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EXTENSIONS AND RESTRICTIONS OF WYTHOFF'S GAMEPRESERVING ITS P POSITIONSERIC DUCHÊNE, AVIEZRI S. FRAENKEL, RICHARD J. NOWAKOWSKI, AND MICHELRIGOAbstra
t. We 
onsider extensions and restri
tions of Wytho�'s game havingexa
tly the same set of P positions as the original game. No stri
t subset ofrules give the same set of P positions. On the other hand, we 
hara
terizeall moves that 
an be adjoined while preserving the original set of P posi-tions. Testing if a move belongs to su
h an extended set of rules is shown tobe doable in polynomial time. Many arguments rely on the in�nite Fibona

iword, automati
 sequen
es and the 
orresponding number system. With thesetools, we provide new two-dimensional morphisms generating an in�nite pi
-ture en
oding respe
tively P positions of Wytho�'s game and move that 
anbe adjoined. 1. Introdu
tionWytho�'s game is a well-known 2-player 
ombinatorial game played on two heapsof �nitely many tokens. It was introdu
ed in [22℄. Two types of moves are allowed:� Remove any positive number of tokens from one heap (the Nim rule).� Remove the same positive number of tokens from both heaps (Wytho�'s rule).The game ends when the two heaps are empty. The player making the last movewins. We denote by (a; b) a game position where a and b are the numbers of tokensin the two heaps. A position is 
alled a P position if there exists a strategy for these
ond player (i.e., the player who will play on the next round) to win the game,whatever the move of the �rst player is. It is an N position if there exists a winningstrategy for the �rst player (i.e., the one who is making the a
tual move). As a
onsequen
e of the next proposition, it turns out that ea
h game position is eitherP or N (details about impartial a
y
li
 games 
an be found in [2℄).Proposition 1 (Chara
terization of the P positions of an impartial a
y
li
 game).The sets of P and N positions of any impartial a
y
li
 game (like Wytho�'s game)are uniquely determined by the following two properties:� Any move from a P position leads to an N position (stability property of theP positions).� From any N position, there exists a move leading to a P position (absorbingproperty of the P positions).Symmetry of the game rules implies that (a; b) is a P position if and only if (b; a)is also a P position. We will denote by (An; Bn) the nth P position of Wytho�'sgame, with 0 � An � Bn. We set (A0; B0) = (0; 0), sin
e from this position withtwo empty heaps the �rst player 
annot move, so the se
ond wins by default. In theliterature, the sequen
e (An; Bn)n�0 is 
alled Wytho�'s sequen
e. Table 1 below1
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ontains its �rst values. A re
ursive 
hara
terization of the sequen
e is re
alled inProposition 2.n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15An 0 1 3 4 6 8 9 11 12 14 16 17 19 21 22 24Bn 0 2 5 7 10 13 15 18 20 23 26 28 31 34 36 39Table 1. First values of the sequen
es (An)n�0 and (Bn)n�0.Proposition 2 (Re
ursive 
hara
terization of Wytho�'s sequen
e [22℄). For all n �0, we have An = Mex(fAi; Bi : 0 � i < ng)Bn = An + n;where Mex(U) stands for Minimum EX
luded value of U � N (with U 6= N), i.e.,the smallest nonnegative integer not in U (see [2℄). The proposition below followseasily from Proposition 2.Proposition 3. The sets fAn : n � 1g and fBn : n � 1g partition N�1 .The 
hara
terization of Wytho�'s sequen
e des
ribed in Proposition 2 does notpermit to de
ide in polynomial time whether or not a given game position (a; b)is a P position. As explained in [10℄, this de
ision problem is 
ru
ial in \game
omplexity" theory. Therefore a polynomial time pro
edure based on the followingalgebrai
 
hara
terization is given in [22℄.Proposition 4 (Algebrai
 
hara
terization of Wytho�'s sequen
e). For all n � 0,we have An = bn �
Bn = bn �2
 = bn �
+ n;where � is the golden ratio (1 +p5)=2.Let us now brie
y present the 
ontent of this paper. In Se
tion 2, we pro-vide three polynomial-time 
hara
terizations of Wytho�'s sequen
e. The �rst onederives from the Fibona

i word and fo
uses on 
ombinatori
s on words. The ex-tensive use of 
ombinatori
s on words to deal with games appears re
ently in [8℄.The Fibona

i word was also used by A. Fink to solve a major 
onje
ture about the2-player game Toppling Dominoes ([9℄). The se
ond 
hara
terization is an arith-meti
 one 
oming unsurprisingly from the Fibona

i numeration system. As for thealgebrai
 
hara
terization, it permits to de
ide in polynomial time whether or nota game position is a P position. This point of view is detailed in [13℄. The third
hara
terization is original and stems from a two-dimensional morphi
 approa
h.We are able to build the 2-dimensional (in�nite) table 
ontaining the P and the Npositions of Wytho�'s game as the proje
tion by a 
oding of the �xed point of atwo-dimensional morphism over a �nite alphabet. We also give in Se
tion 2 severalLemmas linked to 
ombinatori
s on words and numeration systems that are usedin the sequel of this paper.



EXTENSIONS AND RESTRICTIONS PRESERVING WYTHOFF'S SEQUENCE 3In many papers devoted to variations of Wytho�'s game, new rules are adjoinedto the original ones. Su
h variations are 
alled extensions. As an example, in [13℄Wytho�'s rule is relaxed to take k > 0 tokens from one pile, ` > 0 from the other,subje
t to jk � `j < s where s > 0 is a �xed integer parameter. Other examples ofextensions of Wytho�'s game are given in [5, 11, 12, 15℄. There are a few paperswhere only subsets of Wytho�'s moves are allowed (see [6, 7, 14℄ for examples).Su
h variations are 
alled restri
tions of Wytho�'s game. For all these extensionsand restri
tions of Wytho�'s game, the main goal is to �nd 
hara
terizations of thesequen
e of P positions, whi
h almost always di�ers from the original Wytho�'ssequen
e.In the present paper, we also 
onsider extensions (Se
tion 3) and restri
tions(Se
tion 4) of Wytho�'s game. The main new ingredient in the present work isthe preservation of the P positions of Wytho�'s game. Moreover in se
tion 3, themoves that we add in our extensions need to be playable from any game position,as is the 
ase for Wytho�'s game. Indeed, we 
ould have imagined games wherethis property does not hold: for example we remove an odd number of tokens froma position (a; b) if a or b is a prime number, and an even number of tokens otherwise.We 
hara
terize below all the sets of moves that 
an be adjoined to Wytho�'srules while preserving the sequen
e of P positions, under the 
ondition assumed inthe previous paragraph, i.e., all the adjoined moves are playable from any gameposition. The 
omplexity of this 
hara
terization is an important issue and isinvestigated in Se
tion 3. To de
ide whether or not a move 
an be adjoined toWytho�'s game without 
hanging the sequen
e of P positions, it suÆ
es to 
he
kthat it does not 
hange the stability property (de�ned in Proposition 1). Indeed,adding a move leading from some P position to another P position would ne
essarily
hange the stability property of the P positions (by Proposition 1). On the otherhand, adding a move whi
h does not 
orrespond to a move between any two Ppositions means that both properties of Proposition 1 remain true. Therefore, amove (i; j) 
an be added if and only if it prevents a move from a P position toanother P position of Wytho�'s game. In other words, a ne
essary and suÆ
ient
ondition for a move (i; j)i<j to be adjoined is that it does not belong tof(An �Am; Bn �Bm) : n > m � 0g [ f(An �Bm; Bn �Am) : n > m � 0gBy Proposition 4, this 
ondition 
an be restated as follows.Proposition 5. A move (i; j)i<j 
an be adjoined to Wytho�'s rules without 
hang-ing the sequen
e of the P positions if and only if it satis�es(i; j) 6= (bn �
 � bm�
; bn �2
 � bm�2
) 8n > m � 0(1)and (i; j) 6= (bn �
 � bm�2
; bn �2
 � bm�
) 8n > m � 0:(2)So Proposition 5 answers our initial question about the 
hara
terization of \ad-joinable"moves preserving Wytho�'s sequen
e as set of P positions. However, theoriginal Wytho�'s game has the property that one 
an de
ide in polynomial timewhether or not a given move belongs to the set of rules. This property appearsto be a ne
essary 
ondition for a game to be polynomial or tra
table (see [10℄ fordetails). Therefore we dis
uss in Se
tion 3 the 
omplexity of this de
ision problem



4 E. DUCHÊNE, A. FRAENKEL, R. NOWAKOWSKI, AND M. RIGOfor the moves des
ribed in Proposition 5. We obtain polynomial 
omplexity usingthe Fibona

i numeration system. Note that though the moves we adjoin preservethe P positions, they do not preserve the nonzero values of the Sprague-Grundyfun
tion.Finally, we show in Se
tion 4 that there is no restri
tion of Wytho�'s gamepreserving Wytho�'s set of P positions.2. Chara
terizations of Wythoff's sequen
eThis se
tion has been written for a game theoreti
ian reader with no parti
u-lar knowledge in formal languages theory nor 
ombinatori
s on words. We re
allall the ne
essary material about words, morphisms and automati
 sequen
es. Ourmain aim is to obtain a morphism generating a two-dimensional (in�nite) tableen
oding N and P positions of Wytho�'s game, the so-
alled Wytho�'s matrix.We re
all in the �rst subse
tion that Wytho�'s sequen
e 
an be derived from theFibona

i morphism. Morphisms are naturally asso
iated with automata and nu-meration systems. In the se
ond subse
tion, we derive a 
hara
terization of theWytho�'s sequen
e from representations in the Fibona

i numeration system. Fi-nally, the third subse
tion dis
uss the two-dimensional morphi
 
hara
terization ofthe Wytho�'s matrix. We also in
lude in this se
tion some te
hni
al results thatwill be used in other se
tions of this paper.2.1. A morphi
 
hara
terization. Let � be a �nite alphabet. We denote by ��the set of �nite words over � and by �N the set of maps from N onto �. Su
h mapsare 
alled in�nite words over �. If w 2 �� is a word and � 2 � is a letter, jwj (resp.jwj�) denotes the length of w (resp. the number of o

urren
es of � in w). Theunique word of length zero is the empty word " and �+ := �� n f"g. If w 2 �� 
anbe de
omposed as w = xyz with x; y; z in �� then x is said to be a pre�x of w andy is said to be a fa
tor (or subword) of w. The set �� endowed with 
on
atenationof words as produ
t operation is a monoid. Let ' : � ! �� be a map extendedto a morphism of monoid ' : �� ! ��, i.e., for all u; v 2 ��, '(uv) = '(u)'(v)and '(") = ". Let a 2 � and u 2 �+ be su
h that '(a) = au. Then for alln 2 N, 'n(a) = a u'(u) � � �'n�1(u). If moreover limn!1 j'n(a)j = +1 then thesequen
e ('n(a))n�0 of �nite words 
onverges to a unique in�nite word denoted'!(a) be
ause 'n(a) is a pre�x of 'n+1(a) for all n � 0. A morphism ' : �! ��is said to be of 
onstant length, if there exists ` > 0 su
h that for all � 2 �,j'(�)j = `. Let � and � be two alphabets (usually #� < #�). A 
oding is amorphism � : �! �� su
h that for all � 2 �, �(�) 2 �.Example 1 (Fibona

i word). Let � = fa; bg and ' : a 7! ab; b 7! a. We have'(a) = ab, '2(a) = '(a)'(b) = aba, '3(a) = '(a)'(b)'(a) = abaab, : : : thus'!(a) = abaababaabaababaababaabaababaabaab � � �This in�nite word is the well-known Fibona

i word that will be denoted F . TheFibona

i word has many properties. It is a Sturmian word: for all n � 0, thenumber of distin
t fa
tors of length n is n + 1 (see [18, Chap. 2℄ for details). Inparti
ular any Sturmian word is written over a binary alphabet fa; bg . If positionsinside F are 
ounted from 1, then the position of the nth letter a (resp. b) isdenoted An (resp. Bn), n � 1. Moreover, denote by F(n) the letter o

urring inposition n in F and by F [i : : : j℄, i < j, the fa
tor F(i)F(i+ 1) � � � F(j) of F . For



EXTENSIONS AND RESTRICTIONS PRESERVING WYTHOFF'S SEQUENCE 5instan
e, A1 = 1, A2 = 3, A3 = 4, B1 = 2, B2 = 5, B3 = 7, F(1) = a, F(5) = b,and F [2 : : : 5℄ = baab.In [8℄ the following 
hara
terization of Wytho�'s sequen
e using the Fibona

iword is given.Proposition 6 (Morphi
 
hara
terization of Wytho�'s sequen
e). The sequen
e (An; Bn)n�1de�ned in Example 1 is exa
tly the Wytho�'s sequen
e.Thanks to this proposition, we 
an give lemmas and remarks about Wytho�'ssequen
e and the Fibona

i word that will be used in Se
tion 3. The following tworemarks link the Fibona

i word with the gaps between 
onse
utive Ai's and Bi's.In parti
ular, we show that An+1 �An 2 f1; 2g, and Bn+1 �Bn 2 f2; 3g.Remark 1. Sin
e for any letter x 2 fa; bg, '(x) begins with a, it is obvious that�n(a) := An+1 �An is given by  a(F(n)) where  a : a 7! 2; b 7! 1.Remark 2. Looking at '2(a) = aba and '2(b) = ab, one 
an see that b alwayso

urs in se
ond position. Sin
e '2(F) = F , we get that �n(b) := Bn+1 � Bn isgiven by  b(F(n)) where  b : a 7! 3; b 7! 2.Lemma 1. We have fBn + 4gn�1 � fAngn�1.Proof. Let i = Bn be the index of the nth o

urren
e of a letter b in F . A

ordingto the morphism ', the di�eren
e between two 
onse
utive letters b in the Fibona

iword is either 2 or 3. For (i+ 4) to be the index of an o

urren
e of another b, weneed to have Bn+1 � Bn = 2 and Bn+2 � Bn+1 = 2. But the fa
tor babab neverappears in F , sin
e it would be produ
ed by a fa
tor aaa, whi
h never o

urs inview of Remark 2. Hen
e (i+ 4) is the index of an o

urren
e of a letter a.Any Sturmian word like the Fibona

i word is balan
ed, meaning that for anytwo fa
tors u and v of same length, we have jjuja � jvjaj � 1. In the next lemma,we get a little more for spe
i�
 fa
tors.Lemma 2. Let Fn be the pre�x of F of length n. For any �nite fa
tor bua o

urringin the Fibona

i word F with juj = n, we have juja = jFnja and jujb = jFnjb.Example 2. With u = aabaab, the fa
tor bua of length 8 starts in F from position7. One 
an 
he
k that F6 = abaaba is a permutation of u.F = abaaba| {z }F6 buaz }| {b aabaab| {z }u a baababaaba � � �Proof. Sin
e u and Fn have the same length, we simply have to show that jujb =jFnjb. Thanks to Proposition 4, we getjFnjb = #fi � 1 j bi �2
 � ng:(3)Assume that the �rst o

urren
e of bua in F starts in position bj0 �2
. Again usingProposition 4 we getjujb = #fi j bj0 �2
 < bi�2
 < bj0 �2
+ n+ 1g:Sin
e in position bj0 �2
 + n + 1 there is a letter a, we know that bj0 �2
 + n + 1is of the form bk�
 for some integer k and from Proposition 3, it 
annot be of the



6 E. DUCHÊNE, A. FRAENKEL, R. NOWAKOWSKI, AND M. RIGOform bi�2
. Consequently, in the previous formula, we 
an repla
e the rightmoststri
t inequality with a large one and getjujb = #fi > j0 j bi�2
 � bj0 �2
+ n+ 1g:Noti
e that bi�2
 � bj0 �2
 is equal to b(i � j0) �2
 + 1 or b(i � j0)�2
 dependingwhether fi�2g � fj0 �2g < 0 or not. In the �rst 
ase, we getjujb = #fi > j0 j b(i� j0)�2
+ 1 � n+ 1g = #fi > j0 j b(i� j0)�2
 � ngwhi
h is exa
tly (3). In the se
ond 
ase, we havejujb = #fi > j0 j b(i� j0)�2
 � n+ 1gbut sin
e, here b(i � j0)�2
 = bi�2
 � bj0 �2
, this latter quantity 
annot be equalto n+ 1 (be
ause there is a letter a in position bj0 �2
+ n+ 1). Consequently, wehave jujb = #fi > j0 j b(i� j0)�2
 < n+ 1gwhi
h is exa
tly (3).2.2. Frommorphi
 to arithmeti
 
hara
terization, via automati
 sequen
es.It is usual to asso
iate numeration systems with in�nite words generated by mor-phisms. In this subse
tion, we reobtain that the so-
alled Fibona

i numerationsystem 
an be used to 
hara
terize Wytho�'s sequen
e. We get another 
hara
ter-ization of the (An; Bn)'s when positions are written in the Fibona

i numerationsystem.In his seminal paper [4℄, A. Cobham shows that an in�nite word is the imageunder a 
oding of an in�nite word generated by iterating a morphism of 
onstantlength k if and only this word is k-automati
. So let us re
all the de�nition of ak-automati
 sequen
e (see [1℄ for details).De�nition 1. A deterministi
 �nite automaton with output (DFAO) is a 6-tupleM = (Q; q0;�; Æ;�; �) where Q is a �nite set of states, q0 2 Q is the initial state,Æ : Q � � ! Q is the transition fun
tion, � : Q ! � is the output fun
tion and� and � are respe
tively the input and the output alphabets. As usual Æ 
an beextended to Q��� by Æ(q; ") = q and Æ(q; �w) = Æ(Æ(q; �); w) for all q 2 Q, � 2 �,w 2 ��.Noti
e that in the next de�nition, indi
es in a sequen
e are 
ounted from zero(that is di�erent from positions in words like in the Fibona

i word where they are
ounted from one). This shift of one unit 
annot be avoided be
ause we 
onsiderbelow representations of any nonnegative integer, zero in
luded.De�nition 2. Let k � 2. A sequen
e (xn)n�0 2 �N is k-automati
 if there existsa DFAO with f0; : : : ; k� 1g as input alphabet and � as output alphabet su
h thatfor all n � 0, xn = �(Æ(q0; �k(n)))where �k(n) denotes the usual k-ary representation of n. We also denote by �k there
ipro
al map whi
h gives the numeri
al value of a word over f0; : : : ; k � 1g.Roughly speaking, one feeds a DFAO with the k-ary representation of n from theinitial state. After reading the whole representation, the rea
hed state produ
es anoutput whi
h gives the element xn.The following example illustrates the two equivalent methods dis
ussed abovefor generating in�nite words (morphism and DFAO).



EXTENSIONS AND RESTRICTIONS PRESERVING WYTHOFF'S SEQUENCE 7Example 3. Consider the morphism ' : a 7! ab; b 7! a
; 
 7! 
a of 
onstant length2 and the 
oding � : a; b 7! 0; 
 7! 1. We have'!(a) = aba
ab
aaba

aababa
ab
a
aababa
 � � �and (xn)n�0 = �('!(a)) = 00010010000110000001001010000001 � � �Now 
onsider the DFAO depi
ted in Figure 1 where the set of states is fa; b; 
g andwhere the output o = �(q) of a state q is written q=o. Noti
e that the transitions
a/0 b/0

c/1

1

1

0

1

0

0

Figure 1. a DFAO.of the DFAO are in one-to-one 
orresponden
e with the morphism ' (i.e., for allx 2 fa; b; 
g, if '(x) = y0y1 then the transitions going out of x are Æ(x; 0) = y0and Æ(x; 1) = y1). Let us explain how it works on an example. Consider the binaryrepresentation of eleven, �2(11) = 1011. We start reading the word 1011 from theinitial state a marked with an entering arrow without label. The automaton readsthe word 1011 letter by letter, from left to right, and the state 
hanges a

ordinglyto the transitions: a 1�! b 0�! a 1�! b 1�! 
:Sin
e the output from 
 is 1, this means that x11 = 1. One 
an 
he
k that thetwelfth symbol o

urring in �('!(a)) is 1.It is not diÆ
ult to see that the 
onstru
tion shown in the previous example 
anbe extended to any morphism ' of 
onstant length and 
oding � (for details, see[1, 4℄).Proposition 7. Let ' : �! �� be a morphism of 
onstant length ` su
h that '(a)starts with a, � : � ! � be a 
oding and M = (�; a; f0; : : : ; `� 1g; Æ;�; �) be the
orresponding DFAO. If xn = � 2 � and �('(�)) = 
0 � � � 
`�1 thenx�`(�`(n)i) = 
i; 8i = 0; : : : ; `� 1:Proof. This is a trivial 
onsequen
e of the 
orresponden
e between the morphismand the DFAO. When writing �`(n)i, one should understand the 
on
atenation ofthe word �`(n) 2 f0; : : : ; `� 1g� and the digit i.Example 4. We 
ontinue Example 3. The fourth element in '!(a) is 
. The binaryrepresentation of 3 (re
all that for automati
 sequen
es, we 
ount from zero) is 11.We have �2(110) = 6, �2(111) = 7 and �('(
)) = �(
a) = 10. One 
an 
he
k thatx6x7 = 10 are the seventh and eighth letters in �('!(a)) = (xn)n�0.



8 E. DUCHÊNE, A. FRAENKEL, R. NOWAKOWSKI, AND M. RIGORemark 3. As shown by the previous proposition and example, we stress the fa
tthat when dealing with automati
 sequen
es, we have to deal with indi
es startingfrom zero. This relies on the de�nition of the DFAO related to the morphism andit provides (e.g., Proposition 7) an easy way to deal with the image of a letterappearing in the in�nite word.Cobham's 
onstru
tion 
an be extended to arbitrary morphisms. Pre
isely, in[3℄, positional numeration systems related to a 
lass of linear re
urrent sequen
es are
onsidered (they are related in some sense to Pisot numbers and the 
orrespondingterminology used in [3℄ is U-substitution and U-automaton instead of morphism andDFAO). For the general 
ase, see [20℄ where the 
onstru
tion is linked with abstra
tnumeration systems [17℄.De�nition 3 (Fibona

i or Ze
kendorf's representation). The Fibona

i sequen
e(Fn)n�0 is de�ned by F0 = 1, F1 = 2 and Fn+2 = Fn+1 + Fn for all n � 0. Anynatural number n 
an be written (uniquely) in a greedy way as n =Pì=0 
i Fi su
hthatPki=0 
iFi < Fk+1 for all k � ` and 
` = 1. It is well-known that the 
i's are inf0; 1g and su
h that 
` � � � 
0 does not 
ontain two 
onse
utive 1's (see [18, Chap. 7℄or [23℄). We write �F (n) = 
` � � � 
0 and this word is said to be the F -representationof n. The F -representation of zero is set to ". For any �nite alphabet A � Z, one
an de�ne the F -value map �F : A! Z as �F (
` � � � 
0) =Pì=0 
i Fi.The Fibona

i numeration system belongs to the 
lass studied in [3℄. One 
antherefore asso
iate, with the same 
onstru
tion as the one sket
hed in Example 3,to the morphism ' de�ning the Fibona

i word a DFAO MF depi
ted in Figure 2in su
h a way that the nth symbol o

urring in F 
an be obtain by feeding MFwith the F -representation of n � 1. The �rst symbol in F is obtained from therepresentation of zero (we have exa
tly the same observation as in Remark 3 whi
hexplains this di�eren
e of one unit). Noti
e that sin
e ' is not a 
onstant lengthmorphism, the DFAO MF is not 
omplete, meaning that the number of outgoingedges from the di�erent states is not 
onstant (there is only one outgoing edge fromb be
ause j'(b)j = 1).
1

00

a bFigure 2. The DFAO MF .Example 5. FeedingMF with the F -representations of the �rst integers: ", 1, 10,100, 101 we get the 
orresponding outputs a, b, a, a, b.Remark 4. As a 
onsequen
e of the spe
ial form of the automaton MF , the nthsymbol in F , n � 2, is a (resp. b) if and only if �F (n � 1) ends with 0 (resp. 1).See Table 2 for the �rst values.Proposition 7 adapted to the Fibona

i morphism 
an be expressed as follows.Proposition 8. Let ' : fa; bg ! fa; bg� be the Fibona

i morphism.� If the nth letter in F is a (n � 1), then this a produ
es through ' a fa
tor abo

upying positions �F (�F (n� 1)0) + 1 and �F (�F (n� 1)1) + 1.



EXTENSIONS AND RESTRICTIONS PRESERVING WYTHOFF'S SEQUENCE 9n 1 2 3 4 5 6 7 8 9 10 11 12 13 14a b a a b a b a a b a a b aAi 1 3 4 6 8 9 11 12 14Bi 2 5 7 10 13�F (n� 1) " 1 10 100 101 1000 1001 1010 10000 10001 10010 10100 10101 100000Table 2. First elements in F .� If the nth letter in F is b (n � 1), then this b produ
es through ' a letter ao

upying position �F (�F (n� 1)0) + 1.Example 6. Take the third a o

urring in F and having position 4 in F . We have�F (4�1) = 100. By adding 0 and 1 to 100 we get �F (1000) = 5 and �F (1001) = 6.So the third a produ
es the fa
tor ab in positions 6 and 7 in F .Sin
e the nth letter b o

urring in F is produ
ed through ' by the nth letter a,we get the next formula Bn = �F (�F (An � 1)1) + 1:(4)Lemma 3. For all n � 1, An � 1 = �F (�F (n� 1)0).Proof. This is simply a reformulation of Remark 4.The previous two results lead to the following arithmeti
 
hara
terization ofWytho�'s sequen
e.Proposition 9 (Arithmeti
 
hara
terization of Wytho�'s sequen
e). For all n �1, we have An = �F (�F (n� 1)0) + 1Bn = �F (�F (An � 1)1) + 1:Remark 5. An equivalent result was proved in [13℄ using 
ontinued fra
tions. Itwas proved that a pair of integers (x; y) belongs to the sequen
e (An; Bn)n�1 ifand only if �F (x) ends in an even number of zeros and �F (y) = �F (x)0. Asfor the algebrai
 
hara
terization, it was also proved in [13℄ that su
h arithmeti

hara
terizations allow to de
ide in polynomial time whether or not a given positionis a P position.The following lemma will be used in Se
tion 4 but is given here be
ause it involvesthe Fibona

i representation of Wytho�'s sequen
e.Lemma 4. Let n � 1 be su
h that Bn+1 � Bn = 2. Then �F (Bn � 1) ends with101.Proof. By Lemma 3, we know that �F (An � 1) = u0 where u = �F (n � 1). Nowassume that u 
an be written as u00. Sin
e Bn+1 � Bn = 2 and the letter bo

urring in position Bn (resp. Bn+1) is produ
ed through ' by the nth (resp.(n + 1)th letter a, we have An+1 � An = 1. As �F (An � 1) = u000, we have that�F (An) = u001 = �F (An+1� 1) 
ontradi
ting Lemma 3. Hen
e �F (An� 1) = u010,and by Proposition 8, we get �F (Bn � 1) = u0101.



10 E. DUCHÊNE, A. FRAENKEL, R. NOWAKOWSKI, AND M. RIGO2.3. A new 
hara
terization of Wytho�'s sequen
e. Consider the in�niteWytho�'s matrix over N � N 
oding the P positions (An; Bn) and (Bn; An) of theWytho�'s game, i.e., for all i; j � 0, Pi;j = 1 if and only if there exists n � 1 su
hthat (i; j) = (An; Bn) or (i; j) = (Bn; An).
(Pi;j)i;j�0 =

inj 0 1 2 3 4 5 6 7 8 9 10 : : :0 0 0 0 0 0 0 0 0 0 0 0 � � �1 0 0 1 0 0 0 0 0 0 0 02 0 1 0 0 0 0 0 0 0 0 03 0 0 0 0 0 1 0 0 0 0 04 0 0 0 0 0 0 0 1 0 0 05 0 0 0 1 0 0 0 0 0 0 06 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 1 0 0 0 0 0 08 0 0 0 0 0 0 0 0 0 0 09 0 0 0 0 0 0 0 0 0 0 010 0 0 0 0 0 0 1 0 0 0 0... ... . . .The aim of this se
tion is to provide a 2-dimensional iterated 
onstru
tion thatbuilds Wytho�'s matrix (Pi;j). Let us stress the fa
t that even if we have alreadyprovided several 
hara
terizations of the P positions, it is not obvious that su
h
hara
terizations lead to some two-dimensional morphism. Indeed this morphismrequires some extra property, namely a shape symmetri
 property, to generate anin�nite pi
ture in a 
onvenient way.Automati
 sequen
es have been generalized to the multi-dimensional 
ase [21℄.Here we will 
onsider solely the two-dimensional situation. An array over N � Nis said to be k-automati
 if there exists a morphism ' : � ! �k�k whose imagesare k � k blo
ks of symbols in � and whi
h 
an be iterated in the same spirit asfor the one-dimensional 
ase (there is a symbol a whose image under ' has a inthe upper-left 
orner just as '(a) = au in the one-dimensional 
ase). After havingobtained the array '!(a), a 
oding � : � ! � 
an still be applied. Equivalently,su
h arrays 
an be produ
ed by a DFAO reading pairs of words of the same length(leading zeroes are added to the shortest of the two k-ary representations).In the one-dimensional 
ase, morphisms of 
onstant length 
an easily be gen-eralized to non 
onstant length morphisms. For two-dimensional arrays, one hasto pro
eed 
arefully to obtain a meaningful \pi
ture" when iterating a morphismwhose images are not all k � k blo
ks (with images of arbitrary re
tangular shape,positions of the newly produ
ed blo
ks 
annot be uniquely determined or images ofdi�erent letters 
ould also overlap). This is the reason for introdu
ing the notionof shape-symmetri
 morphisms [19℄. Roughly speaking, ea
h iteration of ' gives asquare built from images of letters and these images have shape whi
h are symmet-ri
 with respe
t to the main diagonal of the square. The parti
ular shape of theimages implies that we do not have problems to iterate the pro
ess. Pre
isely, ifP is the in�nite two-dimensional pi
ture that is the �xed point of ', then for alli; j 2 N, if '(Pi;j) is a blo
k of size k � ` then '(Pj;i) is of size `� k. See Figure 3for an example.Example 7. Let ' be the following two-dimensional shape-symmetri
 morphism:
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Figure 3. Iteration of a shape-symmetri
 morphism.' : a 7! a b
 d b 7! ie 
 7! i j d 7! i e 7! f bf 7! g bh d g 7! f bh d h 7! i m i 7! i mh dj 7! k
 k 7! l m
 d l 7! k m
 d m 7! ihand the 
oding � : e; g; j; l 7! 1; a; b; 
; d; f; h; i; k;m 7! 0Su

essive appli
ations of ' from a lead to an in�nite array. When applying the
oding � to this array, we will show that we obtain again the in�nite matrix 
odingthe P -positions of Wytho�'s game (symbols mapped onto 1 have been written inbold fa
e).

a 7! a b
 d 7! a b i
 d ei j i 7! a b i i m
 d e h di j i f bi m k i mh d 
 h d 7! a b i i m i m i
 d e h d h d hi j i f b i m ii m k i m g b ih d 
 h d h d ei m i l m i m ih d h 
 d h d hi m i i j i m i 7! � � �Figure 7 in the appendix gives a 
olored version (with respe
t to the di�erentsymbols) of the �rst 50� 50 blo
k asso
iated with '!(a).Remark 6. Consider the �rst row (or similarly due to the symmetry, the �rst
olumn) of the morphism ' whi
h gives� : a 7! ab; b 7! i; i 7! im; m 7! iand with the 
oding � : a; i 7! a; b;m 7! bwe �nd that �(�!(a)) is the Fibona

i word. Due to the shape of the morphism 'or in the same way �, it is obvious that F -representations will be 
onsidered.The one-dimensional 
ase 
onsidered in Example 3 
an be extended to a two-dimensional morphism ' like the one given in Example 7. We asso
iate in a 
anon-i
al way a DFAO whose input alphabet is��00� ; �10� ; �01� ; �11��



12 E. DUCHÊNE, A. FRAENKEL, R. NOWAKOWSKI, AND M. RIGOThe set of states is fa; b; : : : ; l;mg, the initial state is a. If'(r) = s tu v ; s t ; su or sthen we have transitions liker 0�001A�! s; r 0�101A�! t; r 0�011A�! u; r 0�111A�! v:As a 
onsequen
e of the above 
onstru
tion and Remark 6, we get the follow-ing result whi
h is simply the extension of the phenomenon observed in the one-dimensional 
ase.Proposition 10. Feeding the automaton M asso
iated with a two-dimensionalshape-symmetri
 morphism ' from state a with the word��F (m)�F (n)� 2 ��00� ; �10� ; �01� ; �11���leads to the state ['!(a)℄m;n.In the previous statement, it is understood that the shortest F -representation ispadded with leading zeroes.Example 8. We 
ontinue Example 7. The automaton asso
iated with ' is depi
tedin Figure 4.
0
0

1
0

0
1

1
0

1
0

0
0

0
0 0

0

0
1

1
0

0
1

0
1

0
0

0
00

0

k

l

j c a b e f

gFigure 4. Automaton a

epting F -representations of (An; Bn)and (Bn; An).To simplify the presentation, we have not represented states d; h; i;m and the
orresponding transitions. (There is no edge from d; h; i;m to some other states.)States g; e; j; l have been represented with double 
ir
les indi
ating that they 
orre-spond to output 1 (the other states have all output 0). Consider the pair (A4; B4) =(6; 10) represented as �0100110010�we get the sequen
e a 0�011A�! 
 0�101A�! j 0�001A�! k 0�011A�! 
 0�101A�! j
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an easily 
he
k that the automaton in Figure 4 a

epts exa
tly words ofthe form �0w1 � � �w`w1 � � �w`0� and �w1 � � �w`00w1 � � �w`�where w1 � � �w` is a valid F -representation ending with an even number of zeroes.As said in Remark 5, it is well-known that su
h pairs of words represent exa
tlythe (An; Bn)'s and (Bn; An)'s. Therefore we obtain the following 
hara
terizationabout Wytho�'s matrix.Proposition 11 (Two-dimensional morphi
 
hara
terization of Wytho�'s matrix).The morphism ' and the 
oding � de�ned in Example 7 generate exa
tly the Wytho�'smatrix, i.e., �('!(a)) = (Pi;j).3. Extensions of Wythoff's game preserving Wythoff's sequen
e asset of P positionsWe �rst 
onsider extensions of Wytho�'s game where a single move (i; j) isadjoined to the original Wytho�'s rules, and we require that these extensions allhave Wytho�'s sequen
e as set of P positions. Otherwise stated, the set of Ppositions is invariant. Note that when a move (i; j) is adjoined, this means thatfrom all game positions, one 
an possibly remove i and j tokens from the two heapswhenever enough token are available from this position. Adding more than a singlemove 
an then be handled easily.Let W be the in�nite matrix over N � N 
oding the moves (i; j) that 
an beadjoined with respe
t to the required property, i.e., for all i; j � 0 we haveWi;j = 1if and only if Wytho�'s game with the adjoined move (i; j) has Wytho�'s sequen
eas its set of P positions.3.1. Polynomial extensions. As detailed in Proposition 5, we have two algebrai

onditions to de
ide whether Wi;j = 1. However, as explained in the introdu
tionand by referen
e to [10℄, sin
e we investigate tra
table extensions of Wytho�'s game,we also need to test these 
onditions in polynomial time.The following proposition gives an equivalent formulation to Condition (1) ofProposition 5. In parti
ular, it shows that de
iding whether a move (i; j) satis�esCondition (1) 
an be done in polynomial time. However, it turns out that testingCondition (2) in polynomial time is not so immediate.Proposition 12. We havef(Aj �Ai; Bj �Bi) j j > i � 0g = f(An; Bn) j n > 0g [ f(An +1; Bn +1) j n > 0g:Moreover, for any j > i � 0 we have (Aj �Ai; Bj �Bi) = (Aj�i; Bj�i) or (Aj�i +1; Bj�i + 1).Proof. Consider a pair (Aj �Ai; Bj �Bi) for some j > i � 0. From Proposition 4,we have (Aj �Ai; Bj �Bi) = (bj�
 � bi�
; bj�
 � bi�
+ j � i). Noti
e thatbj�
 � bi�
 = (j � i)� � fj�g+ fi�g= b(j � i)�
+ f(j � i)�g � fj�g+ fi�gand f(j � i)�g = � fj�g � fi�g if fj�g > fi�g1 + fj�g � fi�g if fj�g < fi�g:



14 E. DUCHÊNE, A. FRAENKEL, R. NOWAKOWSKI, AND M. RIGOConsequently, by setting n = j � i > 0, we getAj �Ai = bj�
 � bi�
 = � An if fj�g > fi�gAn + 1 if fj�g < fi�g:Moreover,Bj �Bi = bj�
 � bi�
+ j � i = � An + n = Bn if fj�g > fi�gAn + n+ 1 = Bn + 1 if fj�g < fi�g:Now take a pair (s; t) in f(An; Bn) j n > 0g [ f(An + 1; Bn + 1) j n > 0g. If(s; t) = (An; Bn) for some n > 0 then 
hoose j = n and i = 0 to get (s; t) =(Aj � Ai; Bj � Bi). Otherwise, (s; t) = (An + 1; Bn + 1) for some n > 0. Noti
ethat for all k � 0 f(k + n)�g = ffk�g+ fn�gg:Sin
e ffk�g j k � 0g is dense in [0; 1℄, there exists i � 0 su
h that1� fn�g < fi�g < 1:In parti
ular, we have f(i + n)�g < fn�g. We set j = i + n and with the samearguments as in the �rst part of this proof, we have that(An + 1; Bn + 1) = (Aj �Ai; Bj � Bi):In order to �nd a polynomial 
hara
terization of the Condition (2) of Proposition5, we will prove the following result. Its proof requires �rst several te
hni
al lemmasand will be given at the end of this se
tion.Proposition 13. Given a pair (i; j) of positive integers, (i; j) 2 f(An �Bm; Bn �Am) j n > m � 0g if and only if �F (j �Ai � 2) = u1 and �F (j �Ai � 2+ i) = u00,for any two valid F -representations u and u0 in f0; 1g�.Putting together Proposition 12 and 13, we get a polynomial 
hara
terization ofthe matrix W .Corollary 1. For any pair (i; j) of positive integers, we have Wi;j = 1 if and onlyif one the three following properties is satis�ed :� (�F (i� 1); �F (j� 1)) = (u0; u01) for any valid F -representation u in f0; 1g�.� (�F (i� 2); �F (j� 2)) = (u0; u01) for any valid F -representation u in f0; 1g�.� (�F (j�Ai�2); �F (j�Ai�2+i)) = (u1; u00) for any two valid F -representationsu and u0 in f0; 1g�.Proof. The �rst two properties 
ome from Proposition 12 and Proposition 9. Thelast property is exa
tly Proposition 13. As explained in [13℄, the 
omputation ofthe F -representation of an integer 
an be done in polynomial time.The above Corollary leads to a 
omplete 
hara
terization of the extensions ofWytho�'s game that preserve Wytho�'s sequen
e as set of P positions.Corollary 2. Let I � Z�1. Then Wytho�'s game with the set of adjoined movesf(xi; yi) : i 2 I; xi; yi 2 Z�0g has the sequen
e (An; Bn) as set of P positions if andonly if Wxi;yi 6= 1 for all i 2 I.



EXTENSIONS AND RESTRICTIONS PRESERVING WYTHOFF'S SEQUENCE 15Proof. Trivially, any game with an adjoined move (xi; yi) su
h that Wxi;yi = 1
annot have (An; Bn) as set of P positions. Moreover, the sequen
e (An; Bn) stillsatis�es the two properties of Proposition 1, even when adding a set of movesf(xi; yi) : i 2 I; xi; yi 2 Z�0g with Wxi;yi 6= 1 for all i 2 I .We now turn to a su

ession of three results leading to the proof of Proposi-tion 13.Lemma 5. Let Fn be the pre�x of length n of the Fibona

i word F . We havej'(Fn)j = �F (�F (n)0):n �F (n) Fn �F (n)0 �F (�F (n)0) am = p;'(Fn)1 1 a 10 2 ab2 10 ab 100 3 aba3 100 aba 1000 5 abaab4 101 abaa 1010 7 abaabab5 1000 abaab 10000 8 abaababa6 1001 abaaba 10010 10 abaababaabTable 3. Illustration of Lemma 5.Proof. Consider the sequen
e of words (fk)k�0 de�ned by f0 = a, f1 = ab andfk+2 = fk+1fk. Observe that jfkj = Fk for all k � 0 be
ause jfk+2j = jfk+1j+ jfkj.Moreover, it is well-known (see for instan
e [18℄) that fk = 'k(a). Let n be su
hthat �F (n) = 
` � � � 
0 and 
onsider the pre�x t of F of length n > 0. Let i1 < � � � <ir 2 f0; : : : ; `g be the indi
es su
h that 
ij = 1 in the F -representation of n, i.e.,n =Prj=1 Fij . The word t 
an be fa
torized ast = ur � � �u1 with juj j = Fij ; j = 1; : : : ; r:As an example, 
onsider the pre�x of F of length 20 = F5 + F3 + F1, we have thefa
torization abaababaabaab| {z }u5 abaab| {z }u3 ab|{z}u1 � � �To 
on
lude the proof, we now observe that uj = fij for all j 2 f1; : : : ; rg. Indeed,F has firfir�1 as pre�x and fir�1 
an be written fir�2fir�3. Continuing this way,we obtain the expe
ted fa
torizationt = fir � � � fi1 and '(t) = '(fir ) � � �'(fi1 ):Sin
e '(fk) = '('k(a)) = 'k+1(a) = fk+1, we getj'(t)j = rXj=1 Fij+1 = X̀i=0 
iFi+1 = �F (
` � � � 
00):The next lemma is te
hni
al and is primarily devoted to prove Theorem 1. Wewill only use the �rst part of the statement, but we get the other for free using thesame reasoning.



16 E. DUCHÊNE, A. FRAENKEL, R. NOWAKOWSKI, AND M. RIGOLemma 6. Let u1 2 f0; 1g� be a valid F -representation. If �F (�F (u1) + n)1 isalso a valid F -representation, then�F (�F (�F (u1) + n)1) = �F (u00) + �F (�F (n� 1)0) + 4:Otherwise, �F (�F (u1) + n)1 is not a valid F -representation and�F (�F (�F (u1) + n)0) = �F (u00) + �F (�F (n)0) + 2:Proof. Sin
e u1 is a F -representation, u ends with 0. Therefore, p0 = �F (u) + 1is the position of a letter a in F . This a produ
es ab and the position of the
orresponding b is p1 = �F (u1) + 1. The letter in position p2 = �F (u1) + 2 isa (no two 
onse
utive b's in F). Let us 
onsider the �rst 
ase and assume that�F (�F (u1)+n)1 is a valid F -representation. This means that �F (�F (u1)+n) endswith 0 and thus there is also a letter a in position p3 = �F (u1)+n+1. This lattera produ
es a fa
tor ab where b has position p4 = �F (�F (�F (u1) + n)1) + 1. Thefollowing s
heme gives a fa
torization of the pre�x of F of length p4:F = ���� p0a ���� a p1b| {z }x p2a ����| {z }y p3a ���� a p4b| {z }z ���:Noti
e that '(xya) = xyz. Therefore, j'(xya)j = p4 andj'(xy)j = p4 � 2 = �F (�F (�F (u1) + n)1)� 1:On the other hand, sin
e j'(x)j = �F (u10)+1 (be
ause the b in position p1 produ
esthe a in position �F (u10) + 1), we getj'(xy)j = j'(x)j + j'(y)j = �F (u00) + 3 + j'(y)j:Now observe that the fa
tor bya starting in position p1, with jyj = p3�p1�1 = n�1,satis�es exa
tly the hypothesis of Lemma 2. Therefore y is a permutation of thepre�x t of F of length n � 1. Obviously, j'(y)j = j'(t)j be
ause jyja = jtja andjyjb = jtjb. From Lemma 5, j'(t)j = �F (�F (n� 1)0) and the 
on
lusion follows.Consider the se
ond 
ase, assume now that there is a letter b in position p3 =�F (u1)+n+1 (i.e., �F (�F (u1)+n) ends with 1 and 
annot be followed by another1 to obtain a valid F -representation). This b produ
es a letter a in position p04 =�F (�F (�F (u1) + n)0) + 1. The following s
heme gives a fa
torization of the pre�xof F of length p04:F = ���� p0a ���� a p1b| {z }x p2a ����| {z }y p3b ���� p04a| {z }z ���:Noti
e that '(xyb) = xyz and j'(xyb)j = p04 = �F (�F (�F (u1) + n)0) + 1. On theother hand, j'(xyb)j = j'(x)j + j'(yb)j = �F (u00) + 3 + j'(yb)j. The fa
tor bybastarting in position p1 (b is always followed by a in F), with jybj = p3 � p1 = n,satis�es the hypothesis of Lemma 2. Therefore yb is a permutation of the pre�x tof F of length n and j'(t)j = j'(yb)j = �F (�F (n)0) and the 
on
lusion follows.Theorem 1. Let i; j be su
h that Aj �Bi = n > 0. We haveBj �Ai = Bi +An + 1:Proof. Let u 2 f0; 1g� be the F -representation of Ai � 1. Thanks to (4), u1 isthe F -representation of Bi � 1 (in parti
ular, �F (u1) = Bi � 1). By hypothesis,



EXTENSIONS AND RESTRICTIONS PRESERVING WYTHOFF'S SEQUENCE 17Aj � 1 = Bi � 1 + n. Therefore, �F (u1) + n = Aj � 1. Sin
e the jth a produ
esthe jth b in F , we get again using (4) thatBj � 1 = �F (�F (�F (u1) + n)1):Putting together the informations we have 
olle
ted so far, we haveBj �Ai = (Bj � 1)� (Ai � 1)= �F (�F (�F (u1) + n)1)� �F (u)= �F (u00) +An + 3� �F (u)where we used Lemmas 3 and 6 on the last line (noti
e that �F (�F (u1) + n)1 is avalid F -representation). Write u as u` � � �u0. Noti
e that�F (u00)� �F (u) = X̀i=0 uiFi+2 � X̀i=0 uiFi = X̀i=0 ui(Fi+2 � Fi| {z }=Fi+1 ) = �F (u0):Consequently, sin
e F0 = 1, we getBj �Ai = �F (u0) + 3 +An = �F (u1) + 2 +An = Bi +An + 1:Proof of Proposition 13. Let (i; j) be a pair of positive integers satisfying i = An�Bm and j = Bn � Am for some integers n > m � 0. By Theorem 1, we havej = Bn � Am = Bm + Ai + 1. Hen
e Bm � 1 = j � Ai � 2, and by Proposition 9,this implies that �F (j � Ai � 2) ends with a 1. Moreover, we also get An � 1 =Bm + i � 1 = j � Ai � 2 + i, and with the same proposition, we 
on
lude that�F (j �Ai � 2 + i) ends with a 0.Now 
onsider a pair (i; j) of nonnegative integers satisfying �F (j �Ai � 2) = u1and �F (j � Ai � 2 + i) = u00, for any two valid F -representations u and u0 inf0; 1g�. Using Proposition 9 and Proposition 3, there exist two positive integers mand n su
h that j � Ai � 2 = Bm � 1 and j � Ai � 2 + i = An � 1. The latterequality leads to i = An + 1 + Ai � j, whi
h is equal to An � Bm in view of theprevious one. By applying Theorem 1 to the equality An � Bm = i, we also getBk �Am = Bm +Ai + 1 = j. This 
on
ludes the proof.3.2. Two-dimensional morphi
 
hara
terization of the matrix W . As inSe
tion 2.3 where Wytho�'s matrix was investigated, we build a two-dimensionalshape symmetri
 morphism to generate the matrix W
(Wi;j)i;j�0 =

0 0 0 0 0 0 0 0 0 0 0 � � �0 0 1 0 1 0 0 1 0 1 00 1 0 1 0 0 1 0 0 0 00 0 1 0 0 1 0 0 0 0 10 1 0 0 0 0 1 1 0 1 00 0 0 1 0 0 0 0 1 0 00 0 1 0 1 0 0 0 0 0 10 1 0 0 1 0 0 0 0 0 00 0 0 0 0 1 0 0 0 0 00 1 0 0 1 0 0 0 0 0 00 0 0 1 0 0 1 0 0 0 0... . . .



18 E. DUCHÊNE, A. FRAENKEL, R. NOWAKOWSKI, AND M. RIGOConsider the morphism : a 7! a b
 d b 7! ef 
 7! e h d 7! i e 7! j kl m f 7! g bg 7! y bo t h 7! z
 i 7! i no dj 7! e pq r k 7! es l 7! e u m 7! en 7! io o 7! i n p 7! eq q 7! e p r 7! e s 7! v kt 7! i u 7! wl v 7! w pl r w 7! v kq rx 7! z n
 d y 7! g bo d z 7! x n
 tand the 
oding� : a; b; 
; d; e; i; j; k; l; n; o; p; q; r 7! 0; f; g; h;m; s; t; u; v; w; x; y; z 7! 1:Figure 8 in the appendix gives a 
olored version (with respe
t to the di�erentsymbols) of the �rst 50� 50 blo
k asso
iated with  !(a).Using the same pro
edure as in Se
tion 2.3, we state the following 
onje
tureanalogous to Proposition 11. Let us mention that even if Corollary 1 gives somesynta
ti
al 
riteria to test, this does not imply that an automaton exists and evenif su
h an automaton exists (whi
h is the 
ase), this does not in general lead to agenerating morphism.Conje
ture 1. The morphisms  and the 
oding � generate exa
tly the matrix W ,i.e., �( !(a)) =W .Partial proof. All we have to do is to provide the automaton asso
iated with  and� and 
he
k that the language a

epted by this automaton 
orresponds with the onegiven by Corollary 1. This automaton is depi
ted in Figure 5 without representingthe non a

epting states d; i; n and o (there is no edge from these states to anyother state).For the �rst two 
ases of Corollary 1, representations of i � 1 and j � 1 (resp.i� 2 and j � 2) are 
onsidered. We have therefore to 
onsider the addition of oneor two to show the expe
ted 
orresponden
e. It is well known that the su

essorfun
tion in the Fibona

i numeration system is right sequential and right on-line
omputable with delay 1 (see [16℄) and it is realized by the transdu
er depi
ted inFigure 6. This transdu
er reads the representation of n from the right (i.e., leastsigni�
ant digit �rst) and produ
es the representation of n+ 1 as output. Assume�rst that (i; j) is su
h that (�F (i � 1); �F (j � 1)) = (u0; u01). If u ends with 0,using the transdu
er in Figure 6, we get(�F (i); �F (j)) = (u1; u10):(5)If u ends with 1, then(�F (i); �F (j)) = (u000; u0000); u0 ending with 2k zeroes, k � 0:(6)
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Figure 5. The DFAO asso
iated with  and �.
1/1,0/0

0/.

1/.0/01

0/0

1/0

./1 ./10Figure 6. The su

essor fun
tion for the Fibona

i system.Now 
onsider (i; j) is su
h that (�F (i� 2); �F (j � 2)) = (u0; u01) (i.e., se
ond 
aseof Corollary 1). We have to apply the transdu
er to (5) and (6). From (7), we get(�F (i); �F (j)) = (u0; u00); u0 ending with 2k + 1 zeroes, k � 0:(7)From (6), we get(�F (i); �F (j)) = (u001; u0001); u0 ending with 2k zeroes, k � 0:(8)Putting together (5), (6) and (7), we get exa
tly pairs of the kind (0v; v0). Thesepairs are the ones exa
tly a

epted from states f; g; h; x; y; z in the automaton from
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ount the symmetry on the two 
omponents). The pairs ofthe kind (8) are the ones a

epted from state t.It appears to be a painful task to 
onsider the last 
ase of Corollary 1 and to
ompare it with the words a

epted by states m; s; u; v; w.4. Redundant movesWe now investigate games whose sets of allowed moves are subsets of Wytho�'sone, and whose set of P positions is exa
tly Wytho�'s sequen
e. We show that su
ha game does not exist. This means that there is no redundant move in Wytho�'sgame.De�nition 4. Denote by GS an impartial game whose rules are given by a set ofmoves S. A move m is said to be redundant if GS and GSnfmg have the same Ppositions.From any N position (x; y) of Wytho�'s game, there exists an allowed movem = (i; j) that leads to a P position (a; b), i.e., the relation (x� i; y� j) = (a; b) issatis�ed. If the move m is unique, then it is said to be for
ed for the game. Thisde�nition 
an be naturally extended for any impartial game.Lemma 7. In an impartial game GS, a for
ed move is not redundant.Proof. Let m = (i; j) be a for
ed move of GS . There exists a N position (x; y) anda P position (a; b) su
h that (i; j) = (x � a; y � b). Sin
e m is the unique movefor (x; y) to lead to a P position of GS , in the game GSnm there exists no movefrom (x; y) to a P position of GS . This means that in GSnm either (x; y) is a Pposition or there exists a P position (a0; b0) 6= (An; Bn); (Bn; An) su
h that (x; y)leads to (a0; b0). In both 
ases, the set of P positions of GS di�ers from the one ofGSnm.Theorem 2. There is no redundant move in Wytho�'s game.Proof. A

ording to Lemma 7, it suÆ
es to show that the set of the for
ed moves ofWytho�'s game is identi
al to the set of the allowed movesM = f(0; i); (i; 0); (i; i) :i 2 Z�1g. The proof is divided into four parts.First partLet N1 be the set of the following N positions of Wytho�'s game:N1 = f(0; i); (i; 0) : i 2 Z�1gA

ording to the sequen
e (An; Bn), it is straightforward to see that ea
h positionof N1 leads to a unique P position, whi
h is (0; 0). Hen
e ea
h move m is for
ed,and it appears that the set of the for
ed moves from N1 is N1 itself.Se
ond partLet N2 be the following set:N2 = f(An; An) : n 2 Z�1gSin
e n � 1, it appears that N2 is a set of N positions of Wytho�'s game. Let(An; An) 2 N2. Sin
e (An; An) is a N position, there exists a P position (Ai; Bi)for some i and a move m su
h that (An; An) m! (Ai; Bi). If i � n, then we haveBi > Ai � An sin
e n � 1, whi
h 
ontradi
ts the existen
e of m. Hen
e we have
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e (Ak ; Bk); k � 1 is a partition of Z�1, we alsohave Bi 6= An. This means that m and i are unique: the move m is of the form(k; k) for some k, implying Bi � Ai = An � An = 0, and �nally i = 0. Therefore,(An; An) ! (0; 0) for all n � 1, and there exists no other way to move to a Pposition. We 
on
lude that N2 is a set of for
ed moves of Wytho�'s game.Third partLet N3 be the following set of positions:N3 = f(An; An + 3) : n 2 Z�4 and An + 3 6= Bj 8j < ngIn view of Proposition 2, we know that there exists a unique P position ofWytho�'s game (An; Bn) su
h that Bn�An = 3. Therefore, sin
e (A3; B3) = (4; 7)and (A3; B3) =2 N3, the set N3 is a subset of N positions of Wytho�'s game.Let (An; An + 3) 2 N3. There exists a P position (Ai; Bi) for some i and amove m su
h that (An; An + 3) m! (Ai; Bi). As in the previous 
ase we havei < n, and sin
e Bi 6= An+3, this implies that the move m has the form (k; k)for some k. Hen
e the P position (Ai; Bi) must satisfy Bi � Ai = 3, leading to(Ai; Bi) = (4; 7) a

ording to the �rst terms of the sequen
e (An; Bn). The movem = (An � 4; An + 3� 7) = (An � 4; An � 4) is thus for
ed.This proves that the setM3 = f(An � 4; An � 4) : n 2 Z�4 and An � 4 6= Bj � 7 8j � 1gis a set of for
ed moves of Wytho�'s game. Sin
e by Lemma 1, we have fBngn�1 �fAn � 4gn�4, we 
an dedu
e the following property for M3:f(Bn; Bn) : n 2 Z�1 and Bn 6= Bj � 7 8j � 1g �M3Let n � 1. Sin
e Bi+1 � Bi 2 f2; 3g by Remark 2, we have Bn = Bj � 7 ifj = n+ 3. Hen
e we havef(Bn; Bn) : n 2 Z�1 and Bn+3 �Bn 6= 7g �M3:Fourth partBefore introdu
ing the last set N4, noti
e that for all n � 1, there exists aninteger j su
h that Aj = Bn � 1. Indeed, there is no o

urren
e of two 
onse
utiveletters b in the Fibona

i word.Let N4 be the following set of positions:N4 = f(Aj +Bn; Bj +Bn) :) : n 2 Z�1 su
h that Bn+3 �Bn = 7 and j su
h that Aj = Bn � 1gWe �rst prove that N4 is a subset of N positions of Wytho�'s game. Let(Aj + Bn; Bj + Bn) be a position belonging to N4. Re
all that �n(b) denotesthe di�eren
e Bn+1�Bn. Sin
e Bn+3�Bn = 7 and by Remark 2, this implies that(�n(b);�n+1(b);�n+2(b)) is a permutation of (2; 2; 3). On
e again by Remark 2and sin
e there are no 
onse
utive o

urren
es of b in F , the only allowed permu-tation is (2; 3; 2). From this latter result, we also dedu
e that �n� 1(b) = 3 sin
eea
h letter b is pre
eeded by a letter a in F . Hen
e we getF(Bn � 1) = F(Bn � 2) = a(9)We now pro
eed in two steps:



22 E. DUCHÊNE, A. FRAENKEL, R. NOWAKOWSKI, AND M. RIGO� We show that Aj + Bn 2 fAigi�1. By way of 
ontradi
tion, assume that inthe Fibona

i word F , the letter o

urring in position Aj + Bn is a b. Thismeans that in F , there exists a fa
tor buba, where juj = Aj � 1. Sin
e ea
hletter b is pre
eeded by a letter a in F , we 
an write u = u0a, where u0 is afa
tor of length Aj �2. By applying Lemma 2 for u0, we get ju0ja = jFAj�2ja.Sin
e Aj = Bn � 1 and from (9), the previous equality gives:ju0ja = jFAj ja � 2(10) Now by applying Lemma 2 to the fa
tor ub, we get jubja = jFAj ja. Fromthis and sin
e ub = u0ab, we have ju0ja = juja � 1 = jubja � 1 = jFAj ja � 1,whi
h 
ontradi
ts (10).� We show that Bj+Bn 2 fAigi�1. A

ording to Remark 4, it suÆ
es to provethat �F (Bj +Bn � 1) ends with a 0.For the same reasons as in the proof of Lemma 4 and sin
e Bn+1�Bn = 2,we get An = An+1 � 1. By Lemma 4, we know that �F (Bn � 1) = u101.Moreover from (4), we dedu
e that �F (An � 1) = u10. Sin
e Aj = Bn � 1,the following equalities thus hold:�F (�F (Aj � 1)) = �F (�F (Bn � 1))� 1= �F (u101)� 1= �F (u100)We 
an now 
on
lude about the F -representation of Bj +Bn � 1.�F (�F (Bj +Bn � 1)) = �F (�F (Bn � 1)) + �F (�F (Bj � 1)) + 1�F (u101) + �F (�F (Aj � 1)1) + 1 from (4)�F (u101) + �F (u1001) + 1�F (u101) + �F (u1010)�F (u10100)Then, sin
e fAigi�1 and fBigi�1 partition of N�1 , and sin
e Aj +Bn, Bj +Bnboth belong to fAigi�1, then the position (Aj +Bn; Bj + Bn) =2 (Ai; Bi)i�1. Thismeans that (Aj +Bn; Bj +Bn) is a N position.Therefore, there exists a P position (Ai; Bi) for some i and an allowed move mof Wytho�'s game su
h that (Aj + Bn; Bj + Bn) m! (Ai; Bi). If the move m hasthe form (0; k) or (k; 0), then we have eitherAj +Bn = Ai and Bj +Bn > Bi(11)or Bj +Bn = Ai and Aj +Bn > Bi(12)The �rst equality of (11) implies j < i sin
e the sequen
e fAigi�1 is in
reasing.The se
ond inequality of (11) 
an also be written Ai + j > Bi, 
ontradi
ting theprevious remark (remember that Bi � Ai = i for all i). Repla
ing Bn by Ai � Bjin the se
ond inequality of (12) leads to Aj + Ai > Bj + Bi, whi
h is not 
orre
tsin
e Bi > Ai for all i.Hen
e the movem has the form (k; k) and is unique sin
e there exists a unique Pposition (Ai; Bi) whose di�eren
e Bi�Ai equals (Bj +Bn)� (Aj+Bn) = Bj �Aj .
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isely, (Ai; Bi) = (Aj ; Bj) and the movem = (Bn; Bn) is for
ed. Thereforethe set M4 = f(Bn; Bn) : n 2 Z�1 and Bn+3 �Bn = 7gis a set of for
ed moves.Putting together all the previous results, we have that the setN1 [N2 [ f(Bn; Bn) : n 2 Z�1g
ontains for
ed moves of Wytho�'s game only. Moreover, this set de�nes exa
tlythe allowed moves of Wytho�'s game. This 
on
ludes the proof.5. Open problemsQuestion 1. The above results give all the extensions and restri
tions of Wytho�'sgame that have the sequen
e (An; Bn) as set of P positions. Does it exist a variantof Wytho�'s game whi
h is neither an extension nor a restri
tion, and having alsothis sequen
e as set of P positions ?Question 2. What about these 
hara
terizations when 
onsidering theGeneralizedWytho� game of parameter s (de�ned in [13℄) ? It appears that for s > 1, thereare restri
tions preserving the set of P positions.Question 3. In view of the bi-dimensional morphisms that we produ
ed forWyhtho�'ssequen
e and the W matrix, does it exist su
h a morphism produ
ing the Grundyvalues of Wytho�'s game ? 6. AppendixIn this appendix, we give in Tables 7 and 8 
olor to the generated �xed points.
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orner of '!(a) where the 13 symbols havebeen repla
ed with di�erent 
olors.Referen
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