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EXTENSIONS AND RESTRICTIONS OF WYTHOFF'S GAMEPRESERVING ITS P POSITIONSERIC DUCHÊNE, AVIEZRI S. FRAENKEL, RICHARD J. NOWAKOWSKI, AND MICHELRIGOAbstrat. We onsider extensions and restritions of Wytho�'s game havingexatly the same set of P positions as the original game. No strit subset ofrules give the same set of P positions. On the other hand, we haraterizeall moves that an be adjoined while preserving the original set of P posi-tions. Testing if a move belongs to suh an extended set of rules is shown tobe doable in polynomial time. Many arguments rely on the in�nite Fibonaiword, automati sequenes and the orresponding number system. With thesetools, we provide new two-dimensional morphisms generating an in�nite pi-ture enoding respetively P positions of Wytho�'s game and move that anbe adjoined. 1. IntrodutionWytho�'s game is a well-known 2-player ombinatorial game played on two heapsof �nitely many tokens. It was introdued in [22℄. Two types of moves are allowed:� Remove any positive number of tokens from one heap (the Nim rule).� Remove the same positive number of tokens from both heaps (Wytho�'s rule).The game ends when the two heaps are empty. The player making the last movewins. We denote by (a; b) a game position where a and b are the numbers of tokensin the two heaps. A position is alled a P position if there exists a strategy for theseond player (i.e., the player who will play on the next round) to win the game,whatever the move of the �rst player is. It is an N position if there exists a winningstrategy for the �rst player (i.e., the one who is making the atual move). As aonsequene of the next proposition, it turns out that eah game position is eitherP or N (details about impartial ayli games an be found in [2℄).Proposition 1 (Charaterization of the P positions of an impartial ayli game).The sets of P and N positions of any impartial ayli game (like Wytho�'s game)are uniquely determined by the following two properties:� Any move from a P position leads to an N position (stability property of theP positions).� From any N position, there exists a move leading to a P position (absorbingproperty of the P positions).Symmetry of the game rules implies that (a; b) is a P position if and only if (b; a)is also a P position. We will denote by (An; Bn) the nth P position of Wytho�'sgame, with 0 � An � Bn. We set (A0; B0) = (0; 0), sine from this position withtwo empty heaps the �rst player annot move, so the seond wins by default. In theliterature, the sequene (An; Bn)n�0 is alled Wytho�'s sequene. Table 1 below1



2 E. DUCHÊNE, A. FRAENKEL, R. NOWAKOWSKI, AND M. RIGOontains its �rst values. A reursive haraterization of the sequene is realled inProposition 2.n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15An 0 1 3 4 6 8 9 11 12 14 16 17 19 21 22 24Bn 0 2 5 7 10 13 15 18 20 23 26 28 31 34 36 39Table 1. First values of the sequenes (An)n�0 and (Bn)n�0.Proposition 2 (Reursive haraterization of Wytho�'s sequene [22℄). For all n �0, we have An = Mex(fAi; Bi : 0 � i < ng)Bn = An + n;where Mex(U) stands for Minimum EXluded value of U � N (with U 6= N), i.e.,the smallest nonnegative integer not in U (see [2℄). The proposition below followseasily from Proposition 2.Proposition 3. The sets fAn : n � 1g and fBn : n � 1g partition N�1 .The haraterization of Wytho�'s sequene desribed in Proposition 2 does notpermit to deide in polynomial time whether or not a given game position (a; b)is a P position. As explained in [10℄, this deision problem is ruial in \gameomplexity" theory. Therefore a polynomial time proedure based on the followingalgebrai haraterization is given in [22℄.Proposition 4 (Algebrai haraterization of Wytho�'s sequene). For all n � 0,we have An = bn �Bn = bn �2 = bn �+ n;where � is the golden ratio (1 +p5)=2.Let us now briey present the ontent of this paper. In Setion 2, we pro-vide three polynomial-time haraterizations of Wytho�'s sequene. The �rst onederives from the Fibonai word and fouses on ombinatoris on words. The ex-tensive use of ombinatoris on words to deal with games appears reently in [8℄.The Fibonai word was also used by A. Fink to solve a major onjeture about the2-player game Toppling Dominoes ([9℄). The seond haraterization is an arith-meti one oming unsurprisingly from the Fibonai numeration system. As for thealgebrai haraterization, it permits to deide in polynomial time whether or nota game position is a P position. This point of view is detailed in [13℄. The thirdharaterization is original and stems from a two-dimensional morphi approah.We are able to build the 2-dimensional (in�nite) table ontaining the P and the Npositions of Wytho�'s game as the projetion by a oding of the �xed point of atwo-dimensional morphism over a �nite alphabet. We also give in Setion 2 severalLemmas linked to ombinatoris on words and numeration systems that are usedin the sequel of this paper.



EXTENSIONS AND RESTRICTIONS PRESERVING WYTHOFF'S SEQUENCE 3In many papers devoted to variations of Wytho�'s game, new rules are adjoinedto the original ones. Suh variations are alled extensions. As an example, in [13℄Wytho�'s rule is relaxed to take k > 0 tokens from one pile, ` > 0 from the other,subjet to jk � `j < s where s > 0 is a �xed integer parameter. Other examples ofextensions of Wytho�'s game are given in [5, 11, 12, 15℄. There are a few paperswhere only subsets of Wytho�'s moves are allowed (see [6, 7, 14℄ for examples).Suh variations are alled restritions of Wytho�'s game. For all these extensionsand restritions of Wytho�'s game, the main goal is to �nd haraterizations of thesequene of P positions, whih almost always di�ers from the original Wytho�'ssequene.In the present paper, we also onsider extensions (Setion 3) and restritions(Setion 4) of Wytho�'s game. The main new ingredient in the present work isthe preservation of the P positions of Wytho�'s game. Moreover in setion 3, themoves that we add in our extensions need to be playable from any game position,as is the ase for Wytho�'s game. Indeed, we ould have imagined games wherethis property does not hold: for example we remove an odd number of tokens froma position (a; b) if a or b is a prime number, and an even number of tokens otherwise.We haraterize below all the sets of moves that an be adjoined to Wytho�'srules while preserving the sequene of P positions, under the ondition assumed inthe previous paragraph, i.e., all the adjoined moves are playable from any gameposition. The omplexity of this haraterization is an important issue and isinvestigated in Setion 3. To deide whether or not a move an be adjoined toWytho�'s game without hanging the sequene of P positions, it suÆes to hekthat it does not hange the stability property (de�ned in Proposition 1). Indeed,adding a move leading from some P position to another P position would neessarilyhange the stability property of the P positions (by Proposition 1). On the otherhand, adding a move whih does not orrespond to a move between any two Ppositions means that both properties of Proposition 1 remain true. Therefore, amove (i; j) an be added if and only if it prevents a move from a P position toanother P position of Wytho�'s game. In other words, a neessary and suÆientondition for a move (i; j)i<j to be adjoined is that it does not belong tof(An �Am; Bn �Bm) : n > m � 0g [ f(An �Bm; Bn �Am) : n > m � 0gBy Proposition 4, this ondition an be restated as follows.Proposition 5. A move (i; j)i<j an be adjoined to Wytho�'s rules without hang-ing the sequene of the P positions if and only if it satis�es(i; j) 6= (bn � � bm�; bn �2 � bm�2) 8n > m � 0(1)and (i; j) 6= (bn � � bm�2; bn �2 � bm�) 8n > m � 0:(2)So Proposition 5 answers our initial question about the haraterization of \ad-joinable"moves preserving Wytho�'s sequene as set of P positions. However, theoriginal Wytho�'s game has the property that one an deide in polynomial timewhether or not a given move belongs to the set of rules. This property appearsto be a neessary ondition for a game to be polynomial or tratable (see [10℄ fordetails). Therefore we disuss in Setion 3 the omplexity of this deision problem



4 E. DUCHÊNE, A. FRAENKEL, R. NOWAKOWSKI, AND M. RIGOfor the moves desribed in Proposition 5. We obtain polynomial omplexity usingthe Fibonai numeration system. Note that though the moves we adjoin preservethe P positions, they do not preserve the nonzero values of the Sprague-Grundyfuntion.Finally, we show in Setion 4 that there is no restrition of Wytho�'s gamepreserving Wytho�'s set of P positions.2. Charaterizations of Wythoff's sequeneThis setion has been written for a game theoretiian reader with no partiu-lar knowledge in formal languages theory nor ombinatoris on words. We reallall the neessary material about words, morphisms and automati sequenes. Ourmain aim is to obtain a morphism generating a two-dimensional (in�nite) tableenoding N and P positions of Wytho�'s game, the so-alled Wytho�'s matrix.We reall in the �rst subsetion that Wytho�'s sequene an be derived from theFibonai morphism. Morphisms are naturally assoiated with automata and nu-meration systems. In the seond subsetion, we derive a haraterization of theWytho�'s sequene from representations in the Fibonai numeration system. Fi-nally, the third subsetion disuss the two-dimensional morphi haraterization ofthe Wytho�'s matrix. We also inlude in this setion some tehnial results thatwill be used in other setions of this paper.2.1. A morphi haraterization. Let � be a �nite alphabet. We denote by ��the set of �nite words over � and by �N the set of maps from N onto �. Suh mapsare alled in�nite words over �. If w 2 �� is a word and � 2 � is a letter, jwj (resp.jwj�) denotes the length of w (resp. the number of ourrenes of � in w). Theunique word of length zero is the empty word " and �+ := �� n f"g. If w 2 �� anbe deomposed as w = xyz with x; y; z in �� then x is said to be a pre�x of w andy is said to be a fator (or subword) of w. The set �� endowed with onatenationof words as produt operation is a monoid. Let ' : � ! �� be a map extendedto a morphism of monoid ' : �� ! ��, i.e., for all u; v 2 ��, '(uv) = '(u)'(v)and '(") = ". Let a 2 � and u 2 �+ be suh that '(a) = au. Then for alln 2 N, 'n(a) = a u'(u) � � �'n�1(u). If moreover limn!1 j'n(a)j = +1 then thesequene ('n(a))n�0 of �nite words onverges to a unique in�nite word denoted'!(a) beause 'n(a) is a pre�x of 'n+1(a) for all n � 0. A morphism ' : �! ��is said to be of onstant length, if there exists ` > 0 suh that for all � 2 �,j'(�)j = `. Let � and � be two alphabets (usually #� < #�). A oding is amorphism � : �! �� suh that for all � 2 �, �(�) 2 �.Example 1 (Fibonai word). Let � = fa; bg and ' : a 7! ab; b 7! a. We have'(a) = ab, '2(a) = '(a)'(b) = aba, '3(a) = '(a)'(b)'(a) = abaab, : : : thus'!(a) = abaababaabaababaababaabaababaabaab � � �This in�nite word is the well-known Fibonai word that will be denoted F . TheFibonai word has many properties. It is a Sturmian word: for all n � 0, thenumber of distint fators of length n is n + 1 (see [18, Chap. 2℄ for details). Inpartiular any Sturmian word is written over a binary alphabet fa; bg . If positionsinside F are ounted from 1, then the position of the nth letter a (resp. b) isdenoted An (resp. Bn), n � 1. Moreover, denote by F(n) the letter ourring inposition n in F and by F [i : : : j℄, i < j, the fator F(i)F(i+ 1) � � � F(j) of F . For



EXTENSIONS AND RESTRICTIONS PRESERVING WYTHOFF'S SEQUENCE 5instane, A1 = 1, A2 = 3, A3 = 4, B1 = 2, B2 = 5, B3 = 7, F(1) = a, F(5) = b,and F [2 : : : 5℄ = baab.In [8℄ the following haraterization of Wytho�'s sequene using the Fibonaiword is given.Proposition 6 (Morphi haraterization of Wytho�'s sequene). The sequene (An; Bn)n�1de�ned in Example 1 is exatly the Wytho�'s sequene.Thanks to this proposition, we an give lemmas and remarks about Wytho�'ssequene and the Fibonai word that will be used in Setion 3. The following tworemarks link the Fibonai word with the gaps between onseutive Ai's and Bi's.In partiular, we show that An+1 �An 2 f1; 2g, and Bn+1 �Bn 2 f2; 3g.Remark 1. Sine for any letter x 2 fa; bg, '(x) begins with a, it is obvious that�n(a) := An+1 �An is given by  a(F(n)) where  a : a 7! 2; b 7! 1.Remark 2. Looking at '2(a) = aba and '2(b) = ab, one an see that b alwaysours in seond position. Sine '2(F) = F , we get that �n(b) := Bn+1 � Bn isgiven by  b(F(n)) where  b : a 7! 3; b 7! 2.Lemma 1. We have fBn + 4gn�1 � fAngn�1.Proof. Let i = Bn be the index of the nth ourrene of a letter b in F . Aordingto the morphism ', the di�erene between two onseutive letters b in the Fibonaiword is either 2 or 3. For (i+ 4) to be the index of an ourrene of another b, weneed to have Bn+1 � Bn = 2 and Bn+2 � Bn+1 = 2. But the fator babab neverappears in F , sine it would be produed by a fator aaa, whih never ours inview of Remark 2. Hene (i+ 4) is the index of an ourrene of a letter a.Any Sturmian word like the Fibonai word is balaned, meaning that for anytwo fators u and v of same length, we have jjuja � jvjaj � 1. In the next lemma,we get a little more for spei� fators.Lemma 2. Let Fn be the pre�x of F of length n. For any �nite fator bua ourringin the Fibonai word F with juj = n, we have juja = jFnja and jujb = jFnjb.Example 2. With u = aabaab, the fator bua of length 8 starts in F from position7. One an hek that F6 = abaaba is a permutation of u.F = abaaba| {z }F6 buaz }| {b aabaab| {z }u a baababaaba � � �Proof. Sine u and Fn have the same length, we simply have to show that jujb =jFnjb. Thanks to Proposition 4, we getjFnjb = #fi � 1 j bi �2 � ng:(3)Assume that the �rst ourrene of bua in F starts in position bj0 �2. Again usingProposition 4 we getjujb = #fi j bj0 �2 < bi�2 < bj0 �2+ n+ 1g:Sine in position bj0 �2 + n + 1 there is a letter a, we know that bj0 �2 + n + 1is of the form bk� for some integer k and from Proposition 3, it annot be of the



6 E. DUCHÊNE, A. FRAENKEL, R. NOWAKOWSKI, AND M. RIGOform bi�2. Consequently, in the previous formula, we an replae the rightmoststrit inequality with a large one and getjujb = #fi > j0 j bi�2 � bj0 �2+ n+ 1g:Notie that bi�2 � bj0 �2 is equal to b(i � j0) �2 + 1 or b(i � j0)�2 dependingwhether fi�2g � fj0 �2g < 0 or not. In the �rst ase, we getjujb = #fi > j0 j b(i� j0)�2+ 1 � n+ 1g = #fi > j0 j b(i� j0)�2 � ngwhih is exatly (3). In the seond ase, we havejujb = #fi > j0 j b(i� j0)�2 � n+ 1gbut sine, here b(i � j0)�2 = bi�2 � bj0 �2, this latter quantity annot be equalto n+ 1 (beause there is a letter a in position bj0 �2+ n+ 1). Consequently, wehave jujb = #fi > j0 j b(i� j0)�2 < n+ 1gwhih is exatly (3).2.2. Frommorphi to arithmeti haraterization, via automati sequenes.It is usual to assoiate numeration systems with in�nite words generated by mor-phisms. In this subsetion, we reobtain that the so-alled Fibonai numerationsystem an be used to haraterize Wytho�'s sequene. We get another harater-ization of the (An; Bn)'s when positions are written in the Fibonai numerationsystem.In his seminal paper [4℄, A. Cobham shows that an in�nite word is the imageunder a oding of an in�nite word generated by iterating a morphism of onstantlength k if and only this word is k-automati. So let us reall the de�nition of ak-automati sequene (see [1℄ for details).De�nition 1. A deterministi �nite automaton with output (DFAO) is a 6-tupleM = (Q; q0;�; Æ;�; �) where Q is a �nite set of states, q0 2 Q is the initial state,Æ : Q � � ! Q is the transition funtion, � : Q ! � is the output funtion and� and � are respetively the input and the output alphabets. As usual Æ an beextended to Q��� by Æ(q; ") = q and Æ(q; �w) = Æ(Æ(q; �); w) for all q 2 Q, � 2 �,w 2 ��.Notie that in the next de�nition, indies in a sequene are ounted from zero(that is di�erent from positions in words like in the Fibonai word where they areounted from one). This shift of one unit annot be avoided beause we onsiderbelow representations of any nonnegative integer, zero inluded.De�nition 2. Let k � 2. A sequene (xn)n�0 2 �N is k-automati if there existsa DFAO with f0; : : : ; k� 1g as input alphabet and � as output alphabet suh thatfor all n � 0, xn = �(Æ(q0; �k(n)))where �k(n) denotes the usual k-ary representation of n. We also denote by �k thereiproal map whih gives the numerial value of a word over f0; : : : ; k � 1g.Roughly speaking, one feeds a DFAO with the k-ary representation of n from theinitial state. After reading the whole representation, the reahed state produes anoutput whih gives the element xn.The following example illustrates the two equivalent methods disussed abovefor generating in�nite words (morphism and DFAO).



EXTENSIONS AND RESTRICTIONS PRESERVING WYTHOFF'S SEQUENCE 7Example 3. Consider the morphism ' : a 7! ab; b 7! a;  7! a of onstant length2 and the oding � : a; b 7! 0;  7! 1. We have'!(a) = abaabaabaaababaabaaababa � � �and (xn)n�0 = �('!(a)) = 00010010000110000001001010000001 � � �Now onsider the DFAO depited in Figure 1 where the set of states is fa; b; g andwhere the output o = �(q) of a state q is written q=o. Notie that the transitions
a/0 b/0

c/1

1

1

0

1

0

0

Figure 1. a DFAO.of the DFAO are in one-to-one orrespondene with the morphism ' (i.e., for allx 2 fa; b; g, if '(x) = y0y1 then the transitions going out of x are Æ(x; 0) = y0and Æ(x; 1) = y1). Let us explain how it works on an example. Consider the binaryrepresentation of eleven, �2(11) = 1011. We start reading the word 1011 from theinitial state a marked with an entering arrow without label. The automaton readsthe word 1011 letter by letter, from left to right, and the state hanges aordinglyto the transitions: a 1�! b 0�! a 1�! b 1�! :Sine the output from  is 1, this means that x11 = 1. One an hek that thetwelfth symbol ourring in �('!(a)) is 1.It is not diÆult to see that the onstrution shown in the previous example anbe extended to any morphism ' of onstant length and oding � (for details, see[1, 4℄).Proposition 7. Let ' : �! �� be a morphism of onstant length ` suh that '(a)starts with a, � : � ! � be a oding and M = (�; a; f0; : : : ; `� 1g; Æ;�; �) be theorresponding DFAO. If xn = � 2 � and �('(�)) = 0 � � � `�1 thenx�`(�`(n)i) = i; 8i = 0; : : : ; `� 1:Proof. This is a trivial onsequene of the orrespondene between the morphismand the DFAO. When writing �`(n)i, one should understand the onatenation ofthe word �`(n) 2 f0; : : : ; `� 1g� and the digit i.Example 4. We ontinue Example 3. The fourth element in '!(a) is . The binaryrepresentation of 3 (reall that for automati sequenes, we ount from zero) is 11.We have �2(110) = 6, �2(111) = 7 and �('()) = �(a) = 10. One an hek thatx6x7 = 10 are the seventh and eighth letters in �('!(a)) = (xn)n�0.



8 E. DUCHÊNE, A. FRAENKEL, R. NOWAKOWSKI, AND M. RIGORemark 3. As shown by the previous proposition and example, we stress the fatthat when dealing with automati sequenes, we have to deal with indies startingfrom zero. This relies on the de�nition of the DFAO related to the morphism andit provides (e.g., Proposition 7) an easy way to deal with the image of a letterappearing in the in�nite word.Cobham's onstrution an be extended to arbitrary morphisms. Preisely, in[3℄, positional numeration systems related to a lass of linear reurrent sequenes areonsidered (they are related in some sense to Pisot numbers and the orrespondingterminology used in [3℄ is U-substitution and U-automaton instead of morphism andDFAO). For the general ase, see [20℄ where the onstrution is linked with abstratnumeration systems [17℄.De�nition 3 (Fibonai or Zekendorf's representation). The Fibonai sequene(Fn)n�0 is de�ned by F0 = 1, F1 = 2 and Fn+2 = Fn+1 + Fn for all n � 0. Anynatural number n an be written (uniquely) in a greedy way as n =Pì=0 i Fi suhthatPki=0 iFi < Fk+1 for all k � ` and ` = 1. It is well-known that the i's are inf0; 1g and suh that ` � � � 0 does not ontain two onseutive 1's (see [18, Chap. 7℄or [23℄). We write �F (n) = ` � � � 0 and this word is said to be the F -representationof n. The F -representation of zero is set to ". For any �nite alphabet A � Z, onean de�ne the F -value map �F : A! Z as �F (` � � � 0) =Pì=0 i Fi.The Fibonai numeration system belongs to the lass studied in [3℄. One antherefore assoiate, with the same onstrution as the one skethed in Example 3,to the morphism ' de�ning the Fibonai word a DFAO MF depited in Figure 2in suh a way that the nth symbol ourring in F an be obtain by feeding MFwith the F -representation of n � 1. The �rst symbol in F is obtained from therepresentation of zero (we have exatly the same observation as in Remark 3 whihexplains this di�erene of one unit). Notie that sine ' is not a onstant lengthmorphism, the DFAO MF is not omplete, meaning that the number of outgoingedges from the di�erent states is not onstant (there is only one outgoing edge fromb beause j'(b)j = 1).
1

00

a bFigure 2. The DFAO MF .Example 5. FeedingMF with the F -representations of the �rst integers: ", 1, 10,100, 101 we get the orresponding outputs a, b, a, a, b.Remark 4. As a onsequene of the speial form of the automaton MF , the nthsymbol in F , n � 2, is a (resp. b) if and only if �F (n � 1) ends with 0 (resp. 1).See Table 2 for the �rst values.Proposition 7 adapted to the Fibonai morphism an be expressed as follows.Proposition 8. Let ' : fa; bg ! fa; bg� be the Fibonai morphism.� If the nth letter in F is a (n � 1), then this a produes through ' a fator aboupying positions �F (�F (n� 1)0) + 1 and �F (�F (n� 1)1) + 1.



EXTENSIONS AND RESTRICTIONS PRESERVING WYTHOFF'S SEQUENCE 9n 1 2 3 4 5 6 7 8 9 10 11 12 13 14a b a a b a b a a b a a b aAi 1 3 4 6 8 9 11 12 14Bi 2 5 7 10 13�F (n� 1) " 1 10 100 101 1000 1001 1010 10000 10001 10010 10100 10101 100000Table 2. First elements in F .� If the nth letter in F is b (n � 1), then this b produes through ' a letter aoupying position �F (�F (n� 1)0) + 1.Example 6. Take the third a ourring in F and having position 4 in F . We have�F (4�1) = 100. By adding 0 and 1 to 100 we get �F (1000) = 5 and �F (1001) = 6.So the third a produes the fator ab in positions 6 and 7 in F .Sine the nth letter b ourring in F is produed through ' by the nth letter a,we get the next formula Bn = �F (�F (An � 1)1) + 1:(4)Lemma 3. For all n � 1, An � 1 = �F (�F (n� 1)0).Proof. This is simply a reformulation of Remark 4.The previous two results lead to the following arithmeti haraterization ofWytho�'s sequene.Proposition 9 (Arithmeti haraterization of Wytho�'s sequene). For all n �1, we have An = �F (�F (n� 1)0) + 1Bn = �F (�F (An � 1)1) + 1:Remark 5. An equivalent result was proved in [13℄ using ontinued frations. Itwas proved that a pair of integers (x; y) belongs to the sequene (An; Bn)n�1 ifand only if �F (x) ends in an even number of zeros and �F (y) = �F (x)0. Asfor the algebrai haraterization, it was also proved in [13℄ that suh arithmetiharaterizations allow to deide in polynomial time whether or not a given positionis a P position.The following lemma will be used in Setion 4 but is given here beause it involvesthe Fibonai representation of Wytho�'s sequene.Lemma 4. Let n � 1 be suh that Bn+1 � Bn = 2. Then �F (Bn � 1) ends with101.Proof. By Lemma 3, we know that �F (An � 1) = u0 where u = �F (n � 1). Nowassume that u an be written as u00. Sine Bn+1 � Bn = 2 and the letter bourring in position Bn (resp. Bn+1) is produed through ' by the nth (resp.(n + 1)th letter a, we have An+1 � An = 1. As �F (An � 1) = u000, we have that�F (An) = u001 = �F (An+1� 1) ontraditing Lemma 3. Hene �F (An� 1) = u010,and by Proposition 8, we get �F (Bn � 1) = u0101.



10 E. DUCHÊNE, A. FRAENKEL, R. NOWAKOWSKI, AND M. RIGO2.3. A new haraterization of Wytho�'s sequene. Consider the in�niteWytho�'s matrix over N � N oding the P positions (An; Bn) and (Bn; An) of theWytho�'s game, i.e., for all i; j � 0, Pi;j = 1 if and only if there exists n � 1 suhthat (i; j) = (An; Bn) or (i; j) = (Bn; An).
(Pi;j)i;j�0 =

inj 0 1 2 3 4 5 6 7 8 9 10 : : :0 0 0 0 0 0 0 0 0 0 0 0 � � �1 0 0 1 0 0 0 0 0 0 0 02 0 1 0 0 0 0 0 0 0 0 03 0 0 0 0 0 1 0 0 0 0 04 0 0 0 0 0 0 0 1 0 0 05 0 0 0 1 0 0 0 0 0 0 06 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 1 0 0 0 0 0 08 0 0 0 0 0 0 0 0 0 0 09 0 0 0 0 0 0 0 0 0 0 010 0 0 0 0 0 0 1 0 0 0 0... ... . . .The aim of this setion is to provide a 2-dimensional iterated onstrution thatbuilds Wytho�'s matrix (Pi;j). Let us stress the fat that even if we have alreadyprovided several haraterizations of the P positions, it is not obvious that suhharaterizations lead to some two-dimensional morphism. Indeed this morphismrequires some extra property, namely a shape symmetri property, to generate anin�nite piture in a onvenient way.Automati sequenes have been generalized to the multi-dimensional ase [21℄.Here we will onsider solely the two-dimensional situation. An array over N � Nis said to be k-automati if there exists a morphism ' : � ! �k�k whose imagesare k � k bloks of symbols in � and whih an be iterated in the same spirit asfor the one-dimensional ase (there is a symbol a whose image under ' has a inthe upper-left orner just as '(a) = au in the one-dimensional ase). After havingobtained the array '!(a), a oding � : � ! � an still be applied. Equivalently,suh arrays an be produed by a DFAO reading pairs of words of the same length(leading zeroes are added to the shortest of the two k-ary representations).In the one-dimensional ase, morphisms of onstant length an easily be gen-eralized to non onstant length morphisms. For two-dimensional arrays, one hasto proeed arefully to obtain a meaningful \piture" when iterating a morphismwhose images are not all k � k bloks (with images of arbitrary retangular shape,positions of the newly produed bloks annot be uniquely determined or images ofdi�erent letters ould also overlap). This is the reason for introduing the notionof shape-symmetri morphisms [19℄. Roughly speaking, eah iteration of ' gives asquare built from images of letters and these images have shape whih are symmet-ri with respet to the main diagonal of the square. The partiular shape of theimages implies that we do not have problems to iterate the proess. Preisely, ifP is the in�nite two-dimensional piture that is the �xed point of ', then for alli; j 2 N, if '(Pi;j) is a blok of size k � ` then '(Pj;i) is of size `� k. See Figure 3for an example.Example 7. Let ' be the following two-dimensional shape-symmetri morphism:
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Figure 3. Iteration of a shape-symmetri morphism.' : a 7! a b d b 7! ie  7! i j d 7! i e 7! f bf 7! g bh d g 7! f bh d h 7! i m i 7! i mh dj 7! k k 7! l m d l 7! k m d m 7! ihand the oding � : e; g; j; l 7! 1; a; b; ; d; f; h; i; k;m 7! 0Suessive appliations of ' from a lead to an in�nite array. When applying theoding � to this array, we will show that we obtain again the in�nite matrix odingthe P -positions of Wytho�'s game (symbols mapped onto 1 have been written inbold fae).

a 7! a b d 7! a b i d ei j i 7! a b i i m d e h di j i f bi m k i mh d  h d 7! a b i i m i m i d e h d h d hi j i f b i m ii m k i m g b ih d  h d h d ei m i l m i m ih d h  d h d hi m i i j i m i 7! � � �Figure 7 in the appendix gives a olored version (with respet to the di�erentsymbols) of the �rst 50� 50 blok assoiated with '!(a).Remark 6. Consider the �rst row (or similarly due to the symmetry, the �rstolumn) of the morphism ' whih gives� : a 7! ab; b 7! i; i 7! im; m 7! iand with the oding � : a; i 7! a; b;m 7! bwe �nd that �(�!(a)) is the Fibonai word. Due to the shape of the morphism 'or in the same way �, it is obvious that F -representations will be onsidered.The one-dimensional ase onsidered in Example 3 an be extended to a two-dimensional morphism ' like the one given in Example 7. We assoiate in a anon-ial way a DFAO whose input alphabet is��00� ; �10� ; �01� ; �11��



12 E. DUCHÊNE, A. FRAENKEL, R. NOWAKOWSKI, AND M. RIGOThe set of states is fa; b; : : : ; l;mg, the initial state is a. If'(r) = s tu v ; s t ; su or sthen we have transitions liker 0�001A�! s; r 0�101A�! t; r 0�011A�! u; r 0�111A�! v:As a onsequene of the above onstrution and Remark 6, we get the follow-ing result whih is simply the extension of the phenomenon observed in the one-dimensional ase.Proposition 10. Feeding the automaton M assoiated with a two-dimensionalshape-symmetri morphism ' from state a with the word��F (m)�F (n)� 2 ��00� ; �10� ; �01� ; �11���leads to the state ['!(a)℄m;n.In the previous statement, it is understood that the shortest F -representation ispadded with leading zeroes.Example 8. We ontinue Example 7. The automaton assoiated with ' is depitedin Figure 4.
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gFigure 4. Automaton aepting F -representations of (An; Bn)and (Bn; An).To simplify the presentation, we have not represented states d; h; i;m and theorresponding transitions. (There is no edge from d; h; i;m to some other states.)States g; e; j; l have been represented with double irles indiating that they orre-spond to output 1 (the other states have all output 0). Consider the pair (A4; B4) =(6; 10) represented as �0100110010�we get the sequene a 0�011A�!  0�101A�! j 0�001A�! k 0�011A�!  0�101A�! j



EXTENSIONS AND RESTRICTIONS PRESERVING WYTHOFF'S SEQUENCE 13One an easily hek that the automaton in Figure 4 aepts exatly words ofthe form �0w1 � � �w`w1 � � �w`0� and �w1 � � �w`00w1 � � �w`�where w1 � � �w` is a valid F -representation ending with an even number of zeroes.As said in Remark 5, it is well-known that suh pairs of words represent exatlythe (An; Bn)'s and (Bn; An)'s. Therefore we obtain the following haraterizationabout Wytho�'s matrix.Proposition 11 (Two-dimensional morphi haraterization of Wytho�'s matrix).The morphism ' and the oding � de�ned in Example 7 generate exatly the Wytho�'smatrix, i.e., �('!(a)) = (Pi;j).3. Extensions of Wythoff's game preserving Wythoff's sequene asset of P positionsWe �rst onsider extensions of Wytho�'s game where a single move (i; j) isadjoined to the original Wytho�'s rules, and we require that these extensions allhave Wytho�'s sequene as set of P positions. Otherwise stated, the set of Ppositions is invariant. Note that when a move (i; j) is adjoined, this means thatfrom all game positions, one an possibly remove i and j tokens from the two heapswhenever enough token are available from this position. Adding more than a singlemove an then be handled easily.Let W be the in�nite matrix over N � N oding the moves (i; j) that an beadjoined with respet to the required property, i.e., for all i; j � 0 we haveWi;j = 1if and only if Wytho�'s game with the adjoined move (i; j) has Wytho�'s sequeneas its set of P positions.3.1. Polynomial extensions. As detailed in Proposition 5, we have two algebraionditions to deide whether Wi;j = 1. However, as explained in the introdutionand by referene to [10℄, sine we investigate tratable extensions of Wytho�'s game,we also need to test these onditions in polynomial time.The following proposition gives an equivalent formulation to Condition (1) ofProposition 5. In partiular, it shows that deiding whether a move (i; j) satis�esCondition (1) an be done in polynomial time. However, it turns out that testingCondition (2) in polynomial time is not so immediate.Proposition 12. We havef(Aj �Ai; Bj �Bi) j j > i � 0g = f(An; Bn) j n > 0g [ f(An +1; Bn +1) j n > 0g:Moreover, for any j > i � 0 we have (Aj �Ai; Bj �Bi) = (Aj�i; Bj�i) or (Aj�i +1; Bj�i + 1).Proof. Consider a pair (Aj �Ai; Bj �Bi) for some j > i � 0. From Proposition 4,we have (Aj �Ai; Bj �Bi) = (bj� � bi�; bj� � bi�+ j � i). Notie thatbj� � bi� = (j � i)� � fj�g+ fi�g= b(j � i)�+ f(j � i)�g � fj�g+ fi�gand f(j � i)�g = � fj�g � fi�g if fj�g > fi�g1 + fj�g � fi�g if fj�g < fi�g:



14 E. DUCHÊNE, A. FRAENKEL, R. NOWAKOWSKI, AND M. RIGOConsequently, by setting n = j � i > 0, we getAj �Ai = bj� � bi� = � An if fj�g > fi�gAn + 1 if fj�g < fi�g:Moreover,Bj �Bi = bj� � bi�+ j � i = � An + n = Bn if fj�g > fi�gAn + n+ 1 = Bn + 1 if fj�g < fi�g:Now take a pair (s; t) in f(An; Bn) j n > 0g [ f(An + 1; Bn + 1) j n > 0g. If(s; t) = (An; Bn) for some n > 0 then hoose j = n and i = 0 to get (s; t) =(Aj � Ai; Bj � Bi). Otherwise, (s; t) = (An + 1; Bn + 1) for some n > 0. Notiethat for all k � 0 f(k + n)�g = ffk�g+ fn�gg:Sine ffk�g j k � 0g is dense in [0; 1℄, there exists i � 0 suh that1� fn�g < fi�g < 1:In partiular, we have f(i + n)�g < fn�g. We set j = i + n and with the samearguments as in the �rst part of this proof, we have that(An + 1; Bn + 1) = (Aj �Ai; Bj � Bi):In order to �nd a polynomial haraterization of the Condition (2) of Proposition5, we will prove the following result. Its proof requires �rst several tehnial lemmasand will be given at the end of this setion.Proposition 13. Given a pair (i; j) of positive integers, (i; j) 2 f(An �Bm; Bn �Am) j n > m � 0g if and only if �F (j �Ai � 2) = u1 and �F (j �Ai � 2+ i) = u00,for any two valid F -representations u and u0 in f0; 1g�.Putting together Proposition 12 and 13, we get a polynomial haraterization ofthe matrix W .Corollary 1. For any pair (i; j) of positive integers, we have Wi;j = 1 if and onlyif one the three following properties is satis�ed :� (�F (i� 1); �F (j� 1)) = (u0; u01) for any valid F -representation u in f0; 1g�.� (�F (i� 2); �F (j� 2)) = (u0; u01) for any valid F -representation u in f0; 1g�.� (�F (j�Ai�2); �F (j�Ai�2+i)) = (u1; u00) for any two valid F -representationsu and u0 in f0; 1g�.Proof. The �rst two properties ome from Proposition 12 and Proposition 9. Thelast property is exatly Proposition 13. As explained in [13℄, the omputation ofthe F -representation of an integer an be done in polynomial time.The above Corollary leads to a omplete haraterization of the extensions ofWytho�'s game that preserve Wytho�'s sequene as set of P positions.Corollary 2. Let I � Z�1. Then Wytho�'s game with the set of adjoined movesf(xi; yi) : i 2 I; xi; yi 2 Z�0g has the sequene (An; Bn) as set of P positions if andonly if Wxi;yi 6= 1 for all i 2 I.



EXTENSIONS AND RESTRICTIONS PRESERVING WYTHOFF'S SEQUENCE 15Proof. Trivially, any game with an adjoined move (xi; yi) suh that Wxi;yi = 1annot have (An; Bn) as set of P positions. Moreover, the sequene (An; Bn) stillsatis�es the two properties of Proposition 1, even when adding a set of movesf(xi; yi) : i 2 I; xi; yi 2 Z�0g with Wxi;yi 6= 1 for all i 2 I .We now turn to a suession of three results leading to the proof of Proposi-tion 13.Lemma 5. Let Fn be the pre�x of length n of the Fibonai word F . We havej'(Fn)j = �F (�F (n)0):n �F (n) Fn �F (n)0 �F (�F (n)0) am = p;'(Fn)1 1 a 10 2 ab2 10 ab 100 3 aba3 100 aba 1000 5 abaab4 101 abaa 1010 7 abaabab5 1000 abaab 10000 8 abaababa6 1001 abaaba 10010 10 abaababaabTable 3. Illustration of Lemma 5.Proof. Consider the sequene of words (fk)k�0 de�ned by f0 = a, f1 = ab andfk+2 = fk+1fk. Observe that jfkj = Fk for all k � 0 beause jfk+2j = jfk+1j+ jfkj.Moreover, it is well-known (see for instane [18℄) that fk = 'k(a). Let n be suhthat �F (n) = ` � � � 0 and onsider the pre�x t of F of length n > 0. Let i1 < � � � <ir 2 f0; : : : ; `g be the indies suh that ij = 1 in the F -representation of n, i.e.,n =Prj=1 Fij . The word t an be fatorized ast = ur � � �u1 with juj j = Fij ; j = 1; : : : ; r:As an example, onsider the pre�x of F of length 20 = F5 + F3 + F1, we have thefatorization abaababaabaab| {z }u5 abaab| {z }u3 ab|{z}u1 � � �To onlude the proof, we now observe that uj = fij for all j 2 f1; : : : ; rg. Indeed,F has firfir�1 as pre�x and fir�1 an be written fir�2fir�3. Continuing this way,we obtain the expeted fatorizationt = fir � � � fi1 and '(t) = '(fir ) � � �'(fi1 ):Sine '(fk) = '('k(a)) = 'k+1(a) = fk+1, we getj'(t)j = rXj=1 Fij+1 = X̀i=0 iFi+1 = �F (` � � � 00):The next lemma is tehnial and is primarily devoted to prove Theorem 1. Wewill only use the �rst part of the statement, but we get the other for free using thesame reasoning.



16 E. DUCHÊNE, A. FRAENKEL, R. NOWAKOWSKI, AND M. RIGOLemma 6. Let u1 2 f0; 1g� be a valid F -representation. If �F (�F (u1) + n)1 isalso a valid F -representation, then�F (�F (�F (u1) + n)1) = �F (u00) + �F (�F (n� 1)0) + 4:Otherwise, �F (�F (u1) + n)1 is not a valid F -representation and�F (�F (�F (u1) + n)0) = �F (u00) + �F (�F (n)0) + 2:Proof. Sine u1 is a F -representation, u ends with 0. Therefore, p0 = �F (u) + 1is the position of a letter a in F . This a produes ab and the position of theorresponding b is p1 = �F (u1) + 1. The letter in position p2 = �F (u1) + 2 isa (no two onseutive b's in F). Let us onsider the �rst ase and assume that�F (�F (u1)+n)1 is a valid F -representation. This means that �F (�F (u1)+n) endswith 0 and thus there is also a letter a in position p3 = �F (u1)+n+1. This lattera produes a fator ab where b has position p4 = �F (�F (�F (u1) + n)1) + 1. Thefollowing sheme gives a fatorization of the pre�x of F of length p4:F = ���� p0a ���� a p1b| {z }x p2a ����| {z }y p3a ���� a p4b| {z }z ���:Notie that '(xya) = xyz. Therefore, j'(xya)j = p4 andj'(xy)j = p4 � 2 = �F (�F (�F (u1) + n)1)� 1:On the other hand, sine j'(x)j = �F (u10)+1 (beause the b in position p1 produesthe a in position �F (u10) + 1), we getj'(xy)j = j'(x)j + j'(y)j = �F (u00) + 3 + j'(y)j:Now observe that the fator bya starting in position p1, with jyj = p3�p1�1 = n�1,satis�es exatly the hypothesis of Lemma 2. Therefore y is a permutation of thepre�x t of F of length n � 1. Obviously, j'(y)j = j'(t)j beause jyja = jtja andjyjb = jtjb. From Lemma 5, j'(t)j = �F (�F (n� 1)0) and the onlusion follows.Consider the seond ase, assume now that there is a letter b in position p3 =�F (u1)+n+1 (i.e., �F (�F (u1)+n) ends with 1 and annot be followed by another1 to obtain a valid F -representation). This b produes a letter a in position p04 =�F (�F (�F (u1) + n)0) + 1. The following sheme gives a fatorization of the pre�xof F of length p04:F = ���� p0a ���� a p1b| {z }x p2a ����| {z }y p3b ���� p04a| {z }z ���:Notie that '(xyb) = xyz and j'(xyb)j = p04 = �F (�F (�F (u1) + n)0) + 1. On theother hand, j'(xyb)j = j'(x)j + j'(yb)j = �F (u00) + 3 + j'(yb)j. The fator bybastarting in position p1 (b is always followed by a in F), with jybj = p3 � p1 = n,satis�es the hypothesis of Lemma 2. Therefore yb is a permutation of the pre�x tof F of length n and j'(t)j = j'(yb)j = �F (�F (n)0) and the onlusion follows.Theorem 1. Let i; j be suh that Aj �Bi = n > 0. We haveBj �Ai = Bi +An + 1:Proof. Let u 2 f0; 1g� be the F -representation of Ai � 1. Thanks to (4), u1 isthe F -representation of Bi � 1 (in partiular, �F (u1) = Bi � 1). By hypothesis,



EXTENSIONS AND RESTRICTIONS PRESERVING WYTHOFF'S SEQUENCE 17Aj � 1 = Bi � 1 + n. Therefore, �F (u1) + n = Aj � 1. Sine the jth a produesthe jth b in F , we get again using (4) thatBj � 1 = �F (�F (�F (u1) + n)1):Putting together the informations we have olleted so far, we haveBj �Ai = (Bj � 1)� (Ai � 1)= �F (�F (�F (u1) + n)1)� �F (u)= �F (u00) +An + 3� �F (u)where we used Lemmas 3 and 6 on the last line (notie that �F (�F (u1) + n)1 is avalid F -representation). Write u as u` � � �u0. Notie that�F (u00)� �F (u) = X̀i=0 uiFi+2 � X̀i=0 uiFi = X̀i=0 ui(Fi+2 � Fi| {z }=Fi+1 ) = �F (u0):Consequently, sine F0 = 1, we getBj �Ai = �F (u0) + 3 +An = �F (u1) + 2 +An = Bi +An + 1:Proof of Proposition 13. Let (i; j) be a pair of positive integers satisfying i = An�Bm and j = Bn � Am for some integers n > m � 0. By Theorem 1, we havej = Bn � Am = Bm + Ai + 1. Hene Bm � 1 = j � Ai � 2, and by Proposition 9,this implies that �F (j � Ai � 2) ends with a 1. Moreover, we also get An � 1 =Bm + i � 1 = j � Ai � 2 + i, and with the same proposition, we onlude that�F (j �Ai � 2 + i) ends with a 0.Now onsider a pair (i; j) of nonnegative integers satisfying �F (j �Ai � 2) = u1and �F (j � Ai � 2 + i) = u00, for any two valid F -representations u and u0 inf0; 1g�. Using Proposition 9 and Proposition 3, there exist two positive integers mand n suh that j � Ai � 2 = Bm � 1 and j � Ai � 2 + i = An � 1. The latterequality leads to i = An + 1 + Ai � j, whih is equal to An � Bm in view of theprevious one. By applying Theorem 1 to the equality An � Bm = i, we also getBk �Am = Bm +Ai + 1 = j. This onludes the proof.3.2. Two-dimensional morphi haraterization of the matrix W . As inSetion 2.3 where Wytho�'s matrix was investigated, we build a two-dimensionalshape symmetri morphism to generate the matrix W
(Wi;j)i;j�0 =

0 0 0 0 0 0 0 0 0 0 0 � � �0 0 1 0 1 0 0 1 0 1 00 1 0 1 0 0 1 0 0 0 00 0 1 0 0 1 0 0 0 0 10 1 0 0 0 0 1 1 0 1 00 0 0 1 0 0 0 0 1 0 00 0 1 0 1 0 0 0 0 0 10 1 0 0 1 0 0 0 0 0 00 0 0 0 0 1 0 0 0 0 00 1 0 0 1 0 0 0 0 0 00 0 0 1 0 0 1 0 0 0 0... . . .



18 E. DUCHÊNE, A. FRAENKEL, R. NOWAKOWSKI, AND M. RIGOConsider the morphism : a 7! a b d b 7! ef  7! e h d 7! i e 7! j kl m f 7! g bg 7! y bo t h 7! z i 7! i no dj 7! e pq r k 7! es l 7! e u m 7! en 7! io o 7! i n p 7! eq q 7! e p r 7! e s 7! v kt 7! i u 7! wl v 7! w pl r w 7! v kq rx 7! z n d y 7! g bo d z 7! x n tand the oding� : a; b; ; d; e; i; j; k; l; n; o; p; q; r 7! 0; f; g; h;m; s; t; u; v; w; x; y; z 7! 1:Figure 8 in the appendix gives a olored version (with respet to the di�erentsymbols) of the �rst 50� 50 blok assoiated with  !(a).Using the same proedure as in Setion 2.3, we state the following onjetureanalogous to Proposition 11. Let us mention that even if Corollary 1 gives somesyntatial riteria to test, this does not imply that an automaton exists and evenif suh an automaton exists (whih is the ase), this does not in general lead to agenerating morphism.Conjeture 1. The morphisms  and the oding � generate exatly the matrix W ,i.e., �( !(a)) =W .Partial proof. All we have to do is to provide the automaton assoiated with  and� and hek that the language aepted by this automaton orresponds with the onegiven by Corollary 1. This automaton is depited in Figure 5 without representingthe non aepting states d; i; n and o (there is no edge from these states to anyother state).For the �rst two ases of Corollary 1, representations of i � 1 and j � 1 (resp.i� 2 and j � 2) are onsidered. We have therefore to onsider the addition of oneor two to show the expeted orrespondene. It is well known that the suessorfuntion in the Fibonai numeration system is right sequential and right on-lineomputable with delay 1 (see [16℄) and it is realized by the transduer depited inFigure 6. This transduer reads the representation of n from the right (i.e., leastsigni�ant digit �rst) and produes the representation of n+ 1 as output. Assume�rst that (i; j) is suh that (�F (i � 1); �F (j � 1)) = (u0; u01). If u ends with 0,using the transduer in Figure 6, we get(�F (i); �F (j)) = (u1; u10):(5)If u ends with 1, then(�F (i); �F (j)) = (u000; u0000); u0 ending with 2k zeroes, k � 0:(6)
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Figure 5. The DFAO assoiated with  and �.
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./1 ./10Figure 6. The suessor funtion for the Fibonai system.Now onsider (i; j) is suh that (�F (i� 2); �F (j � 2)) = (u0; u01) (i.e., seond aseof Corollary 1). We have to apply the transduer to (5) and (6). From (7), we get(�F (i); �F (j)) = (u0; u00); u0 ending with 2k + 1 zeroes, k � 0:(7)From (6), we get(�F (i); �F (j)) = (u001; u0001); u0 ending with 2k zeroes, k � 0:(8)Putting together (5), (6) and (7), we get exatly pairs of the kind (0v; v0). Thesepairs are the ones exatly aepted from states f; g; h; x; y; z in the automaton from



20 E. DUCHÊNE, A. FRAENKEL, R. NOWAKOWSKI, AND M. RIGOFigure 5 (taking into aount the symmetry on the two omponents). The pairs ofthe kind (8) are the ones aepted from state t.It appears to be a painful task to onsider the last ase of Corollary 1 and toompare it with the words aepted by states m; s; u; v; w.4. Redundant movesWe now investigate games whose sets of allowed moves are subsets of Wytho�'sone, and whose set of P positions is exatly Wytho�'s sequene. We show that suha game does not exist. This means that there is no redundant move in Wytho�'sgame.De�nition 4. Denote by GS an impartial game whose rules are given by a set ofmoves S. A move m is said to be redundant if GS and GSnfmg have the same Ppositions.From any N position (x; y) of Wytho�'s game, there exists an allowed movem = (i; j) that leads to a P position (a; b), i.e., the relation (x� i; y� j) = (a; b) issatis�ed. If the move m is unique, then it is said to be fored for the game. Thisde�nition an be naturally extended for any impartial game.Lemma 7. In an impartial game GS, a fored move is not redundant.Proof. Let m = (i; j) be a fored move of GS . There exists a N position (x; y) anda P position (a; b) suh that (i; j) = (x � a; y � b). Sine m is the unique movefor (x; y) to lead to a P position of GS , in the game GSnm there exists no movefrom (x; y) to a P position of GS . This means that in GSnm either (x; y) is a Pposition or there exists a P position (a0; b0) 6= (An; Bn); (Bn; An) suh that (x; y)leads to (a0; b0). In both ases, the set of P positions of GS di�ers from the one ofGSnm.Theorem 2. There is no redundant move in Wytho�'s game.Proof. Aording to Lemma 7, it suÆes to show that the set of the fored moves ofWytho�'s game is idential to the set of the allowed movesM = f(0; i); (i; 0); (i; i) :i 2 Z�1g. The proof is divided into four parts.First partLet N1 be the set of the following N positions of Wytho�'s game:N1 = f(0; i); (i; 0) : i 2 Z�1gAording to the sequene (An; Bn), it is straightforward to see that eah positionof N1 leads to a unique P position, whih is (0; 0). Hene eah move m is fored,and it appears that the set of the fored moves from N1 is N1 itself.Seond partLet N2 be the following set:N2 = f(An; An) : n 2 Z�1gSine n � 1, it appears that N2 is a set of N positions of Wytho�'s game. Let(An; An) 2 N2. Sine (An; An) is a N position, there exists a P position (Ai; Bi)for some i and a move m suh that (An; An) m! (Ai; Bi). If i � n, then we haveBi > Ai � An sine n � 1, whih ontradits the existene of m. Hene we have



EXTENSIONS AND RESTRICTIONS PRESERVING WYTHOFF'S SEQUENCE 21i < n implying Ai 6= An. Sine (Ak ; Bk); k � 1 is a partition of Z�1, we alsohave Bi 6= An. This means that m and i are unique: the move m is of the form(k; k) for some k, implying Bi � Ai = An � An = 0, and �nally i = 0. Therefore,(An; An) ! (0; 0) for all n � 1, and there exists no other way to move to a Pposition. We onlude that N2 is a set of fored moves of Wytho�'s game.Third partLet N3 be the following set of positions:N3 = f(An; An + 3) : n 2 Z�4 and An + 3 6= Bj 8j < ngIn view of Proposition 2, we know that there exists a unique P position ofWytho�'s game (An; Bn) suh that Bn�An = 3. Therefore, sine (A3; B3) = (4; 7)and (A3; B3) =2 N3, the set N3 is a subset of N positions of Wytho�'s game.Let (An; An + 3) 2 N3. There exists a P position (Ai; Bi) for some i and amove m suh that (An; An + 3) m! (Ai; Bi). As in the previous ase we havei < n, and sine Bi 6= An+3, this implies that the move m has the form (k; k)for some k. Hene the P position (Ai; Bi) must satisfy Bi � Ai = 3, leading to(Ai; Bi) = (4; 7) aording to the �rst terms of the sequene (An; Bn). The movem = (An � 4; An + 3� 7) = (An � 4; An � 4) is thus fored.This proves that the setM3 = f(An � 4; An � 4) : n 2 Z�4 and An � 4 6= Bj � 7 8j � 1gis a set of fored moves of Wytho�'s game. Sine by Lemma 1, we have fBngn�1 �fAn � 4gn�4, we an dedue the following property for M3:f(Bn; Bn) : n 2 Z�1 and Bn 6= Bj � 7 8j � 1g �M3Let n � 1. Sine Bi+1 � Bi 2 f2; 3g by Remark 2, we have Bn = Bj � 7 ifj = n+ 3. Hene we havef(Bn; Bn) : n 2 Z�1 and Bn+3 �Bn 6= 7g �M3:Fourth partBefore introduing the last set N4, notie that for all n � 1, there exists aninteger j suh that Aj = Bn � 1. Indeed, there is no ourrene of two onseutiveletters b in the Fibonai word.Let N4 be the following set of positions:N4 = f(Aj +Bn; Bj +Bn) :) : n 2 Z�1 suh that Bn+3 �Bn = 7 and j suh that Aj = Bn � 1gWe �rst prove that N4 is a subset of N positions of Wytho�'s game. Let(Aj + Bn; Bj + Bn) be a position belonging to N4. Reall that �n(b) denotesthe di�erene Bn+1�Bn. Sine Bn+3�Bn = 7 and by Remark 2, this implies that(�n(b);�n+1(b);�n+2(b)) is a permutation of (2; 2; 3). One again by Remark 2and sine there are no onseutive ourrenes of b in F , the only allowed permu-tation is (2; 3; 2). From this latter result, we also dedue that �n� 1(b) = 3 sineeah letter b is preeeded by a letter a in F . Hene we getF(Bn � 1) = F(Bn � 2) = a(9)We now proeed in two steps:



22 E. DUCHÊNE, A. FRAENKEL, R. NOWAKOWSKI, AND M. RIGO� We show that Aj + Bn 2 fAigi�1. By way of ontradition, assume that inthe Fibonai word F , the letter ourring in position Aj + Bn is a b. Thismeans that in F , there exists a fator buba, where juj = Aj � 1. Sine eahletter b is preeeded by a letter a in F , we an write u = u0a, where u0 is afator of length Aj �2. By applying Lemma 2 for u0, we get ju0ja = jFAj�2ja.Sine Aj = Bn � 1 and from (9), the previous equality gives:ju0ja = jFAj ja � 2(10) Now by applying Lemma 2 to the fator ub, we get jubja = jFAj ja. Fromthis and sine ub = u0ab, we have ju0ja = juja � 1 = jubja � 1 = jFAj ja � 1,whih ontradits (10).� We show that Bj+Bn 2 fAigi�1. Aording to Remark 4, it suÆes to provethat �F (Bj +Bn � 1) ends with a 0.For the same reasons as in the proof of Lemma 4 and sine Bn+1�Bn = 2,we get An = An+1 � 1. By Lemma 4, we know that �F (Bn � 1) = u101.Moreover from (4), we dedue that �F (An � 1) = u10. Sine Aj = Bn � 1,the following equalities thus hold:�F (�F (Aj � 1)) = �F (�F (Bn � 1))� 1= �F (u101)� 1= �F (u100)We an now onlude about the F -representation of Bj +Bn � 1.�F (�F (Bj +Bn � 1)) = �F (�F (Bn � 1)) + �F (�F (Bj � 1)) + 1�F (u101) + �F (�F (Aj � 1)1) + 1 from (4)�F (u101) + �F (u1001) + 1�F (u101) + �F (u1010)�F (u10100)Then, sine fAigi�1 and fBigi�1 partition of N�1 , and sine Aj +Bn, Bj +Bnboth belong to fAigi�1, then the position (Aj +Bn; Bj + Bn) =2 (Ai; Bi)i�1. Thismeans that (Aj +Bn; Bj +Bn) is a N position.Therefore, there exists a P position (Ai; Bi) for some i and an allowed move mof Wytho�'s game suh that (Aj + Bn; Bj + Bn) m! (Ai; Bi). If the move m hasthe form (0; k) or (k; 0), then we have eitherAj +Bn = Ai and Bj +Bn > Bi(11)or Bj +Bn = Ai and Aj +Bn > Bi(12)The �rst equality of (11) implies j < i sine the sequene fAigi�1 is inreasing.The seond inequality of (11) an also be written Ai + j > Bi, ontraditing theprevious remark (remember that Bi � Ai = i for all i). Replaing Bn by Ai � Bjin the seond inequality of (12) leads to Aj + Ai > Bj + Bi, whih is not orretsine Bi > Ai for all i.Hene the movem has the form (k; k) and is unique sine there exists a unique Pposition (Ai; Bi) whose di�erene Bi�Ai equals (Bj +Bn)� (Aj+Bn) = Bj �Aj .



EXTENSIONS AND RESTRICTIONS PRESERVING WYTHOFF'S SEQUENCE 23More preisely, (Ai; Bi) = (Aj ; Bj) and the movem = (Bn; Bn) is fored. Thereforethe set M4 = f(Bn; Bn) : n 2 Z�1 and Bn+3 �Bn = 7gis a set of fored moves.Putting together all the previous results, we have that the setN1 [N2 [ f(Bn; Bn) : n 2 Z�1gontains fored moves of Wytho�'s game only. Moreover, this set de�nes exatlythe allowed moves of Wytho�'s game. This onludes the proof.5. Open problemsQuestion 1. The above results give all the extensions and restritions of Wytho�'sgame that have the sequene (An; Bn) as set of P positions. Does it exist a variantof Wytho�'s game whih is neither an extension nor a restrition, and having alsothis sequene as set of P positions ?Question 2. What about these haraterizations when onsidering theGeneralizedWytho� game of parameter s (de�ned in [13℄) ? It appears that for s > 1, thereare restritions preserving the set of P positions.Question 3. In view of the bi-dimensional morphisms that we produed forWyhtho�'ssequene and the W matrix, does it exist suh a morphism produing the Grundyvalues of Wytho�'s game ? 6. AppendixIn this appendix, we give in Tables 7 and 8 olor to the generated �xed points.
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Figure 7. Upper-left orner of '!(a) where the 13 symbols havebeen replaed with di�erent olors.Referenes[1℄ J.-P. Allouhe, J. O. Shallit, Automati Sequenes: Theory, Appliations, Generalizations,Cambridge University Press, Cambridge, 2003.[2℄ E. R. Berlekamp, J. H. Conway, R. K. Guy, Winning ways, 2nd edition, A K Peters, Wellesley,MA, 2001.[3℄ V. Bruy�ere, G. Hansel, Bertrand numeration systems and reognizability, Theoret. Comput.Si. 181 (1997), 17{43.[4℄ A. Cobham, Uniform tag sequenes, Math. Systems Theory 6 (1972), 164{192.[5℄ I.G. Connell, A generalization of Wytho�'s game, Canad. Math. Bull. 2 (1959), 181{190.[6℄ E. Duhêne, S. Gravier, Geometrial extensions of Wytho�'s game, to appear in DisreteMath.[7℄ E. Duhêne, A.S. Fraenkel, S. Gravier and R.J. Nowakowski, Another bridge between Nimand Wytho�, preprint.[8℄ E. Duhêne, M. Rigo, A morphi approah to ombinatorial games: the Tribonai ase, toappear in RAIRO.[9℄ A. Fink, R. J. Nowakowski, A. N. Siegel, D. Wolfe, Toppling Conjetures, pre-print (2008).[10℄ A.S. Fraenkel, Complexity, appeal and hallenges of ombinatorial games, Theor. Comput.Si. 313 (2004), 393{415.[11℄ A.S. Fraenkel, Eulid and Wytho� games, Disrete Math. 304 (2005), 65{68.[12℄ A.S. Fraenkel, Heap games, Numeration systems and Sequenes, Annals of Combinatoris 2(1998), 197{210.
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Figure 8. Upper-left orner of  !(a) where the 26 symbols havebeen replaed with di�erent olors.[13℄ A.S. Fraenkel, How to beat your Wytho� games' opponent on three fronts, Amer. Math.Monthly 89 (1982), 353{361.[14℄ A.S. Fraenkel and M. Lorberbom, Nimho� games, J. Combin. Theory (Ser. A) 58 (1991),1{25.[15℄ A.S. Fraenkel and E. Reisner, The game of End-Wytho�, to appear in Games of No Chane3.[16℄ C. Frougny, On the sequentiality of the suessor funtion, Inform. and Comput. 139 (1997),17{28.[17℄ P. Leomte, M. Rigo, Numeration systems on a regular language, Theory Comput. Syst. 34(2001), 27{44.[18℄ M. Lothaire, Combinatoris on words, Cambridge Mathematial Library, Cambridge Univer-sity Press, Cambridge, (1997).[19℄ A. Maes, Morphi prediates and appliations to the deidability of arithmeti theories, Uni-versity of Mons-Hainaut, Ph.D. Thesis (1999).[20℄ M. Rigo and A. Maes, More on generalized automati sequenes, J. Autom. Lang. Comb. 7(2002), 351{376.[21℄ O. Salon, Suites automatiques �a multi-indies, S�eminaire de th�eorie des nombres, Bordeaux,1986{1987, expos�e 4.[22℄ W. A. Wytho�, A modi�ation of the game of Nim, Nieuw Arh. Wisk. 7 (1907), 199{202.
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