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EXTENSIONS AND RESTRICTIONS OF WYTHOFF’S GAME
PRESERVING ITS P POSITIONS

ERIC DUCHENE, AVIEZRI S. FRAENKEL, RICHARD J. NOWAKOWSKI, AND MICHEL
RIGO

ABSTRACT. We consider extensions and restrictions of Wythoff’s game having
exactly the same set of P positions as the original game. No strict subset of
rules give the same set of P positions. On the other hand, we characterize
all moves that can be adjoined while preserving the original set of P posi-
tions. Testing if a move belongs to such an extended set of rules is shown to
be doable in polynomial time. Many arguments rely on the infinite Fibonacci
word, automatic sequences and the corresponding number system. With these
tools, we provide new two-dimensional morphisms generating an infinite pic-
ture encoding respectively P positions of Wythoff’s game and move that can
be adjoined.

1. INTRODUCTION

Wythoff’s game is a well-known 2-player combinatorial game played on two heaps
of finitely many tokens. It was introduced in [22]. Two types of moves are allowed:

¢ Remove any positive number of tokens from one heap (the Nim rule).
e Remove the same positive number of tokens from both heaps (Wythoff’s rule).

The game ends when the two heaps are empty. The player making the last move
wins. We denote by (a,b) a game position where a and b are the numbers of tokens
in the two heaps. A position is called a P position if there exists a strategy for the
second player (i.e., the player who will play on the next round) to win the game,
whatever the move of the first player is. It is an A position if there exists a winning
strategy for the first player (i.e., the one who is making the actual move). As a
consequence of the next proposition, it turns out that each game position is either
P or N (details about impartial acyclic games can be found in [2]).

Proposition 1 (Characterization of the P positions of an impartial acyclic game).
The sets of P and N positions of any impartial acyclic game (like Wythoff’s game)
are uniquely determined by the following two properties:
e Any move from a P position leads to an N position (stability property of the
P positions).
e From any N position, there exists a move leading to a P position (absorbing
property of the P positions).

Symmetry of the game rules implies that (a,b) is a P position if and only if (b, a)
is also a P position. We will denote by (A, By) the nth P position of Wythoff’s
game, with 0 < A,, < B,,. We set (Ag, Bg) = (0,0), since from this position with
two empty heaps the first player cannot move, so the second wins by default. In the
literature, the sequence (Ay, Bp)n>o is called Wythoff’s sequence. Table 1 below
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contains its first values. A recursive characterization of the sequence is recalled in
Proposition 2.

n |0 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15
A, |0 1 3 4 6 8 9 11 12 14 16 17 19 21 22 24
B,|0 2 5 7 10 13 15 18 20 23 26 28 31 34 36 39

TABLE 1. First values of the sequences (A,),>0 and (By),>0-

Proposition 2 (Recursive characterization of Wythoft’s sequence [22]). For alln >
0, we have

An = Mex({Ai,Bi :0 S 1< n})
B, = An +n,

where Mex(U) stands for Minimum EXcluded value of U C N (with U # N), i.e.,
the smallest nonnegative integer not in U (see [2]). The proposition below follows
easily from Proposition 2.

Proposition 3. The sets {4, : n > 1} and {By, : n > 1} partition N> .

The characterization of Wythoff’s sequence described in Proposition 2 does not
permit to decide in polynomial time whether or not a given game position (a, b)
is a P position. As explained in [10], this decision problem is crucial in “game
complexity” theory. Therefore a polynomial time procedure based on the following
algebraic characterization is given in [22].

Proposition 4 (Algebraic characterization of Wythoff’s sequence). For alln > 0,
we have

A, = |nT]
B, = |n7%]=|nT]+n,
where T is the golden ratio (1++/5)/2.

Let us now briefly present the content of this paper. In Section 2, we pro-
vide three polynomial-time characterizations of Wythoff’s sequence. The first one
derives from the Fibonacci word and focuses on combinatorics on words. The ex-
tensive use of combinatorics on words to deal with games appears recently in [8].
The Fibonacci word was also used by A. Fink to solve a major conjecture about the
2-player game Toppling Dominoes ([9]). The second characterization is an arith-
metic one coming unsurprisingly from the Fibonacci numeration system. As for the
algebraic characterization, it permits to decide in polynomial time whether or not
a game position is a P position. This point of view is detailed in [13]. The third
characterization is original and stems from a two-dimensional morphic approach.
We are able to build the 2-dimensional (infinite) table containing the P and the A/
positions of Wythoff’s game as the projection by a coding of the fixed point of a
two-dimensional morphism over a finite alphabet. We also give in Section 2 several
Lemmas linked to combinatorics on words and numeration systems that are used
in the sequel of this paper.
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In many papers devoted to variations of Wythoff’s game, new rules are adjoined
to the original ones. Such variations are called eztensions. As an example, in [13]
Wythoft’s rule is relaxed to take &k > 0 tokens from one pile, £ > 0 from the other,
subject to |k — €] < s where s > 0 is a fixed integer parameter. Other examples of
extensions of Wythoft’s game are given in [5, 11, 12, 15]. There are a few papers
where only subsets of Wythoff’s moves are allowed (see [6, 7, 14] for examples).
Such variations are called restrictions of Wythoff’s game. For all these extensions
and restrictions of Wythoff’s game, the main goal is to find characterizations of the
sequence of P positions, which almost always differs from the original Wythoff’s
sequence.

In the present paper, we also consider extensions (Section 3) and restrictions
(Section 4) of Wythoft’s game. The main new ingredient in the present work is
the preservation of the P positions of Wythoff’s game. Moreover in section 3, the
moves that we add in our extensions need to be playable from any game position,
as is the case for Wythoff’s game. Indeed, we could have imagined games where
this property does not hold: for example we remove an odd number of tokens from
a position (a, b) if a or b is a prime number, and an even number of tokens otherwise.

We characterize below all the sets of moves that can be adjoined to Wythoff’s
rules while preserving the sequence of P positions, under the condition assumed in
the previous paragraph, i.e., all the adjoined moves are playable from any game
position. The complexity of this characterization is an important issue and is
investigated in Section 3. To decide whether or not a move can be adjoined to
Wythoff’s game without changing the sequence of P positions, it suffices to check
that it does not change the stability property (defined in Proposition 1). Indeed,
adding a move leading from some P position to another P position would necessarily
change the stability property of the P positions (by Proposition 1). On the other
hand, adding a move which does not correspond to a move between any two P
positions means that both properties of Proposition 1 remain true. Therefore, a
move (i,j) can be added if and only if it prevents a move from a P position to
another P position of Wythoff’s game. In other words, a necessary and sufficient
condition for a move (4, j);<; to be adjoined is that it does not belong to

{(An — A, Bp — By,) :n>m >0}U{(4A, — B, B, — A) :n>m >0}
By Proposition 4, this condition can be restated as follows.

Proposition 5. A move (i, j)i<; can be adjoined to Wythoff ’s rules without chang-
ing the sequence of the P positions if and only if it satisfies

(1) (i) # (In7) = m 7], [n7*] = [m72]) ¥n > m > 0
and
(2) (i) # (In7) = m 7], [n 72| = [m7]) ¥n > m > 0.

So Proposition 5 answers our initial question about the characterization of “ad-
joinable” moves preserving Wythoff’s sequence as set of P positions. However, the
original Wythoff’s game has the property that one can decide in polynomial time
whether or not a given move belongs to the set of rules. This property appears
to be a necessary condition for a game to be polynomial or tractable (see [10] for
details). Therefore we discuss in Section 3 the complexity of this decision problem
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for the moves described in Proposition 5. We obtain polynomial complexity using
the Fibonacci numeration system. Note that though the moves we adjoin preserve
the P positions, they do not preserve the nonzero values of the Sprague-Grundy
function.

Finally, we show in Section 4 that there is no restriction of Wythoff’s game
preserving Wythoff’s set of P positions.

2. CHARACTERIZATIONS OF WYTHOFF’S SEQUENCE

This section has been written for a game theoretician reader with no particu-
lar knowledge in formal languages theory nor combinatorics on words. We recall
all the necessary material about words, morphisms and automatic sequences. Our
main aim is to obtain a morphism generating a two-dimensional (infinite) table
encoding N and P positions of Wythoff’s game, the so-called Wythoff’s matriz.
We recall in the first subsection that Wythoff’s sequence can be derived from the
Fibonacci morphism. Morphisms are naturally associated with automata and nu-
meration systems. In the second subsection, we derive a characterization of the
Wythoff’s sequence from representations in the Fibonacci numeration system. Fi-
nally, the third subsection discuss the two-dimensional morphic characterization of
the Wythoff’s matrix. We also include in this section some technical results that
will be used in other sections of this paper.

2.1. A morphic characterization. Let X be a finite alphabet. We denote by ¥*
the set of finite words over ¥ and by XN the set of maps from N onto ¥. Such maps
are called infinite words over ¥. If w € ¥* is a word and o € ¥ is a letter, |w| (resp.
|w|s) denotes the length of w (resp. the number of occurrences of o in w). The
unique word of length zero is the empty word € and ¥ := ¥*\ {e}. If w € ¥* can
be decomposed as w = xyz with z,y, z in X* then z is said to be a prefiz of w and
y is said to be a factor (or subword) of w. The set ¥* endowed with concatenation
of words as product operation is a monoid. Let ¢ : ¥ — ¥* be a map extended
to a morphism of monoid ¢ : ¥* — ¥* i.e., for all u,v € ¥*, p(uv) = p(u)p(v)
and p(e) = . Let @ € ¥ and u € X1 be such that p(a) = au. Then for all
n €N, ¢"(a) =aup(u)- - " 1 (u). If moreover lim,_, |¢"(a)| = 400 then the
sequence (¢"(a))n>o of finite words converges to a unique infinite word denoted
¢“(a) because ¢"(a) is a prefix of p"*!(a) for all n > 0. A morphism ¢ : ¥ — &*
is said to be of constant length, if there exists £ > 0 such that for all ¢ € X,
|p(o)] = ¢. Let ¥ and T’ be two alphabets (usually #I' < #X). A coding is a
morphism g : ¥ — IT'* such that for all 0 € &, u(o) € I.

Example 1 (Fibonacci word). Let ¥ = {a,b} and ¢ : a — ab,b — a. We have
p(a) = ab, ¢*(a) = p(a)p(b) = aba, ¥*(a) = ¢(a)¢(b)p(a) = abaab, ... thus
¢“(a) = abaababaabaababaababaabaababaabaab - - -

This infinite word is the well-known Fibonacci word that will be denoted F. The
Fibonacci word has many properties. It is a Sturmian word: for all n > 0, the
number of distinct factors of length n is n + 1 (see [18, Chap. 2] for details). In
particular any Sturmian word is written over a binary alphabet {a, b} . If positions
inside F are counted from 1, then the position of the nth letter a (resp. b) is
denoted A, (resp. B,), n > 1. Moreover, denote by F(n) the letter occurring in
position n in F and by F[i...j], i < j, the factor F(i)F(i + 1) --- F(j) of F . For
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instance, A1 = ]., A2 = 3, A3 = 4, Bl = 2, Bz = 5, Bg = 7, .7'—(].) = a, f(f)) = b,
and F[2...5] = baab.

In [8] the following characterization of Wythoft’s sequence using the Fibonacci
word is given.

Proposition 6 (Morphic characterization of Wythoff’s sequence). The sequence (A, Bn)n>1
defined in Example 1 is exactly the Wythoff’s sequence.

Thanks to this proposition, we can give lemmas and remarks about Wythoff’s
sequence and the Fibonacci word that will be used in Section 3. The following two
remarks link the Fibonacci word with the gaps between consecutive A;’s and B;’s.
In particular, we show that 4,41 — A, € {1,2}, and B,y1 — By, € {2,3}.

Remark 1. Since for any letter z € {a, b}, p(z) begins with a, it is obvious that
Ap(a) := App1 — Ay is given by ¢, (F(n)) where ¢, : a > 2,b > 1.

Remark 2. Looking at ¢?(a) = aba and ©?(b) = ab, one can see that b always
occurs in second position. Since ¢?(F) = F, we get that A, (b) := B,y — By is
given by ¢, (F(n)) where ¢y : a — 3,b — 2.

Lemma 1. We have {B, +4},>1 C {A,}n>1-

Proof. Let i = B,, be the index of the nth occurrence of a letter b in F. According
to the morphism ¢, the difference between two consecutive letters b in the Fibonacci
word is either 2 or 3. For (i +4) to be the index of an occurrence of another b, we
need to have Bpy1 — B, = 2 and Bp42 — Bpy1 = 2. But the factor babab never
appears in F, since it would be produced by a factor aaa, which never occurs in
view of Remark 2. Hence (i + 4) is the index of an occurrence of a letter a. O

Any Sturmian word like the Fibonacci word is balanced, meaning that for any
two factors u and v of same length, we have ||u|, — |v|q| < 1. In the next lemma,
we get a little more for specific factors.

Lemma 2. Let F, be the prefix of F of length n. For any finite factor bua occurring
in the Fibonacci word F with |u| = n, we have |u|q = |Fnla and |ulp = |Fnlp.

Example 2. With u = aabaab, the factor bua of length 8 starts in F from position
7. One can check that Fg = abaaba is a permutation of wu.

bua
———
F = abaaba b aabaaba baababaaba - - -
S—— N~——
-7'—6 u

Proof. Since u and F,, have the same length, we simply have to show that |ul, =
|Fnlp. Thanks to Proposition 4, we get

(3) [Falp = #{i > 1] [ir?] <n}.

Assume that the first occurrence of bua in F starts in position |jo 72]. Again using
Proposition 4 we get

lulp = #{i | Lo 7] < [i7”] < ljoT”] +n +1}.

Since in position |jo 72| +n + 1 there is a letter a, we know that |jo 72| +n + 1
is of the form |k7| for some integer k and from Proposition 3, it cannot be of the
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form [i72]. Consequently, in the previous formula, we can replace the rightmost
strict inequality with a large one and get

lulp = #{i > jo | liT?] < ljo 7] +n+1}.

Notice that |iT?] — |jo 72] is equal to [(i — jo) 2] + 1 or [(i — jo)72] depending
whether {i7?} — {jo 72} < 0 or not. In the first case, we get
July = #{i > jo | LG = jo)™ | + L < n+ 1} = 4#{i > jo | [(i = jo)7*] < n}

which is exactly (3). In the second case, we have

July = #{i > jo | (i —jo)*] <n+1}
but since, here | (i — jo)72] = [iT?] — |jo 72], this latter quantity cannot be equal
to n + 1 (because there is a letter a in position |jo 72| +n + 1). Consequently, we
have

July = #{i > jo | L(i = jo)7*] <n+1}
which is exactly (3). O

2.2. From morphic to arithmetic characterization, via automatic sequences.
It is usual to associate numeration systems with infinite words generated by mor-
phisms. In this subsection, we reobtain that the so-called Fibonacci numeration
system can be used to characterize Wythoff’s sequence. We get another character-
ization of the (A,, B,)’s when positions are written in the Fibonacci numeration
system.

In his seminal paper [4], A. Cobham shows that an infinite word is the image
under a coding of an infinite word generated by iterating a morphism of constant
length k£ if and only this word is k-automatic. So let us recall the definition of a
k-automatic sequence (see [1] for details).

Definition 1. A deterministic finite automaton with output (DFAO) is a 6-tuple
M =(Q,q,%,6,,7) where @Q is a finite set of states, gy € @ is the initial state,
0 :Q x X — @ is the transition function, 7 : Q — I' is the output function and
Y and T are respectively the input and the output alphabets. As usual § can be
extended to @ x ¥* by d(q,¢) = q and 6(q,cw) = §(6(q,0),w) forallg € Q, 0 € X,
wE X*.

Notice that in the next definition, indices in a sequence are counted from zero
(that is different from positions in words like in the Fibonacci word where they are
counted from one). This shift of one unit cannot be avoided because we consider
below representations of any nonnegative integer, zero included.

Definition 2. Let k > 2. A sequence (z,,),>0 € I is k-automatic if there exists
a DFAO with {0,...,k — 1} as input alphabet and T" as output alphabet such that
for all n > 0,
xn = 7(6(qo0, pr(n)))

where pg(n) denotes the usual k-ary representation of n. We also denote by 7y, the
reciprocal map which gives the numerical value of a word over {0,... ,k — 1}.

Roughly speaking, one feeds a DFAO with the k-ary representation of n from the
initial state. After reading the whole representation, the reached state produces an
output which gives the element z,,.

The following example illustrates the two equivalent methods discussed above
for generating infinite words (morphism and DFAQ).
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Example 3. Consider the morphism ¢ : a — ab,b — ac, c — ca of constant length
2 and the coding p : a,b+— 0,c+— 1. We have

¢ (a) = abacabcaabaccaababacabeacaababac - - -

and
(zn)n>0 = p(¢®(a)) = 00010010000110000001001010000001 - - -

Now consider the DFAO depicted in Figure 1 where the set of states is {a, b, ¢} and
where the output o = 7(gq) of a state ¢ is written ¢/o. Notice that the transitions

FIGURE 1. a DFAO.

of the DFAO are in one-to-one correspondence with the morphism ¢ (i.e., for all
z € {a,b,c}, if p(x) = yoy1 then the transitions going out of z are d(z,0) = yo
and §(z,1) = y1). Let us explain how it works on an example. Consider the binary
representation of eleven, py(11) = 1011. We start reading the word 1011 from the
initial state ¢ marked with an entering arrow without label. The automaton reads
the word 1011 letter by letter, from left to right, and the state changes accordingly
to the transitions:

1 0 1 1
a—b—a—b—c

Since the output from ¢ is 1, this means that z;; = 1. One can check that the

twelfth symbol occurring in u(¢“(a)) is 1.

It is not difficult to see that the construction shown in the previous example can
be extended to any morphism ¢ of constant length and coding u (for details, see

[1, 4]).

Proposition 7. Let p : ¥ — ¥* be a morphism of constant length £ such that p(a)
starts with a, p : ¥ — T be a coding and M = (£,a,{0,... ,£—1},6,T, u) be the
corresponding DFAO. If x, = o € ¥ and p(e(o)) =y ---ve—1 then

Lry(pe(n)i) = Vis Vi = 0,. .. ,K— 1.

Proof. This is a trivial consequence of the correspondence between the morphism
and the DFAO. When writing p¢(n)i, one should understand the concatenation of
the word pg(n) € {0,...,£ —1}* and the digit 7. O

Example 4. We continue Example 3. The fourth element in ¢*“(a) is ¢. The binary
representation of 3 (recall that for automatic sequences, we count from zero) is 11.
We have m2(110) = 6, m2(111) = 7 and p(¢(c)) = p(ca) = 10. One can check that
zex7 = 10 are the seventh and eighth letters in p(¢“(a)) = (Zn)n>0-
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Remark 3. As shown by the previous proposition and example, we stress the fact
that when dealing with automatic sequences, we have to deal with indices starting
from zero. This relies on the definition of the DFAO related to the morphism and
it provides (e.g., Proposition 7) an easy way to deal with the image of a letter
appearing in the infinite word.

Cobham’s construction can be extended to arbitrary morphisms. Precisely, in
[3], positional numeration systems related to a class of linear recurrent sequences are
considered (they are related in some sense to Pisot numbers and the corresponding
terminology used in [3] is U-substitution and U -automaton instead of morphism and
DFAO). For the general case, see [20] where the construction is linked with abstract
numeration systems [17].

Definition 3 (Fibonacci or Zeckendorf’s representation). The Fibonacci sequence
(Fn)n>o is defined by Fy = 1, Fy = 2 and F42 = Fpyq + F), for all n > 0. Any
natural number n can be written (uniquely) in a greedy way as n = Zf:o c; F; such
that Zf:o c¢;F; < Fyqq for all k < £ and ¢p = 1. Tt is well-known that the ¢;’s are in
{0,1} and such that ¢; - - - ¢o does not contain two consecutive 1’s (see [18, Chap. 7]
or [23]). We write pp(n) = ¢¢- - - ¢o and this word is said to be the F-representation
of n. The F-representation of zero is set to €. For any finite alphabet A C 7, one
can define the F-value map np : A = Z as wp(ce---co) = Zf:o c; F;.

The Fibonacci numeration system belongs to the class studied in [3]. One can
therefore associate, with the same construction as the one sketched in Example 3,
to the morphism ¢ defining the Fibonacci word a DFAO Mp depicted in Figure 2
in such a way that the nth symbol occurring in F can be obtain by feeding Mpg
with the F-representation of n — 1. The first symbol in F is obtained from the
representation of zero (we have exactly the same observation as in Remark 3 which
explains this difference of one unit). Notice that since ¢ is not a constant length
morphism, the DFAO M is not complete, meaning that the number of outgoing
edges from the different states is not constant (there is only one outgoing edge from
b because |p(b)| = 1).

eﬂ@
FIGURE 2. The DFAO Mpg.

Example 5. Feeding Mg with the F-representations of the first integers: ¢, 1, 10,
100, 101 we get the corresponding outputs a, b, a, a, b.

Remark 4. As a consequence of the special form of the automaton Mg, the nth
symbol in F, n > 2, is a (resp. b) if and only if pp(n — 1) ends with 0 (resp. 1).
See Table 2 for the first values.

Proposition 7 adapted to the Fibonacci morphism can be expressed as follows.

Proposition 8. Let ¢ : {a,b} — {a,b}* be the Fibonacci morphism.
o If the nth letter in F is a (n > 1), then this a produces through ¢ a factor ab
occupying positions 7 (pr(n — 1)0) + 1 and 7p(pr(n — 1)1) + 1.
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niil 2 3 4 5 6 7 8 9 10 11 12 13 14
b a a b a b a a b a a b a
A; || 1 3 4 6 8 9 11 12 14
B; 2 5 7 10 13
(@) — o o — 8
o = O O o — o o (@)
o o O - O (@) o — — o
ppn-1lo ~SSES3S3S S 3 8 8 S
TABLE 2. First elements in F

o If the nth letter in F is b (n > 1), then this b produces through ¢ a letter a
occupying position g (pr(n — 1)0) + 1.

Example 6. Take the third @ occurring in F and having position 4 in . We have
pr(4—1) =100. By adding 0 and 1 to 100 we get 7#(1000) = 5 and 7 (1001) = 6.
So the third a produces the factor ab in positions 6 and 7 in F.

Since the nth letter b occurring in F is produced through ¢ by the nth letter a,
we get the next formula

(4) B, =7nr(pr(A, — 1)1) + 1.
Lemma 3. For alln > 1, A, —1=np(pr(n —1)0).
Proof. This is simply a reformulation of Remark 4. |

The previous two results lead to the following arithmetic characterization of
Wythoft’s sequence.

Proposition 9 (Arithmetic characterization of Wythoff’s sequence). For all n >
1, we have

An = 7r(pr(n—1)0)+1
Bn = WF(pF(An_]-)]-)‘I']--

Remark 5. An equivalent result was proved in [13] using continued fractions. It
was proved that a pair of integers (z,y) belongs to the sequence (A,, Byp)n>1 if
and only if pp(x) ends in an even number of zeros and pr(y) = pr(x)0. As
for the algebraic characterization, it was also proved in [13] that such arithmetic
characterizations allow to decide in polynomial time whether or not a given position
is a P position.

The following lemma will be used in Section 4 but is given here because it involves
the Fibonacci representation of Wythoff’s sequence.

Lemma 4. Let n > 1 be such that B, 1 — B, = 2. Then pp(B, — 1) ends with
101.

Proof. By Lemma 3, we know that pp(A4, — 1) = u0 where u = pp(n — 1). Now
assume that u can be written as v'0. Since B,y1 — B, = 2 and the letter b
occurring in position By, (resp. Bjy1) is produced through ¢ by the nth (resp.
(n + 1)th letter a, we have A1 — A, = 1. As pp(4,, — 1) = «/00, we have that
pr(A,) =u'01 = pp(A,y1 — 1) contradicting Lemma 3. Hence pp(A, —1) = u'10,
and by Proposition 8, we get pp(B, —1) = «'101. O
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2.3. A new characterization of Wythoff’s sequence. Consider the infinite
Wythoff’s matriz over N x N coding the P positions (A,,, B,) and (B,,, A,) of the
Wythoff’s game, i.e., for all ¢, > 0, P; ; =1 if and only if there exists n > 1 such
that (Za]) = (AnaBn) or ('L,]) = (BnaAn)

i\j|[0 1 2 3 456 7 89 10
0]0000O0O00O0O0GO0LO0 O
10010000000 0
20100000000 0
3100000100000
410000000100 0
(Poj)ijso= 50001000000 0
= 6/0000000000 1
710000100000 0
810 0000000O0O0 O
910 000000000 0
10/0 000001000 0

The aim of this section is to provide a 2-dimensional iterated construction that
builds Wythoff’s matrix (P; ;). Let us stress the fact that even if we have already
provided several characterizations of the P positions, it is not obvious that such
characterizations lead to some two-dimensional morphism. Indeed this morphism
requires some extra property, namely a shape symmetric property, to generate an
infinite picture in a convenient way.

Automatic sequences have been generalized to the multi-dimensional case [21].
Here we will consider solely the two-dimensional situation. An array over N x N
is said to be k-automatic if there exists a morphism ¢ : ¥ — 2¥** whose images
are k X k blocks of symbols in ¥ and which can be iterated in the same spirit as
for the one-dimensional case (there is a symbol a whose image under ¢ has a in
the upper-left corner just as ¢(a) = au in the one-dimensional case). After having
obtained the array ¢%(a), a coding u : ¥ — T can still be applied. Equivalently,
such arrays can be produced by a DFAO reading pairs of words of the same length
(leading zeroes are added to the shortest of the two k-ary representations).

In the one-dimensional case, morphisms of constant length can easily be gen-
eralized to non constant length morphisms. For two-dimensional arrays, one has
to proceed carefully to obtain a meaningful “picture” when iterating a morphism
whose images are not all k£ x k blocks (with images of arbitrary rectangular shape,
positions of the newly produced blocks cannot be uniquely determined or images of
different letters could also overlap). This is the reason for introducing the notion
of shape-symmetric morphisms [19]. Roughly speaking, each iteration of ¢ gives a
square built from images of letters and these images have shape which are symmet-
ric with respect to the main diagonal of the square. The particular shape of the
images implies that we do not have problems to iterate the process. Precisely, if
P is the infinite two-dimensional picture that is the fixed point of ¢, then for all
i,j € N, if p(P; ;) is a block of size k x £ then ¢(P;;) is of size £ x k. See Figure 3
for an example.

Example 7. Let ¢ be the following two-dimensional shape-symmetric morphism:
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FI1GURE 3. Iteration of a shape-symmetric morphism.

pran il bH e []7] de[i] en[7]0]
f»—)ifl g»—)id h»—)i»—)ii;

h
. llm k|lm
]»—) k— - [~ p] m»—>

/’I/:e7g7j’lH]‘7 a7b’c7d7f7h’i’k7mH0

(=

S8
o

and the coding

Successive applications of ¢ from a lead to an infinite array. When applying the
coding p to this array, we will show that we obtain again the infinite matrix coding
the P-positions of Wythoff’s game (symbols mapped onto 1 have been written in
bold face).

alb|i|i|m]|i|m]|i

—— cld|e|h|d|h|d]|h

a|lb|i|li|m T3 i 71 i m]|q

bl c|ld|e|h|d Z.JZ. -
Hab._)d'_)...fb._)zmkzmgbz._).
T clere L LN hld|c|h|d|h|d]|e
J | igm ki m i m| i1 ml|i|m]|i
hldjelh]d hld|h|c|d|h|d]|R

i lm|i|i|j|i|m]|i

Figure 7 in the appendix gives a colored version (with respect to the different
symbols) of the first 50 x 50 block associated with ¢“(a).

Remark 6. Consider the first row (or similarly due to the symmetry, the first
column) of the morphism ¢ which gives
a:a—ab, b—i, i im, m— i
and with the coding
B:a,i—>a, bbm—b
we find that 8(a¥(a)) is the Fibonacci word. Due to the shape of the morphism ¢
or in the same way «, it is obvious that F'-representations will be considered.

The one-dimensional case considered in Example 3 can be extended to a two-
dimensional morphism ¢ like the one given in Example 7. We associate in a canon-
ical way a DFAO whose input alphabet is

(o) 6)- 0 0
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The set of states is {a,b,...,l,m}, the initial state is a. If

t
o =pte]. GI0. [ o

then we have transitions like
1 0 1
0 1 1
r—>uv

0
0
r—s, r—=1t r — u,

As a consequence of the above construction and Remark 6, we get the follow-
ing result which is simply the extension of the phenomenon observed in the one-
dimensional case.

Proposition 10. Feeding the automaton M associated with a two-dimensional
shape-symmetric morphism ¢ from state a with the word

Grt) {6)- 6)- () G
leads to the state [0 (a)]m.n.

In the previous statement, it is understood that the shortest F-representation is
padded with leading zeroes.

Example 8. We continue Example 7. The automaton associated with ¢ is depicted
in Figure 4.

FIGURE 4. Automaton accepting F-representations of (4,, B;,)
and (B, 4p).

To simplify the presentation, we have not represented states d, h,7,m and the
corresponding transitions. (There is no edge from d, h, i, m to some other states.)
States g, e, j, [ have been represented with double circles indicating that they corre-
spond to output 1 (the other states have all output 0). Consider the pair (A4, By) =

(6,10) represented as
01001
10010

we get the sequence
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One can easily check that the automaton in Figure 4 accepts exactly words of

the form
Owy -+ wy and wy w0
wl...wlo Owl...wl

where wy - --wy is a valid F-representation ending with an even number of zeroes.
As said in Remark 5, it is well-known that such pairs of words represent exactly
the (A, Bp)’s and (B, A,)’s. Therefore we obtain the following characterization
about Wythoff’s matrix.

Proposition 11 (Two-dimensional morphic characterization of Wythoff’s matrix).
The morphism ¢ and the coding p defined in Example 7 generate exactly the Wythoff’s
matriz, i.e., p(p“(a)) = (P;).

3. EXTENSIONS OF WYTHOFF’S GAME PRESERVING WYTHOFF’S SEQUENCE AS
SET OF P POSITIONS

We first consider extensions of Wythoff’s game where a single move (i, j) is
adjoined to the original Wythoff’s rules, and we require that these extensions all
have Wythoff’s sequence as set of P positions. Otherwise stated, the set of P
positions is invariant. Note that when a move (i, j) is adjoined, this means that
from all game positions, one can possibly remove i and j tokens from the two heaps
whenever enough token are available from this position. Adding more than a single
move can then be handled easily.

Let W be the infinite matrix over N x N coding the moves (i,j) that can be
adjoined with respect to the required property, i.e., for all ¢, > 0 we have W; ; =1
if and only if Wythoff’s game with the adjoined move (i, j) has Wythoff’s sequence
as its set of P positions.

3.1. Polynomial extensions. As detailed in Proposition 5, we have two algebraic
conditions to decide whether W; ; = 1. However, as explained in the introduction
and by reference to [10], since we investigate tractable extensions of Wythoff’s game,
we also need to test these conditions in polynomial time.

The following proposition gives an equivalent formulation to Condition (1) of
Proposition 5. In particular, it shows that deciding whether a move (i, j) satisfies
Condition (1) can be done in polynomial time. However, it turns out that testing
Condition (2) in polynomial time is not so immediate.

Proposition 12. We have
{(4; = Ai,Bj = B;) | j >i >0} = {(An, By) | n >0} U{(An +1,B, +1) | n > 0}.
Moreover, for any j > i > 0 we have (A; — A;, Bj — B;) = (Aj—i, Bj—;) or (Aj—; +
1,B,_; +1).
Proof. Consider a pair (4; — A;, Bj — B;) for some j > i > 0. From Proposition 4,
we have (4; — A;, Bj — B;) = (ljr| — lét], ly7| — lit] + j — ). Notice that

Lit] = lir] = (j—i)r—{jr} + {ir}
LG =Dl +{U =i} = {ir} + {ir}

and
Cam o[ lmh =iy i {iny > {ir)
{(y—UT}—{H{jr}—{iT} HgTh < i
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Consequently, by setting n = j —i > 0, we get
i A it () > fin)
Aj—Ai=jr] = lir] = { Ap+ 1 if {j1} < {it).
Moreover,
. s ) . Ap+n = B, if {j7} > {ir}
Bj - By = |jr| - lir] ﬂ—l—{ Ap+n+1 = B,+1 if {jr} < {ir}.

Now take a pair (s,t) in {(An,Bn) | n >0} U{(4, +1,B,+1) | n>0}. If
(s,t) = (An, By) for some n > 0 then choose j = n and i = 0 to get (s,t) =
(A; — A;, B; — B;). Otherwise, (s,t) = (A, + 1, B, + 1) for some n > 0. Notice
that for all £ > 0

{(k+n)m} = {{k7} + {n7}}.

Since {{k7} | k > 0} is dense in [0, 1], there exists ¢ > 0 such that
1—{n7t} < {it} < 1.

In particular, we have {(i + n)7} < {nr}. We set j = i + n and with the same
arguments as in the first part of this proof, we have that

(An +1,B, +1) =(4; — A;,B; — B;).
O
In order to find a polynomial characterization of the Condition (2) of Proposition

5, we will prove the following result. Its proof requires first several technical lemmas
and will be given at the end of this section.

Proposition 13. Given a pair (i,j) of positive integers, (i,j) € {( - B
Ap) | n>m >0} if and only if pr(j — Ai —2) = ul and pp(j — 2+
for any two valid F-representations u and u' in {0,1}*.

i B

i) =
Putting together Proposition 12 and 13, we get a polynomial characterization of

the matrix W.

Corollary 1. For any pair (i,j) of positive integers, we have W; ; = 1 if and only
if one the three following properties is satisfied :

e (pr(i—1),pr(j—1)) = (u0,u01) for any valid F-representation u in {0,1}*.

e (pr(i— ) pr(j —2)) = (u0,u01) for any valid F-representation u in {0,1}*.

o (pr(j—Ai—2),pr(j—A;—2+1i)) = (ul,u'0) for any two valid F-representations
u and u' in {0, 1}

Proof. The first two properties come from Proposition 12 and Proposition 9. The
last property is exactly Proposition 13. As explained in [13], the computation of
the F-representation of an integer can be done in polynomial time. [l

The above Corollary leads to a complete characterization of the extensions of
Wythoff’s game that preserve Wythoff’s sequence as set of P positions.

Corollary 2. Let I C Z>;. Then Wythoff’s game with the set of adjoined moves
{(@i,y;) -1 € I,24,y; € >0} has the sequence (Ay, By) as set of P positions if and
only if Wy, s 1 for alli € 1.
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Proof. Trivially, any game with an adjoined move (z;,y;) such that Wy, ,, =1
cannot have (A,,, B,,) as set of P positions. Moreover, the sequence (A4, By,) still
satisfies the two properties of Proposition 1, even when adding a set of moves
{(@i,y;) 1 € I,24,y; € L>o} with W, ,, # 1 forall i € I. O

We now turn to a succession of three results leading to the proof of Proposi-
tion 13.

Lemma 5. Let F,, be the prefix of length n of the Fibonacci word F. We have
lo(Fa)l = 7r(pr(n)0).

n | pr(n) | Fn pr(n)0 | Tr(pr(n)0) | am = p;p(Fa)
1 1|a 10 2 ab

2 10 | ab 100 3 aba

3 100 | aba 1000 5 abaab

4 101 | abaa 1010 7 abaabab

5| 1000 | abaab 10000 8 abaababa

6 1001 | abaaba | 10010 10 abaababaab

TABLE 3. Illustration of Lemma 5.

Proof. Consider the sequence of words (f)r>0 defined by fo = a, fi = ab and
fr+2 = fr+1fr- Observe that | fi| = Fj, for all & > 0 because | fyt+2| = | fea1| + | fx|-
Moreover, it is well-known (see for instance [18]) that fi = ¢*(a). Let n be such
that pp(n) = cp- - - ¢p and consider the prefix ¢ of F of length n > 0. Let iy < --- <
ir € {0,...,¢} be the indices such that c;; = 1 in the F-representation of n, i.e.,
n = Z;Zl F;;. The word ¢ can be factorized as

t=wup---up  with luj| =F;, j=1,...,r

As an example, consider the prefix of F of length 20 = F5 + F3 + F, we have the
factorization

abaababaabaababaab ab ---

————

us us uy

To conclude the proof, we now observe that u; = f;; for all j € {1,...,r}. Indeed,
F has f;, fi.—1 as prefix and f; _; can be written f; _»f; —3. Continuing this way,
we obtain the expected factorization

t="fi, - fi, and () =w(fi,) - o(fi)
Since ¢(fi) = p(¢*(a)) = "' (a) = fry1, we get

T I4
lo(t)| = ZFZ’]-+1 = ZCiFi+1 =7p(co- -+ co0).
j=1 i=0

O

The next lemma is technical and is primarily devoted to prove Theorem 1. We
will only use the first part of the statement, but we get the other for free using the
same reasoning.
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Lemma 6. Let ul € {0,1}* be a valid F-representation. If pp(wp(ul) +n)l is
also a valid F-representation, then

7TF(pF(7TF(U].) + TL)].) = WF(UOO) + WF(pF(TL - 1)0) + 4.
Otherwise, pp(wp(ul) +n)l is not a valid F-representation and
7r(pr(mr(ul) +n)0) = 7p(u00) + 7r(pr(n)0) + 2.

Proof. Since ul is a F-representation, u ends with 0. Therefore, pg = 7p(u) + 1
is the position of a letter a in F. This a produces ab and the position of the
corresponding b is py = wp(ul) + 1. The letter in position py = wp(ul) + 2 is
a (no two consecutive b’s in F). Let us consider the first case and assume that
pr(mr(ul) +n)lis a valid F-representation. This means that pr(7p(ul) +n) ends
with 0 and thus there is also a letter @ in position p3 = 7p(ul) +n + 1. This latter
a produces a factor ab where b has position py = 7r(pr(rr(ul) + n)1) + 1. The
following scheme gives a factorization of the prefix of F of length p4:

po P1 po p3 P4
F=——-——a—-——-———aba————a————ab———.
- »

/ ~
~" N~ ~"

T Y z

Notice that ¢(zya) = zyz. Therefore, |p(zya)| = ps and
lo(zy)| = ps —2 = 7p(pr(np(ul) +n)l) — 1.

On the other hand, since |p(x)| = 7r(u10)+1 (because the b in position p; produces
the a in position 7 (ul0) + 1), we get

lo(zy)] = le(@)] + le(y)] = 7r(w00) + 3 + |p(y)].

Now observe that the factor bya starting in position py, with |y| = ps—p1—1 =n—1,
satisfies exactly the hypothesis of Lemma 2. Therefore y is a permutation of the
prefix ¢ of F of length n — 1. Obviously, |p(y)| = |¢(t)| because |y|, = |t|, and
lyle = |t|p- From Lemma 5, |p(t)] = mr(pr(n — 1)0) and the conclusion follows.

Consider the second case, assume now that there is a letter b in position p3 =
mr(ul)+n+1 (ie., pr(rr(ul) +n) ends with 1 and cannot be followed by another
1 to obtain a valid F-representation). This b produces a letter a in position pj =
7 (pr(mr(ul) +n)0) + 1. The following scheme gives a factorization of the prefix
of F of length pj:

’
Po P1 po p3 D4
F=—-—-—-——-4-——-—-aba———ph————a———.
N N

/ N J
~" N~ ~~

T Y z

Notice that p(zyb) = zyz and |p(zybd)| = p}y = 7r(pr(rr(ul) + n)0) + 1. On the
other hand, |p(zyd)| = |o(z)| + |¢(yb)| = 7r(u00) + 3 + |p(yb)|. The factor byba
starting in position p; (b is always followed by a in F), with |yb| = ps — p1 = n,
satisfies the hypothesis of Lemma 2. Therefore yb is a permutation of the prefix ¢
of F of length n and |¢(t)| = |¢(yb)| = mr(pr(n)0) and the conclusion follows. O

Theorem 1. Let i,j be such that A; — B; =n > 0. We have
Bj—Ai:Bi-l-An-i-l.

Proof. Let u € {0,1}* be the F-representation of 4; — 1. Thanks to (4), ul is
the F-representation of B; — 1 (in particular, 7p(ul) = B; — 1). By hypothesis,
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Aj —1 = B; — 1+ n. Therefore, 7p(ul) + n = A; — 1. Since the jth a produces
the jth b in F, we get again using (4) that

Bj —1=mp(pr(mr(ul) +n)l).
Putting together the informations we have collected so far, we have
Bi—Ai = (Bj-1)—(4i-1)
= wr(pr(rp(ul) +n)l) —mp(u)
= 7p(u00)+ A, +3 — 7p(u)

where we used Lemmas 3 and 6 on the last line (notice that pr(7r(ul) +n)l is a
valid F-representation). Write u as ug - - - ug. Notice that

‘ ¢ ‘
WF(UOO) - 7TF(U) = UiFi+2 - U,FZ = ui(Fi+2 - Fz) = WF(UO).
=Fi41
Consequently, since Fy = 1, we get
Bj — A =mp(u0)+3+ A, =7mp(ul)+2+ A, =B;+ A, + 1.
|

Proof of Proposition 13. Let (i, 7) be a pair of positive integers satisfying i = A4,, —
B,, and j = B, — A,, for some integers n > m > 0. By Theorem 1, we have
j=Bp— Ay =By, + A; + 1. Hence B, — 1 =j — A; — 2, and by Proposition 9,
this implies that pr(j — A; — 2) ends with a 1. Moreover, we also get A, — 1 =
By, +i—1=j—A; — 2+ i, and with the same proposition, we conclude that
pr(j — A; — 2 +1) ends with a 0.

Now consider a pair (i, j) of nonnegative integers satisfying pp(j — 4; —2) = ul
and pp(j — A; — 2 +14) = 40, for any two valid F-representations u and ' in
{0,1}*. Using Proposition 9 and Proposition 3, there exist two positive integers m
and n such that j — A;, —2 =B, —1and j — A; —2+i = A, — 1. The latter
equality leads to i = A, + 1+ A; — j, which is equal to A, — B,, in view of the
previous one. By applying Theorem 1 to the equality A, — B,, = i, we also get
B, — A, = B, + A; + 1 = j. This concludes the proof. O

3.2. Two-dimensional morphic characterization of the matrix W. As in
Section 2.3 where Wythoff’s matrix was investigated, we build a two-dimensional
shape symmetric morphism to generate the matrix W

00000O0OTOTO0TO0O
0010100710710
01010010000
00100100T0T0O01
0100001710710
0001000O0T1TO00
Wij)ij>o=|0 0 1 0 1. 0 0 0 0 0 1
01 0010000TGO0O0
00000T1O0O0GO0TO0O0
01 0010000GO0O0
000100100G00




18 E. DUCHENE, A. FRAENKEL, R. NOWAKOWSKI, AND M. RIGO

Consider the morphism

(=

- i |k
viam? bHE en[f[f] an[d enPH] foET

y|b i|n
g'_)oth'_). ol d

j Z f k»—)l Ie[efu] me|e]
nH. N le io[eln] reo[e] so[o]k]

tes[i] u»—) v»—>7 f w»—)Z .
PRI N L 1 b prpary o Rl
c|d y ol|d cl|t

and the coding
l/:a7b’c7d7e7i7j’k7l7n’07p’q7rH0’ f’g?h’m’s’t7u’v’w’w’y7ZH 1'

Figure 8 in the appendix gives a colored version (with respect to the different
symbols) of the first 50 x 50 block associated with % (a).

Using the same procedure as in Section 2.3, we state the following conjecture
analogous to Proposition 11. Let us mention that even if Corollary 1 gives some
syntactical criteria to test, this does not imply that an automaton exists and even
if such an automaton exists (which is the case), this does not in general lead to a
generating morphism.

Conjecture 1. The morphisms v and the coding v generate exactly the matriz W,
v(Y¥(a)) =W.

Partial proof. All we have to do is to provide the automaton associated with ¢ and
v and check that the language accepted by this automaton corresponds with the one
given by Corollary 1. This automaton is depicted in Figure 5 without representing
the non accepting states d,i,n and o (there is no edge from these states to any
other state).

For the first two cases of Corollary 1, representations of i — 1 and j — 1 (resp.
i —2 and j — 2) are considered. We have therefore to consider the addition of one
or two to show the expected correspondence. It is well known that the successor
function in the Fibonacci numeration system is right sequential and right on-line
computable with delay 1 (see [16]) and it is realized by the transducer depicted in
Figure 6. This transducer reads the representation of n from the right (i.e., least
significant digit first) and produces the representation of n + 1 as output. Assume
first that (4,7) is such that (pp(i — 1),pr(j — 1)) = (u0,u01). If u ends with 0,
using the transducer in Figure 6, we get

(5) (pr (i), pr(4)) = (ul,ul0).
If u ends with 1, then
(6) (pr (i), pr(j§)) = (u'00,4'000), u' ending with 2k zeroes, k > 0.
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FI1GURE 6. The successor function for the Fibonacci system.

Now consider (4, j) is such that (pp(i —2), pr(j —2)) = (u0,u01) (i.e., second case
of Corollary 1). We have to apply the transducer to (5) and (6). From (7), we get

(7) (pr (i), pr(j)) = (u',u'0), u' ending with 2k + 1 zeroes, k > 0.
From (6), we get
(8) (pr (i), pr(j)) = (v'01,4'001), v’ ending with 2k zeroes, k > 0.

Putting together (5), (6) and (7), we get exactly pairs of the kind (0v,v0). These
pairs are the ones exactly accepted from states f, g, h, z,y, z in the automaton from
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Figure 5 (taking into account the symmetry on the two components). The pairs of
the kind (8) are the ones accepted from state t.

It appears to be a painful task to consider the last case of Corollary 1 and to
compare it with the words accepted by states m, s, u, v, w. O

4. REDUNDANT MOVES

We now investigate games whose sets of allowed moves are subsets of Wythoft’s
one, and whose set of P positions is exactly Wythoft’s sequence. We show that such
a game does not exist. This means that there is no redundant move in Wythoff’s
game.

Definition 4. Denote by Gg an impartial game whose rules are given by a set of
moves S. A move m is said to be redundant if Gs and G g\, have the same P
positions.

From any A position (z,y) of Wythoff’s game, there exists an allowed move
m = (i,j) that leads to a P position (a,b), i.e., the relation (x —i,y — j) = (a,b) is
satisfied. If the move m is unique, then it is said to be forced for the game. This
definition can be naturally extended for any impartial game.

Lemma 7. In an impartial game Gg, a forced move is not redundant.

Proof. Let m = (i, j) be a forced move of Gg. There exists a A" position (z,y) and
a P position (a,b) such that (i,7) = (z — a,y — b). Since m is the unique move
for (x,y) to lead to a P position of Gs, in the game Gg\,, there exists no move
from (z,y) to a P position of G's. This means that in Gg\,, either (z,y) is a P
position or there exists a P position (a’,b") # (An, Br), (Bn, Ayn) such that (z,y)
leads to (a’,b"). In both cases, the set of P positions of Gg differs from the one of
G s\m- O

Theorem 2. There is no redundant move in Wythoff’s game.

Proof. According to Lemma 7, it suffices to show that the set of the forced moves of
Wythof’s game is identical to the set of the allowed moves M = {(0,4), (i,0), (i,7) :
i € Z>1}. The proof is divided into four parts.

First part
Let N; be the set of the following A/ positions of Wythoff’s game:
N ={(0,i),(3,0) : i € Z>1}

According to the sequence (A,,, By,), it is straightforward to see that each position
of N; leads to a unique P position, which is (0,0). Hence each move m is forced,
and it appears that the set of the forced moves from Ny is Ny itself.

Second part
Let N3 be the following set:

N2 = {(An,An) 'n e Zzl}
Since n > 1, it appears that N, is a set of A/ positions of Wythoff’s game. Let
(An, Ay) € Ns. Since (4,, A,) is a A position, there exists a P position (A;, B;)
for some i and a move m such that (A,, A,) 25 (A;, B;). If i > n, then we have
B; > A; > A, since n > 1, which contradicts the existence of m. Hence we have
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i < n implying A; # A,. Since (Ax,Bi),k > 1 is a partition of Z>i, we also
have B; # A,. This means that m and i are unique: the move m is of the form
(k, k) for some k, implying B; — A; = A, — A, = 0, and finally 7 = 0. Therefore,
(An, An) — (0,0) for all n > 1, and there exists no other way to move to a P
position. We conclude that N, is a set of forced moves of Wythoff’s game.

Third part
Let N3 be the following set, of positions:

Ng:{(An,An+3)n€Z24andAn+37£B]‘v’]<n}

In view of Proposition 2, we know that there exists a unique P position of
Wythoff’s game (A, By) such that B,, — A, = 3. Therefore, since (A3, B3) = (4,7)
and (Az, B3) ¢ N3, the set N3 is a subset of N positions of Wythoff’s game.

Let (A,, A, + 3) € N3. There exists a P position (4;, B;) for some i and a
move m such that (A,,A4, +3) 3 (4;,B;). As in the previous case we have
i < n, and since B; # Apy3, this implies that the move m has the form (k, k)
for some k. Hence the P position (A;, B;) must satisfy B; — A; = 3, leading to
(A;, B;) = (4,7) according to the first terms of the sequence (A,, By). The move
m= (A, —4,A4,+3—-7)= (4, —4, A, —4) is thus forced.

This proves that the set

Mz ={(Ap, —4, A, —4) :n € Zssand A, —4 # B; —TVj > 1}

is a set of forced moves of Wythoff’s game. Since by Lemma 1, we have {B,, },>1 C
{A,, — 4},,>4, we can deduce the following property for Ms:

{(Bn,By) :n € Zs and B, # B; — TVj > 1} C Ms

Let n > 1. Since B;y1 — B; € {2,3} by Remark 2, we have B, = B; — 7 if
j =n + 3. Hence we have

{(Bn,By) :n € Z>y and Bpi3 — B, # 7} C M.

Fourth part

Before introducing the last set Ny, notice that for all n > 1, there exists an
integer j such that A; = B, — 1. Indeed, there is no occurrence of two consecutive
letters b in the Fibonacci word.

Let Ny be the following set, of positions:

Ny ={(4; + B,,B; + By) :) : n € Z>1 such that B,13 — B, =7 and j such that A; = B,, — 1}

We first prove that Ny is a subset of A positions of Wythoff’s game. Let
(Aj + By, Bj + By) be a position belonging to Ns. Recall that A, (b) denotes
the difference B,, 41 — B,,. Since B3 — B, = 7 and by Remark 2, this implies that
(An(b), Apy1(b), Api2(b)) is a permutation of (2,2,3). Once again by Remark 2
and since there are no consecutive occurrences of b in F, the only allowed permu-
tation is (2,3,2). From this latter result, we also deduce that An — 1(b) = 3 since
each letter b is preceeded by a letter a in F. Hence we get

9) F(Bn—1)=F(Bn—2)=a

We now proceed in two steps:
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e We show that A; + B,, € {4;}i>1. By way of contradiction, assume that in
the Fibonacci word F, the letter occurring in position A; + B, is a b. This
means that in F, there exists a factor buba, where |u| = A; — 1. Since each
letter b is preceeded by a letter a in F, we can write v = u'a, where v’ is a
factor of length A; —2. By applying Lemma 2 for u’, we get |u'|, = [Fa,;-2]a-
Since A; = B, — 1 and from (9), the previous equality gives:

(10) 'l = |Fasla —2

Now by applying Lemma 2 to the factor ub, we get |ub|, = |F4,|a. From
this and since ub = u'ab, we have |u'|, = |u|, =1 = |ubls — 1 = |Fa,ls — 1
which contradicts (10).

o We show that B; + B,, € {4;};>1. According to Remark 4, it suffices to prove
that pr(B; + B, — 1) ends with a 0.

For the same reasons as in the proof of Lemma 4 and since B,,41 — B,, = 2,
we get A, = Ap+1 — 1. By Lemma 4, we know that pp(B, — 1) = ul01.
Moreover from (4), we deduce that pp(A4, —1) = »10. Since A; = B,, — 1,
the following equalities thus hold:

mr(pr(4; — 1)) = 7wr(prp(Bn—1)) =1
= 7p(ul0l) —1
= 7p(ul00)

)

We can now conclude about the F-representation of B; + B,, — 1

mr(pp(Bj + Bn—1)) = 7wp(pr(Bn—1)) +7r(pr(B;j — 1)) +1
mp(ul0l) + mp(pr(A; — 1)1) + 1 from (4)
mr(ul0l) + 7p(ul001) + 1
mr(ul01) + 7 (u1010)
7rF(u10100)

Then, since {4;};>1 and {B;};>1 partition of N>, and since A; + B,,, B; + B,
both belong to {4;};>1, then the position (A; + By, Bj + By) ¢ (A;, Bi);>1. This
means that (4; + By, Bj + By,) is a A position.

Therefore, there exists a P position (A;, B;) for some i and an allowed move m
of Wythoff’s game such that (A; + By, Bj + B,) = (A;, B;). If the move m has
the form (0, k) or (k,0), then we have either

(].].) Aj + B, = A; and BJ’ + B, > B;
or
(12) Bj + Bn = Az and Aj + Bn > Bz

The first equality of (11) implies j < i since the sequence {A4;};>; is increasing.
The second inequality of (11) can also be written A; + j > B;, contradicting the
previous remark (remember that B; — A; = ¢ for all ). Replacing B,, by A; — B;
in the second inequality of (12) leads to A; + A; > B; + B;, which is not correct
since B; > A; for all 1.

Hence the move m has the form (k, k) and is unique since there exists a unique P
position (A;, B;) whose difference B; — A; equals (B; + By) — (A; + B,) = B; — A;.
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More precisely, (A;, B;) = (A;, B;) and the move m = (B, By,) is forced. Therefore
the set
My ={(Bn,By) :n € Z> and B,y3 — B, =T}

is a set of forced moves.
Putting together all the previous results, we have that the set
N1 U N2 U {(BnaBn) 'n € Zzl}

contains forced moves of Wythoff’s game only. Moreover, this set defines exactly
the allowed moves of Wythoff’s game. This concludes the proof. O

5. OPEN PROBLEMS

Question 1. The above results give all the extensions and restrictions of Wythoff’s
game that have the sequence (A,, By) as set of P positions. Does it exist a variant
of Wythoff’s game which is neither an extension nor a restriction, and having also
this sequence as set of P positions ?

Question 2. What about these characterizations when considering the Generalized
Wythoff game of parameter s (defined in [13]) 7 It appears that for s > 1, there
are restrictions preserving the set of P positions.

Question 3. In view of the bi-dimensional morphisms that we produced for Wyhthoff’s
sequence and the W matrix, does it exist such a morphism producing the Grundy
values of Wythoff’s game 7

6. APPENDIX

In this appendix, we give in Tables 7 and 8 color to the generated fixed points.
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FIGURE 7. Upper-left corner of p“(a) where the 13 symbols have
been replaced with different colors.
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