cubic Schrödinger equation[END_REF] related to our paper.

The Non-Linear Schrödinger equation case

We recall Duyckaerts and Roudenko's results for (NLS). They consider in [START_REF] Duyckaerts | Threshold solutions for the focusing 3d cubic Schrödinger equation[END_REF] the 3d focusing cubic non-linear Schrödinger equation:

i∂ t u + ∆u + |u| 2 u = 0, (x, t) ∈ R 3 × R, u |t=0 = u 0 ∈ H 1 (R 3 ). (NLS)
This equation is Ḣ1/2 -critical, and so L 2 -supercritical like (gKdV) for p > 5, while [START_REF] Duyckaerts | Dynamic of thresold solutions for energy-critical NLS[END_REF] is devoted to the Ḣ1 -critical equation. Similarly to (gKdV), (NLS) is locally well posed in H 1 , and solutions of (NLS) satisfy the following conservation laws:

E NLS [u](t) = 1 2 |∇u(x, t)| 2 dx - 1 4 |u(x, t)| 4 dx = E NLS [u](0), M NLS [u](t) = |u(x, t)| 2 dx = M NLS [u](0).
Moreover, if Q is the unique (in a suitable sense) solution of the non-linear elliptic equation -Q + ∆Q + |Q| 2 Q = 0, then e it Q(x) is a soliton solution of (NLS). Theorem 2 in [START_REF] Duyckaerts | Threshold solutions for the focusing 3d cubic Schrödinger equation[END_REF] states the existence of two radial solutions Q + (t) and Q -(t) of (NLS) such that +∞) is in the time domain of definition of Q ± (t), and there exists e 0 > 0 such that: ∀t 0, Q ± (t) -e it Q H 1 Ce -e0t . Moreover, Q -(t) is globally defined and scatters for negative time, and the negative time of existence of Q + (t) is finite.

M NLS [Q + ] = M NLS [Q -] = M NLS [Q], E NLS [Q + ] = E NLS [Q -] = E NLS [Q], [0,
They also prove the following classification theorem [5, theorem 3]:

Theorem ( [START_REF] Duyckaerts | Threshold solutions for the focusing 3d cubic Schrödinger equation[END_REF]). Let u be a solution of (NLS) satisfying

E NLS [u]M NLS [u] = E NLS [Q]M NLS [Q]. (a) If ∇u 0 L 2 u 0 L 2 < ∇Q L 2 Q L 2
, then either u scatters or u = Q -up to the symmetries.

(b) If ∇u 0 L 2 u 0 L 2 = ∇Q L 2 Q L 2 , then u = e it Q up to the symmetries. (c) If ∇u 0 L 2 u 0 L 2 > ∇Q L 2 Q L 2
and u 0 is radial or of finite variance, then either the interval of existence of u is of finite length or u = Q + up to the symmetries.

In particular, if lim t→+∞ u(t) -e it Q H 1 = 0, then u = e it Q, Q + or Q -up to the symmetries. Among the various ingredients used to prove results above, one of the most important is a sharp analysis of the spectrum σ(L NLS ) of the linearized Schrödinger operator around the ground state solution e it Q, due to Grillakis [START_REF] Grillakis | Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system[END_REF] and Weinstein [START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF]. They prove that σ(L NLS )∩R = {-e 0 , 0, +e 0 } with e 0 > 0, and moreover that e 0 and -e 0 are simple eigenvalues of L NLS with eigenfunctions Y NLS + and Y NLS -= Y NLS + . This structure, which is similar for (gKdV) according to Pego and Weinstein [START_REF] Pego | Eigenvalues, and instabilities of solitary waves[END_REF], will also be crucial to prove our main result (exposed in the next section).

Main result and outline of the paper

In this paper, we consider similar questions for the (gKdV) equation in the supercritical case p > 5. Recall that similarly to the (NLS) case, Pego and Weinstein have determined in [START_REF] Pego | Eigenvalues, and instabilities of solitary waves[END_REF] the spectrum of the linearized operator L around the soliton Q(x -t): σ(L) ∩ R = {-e 0 , 0, +e 0 } with e 0 > 0, and moreover e 0 and -e 0 are simple eigenvalues of L with eigenfunctions Y + and Y -which are exponentially decaying (see proposition 4.2 and corollary 4.4). We now state precisely our main result:

Theorem 1.1. Let p > 5.

(Existence of a family of special solutions)

. There exists a one-parameter family (U A ) A∈R of solutions of (gKdV) such that

lim t→+∞ U A (t, • + t) -Q H 1 = 0.
Moreover, for all A ∈ R, there exists t 0 = t 0 (A) ∈ R such that for all s ∈ R, there exists C > 0 such that

∀t t 0 , U A (t, • + t) -Q -Ae -e0t Y + H s Ce -2e0t .

(Classification of special solutions).

If u is a solution of (gKdV) such that

lim t→+∞ inf y∈R u(t) -Q(• -y) H 1 = 0,
then there exist A ∈ R, t 0 ∈ R and x 0 ∈ R such that u(t) = U A (t, • -x 0 ) for t t 0 .

Remark 1.2. From theorem 1.1, there are actually only three different special solutions U A up to translations in time and in space: U 1 , U -1 and Q(• -t) (see proposition 4.12). This is of course related to the three solutions of (NLS) constructed in [START_REF] Duyckaerts | Threshold solutions for the focusing 3d cubic Schrödinger equation[END_REF]:

Q + (t), Q -(t) and e it Q.
From section 4.5, we can chose the normalization of Y ± so that for A < 0,

∂ x U A L 2 < Q ′ L 2 . Then U -1 (t) is global, i.e
. defined for all t ∈ R. It would be interesting to investigate in more details its behavior as t → -∞. On the other hand, the behavior of U 1 (t) is not known for t < t 0 .

Remark 1.3. By scaling, theorem 1.1 extends to Q c for all c > 0 (see corollary 4.11 at the end of the paper).

The paper is organized as follows. In the next section we recall some properties of the solitons, and in particular we recall the proof of their orbital instability when p > 5. This result is well known [START_REF] Bona | Stability and instability of solitary waves of Korteweg-de Vries type[END_REF], but our proof with an explicit initial data is useful to introduce some suitable tools to the study of solitons of (gKdV) (as modulation, Weinstein's functional, monotonicity, linearized equation, etc.). Moreover, it is the first step to construct one special solution in section 3 by compactness, similarly as Martel and Merle [START_REF] Martel | Asymptotic stability of solitons of the gKdV equations with general nonlinearity[END_REF]. This proof does not use the precise analysis of the spectrum of L due to Pego and Weinstein [START_REF] Pego | Eigenvalues, and instabilities of solitary waves[END_REF], and so can be hopefully adapted to equations for which the spectrum of the linearized operator is not well known. To fully prove theorem 1.1 (existence and uniqueness of a family of special solutions, section 4), we rely on the method introduced in [4] and [START_REF] Duyckaerts | Threshold solutions for the focusing 3d cubic Schrödinger equation[END_REF].
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Preliminary results

We recall here some well known properties of the solitons and some results of stability around the solitons. We begin by recalling notation and simple facts on the functions Q(x) and

Q c (x) = c 1 p-1 Q( √ cx) defined in section 1.1.
Notation. They are available in the whole paper.

(a) (•, •) denotes the L 2 (R) scalar product, and ⊥ the orthogonality with respect to (•, •).

(b) The Sobolev space H s is defined by

H s (R) = {u ∈ D ′ (R) | (1 + ξ 2 ) s/2 û(ξ) ∈ L 2 (R)}, and in particular H 1 (R) = {u ∈ L 2 (R) | u 2 H 1 = u 2 L 2 + u ′ 2 L 2 < +∞} ֒→ L ∞ (R). (c) We denote ∂ ∂x v = ∂ x v = v
x the partial derivative of v with respect to x, and ∂ s x = ∂ s the s-order partial derivative with respect to x when no confusion is possible.

(d) All numbers C, K appearing in inequalities are real constants (with respect to the context) strictly positive, which may change in each step of an inequality.

Claim 2.1. For all c > 0, one has:

(i) Q c > 0, Q c is even, Q c is C ∞ , and Q ′ c (x) < 0 for all x > 0. (ii) There exist K 1 , K 2 > 0 such that: ∀x ∈ R, K 1 e - √ c|x| Q c (x) K 2 e - √ c|x| .
(iii) There exists C p > 0 such that for all j 0, Q

(j) c (x) ∼ C p e - √ c|x| when |x| → +∞.
In particular, for all j 1, there exists

C j > 0 such that: ∀x ∈ R, |Q (j) c (x)| C j e - √ c|x| .
(iv) The following identities hold:

Q 2 c = c 5-p 2(p-1) Q 2 , (Q ′ c ) 2 = c p+3 2(p-1) Q ′2 .
(2.1)

Weinstein's functional linearized around Q

We introduce here the Weinstein's functional F and give an expression of F (Q + a) for a small which will be very useful in the rest of the paper. We recall first that the energy of a function ϕ ∈ H 1 is defined by

E(ϕ) = 1 2 (∂ x ϕ) 2 -1 p+1 ϕ p+1 . Definition 2.2. Weinstein's functional is defined for ϕ ∈ H 1 by F (ϕ) = E(ϕ) + 1 2 ϕ 2 .
Claim 2.3. If u 0 ∈ H 1 and u(t) solves (gKdV) with u(0) = u 0 , then for all t ∈ [0, T * ), F (u(t)) = F (u 0 ). It is an immediate consequence of (1.1) and (1.2).

Lemma 2.4 (Weinstein's functional linearized around Q). For all C > 0, there exists

C ′ > 0 such that, for all a ∈ H 1 verifying a H 1 C, F (Q + a) = F (Q) + 1 2 (La, a) + K(a) (2.2)
where La = -∂ 2 x a + a -pQ p-1 a, and K :

H 1 → R satisfies |K(a)| C ′ a 3 H 1 . Proof. Let a ∈ H 1 be such that a H 1 C. Then we have E(Q + a) = 1 2 (Q ′ + ∂ x a) 2 - 1 p + 1 (Q + a) p+1 = E(Q) + 1 2 (∂ x a) 2 + Q ′ • ∂ x a - 1 p + 1 (p + 1)Q p a + (p + 1)p 2 Q p-1 a 2 + R(a) = E(Q) + 1 2 (∂ x a) 2 -Qa - p 2 Q p-1 a 2 - 1 p + 1 R(a) since Q ′′ + Q p = Q, and where R(a) = p+1 k=3 p+1 k Q p+1-k a k . Since a ∞ C a H 1 C, then |R(a)| C|a| 3 C a ∞ |a| 2 , and so K(a) = -1 p+1 R(a) verifies |K(a)| C ′ a 3 H 1 . Moreover, we have more simply: (Q + a) 2 = Q 2 + a 2 + 2 Qa. Finally we have F (Q + a) = F (Q) + 1 2 a 2 + 1 2 (∂ x a) 2 - p 2 Q p-1 a 2 + K(a).
Claim 2.5 (Properties of L). The operator L defined in lemma 2.4 is self-adjoint and satisfies the following properties:

(i) First eigenfunction: LQ p+1 2 = -λ 0 Q p+1 2
where λ 0 = 1 4 (p -1)(p + 3) > 0. (ii) Second eigenfunction: LQ ′ = 0, and ker L = {λQ ′ ; λ ∈ R}.

(iii) Scaling: If we denote S = dQc dc c=1 , then S(x) = 1 p-1 Q(x) + 1 2 xQ ′ (x) and LS = -Q.
(iv) Coercivity: There exists

σ 0 > 0 such that for all u ∈ H 1 (R) verifying (u, Q ′ ) = (u, Q p+1 2 ) = 0, one has (Lu, u) σ 0 u 2 L 2 .
Proof. The first three properties follow from straightforward computation, except for ker L which can be determined by ODE techniques, see [18, proposition 2.8]. The property of coercivity follows easily from (i), (ii) and classical results on self-adjoint operators and Sturm-Liouville theory.

Lemma 2.6. There exist K 1 , K 2 > 0 such that for all ε ∈ H 1 verifying ε⊥Q ′ :

(Lε, ε) = ε 2 x + ε 2 -p Q p-1 ε 2 K 1 ε 2 H 1 -K 2 εQ p+1 2 2 .
Proof. By claim 2.5, we already know that there exists σ 0 > 0 such that for all ε satisfying ε⊥Q p+1 2

and ε⊥Q ′ , we have (Lε, ε) σ 0 ε 2 L 2 . The first step is to replace the L 2 norm by the H 1 one in this last inequality, which is easy if we choose σ 0 small enough. If we do not suppose ε⊥Q with a = ( εQ

p+1 2 ) Q p+1 -1 such that ε 1 ⊥Q p+1 2
for the L 2 scalar product, but also for the bilinear form (L•,

•) since Q p+1 2
is an eigenvector for L. Since Q p+1 2 ⊥Q ′ , we obtain easily the desired inequality from the previous step.

Orbital stability and decomposition of a solution around Q

In this paper, we consider only solutions which stay close to a soliton. So it is important to define properly this notion, and the invariance by translation leads us to consider for ε > 0 the "tube"

U ε = {u ∈ H 1 | inf y∈R u -Q c (• -y) H 1 ε}.
Definition 2.7. The solitary wave Q c is (orbitally) stable if and only if for every ε > 0, there exists δ > 0 such that if u 0 ∈ U δ , then the associated solution u(t) ∈ U ε for all t ∈ R. The solitary wave

Q c is unstable if Q c is not stable. Theorem 2.8. Q c is stable if and only if p < 5.
Remark 2.9.

1. This theorem is proved by Bona et al. [START_REF] Bona | Stability and instability of solitary waves of Korteweg-de Vries type[END_REF] for p = 5 and by Martel and Merle [START_REF] Martel | Instability of solitons for the critical generalized Korteweg-de Vries equation[END_REF] for p = 5. Nevertheless, we give an explicit proof of the instability of Q when p > 5 (i.e. we exhibit an explicit sequence of initial data which contradicts the stability) which will be useful to construct the special solution by the compactness method (section 3).

2. An important ingredient to prove this theorem is the following lemma of modulation close to Q. Its proof is based on the implicit function theorem (see for example [1, lemma 4.1] for details). The orthogonality to Q ′ obtained by this lemma will be of course useful to exploit the coercivity of the bilinear form (L•, •). Finally, we conclude this section by a simple but useful lemma which describes the effect of small translations on Q.

Lemma 2.10 (Modulation close to Q). There exist ε 0 > 0, C > 0 and a unique C 1 map α :

U ε0 -→ R such that for every u ∈ U ε0 , ε = u(• + α(u)) -Q verifies (ε, Q ′ ) = 0 and ε H 1 C inf y∈R u -Q(• -y) H 1 Cε 0 .
Lemma 2.11. There exist h 0 > 0, A 0 > 0 and β > 0 such that:

(i) if |h| h 0 then βh 2 Q -Q(• + h) 2 H 1 4βh 2 , (ii) if |h| > h 0 then Q -Q(• + h) 2 H 1 > A 0 . Proof. It is a simple application of Taylor's theorem to f defined by f (a) = Q -Q(• + a) 2 H 1 .

Instability of Q for p > 5

In this section, we construct an explicit sequence (u 0,n ) n 1 of initial data which contradicts the stability of Q:

Proposition 2.12. Let u 0,n (x) = λ n Q(λ 2 n x) with λ n = 1 + 1 n for n 1. Then u 2 0,n = Q 2 , E(u 0,n ) < E(Q) and u 0,n -Q H 1 ----→ n→∞ 0. (2.3)
Proof. The first and the last facts are obvious thanks to substitutions and the dominated convergence theorem. For the energy inequality, we compute

E(u 0,n ) = λ 4 n 2 Q ′2 - λ p-1 n p+1 Q p+1 . But 2 Q ′2 = p-1 p+1
Q p+1 by Pohozaev identities, and so

E(u 0,n ) -E(Q) = p -1 4 × (λ 4 n -1) -(λ p-1 n -1) • 1 p + 1 Q p+1 = 4 k=2 p -1 4 4 k - p -1 k 1 n k - p-1 k=5 p -1 k 1 n k • 1 p + 1 Q p+1 .
To conclude, it is enough to show that p-1 k

> p-1 4 4 k for k ∈ {2, 3, 4}, which is equivalent to show that p-2 k-1 = k p-1 p-1 k > k 4 4 k = 3 k-1
, which is right since p > 5 and k > 1.

Remark 2.13. We do not really need to know the explicit expression of u 0,n to prove the instability of Q: initial data satisfying conditions (2.3) and decay in space would fit. For example, we could have chosen λ n = 1 -1 n , so that conditions (2.3) hold for n large (in fact

E(u 0,n ) -E(Q) ∼ (p-1)(5-p) 2(p+1) Q p+1 • 1
n 2 < 0 as n → +∞ in this case). Theorem 2.14. Let u n be the solution associated to u 0,n defined in proposition 2.12. Then

∃δ > 0, ∀n 1, ∃T n ∈ R + such that inf y∈R u n (T n ) -Q(• -y) H 1 > δ.
(2.4)

• We prove this theorem by contradiction, i.e. we suppose:

∀ε > 0, ∃n 0 1, ∀t ∈ R + , inf y∈R u n0 (t) -Q(• -y) H 1 ε,
and we apply this assumption to ε 0 given by lemma 2.10. Dropping n 0 for a while, the situation amounts in:

u 2 0 = Q 2 , E(u 0 ) < E(Q) and ∀t ∈ R + , inf y∈R u(t) -Q(• -y) H 1 ε 0 .
The last fact implies that u(t) ∈ U ε0 for all t ∈ R + , so lemma 2.10 applies and we can define x(t) = α(u(t)) which is C 1 by standard arguments (see [START_REF] Martel | Instability of solitons for the critical generalized Korteweg-de Vries equation[END_REF] for example), and ε(t, x) = u(t, x+x(t))-Q(x) which verifies (ε(t), Q ′ ) = 0 and ε(t) H 1 Cε 0 for all t ∈ R + . Note that x(t) is usually called the center of mass of u(t). Before continuing the proof, we give the equation verified by ε and an interesting consequence on x ′ . Proposition 2.15. There exists C > 0 such that

ε t -(Lε) x = (x ′ (t) -1)(Q + ε) x + R(ε), where R(ε(t)) L 1 C ε(t) 2 H 1 . As a consequence, one has: |x ′ (t) -1| C ε(t) H 1 . Proof. Since u(t, x) = Q(x -x(t)) + ε(t, x -x(t)) by definition of ε and -∂ t u = ∂ 3 x u + ∂ x (u p ), we obtain x ′ (t)(Q + ε) x -ε t = Q xxx + ε xxx + (Q p ) x + p(Q p-1 ε) x + R(ε)
where

R(ε) = ∂ ∂x p k=2 p k Q p-k ε k = p k=2 p k (p -k)Q ′ Q p-k-1 ε k + kQ p-k ε x ε k-1 . As ε ∞ C ε H 1 Cε 0 , we have |R(ε)| C|ε| 2 + C ′ |ε
x ε|, and so R(ε) is such as expected. Moreover, since La = -a xx + a -pQ p-1 a and

Q ′′ + Q p = Q, we get -ε t -ε xxx -p(Q p-1 ε) x = Q xxx + (Q p ) x -x ′ (t)(Q + ε) x + R(ε) and so -ε t + (Lε) x = Q x -x ′ (t)(Q + ε) x + ε x + R(ε).
To obtain the estimate on x ′ , we multiply the equation previously found by Q ′ and integrate. Since (ε t , Q ′ ) = (ε, Q ′ ) t = 0, it gives with an integration by parts:

(Lε)Q ′′ = (x ′ -1) (Q ′2 + ε x Q ′ ) + R(ε)Q ′ . Since L is self-adjoint, we can write (x ′ -1) (Q ′2 + ε x Q ′ ) = (LQ ′′ )ε -R(ε)Q ′ . Now, from ε x Q ′ ε x L 2 Q ′ L 2 ε H 1 Q ′ L 2
Cε 0 Q ′ L 2 , we choose ε 0 small enough so that the last quantity is smaller than 1 2 Q ′2 ; and so we have

|x ′ -1| 2 Q ′2 (LQ ′′ )ε + R(ε)Q ′ .
As LQ ′′ ∈ L 2 (R) and Q ′ ∈ L ∞ (R), then following the estimate on R(ε), we obtain the desired inequality by the Cauchy-Schwarz inequality.

• Return to the proof of theorem 2.14 and now consider

ζ(x) = x -∞ S(y) + βQ p+1 2 (y) dy for x ∈ R,
where S is defined in claim 2.5 and β will be chosen later. We recall that S(x)

= 1 p-1 Q(x) + 1 2 xQ ′ (x)
verifies LS = -Q, and in particular S(x) = o(e -|x|/2 ) when |x| → +∞, since Q(x), Q ′ (x) ∼ C p e -|x| (see claim 2.1). By integration, we have ζ(x) = o(e x/2 ) when x → -∞, and ζ is bounded on R. Now, the main idea of the proof is to consider the functional, defined for t ∈ R + ,

J(t) = ε(t, x)ζ(x) dx.
The first step is to show that J is defined and bounded in time thanks to the following proposition of decay properties of the solutions, and the second one is to show that |J ′ | has a strictly positive lower bound, which will reach the desired contradiction. Firstly, if we choose ε 0 small enough, we obtain the following proposition. Proposition 2.16. There exists C > 0 such that for all t 0 and x 0 > 0,

x>x0 (u 2 + u 2 x )(t, x + x(t)) dx Ce -x0/4 . (2.5) 
Remark 2.17. Inequality (2.5) holds for all solution u n of (gKdV) associated to the initial data u 0,n defined in proposition 2.12, with C > 0 independent of n. Indeed, we have u = u n0 for some n 0 1, but the following proof shows that the final constant C does not depend of n 0 .

Proof. It is based on the exponential decay of the initial data, and on monotonicity results that the reader can find in [14, lemma 3]. We recall here their notation and their lemma of monotonicity.

⋄ Let ψ(x) = 2 π arctan(exp(x/4)), so that ψ is increasing, lim -∞ ψ = 0, ψ(0) = 1 2 , lim +∞ ψ = 1, ψ(-x) = 1 -ψ(x) for all x ∈ R, and ψ(x) ∼ Ce x/4 when x → -∞. Now let x 0 > 0, t 0 > 0 and define for 0 t t 0 :

ψ 0 (t, x) = ψ(x -x(t 0 ) + 1 2 (t 0 -t) -x 0 ) and        I x0,t0 (t) = u 2 (t, x)ψ 0 (t, x) dx, J x0,t0 (t) = (u 2 x + u 2 - 2 p + 1 u p+1 )(t, x)ψ 0 (t, x) dx.
Then, if we choose ε 0 small enough, there exists K > 0 such that for all t ∈ [0, t 0 ], we have

     I x0,t0 (t 0 ) -I x0,t0 (t) K exp - x 0 4 , J x0,t0 (t 0 ) -J x0,t0 (t) K exp - x 0 4 .
⋄ Now, let us prove how this result can preserve the decay of the initial data to the solution for all time, on the right (which means for x > x 0 for all x 0 > 0). If we apply it to t = 0 and replace t 0 by t, we obtain for all t > 0:

(u 2 x + u 2 )(t, x + x(t))ψ(x -x 0 ) dx C ′ (u 2 0x + u 2 0 )(x)ψ(x -x(t) + 1 2 t -x 0 ) dx + K ′ e -x0/4 .
But by proposition 2.15, we have |x ′ -1|

C ε H 1 Cε 0 , thus if we choose ε 0 small enough, we have |x ′ -1| 1 2 , and so we obtain by the mean value inequality (notice that x(0) = α(u 0,n0 ) = 0): |x(t) -t| 1 2 t. We deduce that -x(t) + 1 2 t 0, and since ψ is increasing, we obtain

(u 2 x + u 2 )(t, x + x(t))ψ(x -x 0 ) dx C (u 2 0x + u 2 0 )(x)ψ(x -x 0 ) dx + Ke -x0/4 .
⋄ Now we explicit exponential decay of u 0 . In fact, we have clearly (u 2 0x +u 2 0 )(x) ∼ Ce -2λ 2 |x| Ce -2|x| when x → ±∞. Moreover, since ψ(x) Ce x/4 for all x ∈ R, we have

(u 2 0x + u 2 0 )(x)ψ(x -x 0 ) dx C (u 2 0x + u 2 0 )(x)e x-x 0 4 dx Ce -x0/4 (u 2 0x + u 2 0 )(x)e x/4 dx C ′ e -x0/4 .
⋄ Finally, we have more simply

(u 2 x + u 2 )(t, x + x(t))ψ(x -x 0 ) dx 1 2 x>x0 (u 2 x + u 2 )(t, x + x(t)) dx,
and so the desired inequality.

• Now this proposition is proved, we can easily show the first step of the proof of theorem 2.14.

1st step: We bound |J(t)| independently of time by writing

J(t) = ε(t, x)ζ(x) dx = x>0 ε(t, x)ζ(x) dx + x<0 ε(t, x)ζ(x) dx, so that |J(t)| ζ ∞ x>0 (Q(x) + |u(t, x + x(t))|) dx + x<0 ε 2 (t, x) dx x<0 ζ 2 (x) dx ζ ∞ Q L 1 + ζ ∞ U + ε(t) L 2 V, where: i) ε(t) L 2 ε H 1 Cε 0 < +∞, ii) V 2 = x<0 ζ 2 (x) dx < +∞ since ζ 2 (x) = o(e x ) when x → -∞,
iii) thanks to (2.5), we finally conclude the first step with:

U = x>0 |u(t, x + x(t))| dx = +∞ n=0 n+1 n |u(t, x + x(t))| dx +∞ n=0 x>n u 2 (t, x + x(t)) dx 1/2 u(t, • + x(t)) L 2 + +∞ n=1 x>n u 2 (t, x + x(t)) dx 1/2 Cε 0 + Q L 2 + C +∞ n=1 e -n/8 < +∞.
2nd step: We evaluate J ′ by using proposition 2.15 and by integrating by parts:

J ′ = ε t ζ = (Lε) x ζ + (x ′ -1) Q x ζ + (x ′ -1) ε x ζ + R(ε)ζ = -εL(ζ ′ ) -(x ′ -1) Qζ ′ -(x ′ -1) εζ ′ + R(ε)ζ = -ε(LS + βLQ p+1 2 ) -(x ′ -1) Q(S + βQ p+1 2 ) -(x ′ -1) εζ ′ + R(ε)ζ. Now we take β = - R QS R Q p+3 2
so that the second integral is null. Note that by (iv) of claim 2.1,

d dc Q 2 c = 2 Q c dQ c dc = 5 -p 2(p -1) c 5-p 2(p-1) -1 Q 2 < 0 since p > 5
, and so by taking c = 1 we remark that β > 0. Moreover, since

Q p+1 2
is an eigenvector for L for an eigenvalue -λ 0 with λ 0 > 0 (see claim 2.5), we deduce

J ′ = -ε(-Q -βλ 0 Q p+1 2 ) -(x ′ -1) εζ ′ + R(ε)ζ = βλ 0 εQ p+1 2 + Qε -(x ′ -1) εζ ′ + R(ε)ζ.
But for the last three terms, we remark that:

a) the mass conservation u 2 (t) = u 2 0 implies that Q 2 + 2 εQ + ε 2 = Q 2 and so Qε 1 2 ε 2 1 2 ε 2 H 1 , b) thanks to proposition 2.15, we have -(x ′ -1) εζ ′ |x ′ -1| ε L 2 ζ ′ L 2 C ε 2 H 1 , c) still thanks to this proposition, we have R(ε)ζ ζ ∞ R(ε) L 1 C ε 2 H 1 .
We have finally

J ′ = βλ 0 εQ p+1 2 + K(ε) (2.6) 
where

K(ε) verifies |K(ε)| C ε 2 H 1 .
We now use identity (2.2) which claims

F (u(t)) = F (u 0 ) = F (Q) + 1 2 (Lε, ε) + K ′ (ε) with |K ′ (ε)| C ε 3 H 1 . In other words, we have (Lε, ε)+2K ′ (ε) = 2[F (u 0 )-F (Q)] = 2[F (u 0,n0 )- F (Q)] = -γ n0 with γ n0 > 0, since u 0,n0 L 2 = Q L 2 and E(u 0,n0 ) < E(Q) by construction of u 0,n0 .
To estimate the term (Lε, ε), we use lemma 2.6, so that if we denote a(t) = εQ p+1 2 , we obtain a 2 (t)

K 1 K 2 ε 2 H 1 - 1 K 2 (Lε, ε) = γ n0 K 2 + K 1 K 2 ε 2 H 1 + 2 K 2 K ′ (ε). Since |K ′ (ε)| C ε 3 H 1 and ε H 1 Cε 0 , then if we take ε 0 small enough, we have a 2 (t) K ε 2 H 1 + κ n0 with K, κ n0 > 0.
In particular, a 2 (t) κ n0 > 0, thus a keeps a constant sign, say positive. Then we have

a(t) K ε 2 H 1 + κ n0 K 2 ε H 1 + κ n0 2 = K ′ ε H 1 + κ ′ n0 .
But from (2.6), we also have

J ′ (t) = βλ 0 a(t) + K(ε) with |K(ε)| C ε 2 H 1 ,
and so:

J ′ (t) βλ 0 K ′ ε H 1 + βλ 0 κ ′ n0 -C ε 2 H 1 βλ 0 κ ′ n0 = θ n0 > 0
if we choose as previously ε 0 small enough. But it implies that J(t) θ n0 t + J(0) -→ +∞ as t → +∞, which contradicts the first step and concludes the proof of the theorem. Note that if a(t) < 0, it is easy to show by the same arguments that J ′ (t) θ ′ n0 < 0, so lim t→+∞ J(t) = -∞ and then the same conclusion.

Construction of a special solution by compactness

In this section, we prove the existence of a special solution by a compactness method. This result is of course weaker than theorem 1.1, but it does not require the existence of Y ± proved in [START_REF] Pego | Eigenvalues, and instabilities of solitary waves[END_REF].

Construction of the initial data

Now theorem 2.14 is proved, we can change T n obtained in (2.4) in the first time which realizes this. In other words:

∃δ > 0, ∀n 1, ∃T n ∈ R + such that inf y∈R u n (T n ) -Q(• -y) H 1 = δ ∀t ∈ [0, T n ], inf y∈R u n (t) -Q(• -y) H 1 δ .
Remark 3.1. We have T n -→ +∞. Indeed we would have T n < T 0 for all n otherwise (after passing to a subsequence). But by Lipschitz continuous dependence on the initial data (see [9, corollary 2.18]), we would have for n large enough

sup t∈[0,T0] u n (t) -Q(• -t) H 1 K u 0,n -Q H 1 . But since u 0,n -Q H 1 ----→ n→∞ 0 by (2.3), we would have inf y∈R u n (t) -Q(• -y) H 1 δ 2 for n large enough and for all t ∈ [0, T 0 ], which is wrong for t = T n ∈ [0, T 0 ].
Now we can take δ smaller than ε 0 , so that u n (t) ∈ U ε0 for all t ∈ [0, T n ] and so lemma 2.10 applies: we can define

x n (t) = α(u n (t)) (notice that x n (0) = α(u 0,n ) = 0) such that ε n (t) = u n (t, • + x n (t)) -Q verifies ∀t ∈ [0, T n ], (ε n (t), Q ′ ) = 0 ε n (t) H 1 C inf y∈R u n (t) -Q(• -y) H 1 Cδ .
Moreover, for t = T n , we have more precisely

δ ε n (T n ) H 1 Cδ. (3.1)
In particular, {ε n (T n )} is bounded in H 1 , and so by passing to a subsequence, we can define

ε n (T n ) ⇀ ε ∞ in H 1 (weakly) and v 0 = ε ∞ + Q. Remark 3.2.
1. As announced in the introduction, one of the most important points in this section is to prove that we have constructed a non trivial object, i.e. v 0 is not a soliton (proposition 3.4). This fact is quite natural since v 0 is the weak limit of

u n (T n , • + x n (T n )) which contains a persisting defect ε n (T n ).
2. Since the proof of proposition 3.4 is mainly based on evaluating L 2 norms, the following lemma will be useful.

Lemma 3.3. There exists

C 0 > 0 such that, for n large enough, ε n (T n ) L 2 C 0 δ.
Proof. It comes from the conservation of the Weinstein's functional F in time. In fact, we can write

F (Q + ε n (T n )) = F (Q + ε n (0)) where ε n (0) = u 0,n -Q verifies ε n (0) H 1 ----→ n→∞ 0 by (2.3).
Then by (2.2)

F (Q) + 1 2 (Lε n (T n ), ε n (T n )) + K(ε n (T n )) = F (Q) + 1 2 (Lε n (0), ε n (0)) + K(ε n (0))
where

|K(a)| C 1 a 3 H 1 . It comes (∂ x ε n (T n )) 2 + ε 2 n (T n ) -pQ p-1 ε 2 n (T n ) C ε n (0) 2 H 1 + K(ε n (0)) -K(ε n (T n ))
and so

ε n (T n ) 2 H 1 C ε 2 n (T n ) + C ε n (0) 2 H 1 + C 1 ε n (0) 3 H 1 + C 1 ε n (T n ) 3 H 1 .
Since ε n (0) H 1 -→ 0, then by (3.1) we have for n large enough

ε n (T n ) 2 H 1 C ε 2 n (T n ) + C 1 Cδ ε n (T n ) 2 H 1 + δ 2 4 .
But if we choose δ small enough so that C 1 Cδ 1 2 , we obtain

δ 2 2 1 2 ε n (T n ) 2 H 1 C ε 2 n (T n ) + δ 2 4
and finally

ε 2 n (T n ) δ 2 4C . Proposition 3.4. For all c > 0, v 0 = Q c .
Proof. We proceed by contradiction: suppose that

v n := u n (T n , • + x n (T n )) ⇀ v 0 = ε ∞ + Q = Q c weakly in H 1 for some c > 0. We recall that it implies in particular that v n -→ Q c strongly in L 2 on compacts as n → +∞. • Decomposition of v n : Let ϕ ∈ C ∞ (R, R) equals to 0 on (-∞, -1] and 1 on [0, +∞). Now let A ≫ 1 to fix later and define ϕ A (x) = ϕ(x + A), so that ϕ A (x) = 0 if x -A -1 and 1 if x -A. We also define h n = (1-ϕ A )v n , Q A c = Q c ϕ A and z n = ϕ A v n -ϕ A Q c = ϕ A (v n -Q c ), so that v n = (1 -ϕ A )v n + ϕ A v n = h n + z n + Q A c .
• Estimation of z n L 2 :

z 2 n = (v n -Q c ) 2 ϕ 2 A A+1 -A-1 (v n -Q c ) 2 + x>A+1 (v n -Q c ) 2 A+1 -A-1 (v n -Q c ) 2 + 2 x>A+1 v 2 n + 2 x>A+1 Q 2 c = I + J + K. Notice that I ----→ n→∞ 0 since v n ----→ n→∞ Q c in L 2 on compacts. Moreover, thanks to exponen- tial decay of Q c , we have K Ce -2 √ cA
. Finally, we have J Ce -A/4 with C independent of n by remark 2.17. In summary, there exists ρ > 0 such that z 2 n Ce -ρA if n n(A).

• Mass balance: On one hand, we have by (2.3) and mass conservation v 2 n = u 2 0,n = Q 2 . On the other hand, we can calculate

v 2 n = h 2 n + (Q A c + z n ) 2 + 2 -A -A-1 v 2 n ϕ A (1 -ϕ A ). But since v n -→ Q c on compacts, we have 2 -A -A-1 v 2 n ϕ A (1 -ϕ A ) ----→ n→∞ 2 -A -A-1 Q 2 c ϕ A (1 - ϕ A ) Ce -ρA . Consequently, Q 2 = h 2 n + Q A c 2 + 2 Q A c z n + z 2 n + a A n where a A n 0 verifies a A n
Ce -ρA for n n(A). Thanks to the previous estimation of z n L 2 and the Cauchy-Schwarz inequality, we deduce that

Q 2 = h 2 n + Q A c 2 + a ′A n where a ′A n verifies |a ′A n | Ce -ρA for n n(A). But Q A c 2 = Q 2 c ϕ 2 A = Q 2 c + Q 2 c (ϕ 2 A -1) Q 2 c + x<-A Q 2 c Q 2 c + Ce -ρA and Q 2 c = c -β Q 2 with β > 0 since p > 5 (see claim 2.1).
In conclusion, we have the mass balance

(1 -c -β ) Q 2 L 2 = h n 2 L 2 + a ′′A n (3.2)
where a ′′A n still verifies |a ′′A n | Ce -ρA for n n(A). • Upper bound of h n L 2 : We remark that for n n(A), h n L 2 C 1 δ. Indeed, thanks to (3.1), we have

h n L 2 (1 -ϕ A )Q L 2 + ε n (T n ) L 2 Ce -ρA + Cδ C 1 δ
if we definitively fix A large enough so that e -ρA δ 3 (the power 3 will be useful later in the proof).

• Upper bound of |c -1|: Thanks to the previous point and mass balance (3.2), we have

|1 -c -β | Cδ 2 .
We deduce that c is close to 1, and so by Taylor's theorem that |c -1|

K|1 -c -β | Cδ 2 .
• Lower bound of h n L 2 : We now prove that for n n(A), h n L 2 C 2 δ. Firstly, we have by lemma 3.3:

C 0 δ ε n (T n ) L 2 = v n -Q L 2 = h n + Q A c + z n -Q L 2 h n L 2 + z n L 2 + Q A c -Q c L 2 + Q c -Q L 2 = h n L 2 + Q c -Q L 2 + b A n where b A n = z n L 2 + Q A c -Q c L 2 0 verifies b A n Ce -ρA for n n(A). Moreover, if we denote f (c) = Q c -Q 2 L 2 for c > 0, then f is C ∞ and f (c) 0 = f (1)
, hence 1 is a minimum of f , f ′ (1) = 0 and so by Taylor's theorem:

f (c) C(c -1) 2 , i.e. Q c -Q L 2 C|c -1|.
Thanks to the previous point, we deduce that

C 0 δ h n L 2 + Kδ 2 + b A n h n L 2 + Cδ 2 .
Finally, if we choose δ small enough so that Cδ C0 2 , we reach the desired inequality. • Energy balance: We now use the conservation of Weinstein's functional and (2.2) to write

F (u 0 ) = F (v n ) = F (Q + ε n (T n )) = F (Q) + 1 2 (Lε n (T n ), ε n (T n )) + K(ε n (T n ))
where

|K(ε n (T n ))| C ε n (T n ) 3 H 1 Cδ 3 by (3.1). Now we decompose ε n (T n ) in ε n (T n ) = v n -Q = h n + z n + Q A c -Q = (Q c -Q) + (Q A c -Q c ) + (z n + h n ) in order to expand (Lε n (T n ), ε n (T n )) = (L(Q c -Q), Q c -Q) + (L(z n + h n ), z n + h n ) + (L(Q A c -Q c ), Q A c -Q c ) + 2(L(Q c -Q), z n + h n ) + 2(L(Q c -Q), Q A c -Q c ) + 2(L(Q A c -Q c ), z n + h n ).
We recall that (La, b) = -a ′′ b + ab -p Q p-1 ab, and so by the Cauchy-Schwarz inequality:

|(La, b)| ( a ′′ L 2 + C a L 2 ) b L 2 . Since we have z n + h n L 2 z n L 2 + h n L 2 Ce -ρA + C 1 δ Cδ, we can estimate |(L(Q c -Q), z n + h n )| ( Q ′′ c -Q ′′ L 2 + C Q c -Q L 2 ) z n + h n L 2 C|c -1| • Cδ Cδ 3 .
Similarly, we have

|(L(Q A c -Q c ), z n + h n )| ( ϕ ′′ A Q c L 2 + 2 ϕ ′ A Q ′ c L 2 + (ϕ A -1)Q ′′ c L 2 + C Q A c -Q c L 2 ) z n + h n L 2 Ce -ρA • Cδ Cδ 3 .
Moreover, we have by integrating by parts (La, b) = a ′ b ′ + ab -p Q p-1 ab, and so

|(La, b)| C a H 1 b H 1 . It implies that        |(L(Q c -Q), Q c -Q)| C Q c -Q 2 H 1 C(c -1) 2 Cδ 3 , |(L(Q A c -Q c ), Q A c -Q c )| C Q A c -Q c 2 H 1 Ce -2ρA Cδ 3 , |(L(Q c -Q), Q A c -Q c )| C Q c -Q H 1 Q A c -Q c H 1 C|c -1| • Ce -ρA Cδ 3 ,
thanks to the estimate on |c -1| previously found. For the last term, we have

(L(h n + z n ), h n + z n ) = h n + z n 2 H 1 -p Q p-1 (h n + z n ) 2 and Q p-1 (h n + z n ) 2 2 Q p-1 h 2 n + 2 Q p-1 z 2 n 2 (1 -ϕ A ) 2 Q p-1 v 2 n + 2 Q p-1 ∞ z 2 n 2 x<-A Q p-1 v 2 n + 2 Q p-1 ∞ z 2 n . But v n ∞ C v n H 1 C( ε n (T n ) H 1 + Q H 1 ) C(Kδ + Q H 1 ) = K ′ ,

and so

x<-A Q p-1 v 2 n C x<-A Q p-1 Ce -ρA . As z 2 n
Ce -ρA , we have

F (u 0 ) = F (Q) + 1 2 h n + z n 2 H 1 + d A n F (Q) + 1 2 h n + z n 2 L 2 + d A n
where |d A n | Cδ 3 for n n(A). Moreover we have

h n + z n 2 L 2 -h n 2 L 2 z n 2 L 2 + 2 z n L 2 h n L 2 Ce -2ρA + 2Ce -ρA • C 1 δ Cδ 3 .
Finally, energy balance provides us, for some N large enough,

F (u 0 ) F (Q) + 1 2 h N 2 L 2 + d ′ with |d ′ | Cδ 3 . • Conclusion: Since F (u 0 ) < F (Q) by hypothesis, we obtain h N 2 L 2
Cδ 3 . But we also have by the lower bound of

h n L 2 : h N 2 L 2 C 2 2 δ 2 .
Gathering both information, we obtain

C 2 2 C
δ, which is clearly a contradiction if we choose δ small enough, and so concludes the proof of proposition 3.4.

Weak continuity of the flow

The main idea to obtain the special solution is to reverse the weak convergence of v n to v 0 in time and in space, using the fact that u(t, x) is a solution of (gKdV) if and only if u(-t, -x) is also a solution. More precisely, we define w 0 = v0 ∈ H 1 (R), i.e. for all x ∈ R, w 0 (x) = v 0 (-x).

Remark 3.5. For all c > 0 and all x 0 ∈ R, we have

w 0 = Q c (• + x 0 ).
In fact, otherwise and since Q c is even, we would have v 0

(x) = Q c (x -x 0 ). But v n -Q = ε n (T n ) and (ε n (T n ), Q ′ ) = (v n , Q ′ ) = 0, so by weak convergence in H 1 , (v 0 , Q ′ ) = 0. Thus we would have Q c (x-x 0 )Q ′ (x) dx = 0
, and if we show that x 0 = 0, we shall reach the desired contradiction since we have v 0 = Q c for all c > 0 by proposition 3.4. To show this, consider f (a) = Q c (x-a)Q ′ (x) dx for a ∈ R, which is odd since Q c is even and Q ′ odd. In particular, f (0) = 0, and it is enough to show that f (a) < 0 for a > 0 to conclude (because we shall have f (a) > 0 for a < 0 by parity). But using again the parity of Q c and Q ′ , we have

f (a) = a 0 [Q c (a -x) -Q c (a + x)]Q ′ (x) dx + +∞ a [Q c (x -a) -Q c (x + a)]Q ′ (x) dx.
Since Q ′ is negative and Q c is strictly decreasing on R + , both integrals are negative, and so f (a) < 0 for a > 0, as we desired.

Remark 3.6.

1. Now, w 0 being constructed, we show that the associated solution w(t) is defined for all t positive, and can be seen as a weak limit (proposition 3.8) in order to prove the convergence of w(t) to a soliton.

2. The main ingredient of the proof of proposition 3.8 is the following lemma of weak continuity of the flow, whose proof is inspired by [8, theorem 5]. This proof is long and technical, and thus is not completely written in this paper.

Lemma 3.7. Suppose that z 0,n ⇀ z 0 in H 1 , and that there exist T > 0 and K > 0 such that the solution z n (t) corresponding to initial data z 0,n exists for t ∈ [0, T ] and

sup t∈[0,T ] z n (t) H 1 K.
Then for all t ∈ [0, T ], the solution z(t) such that z(0) = z 0 exists, and

z n (T ) ⇀ z(T ) in H 1 . Sketch of the proof. Let T * = T * ( z 0 H 3 4
) > 0 be the maximum time of existence of the solution z(t) associated to z 0 , well defined by [9, corollary 2.18] since s = 3 4 > p-5 2(p-1) = s c (p). We distinguish two cases, whether T < T * or not, and we show that this last case is in fact impossible.

1st case: Suppose that T < T * . As z(t) exists for t ∈ [0, T ] by hypothesis, it is enough to show that z n (T ) ⇀ z(T ) in

H 1 . But since C ∞ 0 is dense in H -1 and z n (T ) -z(T ) H 1 z n (T ) H 1 + z(T ) H 1 K ′ , it is enough to show that z n (T ) -→ z(T ) in D ′ (R).
It is the end of this case, very similar to the proof in [START_REF] Kenig | Asymptotic stability of solitons for the Benjamin-Ono equation[END_REF] (but using a H 3 regularization and so using some arguments like in [11, section 3.4]), which is technical and not written in this paper consequently.

2nd case: Suppose that T * T and let us show that it implies a contradiction. Indeed, there would exist T ′ < T * such that z(T ′ )

H 3 4
2K (where K is the same constant as in the hypothesis of the lemma). But we can apply the first case with T ′ instead of T , so that z n (T ′ ) ⇀ z(T ′ ) in H 1 , and since z n (T ′ ) H 1 K, we obtain by weak convergence z(T ′ )

H 3 4
z(T ′ ) H 1 K, and so the desired contradiction.

Proposition 3.8. The solution w(t) of (gKdV) such that w(0) = w 0 is defined for all t 0, and

u n (T n -t, x n (T n ) -•) ⇀ w(t) in H 1 .
Proof. As the assumption is clear for t = 0, we fix T > 0 and we show it for this T . Since lim n→+∞ T n = +∞ by remark 3.1, then for n n 0 , we have T n T . As a consequence, for n n 0 and for t ∈ [0, T ], z n (t) = u n (T n -t, x n (T n ) -•) is well defined, solves (gKdV), and has for initial data

z n (0) = u n (T n , x n (T n ) -•) = vn ⇀ v0 = w 0 in H 1 .
Moreover, we have

z n (t) H 1 = u n (T n -t, x n (T n ) -•) H 1 ε n (T n -t, x n (T n ) -x n (T n -t) -•) H 1 + Q(x n (T n ) -x n (T n -t) -•) H 1 ε n (T n -t) H 1 + Q H 1 Cδ + Q H 1 = K.
By lemma 3.7, we deduce that w exists on [0, T ], and z n (T ) ⇀ w(T ) in H 1 .

Exponential decay on the left of w

The goal of this section is to prove an exponential decay on the "left" of w, using the exponential decay of u n on the right. Indeed, since

ε n (T n -t) = u n (T n -t, • + x n (T n -t)) -Q verifies (ε n (T n -t), Q ′ ) = 0 and ε n (T n -t) H 1
Cδ for all t ∈ [0, T n ], then u n (T n -t) is in the same situation as the situation of u summed up just before proposition 2.15, with δ instead of ε 0 for the small parameter. In particular, by remark 2.17, inequality (2.5) holds for u n (T n -t) with C independent of n if we choose δ small enough. In other words, we have for all t 0 and x 0 > 0 (and n large enough):

x>x0 (u 2 nx + u 2 n )(T n -t, x + x n (T n -t)) dx Ce -x0/4 . (3.3) 
But before passing to the limit, we have to define the "left" of w, i.e. the center of mass x w (t) of w(t).

Lemma 3.9. There exists C > 0 such that, for all t 0, inf y∈R w(t) -Q(• -y) H 1 Cδ.

Proof. Fix t 0 and n 0 0 such that for n n 0 , T n t. Since Q is even, we have

ε n (T n -t, x n (T n ) -x n (T n -t) -•) = u n (T n -t, x n (T n ) -•) -Q(• -x n (T n ) + x n (T n -t)). Now if we denote w n (t) = u n (T n -t, x n (T n ) -•) and y n (t) = x n (T n ) -x n (T n -t), we have w n (t) -Q(• -y n (t)) H 1 = ε n (T n -t) H 1 Cδ.
But following the remark done at the beginning of this section, proposition 2.15 is still valid, and

so |x ′ n (t) -1| Cδ for t ∈ [0, T n ]. We deduce that y n (t) = Tn Tn-t x ′ n (s) ds = Tn Tn-t (x ′ n (s) -1) ds + t verifies |y n (t)| Cδt + t = Ct.
By passing to a subsequence, we can suppose that lim n→∞ y n (t) = y(t). But now we can write

w n (t) -Q(• -y(t)) H 1 Cδ + Q -Q(• + (y n (t) -y(t))) H 1 C ′ δ
for n N (t, δ) by lemma 2.11. Finally, since w n (t) ⇀ w(t) in H 1 by proposition 3.8, we obtain by weak convergence w(t) -Q(• -y(t)) H 1 C ′ δ, and the result follows.

We can now choose δ small enough so that Cδ ε 0 , and so we can define x w (t) = α(w(t)) by lemma 2.10, with notably w(t,

• + x w (t)) -Q H 1
Cδ. But to exploit (3.3), we have to show first that y n (t) = x n (T n ) -x n (T n -t) is close to x w (t) for all t. Lemma 3.10. There exists C > 0 such that: ∀t 0, ∃n 0 0, ∀n n 0 , |x w (t) -y n (t)| Cδ.

Proof. Let t 0 and n large enough such that T n t. We keep notation w n (t) and y n (t) of the previous proof , where we have already remarked that |y n (t)| Ct. For the same reason, we have

|x w (t) -y n (t)| Ωt. Now choose A(t) ≫ 1 such that Q L 2 (|x| A(t)-Ωt) δ. Since w n (t) ⇀ w(t) in H 1 , then for n n 0 , we have w n (t) -w(t) L 2 (|x| A(t)) δ. Moreover, w(t) -Q(• -x w (t)) H 1 Cδ and w n (t) -Q(• -y n (t)) H 1 Cδ,
and so by the triangle inequality:

Q(• -x w (t)) -Q(• -y n (t)) L 2 (|x| A(t))
Cδ. We deduce that for n n 0 :

Q -Q(• + x w (t) -y n (t)) L 2 √ 2 Q -Q(• + x w (t) -y n (t)) L 2 (|x| A(t)) + √ 2 Q -Q(• + x w (t) -y n (t)) L 2 (|x| A(t)) Cδ + √ 2 Q L 2 (|x| A(t)) + √ 2 Q(• + x w (t) -y n (t)) L 2 (|x| A(t)) Cδ + 2 √ 2 Q L 2 (|x| A(t)-Ωt) Cδ.
We conclude by choosing δ small enough so that Cδ A 0 , where A 0 is defined in lemma 2.11, and we apply this lemma to reach the desired inequality (note that the lemma holds of course with the L 2 norm instead of the H 1 one).

If we choose δ small enough so that Cδ 1 (for example) in lemma 3.10, we can now prove the following proposition. Proposition 3.11. There exists C > 0 such that, for all t 0 and all x 0 > 0,

x<-x0-1 (w 2 x + w 2 )(t, x + x w (t)) dx Ce -x0/4 .
Proof. Let t 0, x 0 > 0 and n n 0 where n 0 is defined in lemma 3.10. From (3.3) and the substitution y 

= x n (T n ) -x n (T n -t) -x = y n (t) -x, we obtain x<yn(t)-x0 (u 2 nx + u n )(T n -t, x n (T n ) -x) dx Ce -x0/4 . If we still denote w n (t) = u n (T n -t, x n (T n ) -•),

Asymptotic stability and conclusion

The final ingredient to prove that w(t) is a special solution is the theorem of asymptotic stability proved by Martel and Merle in [START_REF] Martel | Asymptotic stability of solitons of the gKdV equations with general nonlinearity[END_REF]. Indeed, thanks to lemma 3.9, we can apply this theorem with c 0 = 1 if we choose δ small enough such that Cδ < α 0 . We obtain c + > 0 and t → ρ(t

) ∈ R such that w(t) -Q c+ (• -ρ(t)) H 1 (x>t/10) ----→ t→+∞ 0. (3.4)
Remark 3.12. As usual, ρ(t) and c + are defined in [START_REF] Martel | Asymptotic stability of solitons of the gKdV equations with general nonlinearity[END_REF] by a lemma of modulation close to Q, which gives the estimations:

w(t) -Q c+ (• -ρ(t)) H 1 Cδ, |ρ ′ (t) -1| Cδ and |c + -1| Cδ.
We deduce that

Q -Q(• + ρ(t) -x w (t)) H 1 = Q(• -ρ(t)) -Q(• -x w (t)) H 1 Q -Q c+ H 1 + w(t) -Q c+ (• -ρ(t)) H 1 + w(t) -Q(• -x w (t)) H 1 K|c + -1| + Cδ + C ′ δ C ′′ δ.
Now if we choose δ small enough, then C ′′ δ A 0 and lemma 2.11 gives |x w (t) -ρ(t)| Cδ 1. Finally, proposition 3.11 becomes

∀t 0, ∀x 0 > 2, x<-x0 (w 2 x + w 2 )(t, x + ρ(t)) dx C ′ e -x0/4 . (3.5) 
We are now able to prove the main result of this section.

Theorem 3.13 (Existence of one special solution). There exist w(t) solution of (gKdV) defined for all t 0, c + > 0 and t → ρ(t) such that:

(i) w(t) -Q c+ (• -ρ(t)) H 1 (R) ----→ t→+∞ 0, (ii) ∀c > 0, ∀x 0 ∈ R, w(0) = Q c (• + x 0 ).
Proof. By remark 3.5, it is enough to prove (i). We have by the triangle inequality

w(t) -Q c+ (• -ρ(t)) 2 H 1 (R) w(t) -Q c+ (• -ρ(t)) 2 H 1 (x>t/10) + 2 w(t) 2 H 1 (x<t/10) + 2 Q c+ (• -ρ(t)) 2 H 1 (x<t/10) = I + II + III.
Since |ρ ′ (t) -1| Cδ 1 10 if we choose δ small enough, then |ρ(t) -t -ρ(0)| 1 10 t, and so if we denote ρ 0 = ρ(0) ∈ R, we have t 10 -ρ(t) -4 5 t -ρ 0 . We can now estimate: • I ----→ t→+∞ 0 by (3.4).

• For t large enough, we have 4t 5 + ρ 0 > 2, and so (3.5) gives

1 2 II = x<t/10 (w 2 x + w 2 )(t, x) dx = x<t/10-ρ(t) (w 2 x + w 2 )(t, x + ρ(t)) dx x<-4t/5-ρ0 (w 2 x + w 2 )(t, x + ρ(t)) dx Ce -t/5 ----→ t→+∞ 0. • Finally, since (Q ′2 c+ + Q 2 c+ )(x) Ce 2 √ c+x for all x ∈ R (see claim 2.1), we have 1 2 III = x<t/10 (Q ′2 c+ + Q 2 c+ )(x -ρ(t)) dx = x<t/10-ρ(t) (Q ′2 c+ + Q 2 c+ )(x) dx x<-4t/5-ρ0 (Q ′2 c+ + Q 2 c+ )(x) dx C x<-4t/5-ρ0 e 2 √ c+x dx Ce -8t 5 √ c+ ----→ t→+∞ 0
which achieves the proof of theorem 3.13.

Corollary 3.14. For all c > 0, there exist w c (t) solution of (gKdV) defined for all t 0 and t → ρ c (t) such that:

(i) w c (t, • + ρ c (t)) -Q c H 1 (R) ----→ t→+∞ 0, (ii) ∀c ′ > 0, ∀x 0 ∈ R, w c (0, • + ρ c (0)) = Q c ′ (• + x 0 ).
Proof. It is based on the scaling invariance of the (gKdV) equation: if u(t, x) is a solution, then for all λ > 0, λ 2 p-1 u(λ 3 t, λx) is also a solution. For c > 0 given, we thus define w c by w c (t) = λ 

(x) = λ 2 p-1 c Q c+ (λ c x),
then we have by substitution

w(t) -Q c+ (• -ρ(t)) 2 H 1 = λ p-5 p-1 c w c (t/λ 3 c , • + ρ(t)/λ c ) -Q c 2 L 2 + 1 λ 2 c ∂ x [w c (t/λ 3 c , • + ρ(t)/λ c ) -Q c ] 2 L 2 .
We deduce that

w(t) -Q c+ (• -ρ(t)) 2 H 1    λ p-5 p-1 c w c (t/λ 3 c , • + ρ(t)/λ c ) -Q c 2 H 1 if λ c 1 λ -p+3 p-1 c w c (t/λ 3 c , • + ρ(t)/λ c ) -Q c 2 H 1 if λ c 1
, and so lim t→+∞ w c (t/λ 3 c , • + ρ(t)/λ c ) -Q c H 1 = 0 in both cases by theorem 3.13. We finally obtain (i) if we take ρ c (t) = ρ(λ 3 c t) λc . For (ii), if we suppose that there exist c ′ > 0 and

x 0 ∈ R such that w c (0, • + ρ c (0)) = Q c ′ (• + x 0 ), then we get w 0 = Q c ′ c + c • + c c + x 0 -ρ 0
which is a contradiction with remark 3.5.

Construction and uniqueness of a family of special solutions via the contraction principle

In this section, we prove theorem 1.1. The proof is an extension to (gKdV) of the method by fixed point developed in [START_REF] Duyckaerts | Dynamic of thresold solutions for energy-critical NLS[END_REF][START_REF] Duyckaerts | Threshold solutions for the focusing 3d cubic Schrödinger equation[END_REF]. To adapt the method to (gKdV), we use first information on the spectrum of the linearized operator around Q(• -t) due to [START_REF] Pego | Eigenvalues, and instabilities of solitary waves[END_REF] (see proposition 4.2 in the present paper). Secondly, we rely on the Cauchy theory for (gKdV) developed in [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF][START_REF] Kenig | On the concentration of blow up solutions for the generalized KdV equation critical in L 2[END_REF]. Indeed, one of the main difficulties is the lack of a derivative due to the equation, but compensated by a smoothing effect already used in [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF][START_REF] Kenig | On the concentration of blow up solutions for the generalized KdV equation critical in L 2[END_REF].

Preliminary estimates for the Cauchy problem

Theorem 3.5 of [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF] and proposition 2.3 of [START_REF] Kenig | On the concentration of blow up solutions for the generalized KdV equation critical in L 2[END_REF] are summed up and adapted to our situation in proposition 4.1 below. We note W (t) the semigroup associated to the linear equation ∂ t u+∂ 3 x u = 0.

Notation. Let I ⊂ R be an interval, 1 p, q ∞ and g : R × I → R. Then define

g L p x L q I = +∞ -∞ I |g(x, t)| q dt p/q dx 1/p , g L q I L p x = I +∞ -∞ |g(x, t)| p dx q/p dt 1/q and L p x L q I = {g | g L p x L q I < +∞} and L q I L p x = {g | g L q I L p x < +∞}. Finally, denote L p x L q t = L p x L q R and L q t L p x = L q R L p x .
Proposition 4.1. There exists C > 0 such that for all g ∈ L 1

x L 2 t and all T ∈ R,

∂ ∂x +∞ t W (t -t ′ )g(x, t ′ ) dt ′ L ∞ [T ,+∞) L 2 x C g L 1 x L 2 [T ,+∞) , (4.1) 
∂ ∂x +∞ t W (t -t ′ )g(x, t ′ ) dt ′ L 5 x L 10 [T ,+∞) C g L 1 x L 2 [T ,+∞) . (4.2)
Proof. (i) Inequality (4.1) comes from the dual inequality of (3.6) in [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF], i.e.

∂ ∂x

+∞ -∞ W (-t ′ )g(x, t ′ ) dt ′ L 2 x C g L 1 x L 2 t .
Let t T , we get for g(x, t ′ ) = ½ [t,+∞) (t ′ )g(x, t ′ ):

∂ ∂x +∞ t W (-t ′ )g(x, t ′ ) dt ′ L 2 x = ∂ ∂x +∞ -∞ W (-t ′ )g(x, t ′ ) dt ′ L 2 x C g L 1 x L 2 [T ,+∞)
and so the desired inequality since W is unitary on L 2 .

(ii) Inequality (4.2) comes from inequalities (2.6) and (2.8) of [START_REF] Kenig | On the concentration of blow up solutions for the generalized KdV equation critical in L 2[END_REF] with the admissible triples (p 1 , q 1 , α 1 ) = (5, 10, 0) and (p 2 , q 2 , α 2 ) = (∞, 2, 1). In fact, if we combine (2.6) cut in time with [0, +∞) and (2.8), we get

∂ ∂x +∞ t W (t -t ′ )g(x, t ′ ) dt ′ L 5 x L 10 t C g L 1 x L 2 t .
If we apply it to g(x, t ′ ) = ½ [T,+∞) (t ′ )g(x, t ′ ), we reach the desired inequality since

∂ ∂x +∞ t W (t -t ′ )g(x, t ′ ) dt ′ L 5 x L 10 [T ,+∞) ∂ ∂x +∞ t W (t -t ′ )g(x, t ′ ) dt ′ L 5 x L 10 t .

Preliminary results on the linearized equation

Linearized equation

The linearized equation appears if one considers a solution of (gKdV) close to the soliton Q(x -t).

More precisely, if u(t, x) = Q(x -t) + h(t, x -t) verifies (gKdV), then h verifies

∂ t h + Lh = R(h) (4.3) 
where La = -(La) x , La = -∂ 2 x a + a -pQ p-1 a is defined in section 2.1, and

R(h) = -∂ x p k=2 p k Q p-k h k .
The spectrum of L has been calculated by Pego and Weinstein in [START_REF] Pego | Eigenvalues, and instabilities of solitary waves[END_REF]; their results are summed up here for reader's convenience.

Proposition 4.2 ([17]

). Let σ(L) be the spectrum of the operator L defined on L 2 (R) and let σ ess (L) be its essential spectrum. Then σ ess (L) = iR and σ(L) ∩ R = {-e 0 , 0, e 0 } with e 0 > 0.

Furthermore, e 0 and -e 0 are simple eigenvalues of L with eigenfunctions Y + and Y -= Y+ which have an exponential decay at infinity, and the null space of L is spanned by Q ′ .

Exponential decay

Exponential decay of Y + has been proved in [START_REF] Pego | Eigenvalues, and instabilities of solitary waves[END_REF], but a generalization of this fact to a larger family of functions will be necessary in the proof of proposition 4.6. For λ > 0, consider the operator A λ defined on L 2 by A λ u = u ′′′ -u ′ -λu, and the characteristic equation of A λ u = 0,

f λ (x) := x 3 -x -λ = 0.
Note σ λ 1 , σ λ 2 , σ λ 3 the roots of f λ , eventually complex, and sorted by their real part. A simple study of f λ shows that σ λ 3 is always real, σ λ 3 > 1 √ 3 , and (σ λ 3 ) λ>0 is increasing. Moreover, we have the three cases:

(a) If λ > 2 3 √ 3 , then σ λ
1 and σ λ 2 are two conjugate roots which verify Re

σ λ 1 = Re σ λ 2 = - σ λ 3 2 . (b) If λ = 2 3 √ 3 , then σ λ 1 = σ λ 2 = -1 √ 3 and σ λ 3 = 2 √ 3 . (c) If λ < 2 3 √ 3 , then σ λ 1 , σ λ 2 are real and: σ λ 1 ∈ - √ 3, -1 √ 3 ; σ λ 2 ∈ -1 √ 3 , 0 . Moreover, (σ λ 2 )
λ is decreasing, and in particular σ λ 2 ր 0 when λ ց 0. This analysis allows us to define

µ = 1 4 min λ e0 (σ λ 3 , -Re σ λ 2 , e 0 , 1) > 0 and H = {f ∈ H ∞ (R) | ∀j 0, ∃C j 0, ∀x ∈ R, |f (j) (x)| C j e -µ|x| }. Lemma 4.3. If u ∈ L 2 and f ∈ H verify u ′′′ -u ′ -λu = f with λ e 0 , then u ∈ H.
Proof. First notice that u ∈ H ∞ (R) by a simple bootstrap argument. Moreover, the method of variation of constants gives us

u(x) = Ae σ λ 3 x +∞ x e -σ λ 3 s f (s) ds + Be σ λ 2 x x -∞ e -σ λ 2 s f (s) ds + Ce σ λ 1 x x -∞ e -σ λ 1 s f (s) ds with A, B, C ∈ C, if we suppose that λ = 2 3 √ 3 .
We can also notice that u ′ has the same form as u, except for three terms in f (x) which appear, and which have the expected decay by hypothesis, and so on for u (j) for j 2. Hence we only have to check exponential decay for u:

|u(x)| A ′ e σ λ 3 x +∞ x e -σ λ 3 s |f (s)| ds + B ′ e Re σ λ 2 x x -∞ e -Re σ λ 2 s |f (s)| ds + C ′ e Re σ λ 1 x x -∞ e -Re σ λ 1 s |f (s)| ds.
By changing x in -x and by the definition of µ, it is enough to show that if

v(x) = e -ax x -∞
e as e -µ|s| ds with a 2µ, then v(x) e -µ|x| . Notice that one half could also have replaced one quarter in the definition of µ, but this gain of 2 allows us to treat the case λ = 2 3 √ 3 (not written here for brevity), which makes appear a polynomial in front of the exponential in the last two terms of the expression of u. Finally, we conclude in both cases, since a -µ µ > 0:

• If x < 0, then v(x) e -ax x
-∞ e as e µs ds = Ce -ax • e (a+µ)x = Ce µx = Ce -µ|x| .

• If x 0, then v(x) e -ax x -∞ e as e -µs ds = Ce -ax • e (a-µ)x = Ce -µx = Ce -µ|x| . The case

λ = 2 3 √ 3 is treated similarly. Corollary 4.4. Y + , Y -∈ H. Proof. Since Y -= Y+ , it is enough to show that Y + ∈ H. But by definition of Y + in [17], we have LY + = e 0 Y + with Y + ∈ L 2 , i.e. Y ′′′ + -Y ′ + -e 0 Y + = -p∂ x (Q p-1 Y + ) = -p(p -1)Q ′ Q p-2 Y + -pQ p-1 Y ′ + .
By a bootstrap argument, we have Y + ∈ H ∞ (R), and in particular Y

(j) + ∈ L ∞ (R) for all j 0. If we denote f (x) = -p(p -1)Q ′ Q p-2 Y + -pQ p-1 Y ′
+ , then by exponential decay of Q (j) for all j 0 and by definition of µ, we have |f (j) (x)| Ce -(p-1)|x| Ce -µ|x| and so f ∈ H. It is enough to apply lemma 4.3 with λ = e 0 to conclude.

Existence of special solutions

We now prove the following result, which is the first part of theorem 1.1.

Proposition 4.5. Let A ∈ R. If t 0 = t 0 (A) is large enough, then there exists a solution U A ∈ C ∞ ([t 0 , +∞), H ∞ ) of (gKdV) such that ∀s ∈ R, ∃C > 0, ∀t t 0 , U A (t, • + t) -Q -Ae -e0t Y + H s Ce -2e0t . (4.4)

A family of approximate solutions

The following proposition is similar to [5, proposition 3.4], except for the functional space, which is not the Schwartz space but the space H described above.

Proposition 4.6. Let A ∈ R. There exists a sequence (Z A j ) j 1 of functions of H such that Z A 1 = AY + , and if k 1 and

V A k = k j=1 e -je0t Z A j , then ∂ t V A k + LV A k = R(V A k ) + ε A k (t), where ε A k (t) = pk j=k+1 e -je0t g A j,k , g A j,k ∈ H, (4.5)
and R is defined in (4.3).

Proof. The proof is very similar to the one in [START_REF] Duyckaerts | Threshold solutions for the focusing 3d cubic Schrödinger equation[END_REF], and we write it there for reader's convenience. We prove this proposition by induction, and for brevity, we omit the superscript A.

Define Z 1 := AY + and V 1 := e -e0t Z 1 . Then by the explicit definition of R in (4.3),

∂ t V 1 + LV 1 -R(V 1 ) = -R(V 1 ) = -R(Ae -e0t Y + ) = p j=2 e -je0t A j p j ∂ x [Q p-j Y j + ]
which yields (4.5) for k = 1, since Y + , Q ∈ H by corollary 4.4 and claim 2.1.

Let k 1 and assume that Z 1 , . . . , Z k are known with the corresponding V k satisfying (4.5). Now let U k+1 := g k+1,k ∈ H, so that

∂ t V k + LV k = R(V k ) + e -(k+1)e0t U k+1 + pk j=k+2
e -je0t g j,k , and define Z k+1 := -(L -(k + 1)e 0 )

-1 U k+1 . Note that Z k+1 is well defined since (k + 1)e 0 is not in the spectrum of L by proposition 4.2, and moreover Z k+1 ∈ H. Indeed, we have

Z ′′′ k+1 -Z ′ k+1 -(k + 1)e 0 Z k+1 = -U k+1 -p(p -1)Q ′ Q p-2 Z k+1 -pQ p-1 Z ′ k+1 ∈ H
by exponential decay of Q (j) for all j 0 and since

Z (j)
k+1 ∈ H ∞ (R) by a bootstrap argument. Hence Z k+1 ∈ H by lemma 4.3 applied with λ = (k + 1)e 0 e 0 .

Then we have

∂ t V k + e -(k+1)e0t Z k+1 + L V k + e -(k+1)e0t Z k+1 = R(V k ) + pk j=k+2
e -je0t g j,k .

Denote V k+1 := V k + e -(k+1)e0t Z k+1 . Thus we have

∂ t V k+1 + LV k+1 -R(V k+1 ) = R(V k ) -R(V k+1 ) + pk j=k+2
e -je0t g j,k .

We conclude the proof by evaluating

R(V k ) -R(V k+1 ) = R(V k ) -R(V k + e -(k+1)e0t Z k+1 ) = ∂ x   p j=2 p j Q p-j (V k + e -(k+1)e0t Z k+1 ) j -V j k   = p(k+1) j=k+2
e -je0t g j,k , which yields (4.5) for k + 1, and thus completes the proof.

Construction of special solutions

We now prove proposition 4.5, following the same three steps as in [START_REF] Duyckaerts | Threshold solutions for the focusing 3d cubic Schrödinger equation[END_REF]. The main difference comes from step 2, because of the derivative in the error term which forces us to use the sharp smoothing effect developed in [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF]. Let A ∈ R and s 1 integer. Write

U A (t, x + t) = Q(x) + h A (t, x).
First, by a fixed point argument, we construct a solution h A ∈ C 0 ([t k , +∞), H s ) of (4.3) for k and t k large and such that

∀T t k , (h A -V k )(T ) H s e -(k+ 1 2 )e0T . (4.6)
Next, the same arguments like in [START_REF] Duyckaerts | Threshold solutions for the focusing 3d cubic Schrödinger equation[END_REF] show that h A does not depend on s and k. For brevity, we omit the superscript A.

Step 1. Reduction to a fixed point problem. If we set h(t, x) = h(t, x -t), equation ( 4.3) can be written as

∂ t h + ∂ 3 x h = -S( h), S( h) = ∂ ∂x p k=1 p k Q p-k (x -t) hk . (4.7)
Moreover, we have by (4.5),

ε k (t) = ∂ t V k + ∂ 3 x V k -∂ x V k + ∂ x p j=1 p j Q p-j V j k . Now let v(t, x) = (h -V k )(t, x -t)
and subtract the previous equation from (4.7), so that

∂ t v + ∂ 3 x v = -S[v + V k (t, x -t)] + S[V k (t, x -t)] -ε k (t, x -t).
For notation simplicity, we drop the space argument (x -t) for the moment. The equation can then be written as

v(t) = M(v)(t) := +∞ t W (t -t ′ ) [S(V k (t ′ ) + v(t ′ )) -S(V k (t ′ )) + ε k (t ′ )] dt ′ . (4.8) Note that (4.6) is equivalent to v(T ) H s e -(k+ 1 
2 )e0T for T t k . In other words, defining

             N 1 (v) = sup T t k e (k+ 1 2 )e0T v(T ) H s , N 2 (v) = s s ′ =0 sup T t k e (k+ 1 2 )e0T ∂ s ′ v L 5 x L 10 [T ,+∞) , Λ(v) = Λ t k ,k,s (v) = max(N 1 (v), N 2 (v)),
it is enough to show that M is a contraction on B defined by

B = B(t k , k, s) = v ∈ C 0 ([t k , +∞), H s ) | Λ(v) 1 .
Remark 4.7. The choice of the two norms N 1 and N 2 is related to the fact that global well posedness of supercritical (gKdV) with initial data small in H 1 can be proved with the two norms

N 1 (v) = sup t∈R v(t) H 1 and N 2 (v) = v L 5 x L 10 t + ∂ x v L 5 x L 10 t
, following [START_REF] Kenig | On the concentration of blow up solutions for the generalized KdV equation critical in L 2[END_REF]. We could also have used other norms from [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF].

Step 2. Contraction argument. We show that M is a contraction on B for s 1 and k, t k sufficiently large. Throughout this proof, we denote by C a constant depending only on s, and C k a constant depending on s and k. To estimate N 1 (M(v)) and N 2 (M(v)), we have to explicit

S(V k + v) -S(V k ) = ∂ ∂x p i=1 p i Q p-i (V k + v) i -V i k = ∂ ∂x pQ p-1 v + ∂ ∂x p i=2 p i Q p-i v • i l=1 i l V i-l k v l-1 = p ∂I ∂x + α,β,γ C α,β,γ ∂II α,β,γ ∂x where I = Q p-1 v and II α,β,γ = Q α V β k v γ , with: γ 1, β + γ 2, α + β + γ = p 6.
We can now write

∂ s M(v) = p +∞ t W (t -t ′ ) ∂ ∂x [∂ s (I)] dt ′ + α,β,γ C α,β,γ +∞ t W (t -t ′ ) ∂ ∂x [∂ s (II α,β,γ )] dt ′ + +∞ t W (t -t ′ )∂ s ε k (t ′ ) dt ′ .
By (4.1) and (4.2), we obtain

max ∂ s M(v)(T ) L 2 x , ∂ s M(v) L 5 x L 10 [T ,+∞) C ∂ s-1 ε k L 1 x L 2 [T ,+∞) + C ∂ s (I) L 1 x L 2 [T ,+∞) + α,β,γ C α,β,γ ∂ s (II α,β,γ ) L 1 x L 2 [T ,+∞)
. (4.9)

We treat the terms ε k , I, II α,β,γ for α = p -2, β = γ = 1, and for α = β = 0, γ = p. All other terms can be treated similarly: for example, II 0,p-1,1 can be treated like II p-2,1,1 , etc.

For I, since Q and his derivatives have the same decay, it is enough to estimate the term

Ĩ = Q p-1 ∂ s v L 1 x L 2 [T ,+∞) C e -|x-t| ∂ s v L 1 x L 2 [T ,+∞) : Ĩ C e x-t ∂ s v L 1 (-∞,T ] L 2 [T ,+∞) + C e t-x ∂ s v L 1 [T ,+∞) L 2 [T ,x] + C e x-t ∂ s v L 1 [T ,+∞) L 2 [x,+∞) C T -∞ e 2x dx x +∞ T e -2t (∂ s v) 2 dt dx + C +∞ T e -2x dx x +∞ T e 2t (∂ s v) 2 dt dx + C +∞ T e -2x dx +∞ T +∞ x e 4x-2t (∂ s v) 2 dt dx
by the Cauchy-Schwarz inequality. Now, by Fubini's theorem, and since 4x -2t 2t in the last integral, we get

Ĩ Ce T N 1 (v) +∞ T e -(2k+1)e0t-2t dt + 2Ce -T N 1 (v) +∞ T e -(2k+1)e0t+2t dt Ce T N 1 (v) e -(k+ 1 
2 )e0T -T

(2k + 1)e 0 + 2 + 2Ce -T N 1 (v) e -(k+ 1 
2 )e0T +T

(2k + 1)e 0 -2 CN 1 (v) 1 √ k e -(k+ 1 
2 )e0T .

Note that since k will be chosen large at the end of the argument, we can suppose (2k + 1)e 0 > 2.

For II p-2,1,1 , we treat similarly the term

II p-2,1,1 = Q p-2 V k ∂ s v L 1 x L 2 [T ,+∞)
since V k and his derivatives have the same decay. In fact, we have by Hölder inequality

II p-2,1,1 C ∂ s v L 5 x L 10 [T ,+∞) V k L 5/4 x L 5/2 [T ,+∞) CN 2 (v)e -(k+ 1 2 )e0T V k L 5/4 x L 5/2 [T ,+∞)
.

By the definition of V k in proposition 4.6, we have by noting e ′ 0 = 5 2 e 0 and µ ′ = 5 2 µ,

V k 5/4 L 5/4 x L 5/2 [T ,+∞)
C k e -e0t e -µ|x-t| 5/4

L 5/4 x L 5/2 [T ,+∞) C k T -∞ +∞ T e -e ′ 0 t e -µ ′ t e µ ′ x dt dx + C k +∞ T x T
e -e ′ 0 t e µ ′ t e -µ ′ x dt dx

+ C k +∞ T +∞ x e -e ′ 0 t e -µ ′ t e µ ′ x dt dx C k e µ ′ 2 T +∞ T e -(e ′ 0 +µ ′ )t dt + C k e -µ ′ 2 T +∞ T e (µ ′ -e ′ 0 )t dt + C k +∞ T e µ ′ 2 x +∞ x e -(e ′ 0 +µ ′ )t dt dx 3C k e -e ′ 0 2 T
since µ < e 0 by definition of µ.

We finally deduce that V k L 5/4

x L

5/2 [T ,+∞)

C k e -e0T and so

II p-2,1,1 C k N 2 (v)e -(k+ 3 
2 )e0T . For II 0,0,p = v p , first remark that

∂ s (v p ) = p∂ s-1 (∂v • v p-1 ) = p∂ s v • v p-1 + p s-2 k=0 s -1 k ∂ k+1 v • ∂ s-1-k (v p-1 )
where each term of the sum is a product of p terms like ∂ sj v with s j s -1. Since H 1 (R) ֒→ L ∞ (R), we can estimate the first term thanks to Hölder's inequality:

∂ s v • v p-1 L 1 x L 2 [T ,+∞) v p-5 L ∞ [T ,+∞) L ∞ x • ∂ s v L 5 x L 10 [T ,+∞) • v 4 L 5 x L 10 [T ,+∞) Ce -p(k+ 1 2 )e0T N 1 (v) p-5 N 2 (v) 5 .
The other terms in the sum can be treated in the same way, and more simply since we can choose any (p -5) terms to take out in L ∞ [T,+∞) L ∞ x norm, and any 5 others left in L 5

x L 10 [T,+∞) norm. For ε k , we deduce by a similar calculation like above and by the expression of ε k in (4.5) that

∂ s-1 ε k L 1 x L 2 [T ,+∞) C k R +∞ T e -2(k+1)e0t e -2µ|x-t| dt dx C ′ k e -(k+1)e0T .
Summarizing from (4.9), we have shown

max e (k+ 1 2 )e0T M(v)(T ) H s , s s ′ =0 e (k+ 1 2 )e0T ∂ s ′ v L 5 x L 10 [T ,+∞) C k e -e 0 2 T + CN 1 (v) √ k + C k N 2 (v)e -e0T + Ce -(p-1)(k+ 1 2 )e0T N 1 (v) p-5 N 2 (v) 5 .
Since v ∈ B(t k , k, s), i.e. Λ(v) 1, then we have

Λ(M(v)) C k e -e 0 2 t k + C √ k + C k e -e0t k Λ(v) C √ k + C k e -e 0 2 t k . First, choose k so that C √ k 1 2 , then take t k such that C k e -e 0 2 t k 1 2 . Then M maps B = B(t k , k, s) into itself.
It remains to show that M is a contraction on B. If we v, w ∈ B, we have

M(v) -M(w) = +∞ t W (t -t ′ ) S(V k (t ′ ) + v(t ′ )) -S(V k (t ′ ) + w(t ′ )) dt ′ and S(V k + v) -S(V k + w) = ∂ ∂x   p j=1 p j Q p-j (V k + v) j -(V k + w) j   = ∂ ∂x p j=1 p j Q p-j (v -w) j-1 i=1 (V k + v) i (V k + w) j-i = p ∂ ∂x Q p-1 (v -w) + ∂ ∂x (v -w) • α,β,γ,δ C α,β,γ,δ Q α V β k v γ w δ .
Under this form, a similar calculation like above allows us to conclude: the first term is treated like I, and each Q α V β k v γ w δ can be treated like II α,β,γ if we systematically take out the term Λ(v -w) by Hölder's inequality. Hence we get, since there is no term in ε k ,

Λ(M(v) -M(w)) C √ k + C k e -e0t k Λ(v -w).
Choosing if necessary a larger k, then a larger t k , we may assume that

C √ k < 1 2 and C k e -e0t k 1 2
, showing that M is a contraction on B. Hence, step 2 is complete.

Step 3. End of the proof. By the preceding step with s = 1, there exist k 0 and t 0 such that there exists a unique solution U A of (gKdV) satisfying U A ∈ C 0 ([t 0 , +∞), H 1 ) and

Λ t0,k0,1 U A (t, x) -Q(x -t) -V A k0 (t, x -t) 1. (4.10) 
Note that the fixed point argument still holds taking a larger t 0 , and so the uniqueness remains valid, for any t ′ 0 t 0 , in the class of solutions of (gKdV) in C 0 ([t ′ 0 , +∞), H 1 ) satisfying (4.10). Finally, we can show proposition 4.5. Since U A is a solution of (gKdV), it is sufficient to show that U A ∈ C 0 ([t 0 , +∞), H s ) for any s; the smoothness in time will follow from the equation. Let s 1: by step 2, if k s is large enough, there exist t s and

U A ∈ C 0 ([t s , +∞), H s ) such that Λ ts,ks,s U A (t, x) -Q(x -t) -V A ks (t, x -t) 1.
Of course, we may choose k s k 0 + 1. But by construction of V A k in proposition 4.6, we have

V A ks (t, x-t)-V A k0 (t, x-t) = ks j=k0+1 e -je0t Z A j (x-t)
where Z A j ∈ H, and so by similar calculation like in step 2,

Λ ts,k0,s V A ks (t, x -t) -V A k0 (t, x -t)
Ce -e 0 2 ts 1 2 for t s large enough. Moreover, we have by definition of Λ (and since k 0 k s -1) Λ ts,k0,s (u) e -e0ts Λ ts,ks,s (u).

Thus, if we choose t s large enough such that e -e0ts 1 2 , we get by triangle inequality

Λ ts,k0,1 U A (t, x) -Q(x -t) -V A k0 (t, x -t) Λ ts,k0,s U A (t, x) -Q(x -t) -V A k0 (t, x -t) Λ ts,k0,s U A (t, x) -Q(x -t) -V A ks (t, x -t) + Λ ts,k0,s V A ks (t, x -t) -V A k0 (t, x -t) 1.
In particular, U A satisfies (4.10) for large t s . By the uniqueness in the fixed point argument, we have U A = U A , which shows that U A ∈ C 0 ([t s , +∞), H s ). By the persistence of regularity of (gKdV) equation, U A ∈ C 0 ([t 0 , +∞), H s ), where s 1. In particular, by compactness on [t 0 , t s ], there exists C = C(s) such that

∀t t 0 , U A (t, x) -Q(x -t) -V A k0 (t, x -t) H s Ce -(k0+ 1 
2 )e0t

and so (4.4) follows, which achieves the proof of proposition 4.5.

Uniqueness

Now, the special solution U A being constructed, we prove its uniqueness, in the sense of the following proposition, which implies the second part of theorem 1.1.

Proposition 4.8. Let u be a solution of (gKdV) such that

inf y∈R u(t) -Q(• -y) H 1 ----→ t→+∞ 0. ( 4 

.11)

Then there exist A ∈ R, t 0 ∈ R and x 0 ∈ R such that u(t) = U A (t, • -x 0 ) for all t t 0 , where U A is the solution of (gKdV) defined in proposition 4.5.

The proof of proposition 4.8 proceeds in four steps: first we improve condition (4.11) into an exponential convergence and we control the translation parameter, then we improve the exponential convergence up to any order, and finally we adapt step 3 of [START_REF] Duyckaerts | Threshold solutions for the focusing 3d cubic Schrödinger equation[END_REF] to (gKdV) to conclude the proof. A crucial argument for the first and third steps is the coercivity of (L•, •) under orthogonality to eigenfunctions of the adjoint of L, proved in [START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF].

Adjoint of L

We recall that L is defined by La = -∂ 2

x a + a -pQ p-1 a and L by L = -∂ x L. In particular, the adjoint of L is L∂ x . Moreover L has two eigenfunctions Y ± , with LY ± = ±e 0 Y ± where e 0 > 0. Lemma 4.9. Let Z ± = LY ± . Then the following properties hold:

(i) Z ± are two eigenfunctions of L∂ x : L(∂ x Z ± ) = ∓e 0 Z ± . (ii) (Y + , Z + ) = (Y -, Z -) = 0 and (Z + , Q ′ ) = (Z -, Q ′ ) = 0. (iii) There exists σ 1 > 0 such that, for all v ∈ H 1 such that (v, Z + ) = (v, Z -) = (v, Q ′ ) = 0, (Lv, v) σ 1 v 2 H 1 . (iv) One has (Y + , Z -) = 0 and (Q ′ , Y ′ + ) = 0.
Hence one can normalize Y ± and Z ± to have

(Y + , Z -) = (Y -, Z + ) = 1, (Q ′ , Y ′ + ) > 0 and still LY ± = Z ± .
(v) There exist σ 2 > 0 and C > 0 such that for all v ∈ H 1 ,

(Lv, v) σ 2 v 2 H 1 -C(v, Z + ) 2 -C(v, Z -) 2 -C(v, Q ′ ) 2 . (4.12) Proof. (i) It suffices to apply L to the equality -∂ x (LY ± ) = ±e 0 Y ± . (ii) We have (Y ± , Z ± ) = ∓ 1 e0 (∂ x (LY ± ), LY ± ) = 0 and (Z ± , Q ′ ) = (LY ± , Q ′ ) = (Y ± , LQ ′ ) = 0 since LQ ′ = 0 and L is self-adjoint.
(iii) This fact is assertion [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF] proved in [START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF].

(iv) If we had (Y + , Z -) = (Z + , Y -) = 0, then by (ii) we would have in fact (Y + +Y -)⊥Z + , Z -, Q ′ since Q ′ is odd and Y + +Y -is even, and so by (iii): Similarly, if we had (Q ′ , Y ′ + ) = 0, we would have (Q ′′ , Y + ) = 0. Moreover we have (Q, Y + ) = -1 e0 (Q, (LY + ) ′ ) = 1 e0 (LQ ′ , Y + ) = 0, and so we would have

(L(Y + +Y -), Y + +Y -) σ 1 Y + + Y - 2 H 1 . But (L(Y + +Y -), Y + +Y -) = (LY + , Y + )+(LY -, Y -)+2(LY + , Y -) = (Z + , Y + )+(Z -, Y -)+ 2(Z + , Y -) = 0,
(Q, Z + ) = (Q, LY + ) = (LQ, Y + ) = (-Q ′′ + Q -pQ p , Y + ) = -p(Q -Q ′′ , Y + ) = 0.
But we would also have (Q, Z -) = 0 since Q is even and

Z -= Ž+ . Since (Q, Q ′ ) = 0, we would finally have (LQ, Q) σ 1 Q 2 H 1 by (iii)
. But a straightforward calculation gives (LQ, Q) = (1 -p) Q p+1 < 0, and so a contradiction.

Finally, if we note η = (Y + , Z -) = 0, then the normalization

Y -= 1 η Y -, Z -= 1 η Z -= L Y - satisfies the required properties if (Q ′ , Y ′ + ) > 0.
Otherwise, it suffices to change Y ± and Z ± in -Y ± and -Z ± respectively.

(v) Let v ∈ H 1 , and decompose it as

v = αY + + βY -+ γQ ′ + v ⊥ with α = (v, Z -), β = (v, Z + ), γ = Q ′ -2 L 2 [(v, Q ′ ) -α(Y + , Q ′ ) -β(Y -, Q ′ )
] and v ⊥ orthogonal to Z + , Z -, Q ′ by the previous normalization. We have by straightforward calculation (Lv, v) = (Lv ⊥ , v ⊥ ) + 2αβ, and (Lv ⊥ , v ⊥ )

σ 1 v ⊥ 2 H 1 by (iii), so we have (Lv, v) σ 1 v ⊥ 2 H 1 -α 2 -β 2 .
Finally, we have by the previous decomposition of v that

v 2 H 1 C(α 2 + β 2 + γ 2 + v ⊥ 2 H 1 ) C ′ (α 2 + β 2 + (v, Q ′ ) 2 + v ⊥ 2 H 1 )
and so (Lv, v) σ 1

v 2 H 1 C ′ -α 2 -β 2 -(v, Q ′ ) 2 -α 2 -β 2 , as desired.

Step 1: Improvement of the decay at infinity

We begin the proof of proposition 4.8 here: let u be a solution of (gKdV) verifying (4.11).

• By lemma 2.10, we can write ε(t, x) = u(t, x + x(t)) -Q(x) for t t 0 with t 0 large enough, where ε verifies ε(t) H 1 -→ 0 and ε(t)⊥Q ′ for all t t 0 . We recall that we have by proposition 2.15:

ε t -(Lε) x = (x ′ -1)(Q + ε) x + R(ε) (4.13)
where R(ε)

L 1 C ε 2 H 1 and |x ′ -1| C ε H 1 . • Now consider α + (t) = Z + ε(t), α -(t) = Z -ε(t)
where Z ± are defined in lemma 4.9. Since ε(t) H 1 -→ 0, we have of course α ± (t) -→ 0.

The two remaining points will be to show that α ± (t) control ε(t) H 1 , and have exponential decay at infinity.

• First, we recall the linearization of Weinstein's functional (lemma 2.4):

F (Q + ε) = F (Q) + 1 2 (Lε, ε) + K(ε)
where

|K(ε)| C ε 3 H 1 . But F (Q + ε) -F (Q)
is a constant which tends to 0 at infinity in time, and so is null, hence we get |(Lε, ε)| C ε 3 H 1 . We now use (4.12), which gives since (ε,

Q ′ ) = 0: (Lε, ε) σ 2 ε(t) 2 H 1 -Cα 2 + (t) -Cα 2 -(t) and so σ 2 ε(t) 2 H 1 -Cα 2 + (t) -Cα 2 -(t) -C ′ ε(t) 3 H 1
0. For t 0 chosen possibly larger, we conclude that ε(t)

2 H 1 C(α 2 + (t) + α 2 -(t)).
• We have now to obtain exponential decay of α ± to conclude the first step. If we multiply (4.13) by Z + and integrate, we obtain

α ′ + (t) -e 0 α + (t) = (x ′ -1) (Q + ε) x Z + + R(ε)Z + = (x ′ -1) ε x Z + + R(ε)Z +
by integrating by parts and using (i) and (ii) of lemma 4.9. By the controls of |x ′ -1| and R(ε), we get

|α ′ + -e 0 α + | C ε 2 H 1 C(α 2 + + α 2 -)
. Doing similarly with Z -, we have finally the differential system

|α ′ + -e 0 α + | C(α 2 + + α 2 -), |α ′ -+ e 0 α -| C(α 2 + + α 2 -). (4.14) (4.15) • Now define h(t) = α + (t) -M α 2 -(t)
where M is a large constant to define later. Multiplying (4.15) by |α -| (which can of course be taken less than 1), we get

h ′ (t) = α ′ + (t) -2M α -(t)α ′ -(t) e 0 α + -C(α 2 + + α 2 -) + 2M e 0 α 2 --2CM |α -|(α 2 + + α 2 -) e 0 h + 3M e 0 α 2 --2Ch 2 -2CM 2 α 4 --C * α 2 --4CM h 2 -4CM 3 |α -| 5 -2CM |α -| 3 since α 2 + = h + M α 2 - 2 2(h 2 + M 2 α 4 -). We now fix M = C * e0 , so that h ′ e 0 h -2Ch 2 -4CM h 2 + α 2 -2M e 0 -2CM 2 α 2 --4CM 3 |α -| 3 -2CM |α -| .
Then for t large enough, the expression in parenthesis is positive, and so

h ′ e 0 h -c M h 2 .
Now take t 0 large enough such that for t t 0 , we have c M h 2 e0 2 |h|, and suppose for the sake of contradiction that there exists t 1 t 0 such that h(t 1 ) > 0. Define T = sup{t t 1 | h(t) > 0} and suppose that T < +∞: since h ′ (t) e 0 h(t) -|h(t)| 2 for all t t 0 and of course h(T ) = 0, we would have in particular h ′ (T ) 0, so h increasing near T , and so h(t) 0 for t ∈ [T -ε, T ], which would be in contradiction with the definition of T . Hence we have T = +∞, and so h(t) > 0 for all t t 1 . Consequently, we would have h ′ (t) e0 2 h(t) for all t t 1 , and so h(t) Ce e 0 2 t , which would be a contradiction with lim t→+∞ h(t) = 0. Therefore we have h(t) 0 for all t t 0 . Since -α + satisfies the same differential system, we obtain by the same technique:

∀t t 0 , |α + (t)| M α 2 -(t).
• 

(t) -1| C ε(t) H 1 Ce -e0t , then ∃ lim t→+∞ x(t) -t =: x 0 ∈ R with |x(t) -t -x 0 | Ce -e0t .
• Now consider the special solution U A constructed in proposition 4.5, defined for a t 0 chosen possibly larger, and still write U A (t,

x + t) = Q(x) + h A (t, x). Let v(t, x) = u(t, x + t + x 0 ) -Q(x) -h A (t, x) = u(t, x + t + x 0 ) -U A (t, x + t).
So we want to prove v = 0 to complete the proof of proposition 4.8. We first give estimates on v using the previous estimates on ε.

• Since v(t, x) = ε(t, x -(x(t) -t -x 0 )) -h A (t, x) + Q(x -(x(t) -t -x 0 )) -Q(x)
, then we simply obtain exponential decay for v for t 0 large enough, by lemma 2.11 and exponential decay of h A :

v(t) H 1 ε(t) H 1 + h A (t) H 1 + Q -Q(• -(x(t) -t -x 0 )) H 1 Ce -e0t + C|x(t) -t -x 0 | Ce -e0t .
• Moreover, we can write

u(t, x) = Q(x -x(t)) + ε(t, x -x(t)) = Q(x -t -x 0 ) + h A (t, x -t -x 0 ) + v(t, x -t -x 0 ). If we denote ω(t, x) = Q(x-(x(t)-t-x 0 ))-Q(x)-(x(t)-t-x 0 )Q ′ (x), we have ω(t) L ∞ C(x(t) -t -x 0 ) 2 
Ce -2e0t by Taylor-Lagrange inequality, and

v(t, x) = (x(t) -t -x 0 )Q ′ (x) -h A (t, x) + ε(t, x -(x(t) -t -x 0 )) + ω(t, x).
Moreover, we have for all x ∈ R and t t 0 :

|ε(t, x -(x(t) -t -x 0 )) -ε(t, x)| = x-(x(t)-t-x0) x ∂ x ε(t, s) ds |x(t) -t -x 0 | • ε(t) H 1 Ce -3 2 e0t
by the Cauchy-Schwarz inequality. We have finally

v(t, x) = (x(t) -t -x 0 )Q ′ (x) -h A (t, x) + ε(t, x) + ω(t, x) (4.17) 
where ω verifies ω(t) L ∞ Ce -3 2 e0t .

• Following the proof (v) in lemma 4.9, we now decompose

v(t, x) = α A + (t)Y -(x) + α A -(t)Y + (x) + β(t)Q ′ (x) + v ⊥ (t, x) (4.18) 
with

α A + (t) = Z + v(t), α A -(t) = Z -v(t), β(t) = Q ′ -2 L 2 v(t) -α A + (t)Y --α A -(t)Y + Q ′ .
Hence we have (v ⊥ , Q ′ ) = (v ⊥ , Z + ) = (v ⊥ , Z -) = 0, and so by (iii) of lemma 4.9:

(Lv ⊥ , v ⊥ ) σ 1 v ⊥ 2 H 1 . (4.19) 
• Multiplying (4.17) by Z ± , we obtain information on α A ± . Indeed, since (Z ± , Q ′ ) = 0, then we have

α A ± = -(h A , Z ± ) + α ± + (ω, Z ± ). But |(h A , Z + )| Ce -2e0t since (Y + , Z + ) = 0, and |α + | Ce -2e0t by (4.16), hence |α A + | Ce -3 2 e0t . Similarly, (Y + , Z -) = 1 implies that |(h A , Z -) -Ae -e0t | Ce -2e0t
, and since |α --Ae -e0t | Ce -2e0t , we also get |α A -| Ce -3 2 e0t . To sum up this step, we have (4.18) with the following estimates for t t 0 :

|α A + (t)| Ce -3 2 e0t , |α A -(t)| Ce -3 2 e0t , v(t) H 1 Ce -e0t . (4.20) 
In (4.20), it is essential to have obtained estimates better than Ce -e0t for α A ± (see next step).

Step 3: Exponential decay at any order

• We want to prove in this section that v decays exponentially at any order to 0. In other words, we prove:

∀γ > 0, ∃C γ > 0, ∀t t 0 , v(t) H 1 C γ e -γt . (4.21) 
It has been proved for γ = e 0 , so that it is enough to prove it by induction on γ e 0 : suppose that v(t) H 1 Ce -γt and let us prove that it implies v(t) H 1 C ′ e -(γ+ 1 2 e0)t .

• Since u and U A are solutions of (gKdV), v verifies the following equation:

∂ t v -∂ x v + ∂ 3 x v + ∂ x Q + h A + v p -Q + h A p = 0. (4.22) But Q + h A + v p -Q + h A p = p Q + h A p-1 v + p k=2 p k Q + h A p-k v k = pQ p-1 v + ω 1 (t, x)v + ω 2 (t, x)v 2
where ω

1 (t, x) = p p-1 k=1 p-1 k Q p-1-k h A k and ω 2 (t, x) = p k=2 p k Q + h A p-k v k-2 . Since h A (t) L ∞ C h A (t) H 1 Ce -e0t and v(t) L ∞ C v(t) H 1 C, we have the estimates ω 1 (t) L ∞ Ce -e0t , ω 2 (t) L ∞ C, (4.23) 
and (4.22) can be rewritten • We now want to estimate |(Lv, v)|. To do this, we rewrite (4.22) as

∂ t v + Lv + ∂ x [ω 1 (t, x)v] + ∂ x [ω 2 (t, x)v 2 ] = 0. ( 4 
A + ′ -e 0 α A + = ω 1 vZ ′ + + ω 2 v 2 Z ′ + ,

and so |α

A + ′ -e 0 α A + | ω 1 (t) L ∞ v(t) L ∞ Z ′ + L 1 + ω 2 (t) L ∞ v(t) 2 L ∞ Z ′ + L 1 Ce -(γ+e0)t + Ce -2γt Ce -(γ+e0)t . Consequently, we have |(e -e0t α A + ) ′ | Ce -(γ+2e0)t ,
∂ t v + ∂ x ∂ 2 x v -v + Q + h A + v p -Q + h A p = 0,
multiply this equality by the expression in the brackets and integrate, to obtain

∂ t v • ∂ 2 x v -v + Q + h A + v p -Q + h A p = 0.
In other words, if we define

F (t) = 1 2 v 2 x + 1 2 v 2 - 1 p + 1 Q + h A + v p+1 + v h A + Q p + 1 p + 1 h A + Q p+1 ,
we have:

F ′ (t) = -∂ t h A • Q + h A + v p -Q + h A p -pv Q + h A p-1 . But h A verifies (4.3) by definition, so ∂ t h A = -∂ 3 x h A + ∂ x h A -p∂ x (Q p-1 h A ) + R(h A
). Moreover, by proposition 4.5, there exists C > 0 such that for all t t 0 , we have h A (t) H 4 Ce -e0t . We deduce that

∂ t h A ∞ C ∂ t h A H 1 C h A (t) H 4 Ce -e0t . Therefore |F ′ (t)| C ∂ t h A ∞ v(t) 2 L 2 
Ce -(2γ+e0)t , and so |F (t)| Ce -(2γ+e0)t by integration, since lim t→+∞ F (t) = 0. Moreover, by developing Q + h A + v p+1 in the expression of F , we get

F (t) = 1 2 v 2 x + 1 2 v 2 - p 2 Q + h A p-1 v 2 - 1 p + 1 p+1 k=3 p + 1 k Q + h A p+1-k v k = 1 2 (Lv, v) - 1 2 ω 1 (t, x)v 2 -ω 2 (t, x)v 3
where ω 1 defined above and ω

2 (t, x) = 1 p+1 p+1 k=3 p+1 k Q + h A p+1-k v k-3 verify the esti- mates ω 1 (t) L ∞ Ce -e0t and ω 2 (t) L ∞ C. Hence we have F (t) - 1 2 (Lv, v) 1 2 ω 1 (t) L ∞ v(t) 2 L 2 + ω 2 (t) L ∞ v(t) 3 H 1 Ce -(2γ+e0)t + Ce -3γt Ce -(2γ+e0)t .
Thus, we finally obtain |(Lv, v)| Ce -(2γ+e0)t .

• The previous points allow us to estimate v ⊥ H 1 . Indeed, we have by straightforward calculation from (4.18) the identity

(Lv, v) = (Lv ⊥ , v ⊥ ) + 2α A + α A -,
and so

|(Lv ⊥ , v ⊥ )| |(Lv, v)| + 2|α A + | • |α A -| Ce -(2γ+e0)t + Ce -(2γ+2e0)t Ce -(2γ+e0)t . But from (4.19), we deduce that σ 1 v ⊥ 2 H 1
Ce -(2γ+e0)t , and so v ⊥ H 1 Ce -(γ+ 1 2 e0)t .

• To conclude this step, it is now enough to estimate |β(t)|, since the conclusion will then immediately follow from decomposition (4.18). To do this, we first multiply (4.24) by Q ′ and integrate, so that

|(∂ t v, Q ′ ) + (Lv, Q ′ )| ω 1 (t) L ∞ v(t) L ∞ Q ′′ L 1 + ω 2 (t) L ∞ v(t) 2 L ∞ Q ′′ L 1 Ce -(γ+e0)t + Ce -2γt Ce -(γ+e0)t .
Moreover, by applying L to (4.18), we get Lv = -e 0 α A + Y -+ e 0 α A -Y + + Lv ⊥ , and so

Q ′ 2 L 2 β ′ (t) = (∂ t v -α A + ′ Y --α A - ′ Y + , Q ′ ) = (∂ t v + Lv, Q ′ ) -(-e 0 α A + Y -+ e 0 α A -Y + + α A + ′ Y -+ α A - ′ Y + , Q ′ ) -(Lv ⊥ , Q ′ ) = (∂ t v + Lv, Q ′ ) -(α A + ′ -e 0 α A + )(Y -, Q ′ ) -(α A - ′ + e 0 α A -)(Y + , Q ′ ) + (v ⊥ , LQ ′′ ).
Finally, we obtain thanks to all previous estimates:

|β ′ (t)| C|(∂ t v + Lv, Q ′ )| + C|α A + ′ -e 0 α A + | + C|α A - ′ + e 0 α A -| + C v ⊥ L 2 Ce -(γ+e0)t + Ce -(γ+e0)t + Ce -(γ+e0)t + Ce -(γ+ 1 2 e0)t Ce -(γ+ 1 2 e0)t
and so |β(t)| Ce -(γ+ 1 2 e0)t by integration.

Step 4: Conclusion of uniqueness argument by contraction

• The final argument, which corresponds to step 3 in [START_REF] Duyckaerts | Threshold solutions for the focusing 3d cubic Schrödinger equation[END_REF], is an argument of contraction in short time. In other words, we want to reproduce the contraction argument developed in section 4.3.2 on a short interval of time, with suitable norms.

Define w(t, x) = v(t, x -t), so that (4.22) can be rewritten

∂ t w + ∂ 3 x w = -∂ x Q(x -t) + h A (t, x -t) + w p -Q(x -t) + h A (t, x -t) p . If we denote Ω w (t, x) = p k=1 p k Q(x -t) + h A (t, x -t) p-k w k (t, x)
, then the equation on w can be rewritten

∂ t w + ∂ 3 x w = -∂ x (Ω w )
. Moreover, we have by previous steps: ∀γ > 0, ∃C γ > 0, ∀t t 0 , w(t) H 1 C γ e -γt .

• Now let t 1 t 0 , τ > 0 to fix later, and I = (t 1 , t 1 + τ ). Moreover, consider the non-linear equation in w:

∂ t w + ∂ 3 x w = -∂ x (Ω w ), w(t 1 + τ ) = w(t 1 + τ ). (4.25)
Note that w is of course a solution of (4.25), associated to a solution u of (gKdV) in the sense of [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF].

• Then for t ∈ I, we have the following Duhamel's formula:

w(t) = M I ( w)(t) := W (t -t 1 -τ )w(t 1 + τ ) + t1+τ t W (t -t ′ )∂ x [Ω w(t ′ )] dt ′ .
Similarly as in section 4.3.2, we consider

   N I 1 ( w) = sup t∈I w(t) H 1 , N I 2 ( w) = w L 5 x L 10 I + ∂ x w L 5 x L 10 I , Λ I ( w) = max(N I 1 ( w), N I 2 ( w)),
and we prove that for t 1 large enough, τ small enough independently of t 1 , and K > 1 to determine, w → M I ( w) is a contraction on

B = { w ∈ C 0 (I, H 1 ) | Λ I ( w) 3K w(t 1 + τ ) H 1 }.
In other words, we want to estimate Λ I (M I ( w)) in terms of Λ I ( w), and as in section 4.3.2, we estimate only the term

∂ x M I ( w)(t) = W (t -t 1 -τ )∂ x w(t 1 + τ ) + ∂ ∂x t1+τ t W (t -t ′ )∂ x [Ω w (t ′ )] dt ′ in L ∞ I L 2
x and L 5 x L 10 I norms. The term M I ( w)(t) is treated similarly. • Firstly, for the linear term, we have

W (t -t 1 -τ )∂ x w(t 1 + τ ) L 2 = ∂ x w(t 1 + τ ) L 2 w(t 1 + τ ) H 1 , W (t -t 1 -τ )∂ x w(t 1 + τ ) L 5 x L 10 I C ∂ x w(t 1 + τ ) L 2 C w(t 1 + τ ) H 1 ,
since W is unitary on L 2 and by the linear estimate (2.3) of [START_REF] Kenig | On the concentration of blow up solutions for the generalized KdV equation critical in L 2[END_REF]:

W (t)u 0 L 5 x L 10 t C u 0 L 2 .
• For the non linear term, we have to use estimates similar to (4.1) and (4.2). We obtain easily by a similar proof that for all g ∈ L 1

x L 2 I , ∂ ∂x t1+τ t W (t -t ′ )g(x, t ′ ) dt ′ L ∞ I L 2 x + ∂ ∂x t1+τ t W (t -t ′ )g(x, t ′ ) dt ′ L 5 x L 10 I C g L 1 x L 2 I . Hence we get      ∂ ∂x t1+τ t W (t -t ′ )∂ x [Ω w (t ′ )] dt ′ L ∞ I L 2 x C ∂ x (Ω w ) L 1 x L 2 I , ∂ ∂x t1+τ t W (t -t ′ )∂ x [Ω w (t ′ )] dt ′ L 5 x L 10 I C ∂ x (Ω w ) L 1 x L 2 I .
We deduce that we only have to estimate ∂ x (Ω w ) L 1

x L 2

I

. There are many terms to estimate, so as in section 4.3.2, we only treat three typical terms:

A = ∂ x w • w 4 • w p-5 L 1 x L 2 I , B = ∂ x w • h A p-1 (t, x -t) L 1 x L 2 I , D = ∂ x w • Q p-1 (x -t) L 1 x L 2 I .
For A, we have by Hölder's inequality: Ce -e0t1 since p -5 1.

A w p-5 L ∞ I L ∞
For B, we write similarly

B h A p-5 L ∞ I L ∞ x ∂ x w L 5
x L 10 I h A (t, x -t) Ce -(k0+ 1 2 )e0t1 + Ce -e0t1 Ce -e0t1 .

Note that the estimate V A k0 (t, x -t) L 5

x L 10 We conclude that M I maps B into itself for this choice of t 1 , τ, K. We prove similarly that M I is a contraction on B, and so there exists a unique solution w ∈ B of (4.25).

• Now we identify w and w. It is well known for (gKdV) that for regular solutions (H 2 ), uniqueness holds by energy method. Since w and w are both obtained by fixed point, we get w = w by continuous dependence, persistence of regularity and density. In particular, w ∈ B, and so w(t 1 ) H 1 N I 1 (w) Λ I (w) 3K w(t 1 + τ ) H 1 . To conclude the proof, we fix t t 1 , and we remark that a simple iteration argument and the exponential decay at any order of w show that for all n ∈ N, we have w(t) H 1 (3K)

n w(t + nτ ) H 1 C γ (3K) n e -γt e -γnτ = C γ e -γt 3Ke -γτ n .

We finally choose γ large enough so that 3Ke -γτ 1 2 . Thus,

w(t) H 1 C 2 n -----→ n→+∞ 0,
i.e. w(t) H 1 = 0. This finishes the proof of proposition 4.8.

Corollaries and remarks

Corollary 4.11. Let c > 0.

1. There exists a one-parameter family (U A c ) A∈R of solutions of (gKdV) such that ∀A ∈ R, ∃t 0 ∈ R, ∀s ∈ R, ∃C > 0, ∀t t 0 , U A c (t, • + ct) -Q c H s Ce -e0c 3/2 t .

2. If u c is a solution of (gKdV) such that lim t→+∞ inf y∈R u c (t) -Q c (• -y) H 1 = 0, then there exist A ∈ R, t 0 ∈ R and x 0 ∈ R such that u c (t) = U A c (t, • -x 0 ) for t t 0 .

Proof. The proof, based on the scaling invariance, is very similar to the proof of corollary 3.14. We recall that if u(t, x) is a solution of (gKdV), then λ 2 p-1 u(λ 3 t, λx) with λ > 0 is also a solution.

1. We define U A c by U A c (t, x) = c 2. Let u be the solution of (gKdV) defined by u(t, x) = c -1 p-1 u c t c 3/2 , x √ c . Then we have

u(t, x) -Q(x -y) = c -1 p-1 u c t c 3/2 , x √ c -c -1 p-1 Q c x -y √ c
for all y ∈ R, and so like in the proof of corollary 3.14,

inf y∈R u(t) -Q(• -y) H 1 K(c) inf y∈R u c t c 3/2 -Q c • - y √ c H 1 ----→ t→+∞ 0.
Therefore by theorem 1.1, there exist A ∈ R and x 0 ∈ R such that u(t, x) = U A (t, x -x 0 ), and so finally u c (t, x) = U A c t, x -x0 √ c .

Proposition 4.12. Up to translations in time and in space, there are only three special solutions: U 1 , U -1 and Q. More precisely, one has (for t large enough in each case):

(a) If A > 0, then U A (t) = U 1 (t + t A , • + t A ) for some t A ∈ R.

(b) If A = 0, then U 0 (t) = Q(• -t).

(c) If A < 0, then U A (t) = U -1 (t + t A , • + t A ) for some t A ∈ R.

Proof. (a) Let A > 0 and denote t A = -ln A e0 . Then by proposition 4.5, U 1 (t+t A , x+t+t A ) = Q(x)+e -e0(t+tA) Y + (x)+O(e -2e0t ) = Q(x)+Ae -e0t Y + (x)+O(e -2e0t ).

In particular, we have lim t→+∞ inf y∈R U 1 (t + t A ) -Q(• -y) H 1 = 0, and so by proposition 4.8, there exist A ∈ R and x 0 ∈ R such that U 1 (t+t A ) = U e A (t, •-x 0 ). But still by proposition 4.5, we have U 1 (t + t A , x + t + t A ) = U e A (t, x + t + t A -x 0 ) = Q(x + t A -x 0 ) + Ae -e0t Y + (x + t A -x 0 ) + O(e -2e0t ), and so

Q(x + t A -x 0 ) + Ae -e0t Y + (x + t A -x 0 ) + O(e -2e0t ) = Q(x) + Ae -e0t Y + (x) + O(e -2e0t ).
The first order imposes x 0 = t A , since

Q -Q(• + t A -x 0 ) H 1
Ce -e0t and so lemma 2.11 applies for t large. Similarly, the second order imposes A = A, as expected.

(b) Since inf y∈R Q(• -t) -Q(• -y) H 1 = 0, then proposition 4.8 applies, so there exist A ∈ R and x 0 ∈ R such that Q(x -t) = U A (t, x -x 0 ). Hence we have by proposition 4.5

U A (t, x + t) = Q(x -x 0 ) = Q(x) + Ae e0t Y + (x) + O(e -2e0t ).
As in the previous case, it follows first that x 0 = 0, then A = 0, and so the result.

(c) For A < 0, the proof is exactly the same as A > 0, with -A instead of A.

We conclude this paper by two remarks, based on the following claim. The first one is the fact that U -1 (t) is defined for all t ∈ R, and the second one is the identification of the special solution w(t) constructed in section 3 among the family (U A ) constructed in section 4. • From corollary 4.11, we have

∂ x U A c (t, x + ct) = Q ′ c (x) + Ac p+1 
2(p-1) e -e0c 3/2 t Y ′ + ( √ cx) + O(e -2e0c 3/2 t ) and so

∂ x U A c (t) 2 L 2 -Q ′ c 2 L 2 = 2Ac p+1 2(p-1) e -e0c 3/2 t Q ′ c (x)Y ′ + ( √ cx) dx + O(e -2e0c 3/2 t ). But Q ′ c (x)Y ′ + ( √ cx) dx = c 1 p-1 Q ′ (y)Y ′
+ (y) dy > 0 by the substitution y = √ cx and the normalization chosen in lemma 4.9, and so

∂ x U A c (t) 2 L 2 -Q ′ c 2
L 2 has the sign of A for t large enough.

• It remains to show that this fact holds as long as U A c (t) exists. For example, suppose that A > 0 and so

∂ x U A c (t) 2 L 2 -Q ′ c 2
L 2 > 0 for t t 1 , and suppose for the sake of contradiction that there exists T < t 1 such that U A (T ) is defined and 

∂ x U A c (T ) 2 L 2 = Q ′ c 2 L 2 . Since U A c (t, • + ct) -Q c H 1 -→ 0,
U A (T ) L 2 = Q L 2 , ∂ x U A (T ) L 2 = Q ′ L 2 and E(U A (T )) = E(Q).
But the two last identities give in particular U A (T ) p+1 = Q p+1 , and so by (1.4)

U A (T ) p+1 L p+1 Q p+1 L p+1 = C GN (p) Q ′ p-1 2 L 2 Q p+3 2 L 2 = C GN (p) ∂ x U A (T ) p-1 2 L 2 U A (T ) p+3 2 L 2 .

p+1 2 ,

 2 we write ε = ε 1 + aQ p+1 2

2 p- 1 c

 1 w(λ 3 c t, λ c x) with λ c = c c+, where w and c + are defined above. Since Q c

  and so we would get Y + + Y -H 1 = 0, i.e. Y + = -Y -, which is a contradiction with the independence of the family (Y + , Y -).

  and since e -e0t α A + (t) ----→ t→+∞ 0 by (4.20), we get by integration |α A + (t)| Ce -(γ+e0)t . Multiplying (4.24) by Z -, we obtain similarly |α A -′ + e 0 α A -| Ce -(γ+e0)t , and so |α A -(t)| Ce -(γ+e0)t , since |e e0t α A -(t)| Ce -1 2 e0t ----→ t→+∞ 0 still by (4.20).

x ∂ x w L 5 x L 10 I w 4 L 5 x L 10 I 5 C 1 for t 1

 510410511 Ce -e0t1 N I 2 ( w) ′ e -e0t1 N I 2 ( w).Indeed, we have Λ I ( w) 3K w(t 1 + τ ) H 1 Ce -e0t1 large enough, by exponential decay of w in H 1 . In particular, we have N I 2 ( w) 1 and w

[t 1 e 2 + D 3 .D 1 D 2 •Now fix τ = 1 9C 2 2 K 2 and t 1 such that C 1 e -e0t1 1 3K 3 Λ

 123121213 ,+∞)Ce -e0t1 follows from the paragraph onII p-2,1,1 in section 4.3.2.For D, we use exponential decay of Q to writeD C R I e -2|x-t| (∂ x w) 2t (∂ x w) 2 dtdx + C I I (∂ x w) 2 dtdx = D 1 + DBut by the Cauchy-Schwarz inequality, we get                       Ce Ce -(t1+τ ) I e 2t R (∂ x w) 2 dx dt Ce -(t1+τ ) N I 1 ( w) 2 dx dt Cτ N I 1 ( w).Hence we obtain D C √ τ N I 1 ( w). In conclusion, we have shown that there existK, C 1 , C 2 > 0 such that Λ I (M I ( w)) K w(t 1 + τ ) H 1 + C 1 e -e0t1 Λ I ( w) + C 2 √ τ Λ I ( w). , thus we get Λ I (M I ( w)) K w(t 1 + τ ) H 1 + 2 I ( w).

1 p- 1 U

 11 A (c 3/2 t, √ cx), where U A is defined in theorem 1.1. Since U A (c 3/2 t, √ cx + c 3/2 t) = Q( √ cx) + Ae -e0c 3/2 t Y + ( √ cx) + O(e -2e0c 3/2 t ) and Q c (x) = c 1 p-1 Q( √ cx), then U A c satisfies U A c (t, x + ct) = Q c (x) + Ac 1 p-1 e -e0c3/2 t Y + ( √ cx) + O(e -2e0c 3/2 t ).

Claim 4 . 13 . 2 L 2 -Q ′ c 2 L 2

 4132222 For all c > 0, ∂ x U A c (t) has the sign of A as long as U A c (t) exists. Proof.

  then by(1.1) and (1.2), we also haveU A c (T ) L 2 = Q c L 2 and E(U A c (T )) = E(Q c ).In other words, we would get by scaling

  we deduce by lemma 3.10 that

	x<-x0-1+xw(t)	(w 2 nx + w 2

n )(t, x) dx Ce -x0/4 . But w n (t) ⇀ w(t) in H 1 , so w n (t) ⇀ w(t) and w nx (t) ⇀ w x (t) in L 2 . Moreover, since ψ = ½ (-∞,-x0-1+xw(t)) ∈ L ∞ , then w n (t)ψ ⇀ w(t)ψ and w nx (t)ψ ⇀ w x (t)ψ in L 2 , thus by weak convergence x<-x0-1+xw(t) w 2 (t, x) dx

Ce -x0/4 and the same inequality for w x , so the result follows by sum.

  large enough. In other words, we have |(e e0t α -(t)) ′ | e0 10 |e e0t α -(t)|, and so by integration: |α -(t)| Ce -9 10 e0t . By a bootstrap argument we get |α ′ -(t) + e 0 α -(t)| Ce -9 10 e0t |α -(t)|, and so still by integration, we get |e e0t α -(t)| C for all t t 0 , i.e. |α -(t)| Ce -e0t . By the previous point, we also obtain Lemma 4.10. If u is a solution of (gKdV) which verifies inf y∈R u(t) -Q(• -y) H 1 ----→

	Reporting this estimate in (4.15), we obtain
		|α ′ -(t) + e 0 α -(t)| Cα 2 -(t)	e 0 10	|α -(t)|
	for t |α + (t)| Ce -2e0t	(4.16)
	and finally ε(t) 2 H 1	C(α 2 + (t) + α 2 -(t)) Ce -2e0t .
	For clarity, we summarize the results obtained so far.
				t→+∞	0,
	then there exist a C 1 map x : t ∈ R → x(t) ∈ R, t 0 ∈ R and C > 0 such that
		∀t t 0 ,	u(t, • + x(t)) -Q H 1 Ce -e0t .
	4.4.3 Step 2: Removing modulation
	• From the previous point, we have in fact |(e e0t α -(t)) ′ | there exists	Ce -e0t ∈ L 1 ([t 0 , +∞)), and so
			lim t→+∞	e e0t α -(t) =: A ∈ R
	with |e e0t α -(t) -A|	Ce -e0t for t	t 0 by integration. Similarly, since |x ′

  Moreover, we have by construction of hA (see section 4.3.2), h A p-5Ce -e0t1 since h A (t) H 1 Ce -e0t Ce -e0t1 for t t 1 and p -5 1, andh A (t, x -t) L 5

			4
			L 5 x L 10
			L ∞ I L ∞ x
	x L 10 I	h A (t, x -t) L 5 x L 10 [t 1 ,+∞)
		(h A -V A k0 )(t, x -t) L 5 x L 10 [t 1 ,+∞)	+ V A k0 (t, x -t) L 5 x L 10 [t 1 ,+∞)

I

.

Still by (1.4), we get (λ 0 , a 0 , b 0

L 2 impose λ 0 = 1 and a 0 ∈ {-1, 1}. Thus, by uniqueness in (gKdV), U A (t, x) = ±Q(x -t + T + b 0 ) for all t T . In particular,

L 2 for t t 1 , which is a contradiction. The cases A = 0 and A < 0 are treated similarly.

Remark 4.14. Let us now notice that U -1 is globally defined, i.e. U -1 (t) exists for all t ∈ R. By the blow up criterion and the mass conservation, it is enough to remark that ∂ x U -1 (t) L 2 is bounded uniformly on its interval of existence, which is an immediate consequence of claim 4.13 since

Remark 4.15. As noticed in remark 2.13, we can chose λ n = 1 -1 n in the definition of u 0,n in section 3. We still call w(t) the special solution obtained by this method for this new initial data. In this remark, we prove that w = U -1 c+ up to translations in time and in space. We do not know if U 1 can be obtained similarly by a compactness method. We recall that u 0,n (x

for n large enough. Otherwise, there would exist n large and

Hence, as u n (T )

, which would be a contradiction with the Gagliardo-Nirenberg inequality (1.3).

applies, and so there exists

A ∈ R such that w = U A c+ up to a translation in space. But the conclusion of the previous point and claim 4.13 impose A < 0 (note that A = 0 since w 0 = Q c+ ), i.e. w = U -1 c+ up to translations in time and in space by proposition 4.12.