
HAL Id: hal-00408054
https://hal.science/hal-00408054v1

Submitted on 22 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterizing Topological Assumptions of Distributed
Algorithms in Dynamic Networks

Arnaud Casteigts, Serge Chaumette, Afonso Ferreira

To cite this version:
Arnaud Casteigts, Serge Chaumette, Afonso Ferreira. Characterizing Topological Assumptions of Dis-
tributed Algorithms in Dynamic Networks. 16th International Colloquium on Structural Information
and Communication Complexity (SIROCCO), May 2009, Piran, Slovenia. pp.129–144. �hal-00408054�

https://hal.science/hal-00408054v1
https://hal.archives-ouvertes.fr

Characterizing Topological Assumptions of

Distributed Algorithms in Dynamic Networks⋆

Arnaud Casteigts1, Serge Chaumette2, and Afonso Ferreira3⋆⋆

1 SITE, University of Ottawa,
casteig@site.uottawa.ca

2 LaBRI, Université de Bordeaux,
serge.chaumette@labri.fr

3 CNRS - MASCOTTE Project, INRIA Sophia Antipolis,
afonso.ferreira@sophia.inria.fr

Abstract. Besides the complexity in time or in number of messages, a
common approach for analyzing distributed algorithms is to look at their
assumptions on the underlying network. This paper focuses on the study
of such assumptions in dynamic networks, where the connectivity is ex-
pected to change, predictably or not, during the execution. Our main
contribution is a theoretical framework dedicated to such analysis. By
combining several existing components (local computations, graph rela-
bellings, and evolving graphs), this framework allows to express detailed
properties on the network dynamics and to prove that a given property is
necessary, or sufficient, for the success of an algorithm. Consequences of
this work include (i) the possibility to compare distributed algorithms on
the basis of their topological requirements, (ii) the elaboration of a for-
mal classification of dynamic networks with respect to these properties,
and (iii) the possibility to check automatically whether a network trace
belongs to one of the classes, and consequently to know which algorithm
should run on it.

Key words: Dynamic networks, distributed algorithms, evolving graphs,
local interactions, topological assumptions.

1 Introduction

The past decade has seen a considerable research effort devoted to the design
of distributed algorithms and protocols targeting dynamic network topologies.
It appears, however, that most of the assumptions considered when examining
algorithm requirements still relate to static properties such as the size, density,
or geometry of the target network. Assumptions that really relate to the network
dynamics, when any, are generally stated using non-formal expressions, such as

⋆ Partially supported by A.N.R. grant No ANR-05-SSIA-0002-01.
⋆⋆ A.Ferreira is currently on leave as Head of Science Operations at the COST Office,

Brussels, BE. http://www.cost.esf.org.

2 A. Casteigts, S. Chaumette, A. Ferreira

“nodes are expected to move slowly enough to..”, or “nodes cannot leave the net-
work for a long time”, or by assuming a given mobility model (whose concrete
topological implications remain unclear). The dynamic properties highlighted in
such a way make the fair comparison of algorithm requirements rather compli-
cated and often ambiguous.

Our work aims at providing general formalisms and methods for studying fun-
damental properties of dynamic networks, and more particularly their impact on
distributed systems. As an illustrative example, let us consider the broadcast-
ing of an information within the dynamic network depicted by Figure 1. The
possibility to complete the broadcast in this scenario clearly depends on which
node is the initial emitter: a and b may succeed, while c cannot. Why? How
can we formulate this intuitive property that the topology evolution must have
with regard to the emitter and other nodes? How can we formally prove it as a
necessary condition to obtain broadcast completion? While rather simple, such
a characterization might be difficult to obtain with usual graph formalisms and
computation models.

a b c a b c a b c

beginning movement end

Fig. 1. A basic dynamic scenario, where a node (b) moves during the execution.

This paper introduces a theoretical framework dedicated to such kind of
analyses. This framework is intended to serve as a general basis for studying
fundamental properties of distributed algorithms in dynamic networks. Contrary
to the work in [AAD+06], where the authors first make a strong topological
assumption (all pairs of nodes repeatedly meet during the execution) and then
characterize the solvable problems in this context, we consider the exact opposite
approach by studying, for a given solution (i.e., algorithm), the necessary and/or
sufficient conditions it requires on the topology. To the best of our knowledge,
this is the first attempt in such a direction.

The strength of the proposed framework lies in its basic components, which
are an appropriate combinatorial model to represent dynamic topologies (evolv-
ing graphs [Fer04]), and a very high-level interaction model to describe dis-
tributed operations (local computations, with the associated formalism of graph
relabellings [LMS99]). The next section is devoted to the presentation of these
existing components. In Section 3 we combine them to set up the new anal-
ysis framework. This framework is then applied in Section 4 to the analysis
of three basic algorithms (one propagation and two enumeration algorithms),
whose intuitively apparent properties are here formally characterized. Based on
the analysis results, Section 5 shows how algorithms can be compared on the
basis of their topological requirements, and reciprocally how dynamic networks
can be classified according to the algorithms they support. Finally, we discuss

Charact. Topological Assumptions of Dist. Algo. in Dynamic Networks 3

the possibility to check automatically the inclusion of a given network trace to
one of the classes. Section 6 concludes with some avenues for further research.

2 Related work

We describe here the formalisms and theoretical tools that compose the proposed
analysis framework: Local Computations to abstract the communication model,
Graph Relabelling Systems to describe local computation algorithms, and Evolv-
ing Graphs to express properties on dynamic topologies. Their comprehension
is required to ensure a clear understanding of the following sections, where they
are combined together.

2.1 Abstracting communications through local computations and

graph relabellings

Distributed algorithms can be expressed using a variety of communication mod-
els (e.g. mailbox, shared memory, and message passing). Whereas a vast major-
ity of algorithms is designed in one of these models (predominantly the message
passing model), the very fact that one of them is chosen implies that the obtained
results (e.g. positive or negative characterizations and associated proofs) are lim-
ited to the scope of this model. This problem of diversity among formalisms and
results, already pointed out twenty years ago in [Lyn89], led researchers to con-
sider higher abstractions when studying fundamental properties of distributed
systems.

Local computations and Graph relabellings were jointly proposed in this per-
spective in [LMS99]. These theoretical tools allow to represent a distributed
algorithm as a set of local interaction rules that are independent from the effec-
tive communications. Within the formalism of graph relabellings, the network is
represented by graph whose vertices and edges are associated with labels that
represent the algorithmic state of the corresponding nodes and links. An interac-
tion rule is then defined as a transition pattern (preconditions, actions), where
preconditions and actions relate to the label values. Since these interactions are
local, each transition pattern must involve a limited and connected subset of
vertices and edges. Figure 2 shows different scopes for the transition patterns,
which are not necessarily the same for preconditions and actions.

More formally, let the network topology be represented by a finite undirected
loopless graph G = (VG, EG), with VG representing the set of nodes and EG

representing the set of communication links between them. Two vertices u and
v are said neighbors if and only if they share a common edge {u, v} in EG. Let
λ : VG ∪ EG → L∗ be a mapping that associates every vertex and edge from G

with one or several labels from an alphabet L (which denotes all the possible
states these elements can take). The state of a given vertex v, resp. edge e, at
a given time t is thus denoted by λt(v), resp. λt(e). The whole labelled graph is
represented by the pair (G, λ), noted G.

4 A. Casteigts, S. Chaumette, A. Ferreira

(a) (b) (c) (d)

Fig. 2. Different powers of local computations; the scope of preconditions is depicted
in white (on left sides), while the scope of actions is depicted in black (on right sides).
The dashed elements represent entities (vertices or edges) that are considered by pre-
conditions but remain unaffected by actions. The reader is referred to [CMZ06] for a
comparative study of some of these models.

According to [LMS99], a complete algorithm can be given by a triplet {L, I, P},
where I is the set of initial states, and P is a set of relabelling rules (transition
patterns) representing the distributed interactions. The Algorithm 1 below (A1

for short), gives the example of a one-rule algorithm that represents the general
broadcasting scheme discussed in the introduction. We assume here that the
label I (resp. N) stands for the state informed (resp. non-informed). Propa-
gating the information thus consists in repeating this single rule, starting from
the emitter vertex, until all vertices are labelled I.4

Algorithm 1 A propagation algorithm coded by a single relabelling rule (r1).

initial states: {I, N} (I for the initial emitter, N for all other vertices)

alphabet: {I, N}

preconditions(r1): λ(v0) = I ∧ λ(v1) = N

actions(r1): λ(v1) := I

graphical notation :

I N I I

Remark 1. Although the three algorithm examples provided in this paper con-
sider pairwise interactions (and more specifically the model depicted on Fig-
ure 2(c)), the concepts and discussions developed in Sections 3 and 5 are not
dedicated to it. Note that models such as those of Fig. 2(b) and 2(b) reflect well
a wireless computing environment where nodes update their states according to
those of their neighbors.

Regarding the organization of collaborations between nodes, it is important
to note that the algorithm specification does not stipulate how the nodes must
collaborate, i.e., the way they select each other to perform a common compu-
tation step. From the abstraction level of local computations, this underlying
synchronization is seen as an implementation choice, which implies that local
computation algorithms may not be deterministic at this level. As discussed
later on, characterizing sufficient conditions will require additional assumptions
on this underlying layer (which is not the case for necessary conditions).

4 Detecting such a final state is not part of the given algorithm. The reader interested
in termination detection as a distributed problem is referred to [GMMS02].

Charact. Topological Assumptions of Dist. Algo. in Dynamic Networks 5

2.2 Expressing dynamic network properties using Evolving Graphs

In a different context, evolving graphs [Fer04] have been proposed as a combi-
natorial model for dynamic networks. The initial purpose of this model was to
provide a suitable representation of fixed schedule dynamic networks (FSDNs),
in order to compute optimized communication schemes such as shortest, fastest
and foremost paths. In such a context, the evolution of the network was known
beforehand. In the present work, we propose to use evolving graphs for a differ-
ent purpose, namely to express topological properties in dynamic networks. It is
important to keep in mind that the analyzed algorithms are never supposed to
know the evolution of the network ahead of time.

An evolving graph is a structure in which the changing connectivity of a
dynamic network is recorded (see Figure 3). More formally, let ST = t0, t1, ..., tn
be a sequence of dates in T (usually R+). Except for t0 and tn, all these
dates correspond to a topological event that modifies the network. Let SG =
G0, G1, ..., Gn−1 be the corresponding sequence of graphs, with each Gi the graph
corresponding to the period [ti, ti+1[. Finally, let us denote by G (alone) the union
graph of all Gi, called the underlying graph. Then the triplet G = (G,SG,ST)
is the corresponding evolving graph. As shown in Figure 3, this graph can be
represented by the underlying graph G whose edges and vertices (only edges
here) are associated with their presence interval indices. Henceforth, we will use
the notations VG and EG to denote V (G) and E(G), the sets of all vertices and
edges that exist at some point of the network life. Note that whereas used as
undirected in this paper, evolving graphs were initially introduced as directed,
and considered also bandwidth restrictions on edges, which is not used here.

period t0 → t1 period t1 → t2 period t2 → t3 period t3 → t4
a

b

c

d

e a

b

c

d

e a

b

c

d

e a

b

c

d

e

G0 G1 G2 G3

↓ corresponding evolving graph (graphical representation) ↓

a

b

c

d

e

1
, 2

0

2
, 3

0

0,
1

0, 1, 2

2, 3

G =

Fig. 3. Example of an evolving graph covering a period of time from t0 to t4

Further definitions on evolving graphs (given an evolving graph G = (G,SG,ST)).
Predecessor of a date: for any date d in T[ti,ti+1[, with ti, ti+1 ∈ ST, we say that
ti is the predecessor of d in ST, and we note pred(d) = ti.

6 A. Casteigts, S. Chaumette, A. Ferreira

Journey: given a sequence of couples J = {(e1, σ1), ..., (ei, σi), ..., (ek, σk)} com-
posed of edges from EG and dates from the continuous domain T, J is called
a journey if and only if σ1, σ2, ..., σk is non-decreasing and for all i in 1..k,
ei ∈ E(Gpred(σi)), that is, the edge ei exists at time σi. Less formally, a journey
can be thought of as a path over-time from one vertex to another. A journey
from a vertex u to a vertex v is noted J(u,v).
Discrete Journey: a discrete journey is a journey so that every date of the
sequence σ1, ..., σk is in ST, instead of T. It allows to represent in a single entity all
the possible journeys occurring on the same sequence of edges during the same
sequence of intervals. This also allows to consider such entities as subgraphs
of the evolving graph G, and to note J ⊆ G. The point is that every normal
journey {(e1, σ1), ..., (ei, σi), ..., (ek, σk)} can be associated with a discrete journey
{(e1, pred(σ1)), ..., (ei, pred(σi)), ..., (ek, pred(σk))} ⊆ G, and every discrete journey
implies an infinity of normal journeys for the corresponding edges and intervals.
Strictness of a discrete journey: a discrete journey is said strict, noted Jstrict,
if its sequence of dates σ1, σ2, ..., σk is strictly increasing.

To give a few examples on the graph of Figure 3,
-J(a,e)={(ac, σ1 ∈ [t0, t1[), (ce, σ2 ∈ [t2, t3[)} is a normal journey from a to e ;
-Jstrict(a,e)={(ac, 0), (ce, 2)} is a discrete (and strict) journey from a to e ;
-J(a,e)={(ac, 0), (cd, 0), (de, 3)} is a discrete (non-strict) journey from a to e ;
-Jstrict(a,e)={(ac, 0), (cd, 1), (de, 3)} is a discrete (and strict) journey from a to e.

Note that journeys are naturally oriented, in the sense that a journey from
one vertex to another does not imply the existence of a journey in the reverse
direction (e.g. from e to a). From this point on, unless said explicitly, we will
only consider discrete journeys, and denote them by the sole term journey.

3 The proposed analysis framework

As a recall of the previous section, the algorithmic state of the network is given
by a labelling on the corresponding graph G, then noted G. As another recall,
we denote by Gi the graph covering the period [ti, ti+1[in the evolving graph
G = (G,SG,ST), with Gi ∈ SG and ti, ti+1 ∈ ST . Note that the notation G was
used here with two different meanings: the first as the generic letter to represent
the network, the second to denote the underlying graph of G. Both notations are
kept in the following, while preventing the text from ambiguities.

3.1 Putting the pieces together: relabellings over evolving graphs

For an evolving graph G = (G,SG,ST) and a given date index i | ti ∈ ST, we
denote by Gi the labelled graph (Gi, λti+ǫ) representing the network state just
after the topological event of date ti, and by Gi[the labelled graph (Gi−1, λti−ǫ)
representing the network state just before it. We note,

Eventti
(Gi[) = Gi .

Charact. Topological Assumptions of Dist. Algo. in Dynamic Networks 7

A number of distributed operations can occur between two consecutive events.
Hence, for a given algorithm A and two consecutive dates ti, ti+1 ∈ ST , we
denote by RA[ti,ti+1[

the relabelling sequence induced by A on the graph Gi

during the period [ti, ti+1[, and have,

RA[ti,ti+1[
(Gi) = Gi+1[.

For the sake of simplicity, we authorize the notation ri(u, v) ∈ RA[t,t′[
to denote

the fact that a rule ri is applied on the edge (u, v) during [t, t′[. A complete exe-
cution sequence from t0 to tlast is given by an alternated sequence of relabelling
steps and topological events, noted,

X=RA[tlast−1,tlast[
◦Event

tlast−1
◦..◦Event

ti
◦RA[ti−1,ti[

◦..◦Event
t1
◦RA[t0,t1[

(G0)

The combined formalism is summed up on Figure 4. As mentioned at the end
of Section 2.1, the execution of a local computation algorithm is not necessarily
deterministic, and may depend on the way nodes select one another at a lower
level. Hence, we denote by XA/G the set of all possible execution sequences of
an algorithm A over an evolving graph G.

time

start

t0

G0 G1[

R[t0,t1[

z }| {
G0

Evt1

t1

G1 G2[

R[t1,t2[

z }| {
G1

Evt2

t2

Evtlast−1

tlast−1

Glast−1 Glast[

R[tlast−1,tlast[

z }| {

Gtlast−1

end

tlast

. . .

. . .

Fig. 4. Graph Relabellings and Evolving Graphs - Combined formalism.

3.2 Characterizing the topological assumptions of an algorithm

Below are some proposed methods and additional concepts to characterize the
requirement of an algorithm in terms of topology dynamics. More precisely,
we use the new combined formalism to define the notions of topology-related
necessary and sufficient conditions, and discuss how they can be proved.

Objectives of an algorithm. Given an algorithm A and a labelled graph G,
the state one desires to reach can be given by a logic formula P on the labels
of vertices and/or edges. In the case of the propagation scheme (Algorithm 1
Section 2.1), this could be that all nodes are informed,

P1(G) = ∀v ∈ V (G), λ(v) = I ,

Now, if the objective (noted O) is to reach such state at some point, then it can
be simply expressed as P to be satisfied on the very last labelled graph of G (e.g.
OA1

= P1(Glast) in the example). Whereas not covered in the examples, one
could also consider algorithms whose objectives are to maintain a state (e.g. self-
stabilizing algorithms), and express it for example as OA = ∀Gi ∈ SG,P(Gi+1[).

8 A. Casteigts, S. Chaumette, A. Ferreira

Necessary conditions. Given an algorithm A, its objective OA, an evolving graph
G and an evolving graph property CN . The property CN is a (topology-related)
necessary condition for OA if and only if

∀G,¬CN (G) =⇒ ¬OA

Proving this result comes to prove that ∀G,¬ CN (G) =⇒ ∄X ∈ XA/G | P(Glast).

Sufficient conditions. Symmetrically, an evolving graph property CS is a (topology-
related) sufficient condition for A if and only if

∀G, CS(G) =⇒ OA

Proving this result comes to prove that ∀G, CS(G) =⇒ ∀X ∈ XA/G ,P(Glast).

Discussion. No topology of any kind can guarantee, alone, that the nodes will
effectively communicate and collaborate with each other. Hence, the characteri-
zation of any sufficient condition necessarily requires to make additional assump-
tions on the collaboration of nodes. We propose below a generic such assumption
for the pairwise interaction model (depicted on Figure 2(c)). This assumption
may or may not be considered as realistic depending on the expected rate of
topological changes.

Progression Hypothesis 1 (PH1). For every given time interval [ti, ti+1[, with

ti in S
\{tlast}
T

, every vertex will be able to apply at least one relabelling rule with
each of its neighbors, provided the rule preconditions are already satisfied at time
ti (and still satisfied at the time the rule is applied).

4 First applications of the proposed framework

This section illustrates the proposed framework by the analysis of three basic
algorithms, namely the propagation algorithm previously given, and two enumer-
ation algorithms (one centralized, the other decentralized). The results obtained
here are used in the next section to highlight some implications of this work.

4.1 Analysis of the propagation algorithm

We want to prove that the existence of a journey (resp. strict journey) between
the emitter and every other node is a necessary (resp. sufficient) condition to
achieve OA1

(complete the propagation). The point here is to show how these
intuitive conditions can be formally established.

Condition 1 ∀v ∈ V
\{emitter}
G , ∃J(emitter,v) ⊆ G

(It exists a journey between the emitter and every other vertex).

Lemma 1 ∀v ∈ VG | λt0(v) = N,∀σ ∈ T[t0,tlast[, λσ(v) = I =⇒ ∃u ∈ V
\{v}
G , σ′ ∈

T[t0,σ[| λσ′(u) = I, ∃J(u,v) ⊆ G
(If a non-emitter vertex has the information at some point, it implies the existence of
an incoming journey from a vertex that had the information before)

Charact. Topological Assumptions of Dist. Algo. in Dynamic Networks 9

Proof. ∀v ∈ VG | λt0(v) = N,∀σ ∈ T[t0,tlast[, (λσ(v) = I =⇒ ∃v′ ∈ V
\v
G | r1(v′,v) ∈

RA1[t0,σ[) (If a non-emitter vertex has the information at some point, then it has
applied rule r1 with another vertex)

=⇒ ∃v′ ∈ V
\v
G , σ′ ∈ T[t0,σ[| λσ′(v′) = I, (v′, v) ∈ E(Gpred(σ′))

(An edge existed at a previous date between this vertex and a vertex labelled I)

By repetition, =⇒ ∃v′′ ∈ V
\v
G , σ′′ ∈ T[t0,σ[| λσ′′(v′′) = I, ∃J(v′′,v) ⊆ G

(A journey existed from a node that had the information to the considered node) �

Proposition 1 Condition 1 (C1) is a necessary condition on G to allow Algorithm 1
(A1) to reach its objective OA1 .

Proof. (using Lemma 1). Following from Lemma 1 and the initial states (I for the
emitter, N for all other vertices), we have OA1 =⇒ C1, and then ¬C1 =⇒ ¬OA1 �

Condition 2 ∀v ∈ V
\{emitter}
G , ∃Jstrict(emitter,v) ⊆ G

Proposition 2 Assuming the progression hypothesis (PH1, defined in the previous
section), Condition 2 (C2) is sufficient on G to guarantee that A1 will reach OA1 .

Proof. (1): By PH1, ∀ti ∈ S
\(tlast)
T

, ∀(u, u′) ∈ E(Gi),(λti
(u) = I =⇒ λti+1(u

′) = I)
By iteration on (1): ∀u, v ∈ VG , (∃Jstrict(u,v) ⊆ G) =⇒ (λt0(u)=I =⇒ λtlast

(v)=I)
Now, because λt0(emitter) = I, we have C2(G) =⇒ ∀X ∈ XA/G ,P1(Glast) �

4.2 Analysis of a centralized enumeration algorithm

Like the propagation algorithm, the distributed algorithm presented below as-
sumes that one distinguished vertex is given a different initial state. This vertex,
called the counter, is in charge of counting all the vertices it meets during the
execution (its successive neighbors in the changing topology). Hence, the counter
vertex has two labels (C, i), meaning that it is the counter (C), and that it has
already counted i vertices (initially 1, i.e., itself). The other vertices are labelled
either F or N , depending on whether they have already been counted or not,
respectively. The counting rule is given by r1 in Algorithm 2, below.

Algorithm 2 Enumeration algorithm with a pre-selected counter.

initial states: {(C, 1), N} ((C, 1) for the counter, N for all other vertices)
alphabet: {C, N, F, N∗}
rule r1:

C, i N C, i + 1 F

Objective of the algorithm. Under the assumption of a fixed number of vertices,
the algorithm reaches the desired state when all vertices are counted, which
corresponds to the fact that no more vertices are labelled N :

P2 = ∀v ∈ V (G), λ(v) 6= N

10 A. Casteigts, S. Chaumette, A. Ferreira

The objective of Algorithm 2 is then to satisfy this property at the end of the
execution (OA2

= P2(Glast)). We want to prove here that the existence of an
edge at some point of the execution between the counter node and every other
node is a necessary and sufficient condition.

Condition 3 ∀v ∈ V
\{counter}
G , ∃ti ∈ ST | (counter, v) ∈ E(Gi), or equivalently with

the notion of underlying graph, ∀v ∈ V
\{counter}
G , (counter, v) ∈ EG

Proposition 3 For a given evolving graph G representing the topological evolutions
that take place during the execution of A2, Condition 3 (C3) is a necessary condition
on G to allow A2 to reach its objective OA2 .

Proof. ¬C3(G) =⇒ ∃v ∈ V
\{counter}
G | (counter, v) /∈ E(G)

=⇒ ∃v ∈ V
\{counter}
G | ∀ti ∈ S

\{tlast}
T

, r1(counter, v) /∈ RA2[ti,ti+1[

=⇒ ∃v ∈ V
\{counter}
G | ∀X ∈ XA2/G , λtlast

(v) = N
=⇒ ∄X ∈ XA2/G | P2(Glast) =⇒ ¬OA2 �

Proposition 4 Assuming the progression hypothesis (PH1), C3 is also a sufficient
condition on G to guarantee that A2 will reach its objective OA2 .

Proof. C3(G) =⇒ ∀v ∈ V
\{counter}
G , ∃ti ∈ ST | (counter, v) ∈ E(Gi)

by PH1, =⇒ ∀v ∈ V
\{counter}
G , ∃ti ∈ ST | r1(counter, v) ∈ RA2[ti,ti+1[

=⇒ ∀v ∈ V
\{counter}
G , λtlast

(v) 6= N
=⇒ ∀X ∈ XA2/G ,P2(Glast) =⇒ OA2 �

4.3 Analysis of a decentralized enumeration algorithm

Contrary to the previous algorithm, Algorithm 3 below does not require a dis-
tinguished initial state for any vertex. Indeed, all vertices are initialized with the
same labels (C, 1), meaning that they are all initially counters that have already
included themselves into the count. Then, depending on the topological evolu-
tions, the counters opportunistically merge by pairs (rule r1) in Algorithm A3.
In the optimal case, at the end of the execution, only one node remains labelled
C and its second label gives the total number of vertices in the graph. A similar
counting principle has been used in [AAD+06] to monitor a flock of birds for
fever, with the role of counters being played by sensors that have measured a
high temperature level.

Algorithm 3 Decentralized enumeration algorithm.

initial states: {(C, 1)} (for all vertices); alphabet: {C, F, N∗}
rule r1:

C, i C, j C, i + j F

Charact. Topological Assumptions of Dist. Algo. in Dynamic Networks 11

Objective of the algorithm Under the assumption of a fixed number of
vertices, this algorithm reaches the desired state when exactly one vertex remains
labelled C:

P3 = ∃u ∈ VG | ∀v ∈ V
\{u}
G , λ(u) = C, λ(v) 6= C, and OA3 = P3(Glast)

For the sake of simplicity, we introduce one additional definition: the desti-
nation set of a vertex v in an evolving graph G is the set of all the vertices that
can be reached from v by a journey, noted DestG(v). Note that v ∈ DestG(v)
through an empty journey. We want to prove here that the existence of a jour-
ney from every vertex to at least one common destination vertex is a necessary
condition for this algorithm.

Condition 4 ∃v ∈ VG | ∀u ∈ VG , v ∈ DestG(u)

Lemma 2 ∀u ∈ VG | λti
(u) = C, ∃u′ ∈ DestG(u) | λtj≥i

(u′) = C
(Whatever the C-labelled vertex considered at some point, there will be at a later point
of the execution at least one vertex labelled C among its destination vertices)

Proof. (by contradiction). The application of r1 is the only operation that can suppress
a counter, while preserving the other counter in the pair. If Lemma 2 was false, then
it would imply either that both counters have been discarded by r1 at some point, or
that the relabelling sequence has occurred from a C-labelled vertex towards a vertex
that is outside of its destination set. Both are impossible. �

Proposition 5 Condition 4 (C4) is necessary for A3 to reach its objective OA3 .

Proof. (using Lemma 2). ¬C4(G) =⇒ ∄v ∈ VG | ∀u ∈ VG , v ∈ DestG(u)
(no vertices are destination for all the others).
=⇒ ∀v ∈ VG | λtlast

(v) = C, ∃u ∈ VG | v /∈ DestG(u)
(Whatever the final counter, there is a vertex that could not reach it by a journey).

Now, thanks to Lemma 2, =⇒ ∀v ∈ VG | λtlast
(v) = C, ∃v′ ∈ V

\{v}
G | λtlast

(v′) = C
(There are at least two final counters).
=⇒ ¬P3(Glast) =⇒ ¬OA3 �

The characterization of a sufficient condition for A3 is left open. We believe such
a condition exists, but would be satisfied on a very few specific graphs.

5 Applications of the analysis results

This section presents some applications of the new framework. In particular, we
show how the previously characterized conditions can be used to define evolving
graph classes, some of which are included in others. This leads to a de facto
classification of dynamic networks according to the algorithms they support.
The relations between classes can be used in turn to compare algorithms on the
basis of their topological requirements. Finally, we propose a method to check a
given network trace for inclusion in each introduced class.

12 A. Casteigts, S. Chaumette, A. Ferreira

5.1 From conditions to graph classes

From C1 = ∀v ∈ V
\{emitter}
G , ∃J(emitter,v) ⊆ G, we derive two classes of evolving

graphs. F1 is the class in which at least one vertex can reach all the others
by a journey. If an evolving graph does not belong to this class, then there is
no chance for A1 to succeed whatever the initial emitter. F2 is the class where
every vertex can reach all the others by a journey. If an evolving graph does not
belong to this class, then at least one vertex, if chosen as an initial emitter, is
guaranteed to fail to inform all the others using A1.

From C2 = ∀v ∈ V
\{emitter}
G , ∃Jstrict(emitter,v) ⊆ G, we derive two classes of

evolving graphs. F3 is the class in which at least one vertex can reach all the
others by a strict journey. If an evolving graph belongs to this class, then there is
at least one vertex that could, for sure, inform all the others using A1 (assuming
the progression hypothesis). F4 is the class of evolving graphs in which every
vertex can reach all the others by a strict journey. If an evolving graph belongs
to this class, then the success of A1 is guaranteed for any vertex as initial emitter
(again, if the progression hypothesis is assumed).

From C3 = ∀v ∈ V
\{counter}
G , (counter, v) ∈ EG, we derive two classes of graphs.

F5 is the class of evolving graphs in which at least one vertex shares, at some
point of the execution, an edge with every other vertex. If an evolving graph does
not belong to this class, then there is no chance of success for A2, whatever the
vertex chosen for counter. Here, if we assume the progression hypothesis, then
F5 is also a class in which the success of the algorithm can be guaranteed for
one specific vertex as counter. F6 is the class of evolving graphs in which every
vertex shares an edge with every other vertex at some point of the execution.
If an evolving graph does not belong to this class, then there exists at least one
vertex for which, if it is chosen as the counter, the failure of A2 is guaranteed.
Again, if we consider the progression hypothesis, then F6 becomes a class in
which the success is guaranteed whatever the counter.

Finally, from C4 = ∃v ∈ VG | ∀u ∈ VG , v ∈ DestG(u), we derive the class F7,
which is the class of graphs such that at least one vertex can be reached from
all the others by a journey. If a graph does not belong to this class, then there
is absolutely no chance of success for A3.

5.2 Relations between classes

Since all implies at least one, we have: F2 ⊆ F1, F4 ⊆ F3, and F6 ⊆ F5. Since a
strict journey is a journey, we have: F3 ⊆ F1, and F4 ⊆ F2. Since an edge is a
(strict) journey, we have: F5 ⊆ F3, F6 ⊆ F4, and F5 ⊆ F7. Finally, the existence
of a journey between all pairs of vertices (F2) implies that each vertex can be
reached by all the others, which implies in turn that at least one vertex can be
reach by all the others (F7). We then have: F2 ⊆ F7. Although we have used here
a non-strict inclusion (⊆), the inclusions described above are strict (⊂). This can
be easily proved by finding for each inclusion a graph that belongs to the parent
class but is outside the child class. Figure 5 summarizes all these relations.

Charact. Topological Assumptions of Dist. Algo. in Dynamic Networks 13

F1 : ∃u ∈ VG | ∀v ∈ V
\{u}
G , ∃J(u,v) ⊆ G

F2 : ∀u, v ∈ VG , ∃J(u,v) ⊆ G

F3 : ∃u ∈ VG | ∀v ∈ V
\{u}
G , ∃Jstrict(u,v) ⊆ G

F4 : ∀u, v ∈ VG , ∃Jstrict(u,v) ⊆ G

F5 : ∃u ∈ VG | ∀v ∈ V
\{u}
G , (u, v) ∈ EG

F6 : ∀u, v ∈ VG , (u, v) ∈ EG

F7 : ∃u ∈ VG | ∀v ∈ V
\{u}
G , u ∈ DestG(v)

F6 F4

F5

F2

F3

F7

F1

Fig. 5. A first classification of dynamic networks, based on evolving graph properties
that result from the analysis of three distributed algorithms (arrows denote inclusion).

5.3 Comparison of algorithms according to topological assumptions

Let us consider the two enumeration algorithms given in Section 4. To have any
chance of success, A2 requires the evolving graph to be in F5 (and a fortunate
choice of counter) or in F6 (for possibly any vertex as counter). On the other
hand, A3 requires the evolving graph to be in F7. Now, both classes F5 (directly)
and F6 (transitively) are included in F7. As a consequence, there are some topo-
logical scenarios (i.e., G ∈ F7

\F5) for which A2 has no chance of success, while
A3 has some. Such observation allows to claim that A3 is more general than A2

with respect to its topological requirements. Hence, two algorithms can be fairly
(and formally) compared on the basis of their topological requirements. In the
particular case of these two enumeration algorithms, however, the claim could
be balanced by the fact that a sufficient condition is known for A2, while no one
is known for A3. The choice for the right algorithm may thus depend on the
target mobility context: if this context is expected to induce topological scenar-
ios in F5 or F6, then A2 could be preferred, otherwise A3 should be considered.
More generally, it is however important to realize that a large gap may exist be-
tween necessary and sufficient topology-related conditions, and other topological
properties (resp. evolving graph classes) could offer intermediate probabilities of
success, which was not investigated for the given algorithms in this initial work.

5.4 Checking network traces for inclusion in the classes

We consider here the problem of checking automatically whether a given evolving
graph belongs to one of the classes listed before. While having potentially a large
scope of applications, this could allow in particular to help decide which algo-
rithm is relevant to a given mobility context, by checking how the corresponding
topological traces distribute over the classes. Below is a sketch of solution for
each class met so far. The point is that all solutions can rely on common static
graph properties, provided a few transformations. The transitive closure of an
evolving graph G is the graph H = (V, AH), where AH = {(vi, vj) : ∃J(vi,vj) ⊆ G)}.
A transitive closure is by nature a directed graph, as illustrated in Figure 6,
since journeys are oriented entities. As explained in [BF03], the computation
of transitive closures can be done efficiently (in O(|VG |.|EG |.(log|ST|.log|VG |)), by

14 A. Casteigts, S. Chaumette, A. Ferreira

building the tree of shortest journeys for each node in the network. We ex-
tend this notion to the case of strict journeys, with Hstrict = (V, AHstrict

), where
AHstrict

= {(vi, vj) : ∃Jstrict(vi,vj) ⊆ G)}.

a

b

c

d

e

1

2

3
, 4

1

2

2, 3

3, 4

a

b

c

d

e

Fig. 6. Example of transitive closure of an evolving graph

Given an evolving graph G, its underlying graph G, its transitive closure H,
and the transitive closure of its strict journeys Hstrict, the inclusion of G in each
class can be checked as follows:

– G ∈ F1 ⇐⇒ H contains an out-dominating set of size 1.
– G ∈ F2 ⇐⇒ H is a complete graph.
– G ∈ F3 ⇐⇒ Hstrict contains an out-dominating set of size 1.
– G ∈ F4 ⇐⇒ Hstrict is a complete graph.
– G ∈ F5 ⇐⇒ G contains a dominating set of size 1.
– G ∈ F6 ⇐⇒ G is a complete graph.
– G ∈ F7 ⇐⇒ H contains an in-dominating set of size 1.

We expect most of the future classes to be possibly checked with similar
approaches. This is however not a certainty.

6 Conclusion

This paper introduced a set of tools and methods dedicated to the analysis
of distributed algorithms in dynamic networks. This new framework allows to
characterize assumptions that a given algorithm requires in terms of topological
evolution during its execution. It was illustrated by the analysis of three basic
algorithms, and the analysis results were used to highlight potential implications
of this work, including the possibility to compare algorithms on the basis of
their topological requirements, and a sketch of classification of dynamic networks
according to the corresponding properties. The problem of checking whether a
given evolving graph belongs to the introduced classes was finally discussed.

Analyzing the requirement of algorithms is not a novel approach. It appears
however that no proper transposition was previously done in the context of
dynamic networks, where the usual practice is to liken dynamic topologies to
static graphs. This is particularly striking in the recent field of population pro-
tocols [AAER07], where a common assumption is that all pairs of nodes interact
repeatedly. In the light of the classification shown is this paper, such scenar-
ios actually represent a subset of the most specific class among those discussed

Charact. Topological Assumptions of Dist. Algo. in Dynamic Networks 15

(namely, F6). We think the framework proposed here could help characterize
weaker assumptions for most population protocols.

The algorithms studied in this paper are simple. An interesting question for
further research is whether the framework will scale to more complex algorithms,
which remains unclear at this stage. We hope it could suit the study of common
problems such as electing, naming, or building spanning structures (note that
electing and naming may not have identical assumptions in a dynamic context).
Another prospect is to investigate how intermediate properties could be explored
between necessary and sufficient conditions, for example to guarantee a desired
probability of success. Finally, as more properties are characterized and the
classification grows, new insights may follow in the study of mobility models,
based on checking generated traces for inclusion in the classes. Ultimately, this
could answer questions like what kind of problems can be solved within a given
mobility model, such as the well-known random way point model [BRS03], or in
more realistic pedestrian and vehicular contexts.

References

[AAD+06] D. Angluin, J. Aspnes, Z. Diamadi, M. Fischer, and R. Peralta. Com-
putation in networks of passively mobile finite-state sensors. Distributed
Computing, 18(4):235–253, 2006.

[AAER07] D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. The computa-
tional power of population protocols. Distributed Computing, 20(4):279–
304, November 2007.

[BF03] S. Bhadra and A. Ferreira. Complexity of connected components in evolving
graphs and the computation of multicast trees in dynamic networks. In
Proceedings of Adhoc-Now’03, volume 2865 of Lecture Notes in Computer
Science, pages 259–270, Montreal, October 2003.

[BRS03] C. Bettstetter, G. Resta, and P. Santi. The node distribution of the random
waypoint mobility model for wireless ad hoc networks. IEEE Transactions
on Mobile Computing, 2(3):257–269, 2003.

[CMZ06] J. Chalopin, Y. Métivier, and W. Zielonka. Local computations in graphs:
The case of cellular edge local computations. Fundamenta Informaticae,
74(1):85–114, 2006.

[Fer04] A. Ferreira. Building a reference combinatorial model for MANETs. IEEE
Network, 18(5):24–29, 2004. A preliminary version appeared as On models
and algorithms for dynamic communication networks: The case for evolving
graphs, Algotel’02, Meze, FR.

[GMMS02] E. Godard, Y. Métivier, M. Mosbah, and A. Sellami. Termination detection
of distributed algorithms by graph relabelling systems. In ICGT ’02: Pro-
ceedings of the First International Conference on Graph Transformation,
pages 106–119, London, UK, 2002.

[LMS99] I. Litovsky, Y. Métivier, and E. Sopena. Graph relabelling systems and
distributed algorithms. In World Scientific Publishing, editor, Handbook of
graph grammars and computing by graph transformation, volume III, Eds.
H. Ehrig, H.J. Kreowski, U. Montanari and G. Rozenberg, pages 1–56, 1999.

[Lyn89] N. Lynch. A hundred impossibility proofs for distributed computing. In
PODC ’89: Proceedings of the eighth annual ACM Symposium on Principles
of distributed computing, pages 1–28, New York, NY, USA, 1989. ACM.

