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An isoperimetric inequality bounds from below the perimeter of a domain in terms of its area. A quantitative isoperimetric inequality is a stability result: it bounds from above the distance to an isoperimetric minimizer in terms of the isoperimetric deficit. In other words, it measures how close to a minimizer an almost optimal set must be.

The euclidean quantitative isoperimetric inequality has been thoroughly studied, in particular in [START_REF] Hall | A quantitative isoperimetric inequality in n-dimensional space[END_REF] and [START_REF] Fusco | The sharp quantitative isoperimetric inequality[END_REF], but the L 1 case has drawn much less attention.

In this note we prove two quantitative isoperimetric inequality in the L 1 Minkowski plane with sharp constants and determine the extremal domains for one of them. It is usually (but not here) difficult to determine the extremal domains in a quantitative isoperimetric inequality: the only such kown result is for the Euclidean plane, due to Nitsch [START_REF] Nitsch | The quantitative isoperimetric inequality for planar convex domains[END_REF].

Statement of the results

We consider the plane R 2 endowed with the L 1 metric:

|(x 1 , x 2 ) -(y 1 , y 2 )| = |x 1 -y 1 | + |x 2 -y 2 |.
The notation | • | shall be used to denote the size of an object, whatever its nature. If A is an measurable plane set then |A| is its Lebesgue measure, also called its area ; if v is a vector |v| is its L 1 norm ; if γ is a rectifiable curve, |γ| is its L 1 length. We denote the boundary of a set using ∂.

By a domain of the plane, we mean the closure of the bounded component of a Jordan curve. In particular, domains are compact and connected. All rectangles and squares considered are assumed to have their sides parallel to the coordinate axes. The square centered at 0 with side length 2λ is denoted by B ∞ (λ): it is the λ ball of the L ∞ metric. Squares are known to minimize L 1 perimeter among plane domains of given area.

The measure of the distance between compact plane sets A, B we use in our main result is the L ∞ Haussdorf metric :

d ∞ (A, B) = inf{λ 0 | A ⊂ B + B ∞ (λ) and B ⊂ A + B ∞ (λ)}.
Let us explain why this metric is natural here. One way to prove that almost isoperimetric domains are close to minimizers is to prove that they contain a minimizer of radius r and are included in another of radius R, with small radii difference R -r and same center. In the euclidean space, such inclusions imply that the considered domain is at Haussdorf distance at most (R -r)/2 from some ball. However, balls and minimizers are different in the L 1 plane, so that if A is between concentric squares of radii R and r, one can only say that it is at L 1 Haussdorf distance R -r from some square, while the L ∞ Hausdorf distance bound is the expected (R -r)/2.

It would certainly be possible to use the L 1 Haussdorf metric, and we expect that arguments of the same kind that those we use to prove Theorem 1.1, but more involved, would give a constant better than the 1/16 obtained using the inequality d 1 2d ∞ and Theorem 1.1.

Theorem 1.1. -Let A be a domain of the L 1 Minkowski plane whose boundary is a rectifiable curve, and assume that

(1) |∂A| 2 (16 + ε)|A|.
Then there is a square S such that

(2) d ∞ (A, S) 2 ε|A| 64 .
We shall also see that Theorem 1.1 is sharp and show that up to L 1 isometry and homothety the domains that achieve the bound are the rectangles and the squares with one square deleted at a corner.

A second possible measure of the distance between domains of the same area, which present the advantage to be suitable to higher dimension as well, is simply the gap between their area and that of their intersection. In this respect we prove the following.

Proposition 1.2. -Let A be a domain of the L 1 Minkowski plane whose boundary is a rectifiable curve, and assume that (1) holds with ε sufficiently small. Then there is a square S such that |S| = |A| and:

(3) |S ∩ A| (1 - √ ε 4 + O(ε))|A|.
In terms of Fraenkel asymmetry, this reads:

(4) |S∆A| |A| √ ε 2 + O(ε)
We shall see that the 1/2 constant in (4) is sharp. Surprisingly enough, it seems that these results are new, although similar ones can be deduced from the much more general [START_REF] Figalli | A mass transportation approach to quantitative isoperimetric inequalities[END_REF] (but with a non-optimal constant) and [START_REF] Peri | On Blaschke's extension of Bonnesen's inequality[END_REF] (only when A is convex).

Proof of the inequalities

Assume A satisfies (1) for some ε and let R be the smallest rectangle containing A. This rectangle plays the role of a convex hull. Proof. -Since R is minimal, each of its sides contains a point of the boundary of A. Denote r 1 , r 2 , r 3 , r 4 such points so that r i and r i+1 lie on two adjacent sides of R for all i (modulo 4). It is possible that some r i = r i+1 , but this does not affect what follows.

There are four curves γ i in ∂A that connect r i to r i+1 and meet only at their endpoints (see figure 1). Similarly, the boundary of R is made of four curves η i connecting r i to r i+1 . Since R is a rectangle, the η i are L 1 geodesics. The length of γ i is at least

|r i -r i+1 | = |η i |, so that |∂A| = |γ 1 | + |γ 2 | + |γ 3 | + |γ 4 | |η 1 | + |η 2 | + |η 3 | + |η 4 | = |∂R|.
Let ℓ and α be such that ℓ -2α and ℓ + 2α are the side lengths of R. Next we have

16ℓ 2 (16 + ε)(ℓ 2 -4α 2 ) 0 εℓ 2 -4(16 + ε)α 2 α 2 εℓ 2 4(16 + ε) α 2 ε 64 |A|
and we are done.

Note that this lemma is sufficient to deduce the L 1 isoperimetric inequality and its equality case: if ε = 0, then α = 0 and |A| = ℓ 2 .

2.1. Proof of Theorem 1.1. -We have min S d ∞ (A, S) α (where S runs over all squares, see figure 2) and if there is equality, Lemma 2.2 is sufficient to conclude. We therefore assume δ := min S d ∞ (A, S) > α.

The following is the main step of the proof.

Lemma 2.3. -We have either Proof. -Choose the origin so that R has its bottom side at height 0. Let S η be the square that is at distance δ from each short side of R (so that it has side length ℓ + 2α -2δ) and whose bottom side is at height η. When η ∈ [-δ, 3δ-4α], R and A are contained in the L ∞ neighborhood of size δ around S η , thus there is some point p η ∈ S η that is at L ∞ distance at least δ from A.

|A| ℓ 2 -4α 2 -8δ(δ -α) or |A| ℓ 2 -4α 2 -4δ 2 .
This excludes A from a square centered at p η ; the worst case (with respect to our goal of bounding |A| from above) is when this excluded squares intersect only small parts of R and have maximal overlap. This is achieved when p η is a corner of S η for all η and the short side of R closest to p η is constant.

In this case, for each η, if p η is a lower corner then there is a 2δ ×(δ +η) sub-rectangle of R excluded, else p η is a upper corner and there is a 2δ × (3δ -4α -η) sub-rectangle of R excluded. These values assume that η < δ and 3δ -4α -η < δ respectively, otherwise there is simply an excluded square of area 4δ 2 .

Let x be the supremum of the η such that p η is a lower corner. There is an excluded sub-rectangle of area 2δ×(δ+x) and for all η > x the point p η must be a higher corner, so that there is another excluded sub-rectangle of area 2δ × (3δ -4α -x).

Summing up, either there are excluded sub-rectangles of total area at least 2δ × 4(δ -α), or there is an excluded sub-rectangle of area at least 4δ 2 , and we get the desired bounds on |A|.

We can now conclude the proof of Theorem 1.1. First, if |A| (ℓ 2 -4α 2 ) -8δ(δ -α) then we have

|∂A| 2 (16 + ε)|A| (4ℓ) 2 (16 + ε) ℓ 2 -4α 2 -8δ(δ -α) 0 εℓ 2 -4(16 + ε)(α 2 + 2δ(δ -α)) α 2 + 2δ(δ -α) εℓ 2 4(16 + ε) 2δ 2 -2αδ + α 2 ε 64 |A|
the last inequality coming from (5). Since the function x → 2δ 2 -2xδ + x 2 is minimal when x = δ, we have 2δ

2 -2αδ + α 2 2δ 2 -2δ 2 + δ 2 = δ 2 , so that δ 2 ε 64 |A|.
In the case when |A| ℓ 2 -4α 2 -4δ 2 , we get:

|∂A| 2 (16 + ε)(ℓ 2 -4α 2 -4δ 2 ) 16ℓ 2 16ℓ 2 + εℓ 2 -4(16 + ε)(α 2 + δ 2 ) α 2 + δ 2 εℓ 2 4(16 + ε) δ 2 ε 64 |A| 2.2. Proof of Proposition 1.2. -Let µ = max S |S ∩ A|/|A|
where S runs over the squares having same area than A.

Lemma 2.4. -One of the following holds:

µ 2 - ℓ 2 -4α 2 |A| µ 2 - ℓ + 2α |A| .
Proof. -Define S 0 to be a square that shares a corner of R and intersects its interior, and that have the same area than A (see figure 4). The definition of µ implies that |A ∩ S 0 | µ|A|.

If |A| ℓ -2α we have:

|A| µ|A| + (ℓ + 2α)(ℓ -2α -|A|) + |A|(ℓ + 2α -|A|) µ|A| + ℓ 2 -4α 2 -|A|(ℓ + 2α) + |A|(ℓ + 2α) -|A| ℓ 2 -4α 2 + (µ -1)|A| µ|A| 2|A| -(ℓ 2 -4α 2 ).
Otherwise, we get If the first conclusion holds, using Lemma 2.2 it comes

|A| µ|A| + (ℓ -2α)(ℓ + 2α -|A|) µ|A| + |A|(ℓ + 2α -|A|) µ|A| 2|A| -(ℓ + 2α) |A| R ℓ -2α -|A| |A| ℓ + 2α -|A| S 0
µ 2 - (ℓ 2 -4α 2 )(16 + ε) 16ℓ 2 2 - 16 + ε 16 = 1 - ε 16 
If the second conclusion holds, using Lemma 2.2 we get

µ 2 - ℓ |A| - 2α |A| 2 -1 + ε 16 - √ ε 4 1 - √ ε 4 + O(ε)
But for all sufficiently small ε, this second expression is smaller than 1 -ε/16, and Proposition 1.2 is proved.

Sharpness

Two examples showing sharpness of Theorem 1.1 steam out from its proof. The first one is the domain S ′ δ obtained from the unit square by deleting a 2δ × 2δ square at one corner (δ < 1/2)). We have |S ′ δ | = 1 -4δ 2 and |∂S ′ δ | = 4, so that (1) holds with ε = 64δ 2 1 -4δ 2 and inf S d ∞ (S, S ′ δ ) = δ so that equality holds in (2). The second one is the rectangle R α whose side length are 1 -2α and 1 + 2α (where α < 1/2)). We have 2) is an equality once again.

|R α | = 1 -4α 2 , |∂R α | = 4 and inf S d ∞ (S, R α ) = α so that (
Let us show that S ′ δ and R α are the only possible (up to homothety and L 1 isometry) exemple realizing equality in both (1) and (2) for the same ε. In the first case of Lemma 2.3, for 2δ 2 -2αδ + α 2 δ 2 to be an equality it is necessary that α = δ, so that A must be equal to R (otherwise R would have smaller isoperimetric inequality and same distance to squares). In the second case of the lemma, one is lead to α = 0 in the last lines of the proof of Theorem 1.1, so that R is a square and according to the proof of Lemma 2.3, A is contained in a S ′ δ having the same isoperimetric deficit and the same minimal rectangle. They must therefore be equal.

At last, R α shows asymptotic sharpness of Proposition 1.2:

sup |S|=|Rα| |S ∩ R α | = (1 -2α) √ 1 -4α 2 = 1 -2α + o(α) and 1 - 1 4 √ ε = 1 -2α + o(α)
when ε takes the extremal value 64α 2 /(1 -4α 2 ).

  Lemma 2.1. -We have |∂A| |∂R|.
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 1 Figure1. The L 1 perimeter of A is at least that of R
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 2 Figure 2. The closest square to R.
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 3 Figure 3. The domain A avoids one of the grey squares.
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 4 Figure 4. The domain A is included in R and cannot meet a too large proportion of S 0
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 5 Figure5. Two domain that are almost isopermetric and as far as possible from squares: a square with a small corner deleted and a rectangle with sides of almost the same lengths.
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