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INVARIANT GAMES

ERIC DUCHÊNE AND MICHEL RIGO

Abstract. In the context of 2-player removal games, we define the notion of
invariant game for which each allowed move is independent of the position it
is played from. We present a family of invariant games which are variations of
Wythoff’s game. The set of P -positions of these games are given by a pair of
complementary Beatty sequences related to the irrational quadratic number
αk = (1; 1, k). We also provide a recursive characterization of this set.

We assume that the reader has some knowledge in combinatorial game theory.
Basic definitions can be found in [2]. The set of nonnegative (resp. positive) integers
is denoted by N (resp. N≥1).

Given an infinite sequence S = (An, Bn)n≥0 of nonnegative integers with (A0, B0) =
(0, 0), a 2-player removal game on two heaps having S as set of P -positions can
always be defined. Indeed, the following näıve rules can be chosen: from any po-
sition (x, y) not in S, there is a unique allowed move (x, y) → (0, 0). And from
any position (An, Bn) ∈ S, any move is allowed except those leading to another
position in S. Such a definition for the rules is not satisfying. In general, game rules
that are considered are those which can “easily be understood by a child”. These
considerations are fuzzy. Nowadays, there is no clear formal framework to decide
the quality of given game rules.

We here propose an answer to this issue by introducing the notion of invariant
games. An invariant game has rules that are independent of the actual position of
the game.

Definition 1. Consider a two-player impartial removal game G played on ℓ ≥ 1
piles of tokens. Positions and moves are thus coded by ℓ-tuples of nonnegative
integers. For two ℓ-tuples x = (x1, . . . , xℓ) and y = (y1, . . . , yℓ), we write x ≺ y
if xi ≤ yi for all i = 1, . . . , ℓ. The game G is invariant, if for all positions p =
(p1, . . . , pℓ) and q = (q1, . . . , qℓ) and any move x = (x1, . . . , xℓ) such that x ≺ p and
x ≺ q then, the move p → p − x is allowed if and only if the move q → q − x is
allowed.

Otherwise stated, a game is invariant if the same moves can be played from any
position, with the only restriction that enough tokens on the different piles are
available.

We denote by MG ⊆ N
ℓ the set of moves of G. If G is invariant, then the

knowledge of MG is enough to play the game. On the other hand, a game for
which at least one move depends on the actual position is called variant. In a
variant game, some positions are associated with specific subsets of MG.

Example 1. For instance, the game of Nim [3] or Wythoff’s game [15] are invariant
games. In Wythoff’s game W , we have

MW = {(i, 0) | i ≥ 1} ∪ {(0, j) | j ≥ 1} ∪ {(i, i) | i ≥ 1}
1
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and for the game of Nim on ℓ piles,

MN = {(i, 0, . . . , 0) | i ≥ 1} ∪ {(0, i, 0, . . . , 0) | i ≥ 1} ∪ · · · ∪ {(0, . . . , 0, i) | i ≥ 1}.

Other invariant games are given in [5, 8, 12, 13] or also the subtraction games found
in [2].

Example 2. Games like the Raleigh game [10], the Rat and the Mouse game [11],
Tribonacci game [6] or Cubic Pisot games [7] are variant. Nevertheless, these games
remain appealing, since the dependence of the game rules to the actual positions is
restricted to some simple logical formula.

One can however wonder if there exist invariant games having the same sets of
P -positions as those in Example 2. More generally, for any sequence S : N →
N

ℓ, is there an invariant game having S as set of P -positions? The answer is
negative. As an example, consider any sequence S = (An, Bn)n≥0 starting with
(0, 0), (1, 2), (3, 5), (4, 6) and such that {An | n ≥ 1} and {Bn | n ≥ 1} make a
partition of N≥1. There is no invariant game having S as set of P -positions because
from the N -position (1, 1), one must play to (0, 0). Hence the move (1, 1) belongs
to the set of rules. But playing from (4, 6) to (3, 5) is not allowed (there is no move
between two P -positions).

We already know that Wythoff’s game is invariant. Notice that its set of P -
positions is given by a pair of complementary (homogeneous) Beatty sequences [1].
A pair of complementary homogeneous Beatty sequences is of the form (⌊nα⌋, ⌊nβ⌋)n≥1,
with α > 1 an irrational number, and β = α/(α − 1). Non-homogeneous Beatty
sequences are those of the form (⌊nα + a⌋, ⌊nβ + b⌋)n≥1, with a and b any two real
nonzero numbers.

Indeed, it is proved in [15] that the nth P -position of Wythoff’s game is (⌊nτ⌋, ⌊nτ2⌋),
where τ is the golden ratio. In [9], Fraenkel investigates an invariant extension of
Wythoff’s game where the set of P -positions is also given by a pair of comple-
mentary Beatty sequences build over the quadratic irrational number having (1; k),
with k ∈ N≥1, as continued fraction expansion.

In this paper, we consider the sequence S = (An, Bn)n≥0 build over the quadratic

irrational number αk having (1; 1, k) as continued fraction expansion and then show
that there exists an invariant game having S as set of P -positions. This result is
a step towards the following general conjecture. In the rest of the paper, assume
that k is fixed once and for all.

Conjecture 1. Given a pair of complementary Beatty sequences S = (An, Bn)n≥1,
there exists an invariant game having S ∪ {(0, 0)} as set of P -positions.

The converse does not hold. As shown in [5, 8], there are invariant games whose
set of P -positions cannot be described with a pair of Beatty sequences. Notice
that the invariant game discussed in [12] has a set of P -positions given by a pair of
non-homogeneous Beatty sequences.

This paper is articulated as follows. In the next section, we study some particular
properties of the sequence (⌊nαk⌋)n≥0 using the fact that (⌊(n+1)αk⌋−⌊nαk⌋)n≥0

is a Sturmian sequence, see Definition 2. In a second part, we present a family of
invariant games which are variations of Wythoff’s game. We obtain two charac-
terizations of the set of P -positions. The first one is recursive (Theorem 3). The
other one is based on the results given in the first section and it expresses the set
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of P -position using a pair of complementary Beatty sequences based on αk (The-
orem 4). From the point of view of combinatorics on words, these two theorems
provide a recursive definition of a family of Sturmian words.

1. Some technical results

Let k ≥ 1 be an integer. Let αk be the quadratic irrational number having
(1; 1, k) as continued fraction expansion and βk be such that α−1

k + β−1

k = 1. We
have thus defined

(1) αk = 1+

√
k2 + 4k − k

2
∈ [

1 +
√

5

2
, 2) and βk =

3

2
+

√
k2 + 4k

2k
∈ (2,

3 +
√

5

2
].

which are represented as functions of k in Fig. 1. The sequences (⌊nαk⌋)n≥1 and
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Figure 1. αk and βk as functions of k

(⌊nβk⌋)n≥1 are complementary Beatty sequences giving a partition of N≥1 [1]. No-
tice that for k = 1, α1 is exactly the golden ratio.

Definition 2. For any positive real number γ, we write

∆γ(n) := ⌊(n + 1)γ⌋ − ⌊nγ⌋.
It is well-known (see for instance [14]) that for any irrational number γ the first
difference sequence (∆γ(n))n≥1 is a Sturmian sequence over {⌊γ⌋, ⌊γ⌋ + 1}: for
all ℓ ≥ 0, there are exactly ℓ + 1 distinct blocks of ℓ consecutive elements in the
sequence, i.e., for all ℓ ≥ 0

#{∆γ(i + 1) · · ·∆γ(i + ℓ) | i ≥ 0} = ℓ + 1.

The results of this section describe some properties of the sequences (∆αk
(n))n≥1

and (∆βk
(n))n≥1. The proofs use only elementary methods but some caution is

needed.

Remark 1. The sequence (∆αk
(n))n≥1 is a Sturmian sequence over {1, 2}. As an

example, for k = 2, the first elements in (∆α2
(n))n≥1 are

22122212221221222122212221221222122212221221222122 · · ·
For all k ≥ 1, the three factors 21, 12 and 22 appear in the sequence (∆αk

(n))n≥1

but 11 does not occur. Proceed by contradiction and assume that there exists n
such that ∆αk

(n) = 1 and ∆αk
(n + 1) = 1. Adding these two relations gives

√

k2 + 4k − k = {(n + 2)α} − {n α}.
The l.h.s. is greater than 1 for all k ≥ 1 (αk is increasing with respect to k) but
the r.h.s. is in (−1, 1) providing the contradiction. (See Remark 2 to have the
description of the k + 1 factors of length k.)
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The same observation can be made for all k ≥ 1, the sequence (∆βk
(n))n≥1 over

{2, 3} for which the factor 33 does not occur. For k = 2, the first elements in
(∆γ2

(n))n≥1 are

23223223232232232232322322322323223223232232232232 · · ·
In what follows, we assume that k is implicitly understood as a parameter for

αk and βk and we omit reference to k in the corresponding notation α and β.

Lemma 1. Let α, β given in (1) and n ≥ 1 be such that ∆α(n) = 1. Then
∆β(n) = 2.

Proof. We assume that α − {(n + 1)α} + {n α} = 1 and we have to show that
β − {(n + 1)β} + {n β} = 2. For the sake of simplicity, we set

(2) γ :=

√
k2 + 4k

2
.

Since (k + 1)2 < k2 + 4k < (k + 2)2, it is easy to deduce that ⌊γ⌋ = ⌈k/2⌉. Notice
that if k is even, then for all n ≥ 1, {n α} = {n γ}. If k is odd, then for all n ≥ 0,
we have

{2n α} = {2n γ} and {(2n + 1)α} =

{

{(2n + 1) γ} +
1

2

}

.

Now let’s turn our attention to expressions involving β. For all n ≥ 0, we have

{2n β} = {2n γ/k} and {(2n + 1)β} =

{

{(2n + 1) γ/k} +
1

2

}

.

For all n ≥ 1, if we consider the Euclidian division ⌊n γ⌋ = qn k + rn with rn ∈
{0, . . . , k − 1}, we get

⌊n γ/k⌋ = qn and {n γ/k} =
1

k
{n γ} +

rn

k
.

Notice that

(3) β = 2 +
α − 1

k
.

Case 1. Assume first n odd and k even. We have

(4)

β − {(n + 1)β} + {nβ} = 2 + α−1

k
− {(n + 1) γ/k} +

{

{n γ/k} + 1

2

}

= 2 + 1

k

(

α − 1 − {(n + 1) γ} − rn+1

)

+

{

1

k
{n γ} + rn

k
+ 1

2

}

.

Notice that to obtain the above formula, we have only used the fact that n is odd.

1.a) If {n γ} + rn < k/2, then

(5) β−{(n+1)β}+{nβ} = 2+
1

k

(

α − 1 − {(n + 1) γ} + {n γ}
︸ ︷︷ ︸

=0

+rn−rn+1

)

+
1

2
.

We have to show that rn − rn+1 = −k/2 when {n γ} + rn < k/2 and ∆α(n) = 1.
Since, for k even we have ⌊γ⌋ = k/2, one can notice that

(n + 1) γ = qnk + rn + {n γ} +
k

2
+ {γ}.
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Observe that under the hypothesis ∆α(n) = 1 and k even, we have

(6) {(n + 1) γ} − {n γ} = α − 1 = γ − k/2 = {γ}.
Therefore, {(n + 1) γ} = {n γ} + {γ} and since rn + k/2 < k, we conclude that
rn+1 = rn + k/2 and ∆β(n) = 2. In every cases we are dealing with, we always
have to check that the quantity rn+1 belongs to {0, . . . , k − 1}.
1.b) If {n γ} + rn ≥ k/2, then

(7) β−{(n+1)β}+{nβ} = 2+
1

k

(

α − 1 − {(n + 1) γ} + {n γ}
︸ ︷︷ ︸

=0

+rn−rn+1

)

− 1

2
.

Since rn is an integer and {nγ} < 1, we have in this case that rn ≥ k/2. Using the
same arguments as in the previous case, we obtain

(n + 1) γ = qnk +
k

2
+ rn + {(n + 1) γ}

and we conclude that qn+1 = qn + 1 and rn+1 = rn − k/2.

Case 2. Assume both n and k even. We have

(8)

β − {(n + 1)β} + {nβ} = 2 + α−1

k
−

{

{(n + 1) γ/k} + 1

2

}

+ {n γ/k}

= 2 + 1

k

(

α − 1 + {n γ} + rn

)

−
{

1

k
{(n + 1) γ} + rn+1

k
+ 1

2

}

.

2.a) If {(n + 1) γ} + rn+1 < k/2, then

β − {(n + 1)β} + {nβ} = 2 +
1

k

(

α − 1 − {(n + 1) γ} + {n γ}
︸ ︷︷ ︸

=0

+rn − rn+1

)

− 1

2
.

With the same reasonings as before, we get

(9) n γ = (n + 1) γ − γ = qn+1k + rn+1 + {(n + 1) γ} − k

2
− {γ}

and (6) holds. Since rn+1 < k/2, we deduce that qn = qn+1−1 and rn = rn+1+k/2.

2.b) If {(n + 1) γ} + rn+1 ≥ k/2, then as in case 1.b) we know that rn+1 ≥ k/2.
Moreover, we have

β − {(n + 1)β} + {nβ} = 2 +
1

k

(

α − 1 − {(n + 1) γ} + {n γ}
︸ ︷︷ ︸

=0

+rn − rn+1

)

+
1

2
.

From (9), we deduce that rn = rn+1 − k/2.

Case 3. Assume n and k odd. We have again (4). Observe that a main difference
with the first case is that

{(n + 1) γ} − {n γ} = {(n + 1)α} −
{

{n α} +
1

2

}

.

3.a) If {n γ} + rn < k/2 and {nα} < 1/2, then (5) becomes here

β−{(n+1)β}+ {nβ} = 2+
1

k

(

α − 1 − {(n + 1)α} + {n α}
︸ ︷︷ ︸

=0

+
1

2
+ rn − rn+1

)

+
1

2
.
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Since k is odd, we have ⌊γ⌋ = (k + 1)/2 and

(10) (n + 1) γ = qnk + rn + {n γ} +
k + 1

2
+ {γ}.

Observe that under the considered hypothesis, we have

{(n + 1) γ} − {n γ} = α − 3/2 = γ − k + 1

2
= {γ}.

Since {nα} < 1/2, then {nγ} > 1/2 and rn < (k − 1)/2. We conclude that
rn+1 = rn + (k + 1)/2 < k.

3.b) If {n γ} + rn < k/2 and {nα} > 1/2, then (5) becomes here

β − {(n + 1)β} + {nβ} = 2 +
1

k

(

−1

2
+ rn − rn+1

)

+
1

2

and

{(n + 1) γ} − {n γ} = α − 1/2 = γ − k + 1

2
+ 1 = {γ} + 1.

Therefore, we have

(11) (n + 1) γ = qnk + rn +
k − 1

2
+ {(n + 1) γ}

and we get rn+1 = rn + (k − 1)/2 < k.

3.c) If {n γ} + rn ≥ k/2 and {nα} < 1/2, then (7) becomes here

β − {(n + 1)β} + {nβ} = 2 +
1

k

(
1

2
+ rn − rn+1

)

− 1

2

and (10) holds. Since rn is an integer and k is odd, we deduce from {n γ}+rn ≥ k/2
that rn ≥ (k−1)/2. Consequently rn+(k+1)/2 ≥ k and it follows that qn+1 = qn+1
and rn+1 = rn − (k − 1)/2.

3.d) If {n γ} + rn ≥ k/2 and {nα} > 1/2, then (7) becomes here

β − {(n + 1)β} + {nβ} = 2 +
1

k

(

−1

2
+ rn − rn+1

)

− 1

2

and (11) holds. Since {nα} > 1/2, we have {nγ} < 1/2 and rn > (k − 1)/2.
Therefore, rn + (k − 1)/2 > k − 1 and it follows that qn+1 = qn + 1 and rn+1 =
rn − (k + 1)/2.

Case 4. Assume n even and k odd. Here (8) holds and one proceeds following the
same scheme as in the previous case but here, since n is even, one has to use the
fact that

{(n + 1) γ} − {n γ} =

{

{(n + 1)α} +
1

2

}

− {n α}.

�

The following result is equivalent to the previous one in the sense that any of
these two results implies directly the other one.

Lemma 2. Let α, β given in (1) and n ≥ 1 be such that ∆β(n) = 3. Then
∆α(n) = 2.

Proof. Proceed by contradiction. Assume that ∆β(n) = 3 and that ∆α(n) = 1.
Using the previous lemma, this latter equality implies that ∆β(n) = 2 which is a
contradiction. �
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In the following two statements, we are considering blocks of consecutive elements
of some sequence. These blocks are written using the concatenation of symbols as
product operation. Therefore, notation like 2k means a repetition of k occurrences
of the symbol 2.

Remark 2. We can easily show that for any n, the block ∆α(n) · · ·∆α(n + k − 1)
of length k is one of the k + 1 elements (recall that we are dealing with a Sturmian
sequence) of the set

{2k} ∪ {2i12k−i−1 | i = 0, . . . , k − 1}.
Indeed,

D := ∆α(n) + · · · + ∆α(n + k − 1) = ⌊(n + k)α⌋ − ⌊n α⌋
= k α − {(n + k)α} + {n α}

and as a function of k, it is easy to check that k α > 2k−1 for all k ≥ 1 (see Fig. 2).
Therefore, the integer D is such that D > 2k − 2 and also D ≤ 2k, the maximal

10 20 30 40 50
k

0.1

0.2

0.3

0.4

0.5

0.6

1 - 2 k + kΑ

10 20 30 40 50
k

0.02

0.04

0.06

0.08

0.1
-3 - 2 k + H1 + kL Β

Figure 2. The functions k α − 2k + 1 and (k + 1)β − 2k − 3.

value being reached in case of the block 2k. Consequently, for all n ≥ 1, we have

D ∈ {2k − 1, 2k}.
This means that any block of length k contains at most one 1. From this, one
can also deduce that any block of length k + 1 in (∆α(n))n≥1 contains 0, 1 or 2
occurrences of 1.

In the same way, for all n ≥ 1, the block ∆β(n) · · ·∆β(n + k − 1) of length k is
one of the k + 1 elements in

(12) {2k} ∪ {2i32k−i−1 | i = 0, . . . , k − 1}.
Moreover, 2k+1 is not a block of length k +1 occurring in the sequence and 32k−13
is the only block of length k + 1 containing two occurrences of 3. Indeed, assume
that ∆β(n) + · · · + ∆β(n + k) = 2k+1. This implies

(k + 1)β = 2k + 2 + {(n + k + 1)β} − {n β} ≤ 2k + 3.

But as a function of k, we have (k + 1)β > 2k + 3 (see Fig. 2). This proves that
the block 2k+1 does not occur. Moreover, any block of length k + 1 containing
two occurrences of 3 in another configuration than 32k−13 would lead to a block of
length k with two occurrences of 3.

Lemma 3. Let α, β given in (1) and k ≥ 2. If ∆α(n) · · ·∆α(n+ k− 1) = 2k, then

∆β(n) · · ·∆β(n + k − 1) ∈ {2i32k−i−1 | i = 0, . . . , k − 1}.
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In particular, if ∆α(n) · · ·∆α(n + k− 1) = 2k and ∆β(n) · · ·∆β(n + k− 2) = 2k−1,
then ∆β(n + k − 1) = 3.

Proof. We set

A :=
1

k
(k α − {(n + k)α} + {n α})

and

B := α −
{

(n + k)
α − 1

k

}

+

{

n
α − 1

k

}

.

The first assumption can be written kA = ⌊(n + k)α⌋ − ⌊n α⌋ = 2k, i.e., A = 2,
and in view of (12), we have to show that ⌊(n + k)β⌋ − ⌊n β⌋ = 2k + 1. Using (3),
we get

⌊(n + k)β⌋ − ⌊n β⌋ = 2k − 1 + B.

In particular, this implies that B is an integer. To conclude the proof, it is enough
to show that for all n ≥ 1,

A − B ∈ {−1

k
, 0, 1 − 1

k
}.

If this can be shown, then whenever A = 2, B being an integer and for k ≥ 2, − 1

k

and 1− 1

k
being not integer, we must have A = B and ⌊(n+ k)β⌋− ⌊n β⌋ = 2k +1.

We have

A − B =

{

(n + k)
α − 1

k

}

−
{

n
α − 1

k

}

− 1

k
{(n + k)α} +

1

k
{n α}.

For any m ≥ 1, we consider the Euclidian division of ⌊m (α − 1)⌋ by k:

m (α − 1) = qm k + rm + {m (α − 1)}
to define qm ∈ N and rm ∈ {0, . . . , k − 1}. Therefore, for all m ≥ 1,

(13)

{

m
α − 1

k

}

=
1

k
{m α} +

rm

k
.

Now, observe that

(n + k) (α − 1) = (qn + ⌊α − 1⌋) k + rn + {n (α − 1)} + k {α − 1}
and we have to study k{α − 1} = k{γ − k/2} using the definition (2). Since
⌊γ⌋ = ⌈k/2⌉, for k even, we have

k{γ − k/2} = k{γ} = k(γ − ⌊γ⌋) = k

√
k2 + 4k − k

2

and for k odd, since ⌊γ⌋ = (k − 1)/2 and ⌊γ + 1/2⌋ = (k + 1)/2, we get

k{γ− k/2} = k{γ +1/2} = k(γ +1/2−⌊γ +1/2⌋) = k(γ − k/2) = k

√
k2 + 4k − k

2
.

In both cases, we have the same function f(k) which can easily be seen (see Fig. 3
for a sketch of f(k) − k + 1) to satisfy

k − 1 < k{γ − k/2} < k.

So k{α − 1} = k − 1 + {k{α− 1}} and

(n + k) (α − 1) = (qn + ⌊α − 1⌋)k + rn + k − 1 + {n (α − 1)} + {k{α− 1}}
︸ ︷︷ ︸

:=C

.

The conclusion follows easily. We have three cases to consider
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Figure 3. f(k) − k + 1 > 0.

• If C ∈ [0, 1) and rn = 0, then qn+k = qn + ⌊α − 1⌋ and rn+k = k − 1.
• If C ∈ [0, 1) and rn ∈ {1, . . . , k − 1}, then qn+k = qn + ⌊α − 1⌋ + 1 and

rn+k = rn − 1.
• If C ∈ [1, 2), then qn+k = qn + ⌊α − 1⌋ + 1 and rn+k = rn.

Consequently, using (13), A−B reduces to (rn+k − rn)/k ∈ {−1/k, 0, 1−1/k}. �

Lemma 4. Let α, β given in (1) and k ≥ 1. If ∆β(n) · · ·∆β(n + k) = 32k−13,
then ∆α(n) · · ·∆α(n + k) = 2k+1.

Proof. We assume that

(14) k⌊(n + k + 1)β⌋ − k⌊n β⌋ = 2k(k + 2).

We proceed by contradiction and assume that ∆α(n) · · ·∆α(n + k) contains 1 or 2
occurrences of 1 (from Remark 2, these are the only cases to consider), i.e.,

⌊(n + k + 1)α⌋ − ⌊n α⌋ ∈ {2k, 2k + 1}.
Using (3), ⌊(n + k + 1)α⌋ − ⌊n α⌋ is written

(15) (k + 1)(kβ − 2k + 1) − {(n + k + 1)kβ} + {nkβ} ∈ {2k, 2k + 1}.
Set β′ = kβ and subtract (15) from (14). We have that

(k + 1)β′ − k{(n + k + 1)β′/k} + k{nβ′/k}

−
[

(k + 1)β′ − {(n + k + 1)β′} + {nβ′}
]

∈ {k, k + 1}

Proceeding as in the proof of the previous lemma, one can show that this expression
divided by k:

1

k
({(n + k + 1)β′} − {nβ′}) − {(n + k + 1)β′/k} + {nβ′/k}

belongs to {− 1

k
, 0, 1− 1

k
} by noticing that ⌊β′⌋ = 2k and {β′} > k/(k+1). But this

expression divided by k must belong to {1, 1 + 1

k
} leading to a contradiction. �

2. An invariant game

For all k ≥ 1, let us present a variation of Wythoff’s game that we call G(αk),
this notation will become clear in a few lines (see Theorem 4). The set of moves of
the invariant game G(αk) is

MW \ {(2i, 2i) | 0 < i < k} ∪ {(2k + 1, 2k + 2), (2k + 2, 2k + 1)}
whereMW is the set of Wythoff’s moves. In other terms, this game can be described
as follows: either take a positive number from a single pile, or take (2i, 2i), i < k
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from both, or 2k + 1, k > 0 from one and 2k + 2 from the other. The first player
unable to move loses. Note that the rules of the game G(αk) are due to computer
experiments, so as to fit the Beatty sequence (⌊nαk⌋, ⌊nβk⌋), as it will be shown
in Theorem 4. Since the moves are symmetric on the two piles of tokens, we can
restrict ourselves to positions (x, y) with x ≤ y. Recall that k was given once and
for all, thus the P -positions will be denoted (An, Bn). For instance, the first ones
in the case k = 2 are

n 0 1 2 3 4 5 6 7 8 . . .
An 0 1 3 5 6 8 10 12 13 . . .
Bn 0 2 4 7 9 11 14 16 18 . . .

Remark 3. Observe that for k = 1, we have MW ∪ {(3, 4), (4, 3)} as set of moves
for G(α1) and it is shown in [4] that adding such a move to MW does not change
the set of P -positions of Wythoff’s game. So the game G(α1) has exactly the same
set of P -positions as the classical Wythoff’s game. Note that in [4], it is also proved
that adding any move of the form (k, k + 1) with k 6= 1, 2 does not change the set
of P -positions of Wythoff’s game.

Definition 3. Let k ≥ 2. We define recursively a sequence (An, Bn)n≥0 as follows.

(A0, B0), (A1, B1), . . . , (Ak, Bk) = (0, 0), (1, 2), (3, 4), . . . , (2k − 1, 2k),

An = Mex{Ai, Bi | i < n}.
For all n ≥ k, if the following condition holds true

An+1 − An = 2

∧
[

(Bn − An = Bn−k+1 − An−k+1 + 1 ∧ An+1 − An−k 6= 2k + 1)

∨ Bn−k − An−k 6= Bn − An − 1

]

then Bn+1 − An+1 = Bn − An, otherwise Bn+1 − An+1 = Bn − An + 1.

The sequence (An)n≥0 is obviously increasing and the sequence (Bn − An)n≥0

is non-decreasing. Therefore the sequence (Bn)n≥0 is also increasing. By the Mex
rule defining (An)n≥0, we assert that {An | n ≥ 1} and {Bn | n ≥ 1} make a
partition of N≥1.

Lemma 5. Let k ≥ 2 (the same as in Definition 3). For the sequence (An, Bn)n≥0

given in Definition 3, we have An+1 − An ∈ {1, 2} for all n ≥ 0.

Proof. We proceed by induction on n ≥ 0. We have An+1 − An ∈ {1, 2} for all
n < k. Assume now that Aj+1 − Aj ∈ {1, 2} for all j ≤ n. The definition of the
sequence implies that, for all j ≤ n,

(16) Bj+1 − Bj ∈ {2, 3}.
If An+1 = An + 1, then the result holds. Otherwise, there exists i ≤ n such that
An + 1 = Bi. From (16), we deduce that Bi+1 ≥ An + 3 and from the Mex rule
defining (An)n≥0, we conclude that An+1 = An + 2. �

The next corollary follows directly from the definition of the sequence and the
above lemma.
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Corollary 2. Let k ≥ 2 (the same as in Definition 3). For the sequence (An, Bn)n≥0

given in Definition 3, we have, for all n ≥ 0,

(An+1 − An, Bn+1 − Bn) ∈ {(1, 2), (2, 2), (2, 3)}.

The next result is correlated with the observation made in Remark 2.

Lemma 6. Let k ≥ 2 (the same as in Definition 3). For the sequence (An, Bn)n≥0

given in Definition 3, any subsequence of k consecutive differences of the kind

(Ai+1 − Ai, Bi+1 − Bi), . . . , (Ai+k − Ai+k−1, Bi+k − Bi+k−1)

contains at most one occurrence of (2, 3).

Proof. Assume to the contrary that there exists n ≥ 0 and i ∈ {1, . . . , k − 1} such
that

(An+i+1 − An+i, Bn+i+1 − Bn+i) = (An+k+1 − An+k, Bn+k+1 − Bn+k) = (2, 3).

In particular, this means that

Bn+k+1 −An+k+1 = Bn+k −An+k + 1 ≥ Bn+i+1 −An+i+1 + 1 = Bn+i −An+i + 2.

By the definition of the sequence (An, Bn)n≥0, since (An+k+1 − An+k, Bn+k+1 −
Bn+k) = (2, 3), the following 3-terms condition should be satisfied

(Bn+k − An+k 6= Bn+1 − An+1 + 1 ∨ An+k+1 − An = 2k + 1)

∧ Bn − An = Bn+k − An+k − 1.

The last term in this condition should be satisfied. Therefore all the pairs of
differences (An+1 − An, Bn+1 − Bn), . . . , (An+k − An+k−1, Bn+k − Bn+k−1) are
equal to (2, 2) except for (An+i+1 − An+i, Bn+i+1 − Bn+i) which is equal to (2, 3).
Since An+k+1 − An+k = 2, we conclude that An+k+1 − An is even and therefore
An+k+1 − An 6= 2k + 1. From the above discussion, we can also conclude that
Bn+k − An+k = Bn − An + 1. Therefore the first two terms of the condition are
never satisfied which is a contradiction. �

Lemma 7. Let k ≥ 2 (the same as in Definition 3). For the sequence (An, Bn)n≥0

given in Definition 3, any subsequence of k + 1 consecutive differences

(Ai+1 − Ai, Bi+1 − Bi), . . . , (Ai+k+1 − Ai+k, Bi+k+1 − Bi+k)

contains at most one occurrence of (1, 2).

Proof. Assume that An = j and An+1 = j + 1 for some n, j ≥ 2 (this means that
An+1−An = 1). Let us show that the next k differences An+2−An+1, . . . , An+k+1−
An+k are all equal to 2. Observe that there exists m such that j − 1 = Bm and
j +2 = Bm+1 because otherwise, we would have Bm+1 −Bm > 3 which contradicts
Corollary 2. In particular, Bm+1 − Bm = 3. By Lemma 6, we conclude that

Bm+2, . . . , Bm+k = j + 4, . . . , j + 2k

and since Bm+k+1 −Bm+k ≥ 2, we also have Bm+k+1 ≥ j + 2k + 2. From the Mex
rule defining the sequence, we get that

An+2, . . . , An+k, An+k+1 = j + 3, . . . , j + 2k − 1, j + 2k + 1.

�
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Lemma 8. Let k ≥ 2 (the same as in Definition 3). For the sequence (An, Bn)n≥0

given in Definition 3, any subsequence of k + 1 consecutive differences

(Ai+1 − Ai, Bi+1 − Bi), . . . , (Ai+k+1 − Ai+k, Bi+k+1 − Bi+k)

contains at most two elements in {(1, 2), (2, 3)}.

Proof. Assume to the contrary that there exist i ∈ {1, . . . , k−2} and j ∈ {2, . . . , k−
1} such that i < j and







Bn+i+1 − An+i+1 = Bn+i − An+i + 1
Bn+j+1 − An+j+1 = Bn+j − An+j + 1
Bn+k+1 − An+k+1 = Bn+k − An+k + 1.

Observe that if (An+k+1 − An+k, Bn+k+1 − Bn+k) = (2, 3), then by Definition 3,
we should have Bn − An = Bn+k − An+k − 1 which is not the case. Conse-
quently, (An+k+1 − An+k, Bn+k+1 − Bn+k) = (1, 2). By Lemma 7, we get that
(An+j+1−An+j, Bn+j+1−Bn+j) = (2, 3). By Lemma 6, we then get that (An+i+1−
An+i, Bn+i+1 − Bn+i) = (1, 2). But these two occurrences of (1, 2) contradict
Lemma 7. �

Lemma 9. Let k ≥ 2 (the same as in Definition 3). For the sequence (An, Bn)n≥0

given in Definition 3, any subsequence of k consecutive differences

(Ai+1 − Ai, Bi+1 − Bi), . . . , (Ai+k − Ai+k−1, Bi+k − Bi+k−1)

contains at least one element in {(1, 2), (2, 3)}.

Proof. Assume to the contrary that there exists n ≥ 0 such that

(An+1 − An, Bn+1 − Bn) = (An+2 − An+1, Bn+2 − Bn+1) = . . .

= (An+k − An+k−1, Bn+k − Bn+k−1) = (2, 2).

We choose the smallest possible such n. Hence An+k − An = 2k. According to
Definition 3, we should have either Bn+k−1 −An+k−1 = Bn −An + 1 or Bn+k−1 −
An+k−1 − 1 6= Bn−1 −An−1. The first condition is false since Bn+k−1 −An+k−1 =
Bn−An. And by minimality of n, we have Bn−1−An−1 = Bn−An−1, contradicting
the second condition. �

Theorem 3 (Recursive characterization). The P -positions of G(αk), k ≥ 2, are
given by the sequence (An, Bn)n≥0 in Definition 3.

Proof. We first show that there is no move from a position (An, Bn) to some position
(Am, Bm) with 0 ≤ m < n. Assume that such a move exists. Then this move is
necessarily of the form An → Am and Bn → Bm. Indeed, if An → Bm and
Bn → Am, then we have Am < Bm < An < Bn. Hence 0 < An−Bm < Bn−Am−1,
and no rule of G(αk) allows to play a move (x, y) with |x − y| > 1 and xy 6= 0.
Notice that, since the four numbers An, Am, Bn, Bm are pairwise distinct, the only
moves to be considered are those played on both piles. We now consider the three
possible cases about n and m:

• m < n ≤ k. All the differences (An −Am, Bn −Bm) are of the form (2i, 2i)
with 0 < i < k, which are forbidden moves according to the rules of G(αk).
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• m ≤ k < n. Since Bn −An ≥ 2 > Bm −Am, the only possible move is such
that (An − Am, Bn − Bm) is equal to (2k + 1, 2k + 2) or (2k + 2, 2k + 1).
If the latter case occurs, we would have Bm − Am > Bn − An. This is
impossible because the sequence (Bi − Ai)i≥0 is non-decreasing. Assume
that (An−Am, Bn−Bm) = (2k+1, 2k+2). Since Bm−Am < 2, this implies
Bn − An = 2. In the sequence (Ai, Bi)i≥0 there is a unique pair (An, Bn)
satisfying Bn − An = 2. It is (Ak+1, Bk+1) = (2k + 1, 2k + 3) because
(Ak+2, Bk+2) = (2k+2, 2k+5). Therefore, playing the move (2k+1, 2k+2)
from (Ak+1, Bk+1) leads to (0, 1) which is not in the sequence (Ai, Bi)i≥0.

• k < m < n. Assume that the move (An − Am, Bn − Bm) is of the form
(x, x) with x 6= 2i, for all 0 < i < k. Hence Bm−Am = Bn−An. According
to Corollary 2, this implies that

An − Am = Bn − Bm = 2(n − m).

Hence n−m ≥ k and the n−m consecutive differences (Am+1−Am, Bm+1−
Bm), . . . , (An − An−1, Bn − Bn−1) are equal to (2, 2). This contradicts
Lemma 9. Now assume that the move (An − Am, Bn − Bm) is of the
form (2k + 1, 2k + 2). Then according to Corollary 2, all the k + 1 pairs
of differences (Am+1 − Am, Bm+1 − Bm), . . . , (An − An−1, Bn − Bn−1) are
equal to (2, 2) except for one of them (Ai −Ai−1, Bi−Bi−1), which is equal
to (1, 2). By Lemma 9, we deduce that m + 1 < i < n. Hence we have
that (An − An−1, Bn − Bn−1) = (2, 2). Notice that Bn−k−1 − An−k−1 =
Bn−1−An−1−1 and An−An−k−1 = 2k+1, which contradicts Definition 3.
As in the previous case, one can check that the case (An −Am, Bn−Bm) =
(2k + 2, 2k + 1) does not occur.

Let (a, b) be a game position which is not in the sequence (An, Bn)n≥0. We now
show that it is always possible to play from (a, b) to a position in (An, Bn)n≥0.

Without loss of generality, assume that a ≤ b. If a = 0, then we can play from
(a, b) to (0, 0). Now assume that a > 0. Since (An, Bn)n≥1 makes a partition of
N≥1, there exists n > 0 such that a = An or a = Bn. If a = Bn, then we play
b → An and leave the other pile unchanged. If a = An, then we consider three
cases:

• b > Bn. Then play b → Bn and leave the other pile unchanged.
• b < Bn and there exists 0 < i < n such that b = Bi. Then play a → Ai

and leave the other pile unchanged.
• b < Bn and there exists j > n such that b = Aj . Since Aj −An < Bn −An,

there exists i < n such that Bi − Ai = Aj − An. We choose the smallest
i having this property. If An − Ai 6= 2p for all 0 < p < k, then we play
An → Ai and Aj → Bi. Otherwise, there exists 0 < p < k such that
An −Ai = Aj −Bi = 2p. According to Corollary 2 and Lemma 7, the n− i
differences An−An−1, . . . , Ai+1−Ai equal 2 and n− i = p < k. Since Bn−
An > Bi −Ai and by Lemma 6, we have (Ai+1 −Ai, Bi+1 −Bi), . . . , (An −
An−1, Bn−Bn−1) are equal to (2, 2) except for one of them. There exists a
unique t ∈ {i+1, . . . , n} such that (At−At−1, Bt−Bt−1) = (2, 3). Now, by
minimality of i, we have that (Ai − Ai−1, Bi − Bi−1) ∈ {(1, 2), (2, 3)}, and
by Lemma 6, (Ai−Ai−1, Bi−Bi−1) = (1, 2). According to Lemma 8, all the
differences (At−k−At−k−1, Bt−k−Bt−k−1), . . . , (Ai−1−Ai−2, Bi−1−Bi−2)
are equal to (2, 2). Notice that t − k ≤ n − k < i. We can conclude
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that An − An−k = 2k + 1 and Aj − An−k = 2k + 2. Hence we can play
(An, Aj) → (An−k, Bn−k).

�

Theorem 4 (Algebraic characterization). Let α := αk, β := βk given in (1) for
some k ≥ 2. If for all n ≥ 0, we set (A′

n, B′
n) := (⌊nα⌋, ⌊nβ⌋), then the set of

P -positions of G(αk) is exactly {(A′
n, B′

n) | n ≥ 0}.
Proof. We simply have to show that the sequence (A′

n, B′
n)n≥0 is verifying the

recursive characterization given in the previous theorem.

A. We first check the initial conditions. It is obvious that (A′
0, B

′
0) = (0, 0) and

(A′
1, A

′
2) = (1, 2), see (1). It is enough to check that ∆α(i) = ∆β(i) = 2 for

i = 1, . . . , k − 1. Since ∆α(0) = 1 and ∆β(0) = 2, it is the same to verify that
∆α(0) + · · · + ∆α(k − 1) = ⌊k α⌋ = 2k − 1 and ⌊k β⌋ = 2k. As a function of k,
one can easily check that 2k − 1 < kα < 2k (see Fig. 2) and in the same way,
2k < kβ < 2k + 1.

B. As it was already observed by A. Fraenkel in [9], the facts that the sequences
(A′

n)n≥1 and (B′
n)n≥1 are complementary Beatty increasing sequences and that

A′
n < B′

n for all n ≥ 1 imply that we necessarily have A′
n = Mex{A′

i, B
′
i | i < n}.

C. Let n ≥ k. We now turn our attention to the determination of B′
n+1 − A′

n+1

with respect to the value of B′
n − A′

n.

C.1 Assume that the following conditions

(H1) A′
n+1 − A′

n = 2,
(H2) B′

n − A′
n = B′

n−k+1 − A′
n−k+1 + 1,

(H3) A′
n+1 − A′

n−k 6= 2k + 1

are satisfied. We have to show that B′
n+1 − A′

n+1 = B′
n − A′

n. From (H1) and
(H3), we get ⌊nα⌋ − ⌊(n − k)α⌋ 6= 2k − 1 so from Remark 2, we deduce that
⌊nα⌋−⌊(n−k)α⌋ = 2k. Consequently, ∆α(n− i) = ⌊(n− i+1)α⌋−⌊(n− i)α⌋ = 2
for i = 0, . . . , k. Using Lemma 3, we know that the two overlapping blocks x :=
∆β(n− k) · · ·∆β(n− 1) and y := ∆β(n− k + 1) · · ·∆β(n) both contain exactly one
occurrence of 3. This is not enough to conclude, at this stage it could be possible
that ∆β(n − k) · · ·∆β(n) is equal to either

(17) 32k−13 or 2i32k−i, for some i ∈ {1, . . . , k − 1}.
But from (H2), we get ⌊nβ⌋−⌊(n−k+1)β⌋ = 2k−1 and ∆β(n−k+1) · · ·∆β(n−1)
contains the only 3 occurring in x and y. Consequently, ∆β(n) = 2 which means
that B′

n+1 − A′
n+1 = B′

n − A′
n. Notice that the remaining condition occurring in

the recursive definition of Theorem 3:

(H4) B′
n−k − A′

n−k 6= B′
n − A′

n − 1

has not been considered in our discussion. It is never satisfied whenever (H1) and
(H3) are satisfied. Indeed, assume that (H1), (H3), (H4) are satisfied. We show that
such a situation never occurs. With (H1) and (H3), we know that ∆α(n − i) = 2
for i = 0, . . . , k and that we have (17). (H4) gives B′

n−B′
n−k 6= 2k+1 which means

that ∆β(n − k) · · ·∆β(n − 1) = 2k contradicting (17).

If condition (Hi) is not satisfied, i = 1, 2, 3, 4, we write (¬Hi) as a shorthand.
Therefore (H1), (H2), (H3) and (¬H4) are incompatible: it is impossible to have
simultaneously (H1), (H2), (H3) and (¬H4). In all the other cases that we consider
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below to cover all the situations, we do not pay attention to some of the four
conditions. In fact, it should be understood that if the conditions are compatible,
then we show how to get the expected thesis. In case of incompatible conditions,
there is nothing to show. Table 1 enumerate all the possible situations and give
the corresponding case where we are considering it. Each of the conditions (H1) to
(H4) can be either True or False.

C. 1 1 2 4 5 5 2 4 3 3 3 3 3 3 3 3
H1 T T T T T T T T F F F F F F F F
H2 T T T T F F F F T T T T F F F F
H3 T T F F T T F F T T F F T T F F
H4 T F T F T F T F T F T F T F T F
Table 1. The possible truth values and the corresponding case.

C.2 Assume now that we have (H1), (¬H3) and (H4). We have to show that
B′

n+1−A′
n+1 = B′

n−A′
n, i.e., ∆β(n) = 2. From (H1) and (¬H3), we get A′

n−A′
n−k =

2k − 1 and ∆α(n− k) · · ·∆α(n− 1) contains exactly one occurrence of 1. (H4) can
be written as B′

n −B′
n−k 6= 2k. Therefore ∆β(n− k) · · ·∆β(n− 1) contains exactly

one occurrence of 3, say ∆β(n − j) = 3 for some j ∈ {1, . . . , k}. If j < k, from
Remark 2, ∆β(n−k+1) · · ·∆β(n) contains at most one occurrence of 3, we deduce
that ∆β(n) = 2. If j = k, ∆β(n−k) = 3 and we proceed by contradiction. Assume
that ∆β(n) = 3, so from Lemma 4, we deduce that ∆α(n − k) · · ·∆α(n) = 2k+1

which is a contradiction (we know that this block contains an occurrence of 1).

C.3 Assume now that (H1) is not satisfied. This means that ∆α(n) = 1 and we
have to show that B′

n+1 −A′
n+1 = B′

n −A′
n + 1, i.e., that ∆β(n) = ∆α(n) + 1 = 2.

It is an immediate consequence of Lemma 1.

C.4 Assume now that we have (H1), (¬H3) and (¬H4). We have to show that
B′

n+1−A′
n+1 = B′

n−A′
n +1, i.e., that ∆β(n) = 3. As in the second case, from (H1)

and (¬H3), ∆α(n − k) · · ·∆α(n − 1) contains exactly one occurrence of 1. From
(¬H4), we get ∆β(n− k) · · ·∆β(n− 1) = 2k. Proceed by contradiction and assume
that ∆β(n) = 2. Therefore, we would have a block of length k +1 of the form 2k+1

in (∆β(n))n≥1. This is impossible in view of Remark 2.

C.5 The last case not yet considered is when we have (H1), (¬H2), (H3) (and as
a consequence of (H1) and (H3), we get (¬H4)). As in the first case, we have that
∆α(n− i) = 2 for all i = 0, . . . , k and (17) also holds: ∆β(n− k) · · ·∆β(n) is equal
to either 32k−13 or 2i32k−i, for some i ∈ {1, . . . , k − 1}. But from (¬H2), we get
⌊nβ⌋−⌊(n−k+1)β⌋ 6= 2k−1 so, ∆β(n−k+1) · · ·∆β(n−1) = 2k−1 and therefore
∆β(n − k) = ∆β(n) = 3. This concludes the last case: ∆β(n) = ∆α(n) + 1. �
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