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SHARP QUANTITATIVE ISOPERIMETRIC

INEQUALITIES IN THE L1 MINKOWSKI

PLANE

by

Benôıt Kloeckner

An isoperimetric inequality bounds from below the perimeter of a do-
main in terms of its area. A quantitative isoperimetric inequality is a
stability result: it bounds from above the distance to an isoperimetric
minimizer in terms of the isoperimetric deficit. In other words, it mea-
sures how close to a minimizer an almost optimal set must be.

The euclidean quantitative isoperimetric inequality has been thoroughly
studied, in particular in [Hal92] and [FMP08], but the L1 case has
drawn much less attention.

In this note we prove two quantitative isoperimetric inequality in the
L1 Minkowski plane with sharp constants and determine the extremal
domains for one of them. It is usually (but not here) difficult to determine
the extremal domains in a quantitative isoperimetric inequality: the only
such kown result is for the Euclidean plane, due to Nitsch [Nit08].

1. Statement of the results

We consider the plane R
2 endowed with the L1 metric:

|(x1, x2) − (y1, y2)| = |x1 − y1| + |x2 − y2|.
The notation | · | shall be used to denote the size of an object, whatever

its nature. If A is an measurable plane set then |A| is its Lebesgue
measure, also called its area ; if v is a vector |v| is its L1 norm ; if γ is
a rectifiable curve, |γ| is its L1 length. We denote the boundary of a set
using ∂.
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By a domain of the plane, we mean the closure of the bounded com-
ponent of a Jordan curve. In particular, domains are compact and con-
nected. All rectangles and squares considered are assumed to have their
sides parallel to the coordinate axes. The square centered at 0 with side
length 2λ is denoted by B∞(λ): it is the λ ball of the L∞ metric. Squares
are known to minimize L1 perimeter among plane domains of given area.

The measure of the distance between compact plane sets A, B we use
in our main result is the L∞ Haussdorf metric :

d∞(A, B) = inf{λ 6 0 |A ⊂ B + B∞(λ) and B ⊂ A + B∞(λ)}.
Let us explain why this metric is natural here. One way to prove that
almost isoperimetric domains are close to minimizers is to prove that they
contain a minimizer of radius r and are included in another of radius R,
with small radii difference R−r and same center. In the euclidean space,
such inclusions imply that the considered domain is at Haussdorf distance
at most (R − r)/2 from some ball. However, balls and minimizers are
different in the L1 plane, so that if A is between concentric squares of
radii R and r, one can only say that it is at L1 Haussdorf distance R− r
from some square, while the L∞ Hausdorf distance bound is the expected
(R − r)/2.

It would certainly be possible to use the L1 Haussdorf metric, and
we expect that arguments of the same kind that those we use to prove
Theorem 1.1, but more involved, would give a constant better than the
1/16 obtained using the inequality d1 6 2d∞ and Theorem 1.1.

Theorem 1.1. — Let A be a domain of the L1 Minkowski plane whose

boundary is a rectifiable curve, and assume that

(1) |∂A|2 6 (16 + ε)|A|.
Then there is a square S such that

(2) d∞(A, S)2
6

ε|A|
64

.

We shall also see that Theorem 1.1 is sharp and show that up to L1

isometry and homothety the domains that achieve the bound are the
rectangles and the squares with one square deleted at a corner.

A second possible measure of the distance between domains of the same
area, which present the advantage to be suitable to higher dimension as
well, is simply the gap between their area and that of their intersection.
In this respect we prove the following.
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Proposition 1.2. — Let A be a domain of the L1 Minkowski plane

whose boundary is a rectifiable curve, and assume that (1) holds with

ε sufficiently small. Then there is a square S such that |S| = |A| and:

(3) |S ∩ A| > (1 −
√

ε

4
+ O(ε))|A|.

In terms of Fraenkel asymmetry, this reads:

(4)
|S∆A|
|A| 6

√
ε

2
+ O(ε)

We shall see that the 1/2 constant in (4) is sharp.
Surprisingly enough, it seems that these results are new, although

similar ones can be deduced from the much more general [FMP09] (but
with a non-optimal constant) and [PWZ93] (only when A is convex).

2. Proof of the inequalities

Assume A satisfies (1) for some ε and let R be the smallest rectangle
containing A. This rectangle plays the role of a convex hull.

Lemma 2.1. — We have |∂A| > |∂R|.

Proof. — Since R is minimal, each of its sides contains a point of the
boundary of A. Denote r1, r2, r3, r4 such points so that ri and ri+1 lie
on two adjacent sides of R for all i (modulo 4). It is possible that some
ri = ri+1, but this does not affect what follows.

There are four curves γi in ∂A that connect ri to ri+1 and meet only
at their endpoints (see figure 1). Similarly, the boundary of R is made
of four curves ηi connecting ri to ri+1. Since R is a rectangle, the ηi are
L1 geodesics. The length of γi is at least |ri − ri+1| = |ηi|, so that

|∂A| = |γ1| + |γ2| + |γ3| + |γ4| > |η1| + |η2| + |η3| + |η4| = |∂R|.

Let ℓ and α be such that ℓ − 2α and ℓ + 2α are the side lengths of R.

Lemma 2.2. — We have

(5) |A| 6 ℓ2
6

16 + ε

16
|A|
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r1

r3 = r4

r2

R

A

Figure 1. The L1 perimeter of A is at least that of R

and

(6) α2
6

ε|A|
64

Proof. — From previous lemma we have |∂A| > 4ℓ, so that using (1) we
get 16ℓ2 6 (16 + ε)|A|. Since A ⊂ R we have |A| 6 |R| = ℓ2 − 4α2 and
(5) follows.

Next we have

16ℓ2
6 (16 + ε)(ℓ2 − 4α2)

0 6 εℓ2 − 4(16 + ε)α2

α2
6

εℓ2

4(16 + ε)

α2
6

ε

64
|A|

and we are done.

Note that this lemma is sufficient to deduce the L1 isoperimetric in-
equality and its equality case: if ε = 0, then α = 0 and |A| = ℓ2.

2.1. Proof of Theorem 1.1. — We have minS d∞(A, S) > α (where
S runs over all squares, see figure 2) and if there is equality, Lemma 2.2
is sufficient to conclude. We therefore assume δ := minS d∞(A, S) > α.

The following is the main step of the proof.

Lemma 2.3. — We have either

|A| 6 ℓ2 − 4α2 − 8δ(δ − α)

or

|A| 6 ℓ2 − 4α2 − 4δ2.
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R

α

S

Figure 2. The closest square to R.

Proof. — Choose the origin so that R has its bottom side at height 0.
Let Sη be the square that is at distance δ from each short side of R (so
that it has side length ℓ+2α−2δ) and whose bottom side is at height η.

R

Sη

2δ

η
δ

δ + η

3δ − 4α − η

Figure 3. The domain A avoids one of the grey squares.

When η ∈ [−δ, 3δ−4α], R and A are contained in the L∞ neighborhood
of size δ around Sη, thus there is some point pη ∈ Sη that is at L∞ distance
at least δ from A.

This excludes A from a square centered at pη; the worst case (with
respect to our goal of bounding |A| from above) is when this excluded
squares intersect only small parts of R and have maximal overlap. This
is achieved when pη is a corner of Sη for all η and the short side of R
closest to pη is constant.

In this case, for each η, if pη is a lower corner then there is a 2δ×(δ+η)
sub-rectangle of R excluded, else pη is a upper corner and there is a
2δ × (3δ − 4α − η) sub-rectangle of R excluded. These values assume
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that η < δ and 3δ− 4α− η < δ respectively, otherwise there is simply an
excluded square of area 4δ2.

Let x be the supremum of the η such that pη is a lower corner. There is
an excluded sub-rectangle of area 2δ×(δ+x) and for all η > x the point pη

must be a higher corner, so that there is another excluded sub-rectangle
of area 2δ × (3δ − 4α − x).

Summing up, either there are excluded sub-rectangles of total area at
least 2δ × 4(δ −α), or there is an excluded sub-rectangle of area at least
4δ2, and we get the desired bounds on |A|.

We can now conclude the proof of Theorem 1.1. First, if |A| 6 (ℓ2 −
4α2) − 8δ(δ − α) then we have

|∂A|2 6 (16 + ε)|A|
(4ℓ)2

6 (16 + ε)
(

ℓ2 − 4α2 − 8δ(δ − α)
)

0 6 εℓ2 − 4(16 + ε)(α2 + 2δ(δ − α))

α2 + 2δ(δ − α) 6
εℓ2

4(16 + ε)

2δ2 − 2αδ + α2
6

ε

64
|A|

the last inequality coming from (5).
Since the function x 7→ 2δ2 −2xδ +x2 is minimal when x = δ, we have

2δ2 − 2αδ + α2 > 2δ2 − 2δ2 + δ2 = δ2, so that δ2 6
ε
64
|A|.

In the case when |A| 6 ℓ2 − 4α2 − 4δ2, we get:

|∂A|2 6 (16 + ε)(ℓ2 − 4α2 − 4δ2)

16ℓ2
6 16ℓ2 + εℓ2 − 4(16 + ε)(α2 + δ2)

α2 + δ2
6

εℓ2

4(16 + ε)

δ2
6

ε

64
|A|

2.2. Proof of Proposition 1.2. — Let µ = maxS |S ∩ A|/|A| where
S runs over the squares having same area than A.
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Lemma 2.4. — One of the following holds:

µ > 2 − ℓ2 − 4α2

|A|

µ > 2 − ℓ + 2α
√

|A|
.

Proof. — Define S0 to be a square that shares a corner of R and intersects
its interior, and that have the same area than A (see figure 4). The
definition of µ implies that |A ∩ S0| 6 µ|A|.

If
√

|A| 6 ℓ − 2α we have:

|A| 6 µ|A| + (ℓ + 2α)(ℓ − 2α −
√

|A|) +
√

|A|(ℓ + 2α −
√

|A|)
6 µ|A| + ℓ2 − 4α2 −

√

|A|(ℓ + 2α) +
√

|A|(ℓ + 2α) − |A|
6 ℓ2 − 4α2 + (µ − 1)|A|

µ|A| > 2|A| − (ℓ2 − 4α2).

Otherwise, we get

|A| 6 µ|A| + (ℓ − 2α)(ℓ + 2α −
√

|A|)
6 µ|A| +

√

|A|(ℓ + 2α −
√

|A|)
µ|A| > 2|A| − (ℓ + 2α)

√

|A|

R

ℓ − 2α −
√

|A|

√

|A|ℓ + 2α −
√

|A|

S0

Figure 4. The domain A is included in R and cannot meet a
too large proportion of S0

If the first conclusion holds, using Lemma 2.2 it comes

µ > 2 − (ℓ2 − 4α2)(16 + ε)

16ℓ2

> 2 − 16 + ε

16
= 1 − ε

16
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If the second conclusion holds, using Lemma 2.2 we get

µ > 2 − ℓ
√

|A|
− 2α

√

|A|

> 2 −
√

1 +
ε

16
−

√
ε

4

> 1 −
√

ε

4
+ O(ε)

But for all sufficiently small ε, this second expression is smaller than
1 − ε/16, and Proposition 1.2 is proved.

3. Sharpness

Two examples showing sharpness of Theorem 1.1 steam out from its
proof.

Figure 5. Two domain that are almost isopermetric and as far
as possible from squares: a square with a small corner deleted
and a rectangle with sides of almost the same lengths.

The first one is the domain S ′
δ obtained from the unit square by deleting

a 2δ × 2δ square at one corner (δ < 1/2)). We have |S ′
δ| = 1 − 4δ2 and

|∂S ′
δ| = 4, so that (1) holds with

ε =
64δ2

1 − 4δ2

and infS d∞(S, S ′
δ) = δ so that equality holds in (2).

The second one is the rectangle Rα whose side length are 1 − 2α and
1 + 2α (where α < 1/2)). We have |Rα| = 1 − 4α2, |∂Rα| = 4 and
infS d∞(S, Rα) = α so that (2) is an equality once again.

Let us show that S ′
δ and Rα are the only possible (up to homothety

and L1 isometry) exemple realizing equality in both (1) and (2) for the
same ε. In the first case of Lemma 2.3, for 2δ2 − 2αδ + α2 6 δ2 to
be an equality it is necessary that α = δ, so that A must be equal to
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R (otherwise R would have smaller isoperimetric inequality and same
distance to squares). In the second case of the lemma, one is lead to
α = 0 in the last lines of the proof of Theorem 1.1, so that R is a square
and according to the proof of Lemma 2.3, A is contained in a S ′

δ having
the same isoperimetric deficit and the same minimal rectangle. They
must therefore be equal.

At last, Rα shows asymptotic sharpness of Proposition 1.2:

sup
|S|=|Rα|

|S ∩ Rα| = (1 − 2α)
√

1 − 4α2 = 1 − 2α + o(α)

and

1 − 1

4

√
ε = 1 − 2α + o(α)

when ε takes the extremal value 64α2/(1 − 4α2).
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