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CUBIC PISOT UNIT COMBINATORIAL GAMES

ERIC DUCHÊNE* AND MICHEL RIGO

Abstract. Generalized Tribonacci morphisms are defined on a three letters
alphabet and generate the so-called generalized Tribonacci words. We present
a family of combinatorial removal games on three piles of tokens whose set
of P-positions is coded exactly by these generalized Tribonacci words. To
obtain this result, we study combinatorial properties of these words like gaps
between consecutive identical letters or recursive definition of these words. β-
numeration systems are then used to show that these games are tractable, i.e.,
deciding whether a position is a P-position can be checked in polynomial time.

1. Introduction

In the game of Nim played on two heaps of tokens, on their turn two players
choose a heap and remove any positive number of tokens from that heap. The
person making the last move wins. Wythoff’s game is also played with two heaps,
the players have the same options as in Nim, or alternatively they may remove the
same positive number of tokens from both heaps (Wythoff’s rule).

Both Nim and Wythoff’s games belong to the family of classical games which
are without ties or draws, and where the winner is always the player making the
last move. More details on such games can be found in books like [2, 5]. In a
classical game, the set of positions can be partitionned into two parts, according to
whether the first or the second player can force a win. This leads to the following
definitions:

Definition 1. A P-position is one in which the next player has no good move and
in an N -position, the next player does have a good move.

From [2, 5], the set of P-positions of a classical game is characterized by the two
following properties:

• Every move from a P-position lands in a N -position.
• From any N -position, there exists a move that leads to a P-position.

The below definition deals with the concept of complexity of a two-players game
which is detailed in [11].

Definition 2. A game is said to be tractable if the status of a position (i.e., P or
N ) can be computed in polynomial time and the winner can consumate a win in
at most an exponential number of moves.

2000 Mathematics Subject Classification. Primary: 68R15 ; Secondary: 11A67, 91A46.
Key words and phrases. Combinatorics on words, Two-player combinatorial game, Numeration

system, Morphic sequences.
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We say that a tractable game is polynomial if the next good move (from a N -
position) can also be computed in polynomial time.

The game of Nim is the first classical game for which the polynomiality was
proved (see [3]). Wythoff’s game is known to be tractable (see [16]), but the poly-
nomiality has not yet been proved. In the literature, lots of variations of Wythoff’s
game were investigated. The modifications often concern Wythoff’s rule. For ex-
ample, in the generalized Wythoff’s game (see [9]), one can remove k and ` tokens
from both heaps provided |k− `| < s, where s is a fixed positive integer. Note that
the orginal Wythoff’s game is the generalized game of parameter s = 1. In [10],
the condition k ≤ ` < 2k + 2 must be satisfied. These two variations of Wythoff’s
game are proved to be tractable [9, 10].

For Wythoff’s game and almost all of its tractable variations, the polynomial
characterization of a P-position can be found through the use of an original numer-
ation system. As an example, a game position (a, b), a < b of Wythoff’s game is
P if and only if its representation in the Fibonacci numeration system is (w,w0),
where w is any allowed representation ending with an even number of zeros, see [9].
As an illustration, (1, 2) and (3, 5) are P-positions of Wythoff’s game since their
representation in the Fibonacci system are respectively (1, 10) and (100, 1000).

In addition to this arithmetic characterization, there also exists an “algebraic”
polynomial way to compute the P-positions. Indeed, for all n ≥ 0, the nth P-
position of Wythoff’s game is (bnτc, bnτ 2c), where τ is the golden ratio. See [16]
for the proof.

The generalized Wythoff’s game of parameter s has also its P-positions that
can be computed thanks to a numeration system derived from the “generalized
Fibonacci” sequence Un+2 = sUn+1 + Un. See more details in [9, 10] about the
construction of such numeration systems.

In this paper, we point out a characterization of the P-positions of the generalized
Wythoff’s game which was not yet considered in the literature. Let s ≥ 1. Consider
the “generalized Fibonacci” morphism ζs : {a, b} → {a, b}∗ defined by

ζs :

{
a 7→ asb
b 7→ a

We denote by z(s) the infinite word obtained as z(s) := ζω
s (a) = limn→∞ ζn

s (a). As
an example, we have

z(2) = aabaabaaabaabaaabaabaabaaabaabaaabaabaaba · · · .

For each word z(s), it turns out that the pairs (an, bn) are exactly the P-positions
of the generalized Wythoff’s game of parameter s, where an (resp. bn) is the position
of the nth letter a (resp. b) in z(s). Notice that deciding whether a game position
of generalized Wythoff’s game is P cannot be done in polynomial time thanks to
the word z(s), unlike the numeration system mentionned above. (A proof of this
statement follows the same ideas as the one developped for s = 1 in [6].)

This “morphic”approach is the ground of the actual paper. Given any morphism
ϕ over a finite alphabet {a, b, . . .} such that there exists an infinite word which is
the limit of ϕn(a), we wonder whether there exists a game whose P-positions derive
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from the word ϕω(a), and whose rules are easy to express. Of course, this question
might be too ambitious. We restrain ourselves to a family of morphisms. We know
that the generalized Fibonacci morphism is related to the generalized Wythoff’s
game. Therefore it seems natural to investigate the case of morphisms over three
letters, and in particular those which do not differ much from the Fibonacci one. In
[6], the Tribonacci morphism was treated. We here consider the following questions
about the set of “generalized Tribonacci” morphisms which extend the Tribonacci
morphism in the same way as ζs extends the usual Fibonacci morphism.

• Starting from a generalized Tribonacci morphism, does it exist a game
whose P-positions are given by the infinite word produced by the morphism
?

• Is it possible to choose the rules of the game such that it defines an extension
of generalized Wythoff’s game on three heaps ?

• Does it exist a numeration system derived from the morphism which allows
to compute the P-positions in polynomial time ?

This paper answers positively to these three questions.

This paper is organized as follows. In Section 2, we present the so-called “gener-

alized Tribonacci” morphisms ϕs, with parameter s ≥ 1, over a three letters alpha-
bet {a, b, c} and we study relevant combinatorial properties of the corresponding
generated infinite words (e.g., gaps between two consecutive identical letters, gaps
between the nth occurrence of two different letters, recursive definition of the “gen-

eralized Tribonacci” words given by Proposition 4, particular factors occurring in
these words, . . . ). In Section 3, we define a family of games on three piles whose
main property — stated as Theorem 7 — is that the set of P-positions is coded
by the “generalized Tribonacci” words (Section 5 is devoted to the proof of this
property). We call these games Cubic Pisot unit games because the “generalized
Tribonacci” morphisms are related to some cubic Pisot unit β > 1, namely to the
unique real root of X3 − sX2 − X − 1, for s ∈ N \ {0, 1} (i.e., the characteric
polynomial of the matrix associated with ϕs is the minimal polynomial of β). In
Section 4, we prove the tractability of these games thanks to the machinery com-
ing from β-numeration systems (in particular, we use the fact that if β is a Parry
number which is in particular true for Pisot numbers, then the associated β-shift
is sofic or of finite type). It turns out that we even get a polynomial time decision
procedure for a wider class of morphisms containing the “generalized Tribonacci”
morphisms and related to β-numeration systems. The exact formulation of this
result is the core of Theorem 10.

2. Generalized Tribonacci words and their properties

Let us first introduce the “generalized Tribonacci” morphisms and study some
properties of the infinite words they generate.

Definition 3. Let s ≥ 1. Consider the morphism ϕs : {a, b, c} → {a, b, c}∗ defined
by

ϕs :







a 7→ asb
b 7→ ac
c 7→ a
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We denote by t(s) the infinite word obtained as t(s) := ϕω
s (a) = limn→∞ ϕn

s (a). As
an example, we have

t(2) = aabaabacaabaabacaabaaabaabacaabaabacaa · · ·

t(3) = aaabaaabaaabacaaabaaabaaabacaaabaaabaaabacaaabaaaab · · ·

Remark 1. Notice that the 3 × 3 matrix

M =





s 1 0
1 0 1
1 0 0





whose entries are indexed by a, b, c and where Mu,v counts the number of v appear-
ing in ϕs(u) has −X3 + sX2 +X + 1 has characteristic polynomial, u, v ∈ {a, b, c}.
This polynomial is the minimal polynomial of a cubic Pisot unit (see Section 4 for
definition of a Pisot number; a Pisot unit is a Pisot number β which is a unit of
the integer ring of Q[β]) and this explains how we choose the title of this paper.

We use the convention that the nth letter of t(s) is written t
(s)
n and its first letter

has index 1. For X = A,B,C (resp. x = a, b, c), define the sets

X(s) = {X
(s)
1 < X

(s)
2 < X

(s)
3 < · · · } = {n ∈ N | t(s)

n = x}

Moreover we set A
(s)
0 = B

(s)
0 = C

(s)
0 = 0.

Example 1. For s = 3, the first values of the three sequences (A
(3)
n )n≥0, (B

(3)
n )n≥0

and (C
(3)
n )n≥0 are given in Table 1.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
(3)
n 0 1 2 3 5 6 7 9 10 11 13 15 16 17 19 20

B
(3)
n 0 4 8 12 18 22 26 32 36 40 46 51 55 59 65 69

C
(3)
n 0 14 28 42 61 75 89 108 122 136 155 173 187 201 220 234

Table 1. First values of the sequences (A
(3)
n )n≥0, (B

(3)
n )n≥0 and (C

(3)
n )n≥0.

Remark 2. In what follows, for convenience we will omit the reference to s and
use notation like t, ϕ, (An)n≥0, (Bn)n≥0 and (Cn)n≥0 being understood that s is
fixed and given once and for all.

Definition 4. For X = A,B,C (resp. x = a, b, c), we define ∆n(x) := Xn+1 −Xn.
For convenience, we define three triples of integers that will be extensively used
through all the paper.

G1 := (1, s+ 1, s2 + s+ 2)

G2 := (2, s+ 2, s2 + 2s+ 3)

M := (2, s+ 3, s2 + 2s+ 4).

Lemma 1. For all n ≥ 0, we have

(∆n(a),∆n(b),∆n(c)) ∈ {G1, G2,M}.
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Proof. The case n = 0 is checked by direct inspection. Since t = ϕ(t), each factor
ax (with x a letter) occurring in t produces a factor u = ϕ(a)ϕ(x) = asbϕ(x) inside
t. Assume that the first a in u is the nth occurrence of a in t, n ≥ 1. Therefore
∆n(a) = · · · = ∆n+s−2(a) = 1. Moreover, since the image of any letter x by ϕ
starts with a, we also have ∆n+s−1(a) = 2. In the same way, each factor bx (resp.
cx) produces a factor u = acϕ(x) (resp. u = aϕ(x)). Therefore, if the first a in u
is the nth occurrence of a in t, then ∆n(a) = 2 (resp. ∆n(a) = 1). Let us define

θa : {a, b, c} → N∗ :







a 7→ 1s−12
b 7→ 2
c 7→ 1

It is clear that (∆n(a))n≥0 = θa(t). The same idea can be applied to obtain
(∆n(b))n≥0 (resp. (∆n(c))n≥0). It is enough to observe that t = ϕ2(t) (resp.
t = ϕ3(t)) and that the first occurrence of b (resp. c) in ϕ2(x) (resp. ϕ3(x))
appears in position s+ 1 (resp. s2 + s+ 2) for all x = a, b, c. We define

θb : {a, b, c} → N∗ :







a 7→ (s+ 1)s−1(s+ 3)
b 7→ (s+ 2)
c 7→ (s+ 1)

and

θc : {a, b, c} → N∗ :







a 7→ (s2 + s+ 2)s−1(s2 + 2s+ 4)
b 7→ (s2 + 2s+ 3)
c 7→ (s2 + s+ 2)

such that (∆n(b))n≥0 = θb(t) and (∆n(c))n≥0 = θc(t). The conclusion follows from
the fact that |θa(x)| = |θb(x)| = |θc(x)| for all x = a, b, c. �

As a consequence of the previous lemma, the sequence (∆n(a),∆n(b),∆n(c))n≥0

is an infinite word over the alphabet {G1, G2,M}. We will show that this infinite
word can be derived from t.

Definition 5. We denote by ψ : {a, b, c} → {G1, G2,M}∗ the morphism given by

ψ :







a 7→ Gs−1
1 M

b 7→ G2

c 7→ G1

The following result is an easy consequence of the arguments given in the proof
of Lemma 1.

Lemma 2. With the above notation, we have

w := G1 ψ(t) = ((∆n(a),∆n(b),∆n(c)))n≥0.

Proof. From the definition of ψ, θa, θb and θc, we clearly have

ψ(t) = ((∆n(a),∆n(b),∆n(c)))n≥1.

Moreover by computing the prefix ϕ2(a) of t, it can checked that (A1, B1, C1) =
G1. �

Corollary 1. The sequences (Bn −An)n≥0 and (Cn −Bn)n≥0 are increasing.

Proof. Observe that ∆n(b) − ∆n(a) > 0 and ∆n(c) − ∆n(b) > 0. �
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Remark 3. In fact, the sequences (Bn −An)n≥0 and (Cn −Bn)n≥0 can again be
derived from t thanks respectively to the morphisms

µ1 :







a 7→ ss−1(s+ 1)
b 7→ s
c 7→ s

and µ2 :







a 7→ (s2 + 1)s−1(s2 + s+ 1)
b 7→ (s2 + s+ 1)
c 7→ (s2 + 1)

These two morphisms are easily obtained from θa, θb and θc. Notice also that
|ψ(x)| = |µ1(x)| = |µ2(x)| for x = a, b, c and ψ(a), µ1(a) and µ2(a) have the same
form xs−1y. Consequently, (Bn−An)−(Bn−1−An−1) or (Cn−Bn)−(Cn−1−Bn−1)
depends only on the (n− 1)-st letter in w :

wn−1 (Bn −An) − (Bn−1 −An−1) (Cn −Bn) − (Cn−1 −Bn−1)
G1 s s2 + 1
G2 s s2 + s+ 1
M s+ 1 s2 + s+ 1

See for instance Example 2 for an illustration.

The following result gives some informations about the language, i.e., the set of
factors, of t.

Corollary 2. Any factor of w = ((∆n(a),∆n(b),∆n(c)))n≥0 which contains

i) δ M ’s contains at least (s− 1)(δ − 1) G1’s,

ii) 2 G2’s contains at least s M ’s.

Proof. Consider a factor u of ((∆n(a),∆n(b),∆n(c)))n≥0 = G1ψ(t).

i) Assume u contains δ M ’s. From the definition of ψ, any occurrence of M
in w is preceded by at least s − 1 letters G1. Since u is a factor of w it
contains at least (s− 1)(δ − 1) G1’s.

ii) Assume u = xG2yG2z. Since ψ(b) = G2 and G2 does not occur in ψ(a)
or ψ(c), there exists a unique factor bqb of t such that ψ(bqb) = G2yG2.
Observe that in t, any letter b is preceded by at least s letters a. So ψ(q)
contains at least s letters M .

�

The elements occurring in the sequence (Cn − Bn)n≥0 are strongly related to
some of the elements in the sequence (Bn −An)n≥0. The relationship is explained
in the next two lemmas and summarized by Corollary 3.

Lemma 3. For all m ≥ 1, there exists a unique n such that

Cm −Bm = Bn −An + 1.

Moreover n satisfies An = Bm − 1 and (∆n(a),∆n(b),∆n(c)) = M .

Proof. Observe that the mth occurrence of c in t appears in the image by ϕ of the
mth b. Due to the definition of ϕ, each occurrence of b in t is preceded and followed
by a. Let u = aba be the factor containing the mth b in t. Hence the mth letter
c of t appears in the factor ϕ(u) = as−1bacas−1b. Let n be the such that the first
occurrence of b in ϕ(u) is the nth occurrence of b in t. Since the nth occurrence of
b in t appears in the image by ϕ of the nth occurrence of a, this means that the
first a in u is nth a in t.
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t = · · ·

n

|
a

m

|

b a
︸︷︷︸

u

· · ·

s
︷ ︸︸ ︷
a · · · a

n

|

b a

m

|
c

s
︷ ︸︸ ︷
a · · ·a b

︸ ︷︷ ︸

ϕ(u)

Collecting these informations, we get Cm − Bm = Bn − An + 1, An = Bm − 1,
∆n(a) = 2 and ∆n(b) = s + 3. Consequently, we get (∆n(a),∆n(b),∆n(c)) =
M . The uniqueness of n comes from the fact that the sequence (Bk − Ak)k≥0 is
increasing. �

Lemma 4. For all n such that (∆n(a),∆n(b),∆n(c)) = M , i.e., such that (Bn+1−
An+1) − (Bn −An) = s+ 1, there exists m ≤ n such that

Bn −An = Cm −Bm − 1.

Moreover n satisfies An = Bm − 1.

Proof. Observe that the nth occurrence of b in t appears in the image by ϕ of the
nth a. Since ∆n(a) = 2, consider u = axa the factor of length 3 starting with the
nth occurrence of a in t with x ∈ {b, c}. Therefore, ϕ(u) = asbϕ(x)asb where the
first b in ϕ(u) is the nth b in t. Since ∆n(b) = s+ 3, we conclude that |ϕ(x)| = 2.
Therefore x = b and ϕ(u) = asbacasb. Let m be such that the b occurring in u is
the mth b in t. In other words, the c in ϕ(u) is the mth c in t and the conclusion
follows easily. �

Putting together the previous two lemmas, we can formulate the following result.

Corollary 3. The sets {Ci −Bi | i ≥ 1} and

{Bj −Aj + 1 | j : (∆j(a),∆j(b),∆j(c)) = M}

are the same.

Example 2. We continue Example 1 by taking s = 3. The correspondence given
by the previous corollary is shown by using bold face letters.

j 0 1 2 3 4 5 6 7 8 9 10 11
Bj −Aj 0 3 6 9 13 16 19 23 26 29 33 36
Cj −Bj 0 10 20 30 43 53 63 76 86 96 109 122

(∆j(a),∆j(b),∆j(c)) G1 G1 G1 M G1 G1 M G1 G1 M G2 G1

Let U be a subset of N. The value Mex(U) which stands for Minimum EXcluded
value [2] is the least nonnegative integer not in U . For instance, Mex({0, 1, 3, 9}) =
2. As for the generalized Fibonacci words [9], the next result presents a recursive
definition of the generalized Tribonacci words.

Proposition 4. For n ≥ 1,

An = Mex({Ai, Bi, Ci : 0 ≤ i < n})

Bn = An + Mex({0, 1, . . . , Bn−1 −An−1} ∪ {Ci −Bi : 0 ≤ i < n}) + s− 1

Cn = sAn +Bn + (s2 − s+ 1)n.

Proof. Proceed by induction on n. For n = 1, A1 = Mex({A0, B0, C0}) = Mex({0}) =
1, B1 = A1 + Mex({0}) + s − 1 = s + 1, C1 = s2 + s + 2. Assume that the three
relations hold for n ≥ 1 and let us prove that it still holds for n+ 1.

The kth letter a in t produces through ϕ the kth b which itself produces the kth
c. This means that Ak < Bk < Ck for all k > 0. Consider the set {Ai, Bi, Ci : 0 ≤
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i ≤ n}. The first gap inside this set must be filled with An+1. Indeed, filling this
gap with some An+`, ` > 1, would contradict the fact that the sequence (Ak)k≥0

is increasing. Filling this gap with some Bn+` or Cn+`, ` ≥ 1, contradict the fact
that Ak < Bk < Ck for all k > 0. Hence An+1 = Mex({Ai, Bi, Ci : 0 ≤ i < n+ 1}).

To prove the second part, let us consider two cases.

• Assume that (∆n(a),∆n(b),∆n(c)) ∈ {G1, G2}. This means that Bn+1 −
An+1 = Bn−An+s. From Corollary 3, we know that Bn−An+1 6= Ci−Bi

for all i ≥ 0. Therefore, we trivially have

Bn −An + 1 = Mex({0, 1, . . . , Bn −An} ∪ {Ci −Bi : 0 ≤ i ≤ n}.

Consequently,

Bn+1 −An+1 = Mex({0, 1, . . . , Bn −An} ∪ {Ci −Bi : 0 ≤ i ≤ n}) + s− 1.

• Assume now that (∆n(a),∆n(b),∆n(c)) = M . This means that Bn+1 −
An+1 = Bn − An + s + 1. From Lemma 4, there exists m ≤ n such
that Bn −An + 1 = Cm − Bm. Moreover Bn −An + 2 does not belong to
{Ci−Bi | i ≥ 0} because for all k ≥ 0, Ck+1−Bk+1−(Ck−Bk) ≥ 1+s2 ≥ 2.
Hence

Bn −An + 2 = Mex({0, 1, . . . , Bn −An} ∪ {Ci −Bi : 0 ≤ i ≤ n}).

Consequently,

Bn+1 −An+1 = Mex({0, 1, . . . , Bn −An} ∪ {Ci −Bi : 0 ≤ i ≤ n}) + s− 1.

Let us consider the third relation. By induction hypothesis, Cn = sAn + Bn +
(s2 − s + 1)n. Assume (∆n(a),∆n(b),∆n(c)) = G1. Therefore An+1 = An + 1,
Bn+1 = Bn+1+S, Cn+1 = Cn+2+s+s2. By substitution, one can easily check that
the relation holds for n+1 and the same can be done when (∆n(a),∆n(b),∆n(c)) =
G2 or M . �

Corollary 5. For s ≥ 2, the sets {Bi − Ai | i > 0} and {Ci − Bi | i > 0} are

disjoint.

Proof. Let n > 0. Using Lemma 3, there existsm such that Cn−Bn = Bm−Am+1.
From Lemma 2, for any k ≥ 0, Bk+1−Ak+1−(Bk−Ak) ≥ s. Consequently, Cn−Bn

does not belong to {Bi −Ai | i > 0}. �

Lemma 5. Let us define f : N → N : n 7→ Cn −An − sBn. We have

f(N) = N.

Moreover, if f(j) − f(i) ≥ s − 1, then j > i. The function f also satisfies the

following property:

(1) f(t) = n⇒ (∀y < n, ∃x < t : f(x) = y).

-
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Graph of f for s = 3.
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Graph of f for s = 5.

Proof. Let

g : N3 → N : (x, y, z) 7→ z − x− sy.

Notice g(G1) = g(G2) = 1 and g(M) = −s+ 2. Since

(An, Bn, Cn) =

n−1∑

i=0

(∆a(i),∆b(i),∆c(i)) =

n−1∑

i=0

wi

then

f(n) = g(An, Bn, Cn) = g

(
n−1∑

i=0

wi

)

=

n−1∑

i=0

g(wi).

Therefore, if wn−1 ∈ {G1, G2} then f(n) = f(n − 1) + 1 and if wn−1 = M then
f(n) = f(n− 1)− s+ 2. The word w has Gs

1 as prefix and after each M appear at
least s − 1 letters G1 before the next M . Roughly speaking, when increasing the
function f is increased by one unit at each step and when it falls down of s − 2
units it is immediately followed by at least s − 1 increasing steps. The conclusion
follows easily. �

3. A combinatorial game with generalized Tribonacci words coding
P-positions

This short section is primarily devoted to the definition of a family of combi-
natorial game with parameter s. We aim to show that the sets of P-positions are
coded by t(s).

Fact 6. For any nonnegative integers i1, i2, i3, the following linear system of equa-

tions

(2)





i1
i2
i3



 =





1 2 2
1 + s 2 + s 3 + s

2 + s+ s2 3 + 2s+ s2 4 + 2s+ s2









µ
ν
δ





has a unique solution because the determinant of the matrix equals s2 − s + 1 and

is nonzero.

Definition 6. Let us defined a subset Mal(s) of N3 as follows

{µG1+νG2 +δM : 0 ≤ ν ≤ 1, 1 ≤ δ ≤ s−1 and (δ−1)(s−1) ≤ µ ≤ δ(s−2)−ν}.

Notice that if (i1, i2, i3) belongs to Mal(s) then i1 < i2 < i3 and i3 ≤ s i2 + i1.
Moreover, testing whether a triple (i1, i2, i3) belongs to Mal(s) reduces to the
resolution of the system (2) and checking whether the solution (µ, ν, δ) has integer
components satisfying the conditions of Mal(s). Consequently, one can check that
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#Mal(s) = s2 − 2s+ 1. The notation Mal(s) stems from “malicious” because this
set is strongly related with forbidden moves in the game defined below.

Definition 7. Let s ≥ 1. We define Cubic(s) as the removal game on three
piles with the following rules. We denote positions of Cubic(s) by (a, b, c), with
0 ≤ a ≤ b ≤ c.

I. Any positive number of tokens from up to two piles can be removed.
II. Let i1, i2, i3 be positive integers. Let σ be a permutation of {1, 2, 3} such

that iσ(1) ≤ iσ(2) ≤ iσ(3). From position (a, b, c) with 0 ≤ a ≤ b ≤ c, one
can remove i1, i2 and i3 tokens from the piles consisting of a, b and c tokens
respectively, subject to the conditions:

iσ(3) ≤ s iσ(2) + iσ(1),

(iσ(1), iσ(2), iσ(3)) 6∈ Mal(s)

and

b− i2 < a− i1 < c− i3 is forbidden.

III. Let i1, i2, i3 be positive integers. Let σ be a permutation of {1, 2, 3} such
that iσ(1) ≤ iσ(2) ≤ iσ(3). From position (a, b, c) with 0 ≤ a ≤ b ≤ c,
one can remove i1, i2 and i3 tokens from the piles consisting of a, b and c
respectively, subject to the conditions:

(3) |iσ(1) − iσ(2)| < s or |iσ(2) − iσ(3)| < s

and

a− i1 < c− i3 < b− i2 is forbidden.

The (normal) convention is that the first player who is unable to move, loses the
game.

Remark 4. Notice that Cubic(1) was studied in [6]. One can see that the rules
defined above coincide with those of [6] since Mal(1) is empty.

Example 3. To see how the rules of the game work, let us consider a few examples
for Cubic(3). Consider the configuration (12, 22, 30), applying rule I, one can for
instance remove 12 tokens from the first pile and 20 tokens from the third one to
obtain (0, 10, 22) after reordering. Consider i1 = 5, i2 = 1 and i3 = 10. We can
apply rule II from (12, 22, 30) to (7, 20, 21) because 10 ≤ 3.5+1, (1, 5, 10) 6∈Mal(3)
and we do not have 22 − 1 < 12 − 5 < 30 − 10. Finally consider i1 = 2, i2 = 13
and i3 = 4. Here we can apply rule III, from (12, 22, 30) to (9, 10, 26) because
|i1 − i3| < 3 and we do not have 12 − 2 < 30− 4 < 22− 13.

Remark 5. Notice that if i1, i2 and i3 satisfy (3) then (i1, i2, i3) does not belong
to Mal(s). Indeed, the distance between any two coordinates of G1 (resp. G2, M)
is at least equal to s. This latter observation holds therefore for any nonzero linear
combination of G1, G2 and M with nonnegative integer coefficients.

We are now able to state precisely our main result linking the cubic Pisot unit
games with the “generalized Tribonacci” words. To lighten the presentation its
proof is postponed to Section 5.

Theorem 7. Let s ≥ 1. The set P (s) = {(A
(s)
n , B

(s)
n , C

(s)
n ) | n ≥ 0} is the set of

P -positions of the Cubic(s) game.
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To conclude this section, let us consider a technical lemma that will be used in
Section 5 to prove Theorem 7.

Lemma 6. Let w = w0w1 · · · = G1 ψ(t) = ((∆n(a),∆n(b),∆n(c)))n≥0. For all

n < 1 + s(s− 1), we have n = 1 + q.s+ r with 1 ≤ q ≤ s− 2 and 0 ≤ r ≤ a− 2 and

the smallest k < n such that

(An, Bn, Cn) − (Ak , Bk, Ck) =
n−1∑

i=k

wi ∈Mal(s)

satisfies k ≥ 1 + q + r. Moreover, for all n ≥ 1 + s(s− 1), the smallest k < n such

that

(An, Bn, Cn) − (Ak , Bk, Ck) =

n−1∑

i=k

wi ∈Mal(s)

satisfies k ≥ n− (s− 1)2.

Proof. Let us extend the map g introduced in the proof Lemma 5 to an additive
map g : {G1, G2,M}∗ → Z. Recall that g(G1) = g(G2) = 1 and g(M) = −s + 2
and for y1 · · · y` ∈ {G1, G2,M}∗, we set

g(y1 · · · y`) =
∑̀

i=1

g(yi).

Notice that
∑̀

i=1

yi ∈ Mal(s) ⇒ g(y1 · · · y`) ≤ 0.

(A) Let n < 1 + s(s − 1). Hence we write n = 1 + q.s + r with 1 ≤ q ≤ s − 2
and 0 ≤ r ≤ s− 2. Notice that the prefix of w of length 1 + s(s− 1) is

G1 (Gs−1
1 M)s−1

and that the factorisation of w0 · · ·wn−1 is depicted as follows

(4) G1 |

s
︷ ︸︸ ︷

G1 · · ·G1M |G1 · · ·G1M | · · · |G1 · · ·G1M |
︸ ︷︷ ︸

qs

G1 · · ·G1
︸ ︷︷ ︸

r

.

If i < 1+ q+ r, then g(wi · · ·wn−1) > 0 and (An, Bn, Cn)− (Ai, Bi, Ci) 6∈Mal(s).

(B) Let n ≥ 1 + s(s − 1). We have to show that g(wi · · ·wn−1) > 0 for all
i < n− (s− 1)2.

Notice that any factor of length (s− 1)2 contains at most s− 1 letters M since
any M is preceeded and followed by at least s− 1 letters in {G1, G2}. If it contains
exaxtly s − 1 letters M then it is of the form u = M(Gs−1

1 M)s−2. Observe that
g(u) = 0. Let us consider two cases about the factor f = wn−(s−1)2 · · ·wn−1 of w

of length (s−1)2. Assume first that f contains exactly s−1 letters M . Then f = u
and g(f) = 0. Since the first letter of f is M , this factor is preceeded in w by at
least s− 1 letters G1. Therefore, for all n− (s− 1)2 − s+ 1 ≤ i < n− (s− 1)2,

g(wi · · ·wn−1) = n− (s− 1)2 − i > 0.

Observe that for all factor v in w, g(v) ≥ −s+ 2, the minimal value corresponding
to v = M . This latter observation combined with the fact that

g(wn−(s−1)2−s+1 · · ·wn−1) = s− 1
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and that g is additive leads to the conclusion.
Assume now that f contains less than s− 1 letters M . Since it contains at most

s−2 letters M , we have g(f) ≥ −(s−2)2 +(s−1)2−(s−2) = s−1. The conclusion
follows the same lines. �

4. Numeration systems and tractability of the game

The aim of this section is to prove that Cubic(s) is a tractable game. We have
to show that for any given triple t = (a, b, c) of integers, deciding whether t is or
not in P(s) can be done in polynomial time (details about the usual meaning of this
sentence was given in [6], i.e., polynomialy with respect to the size of a relevant
coding of the instance). In fact, we obtain a result on a larger class of morphisms
which contains in particular the generalized Tribonacci morphisms. For the sake of
completeness, we first recall some well-known facts about β-numeration systems.

4.1. β-numeration. We collect some facts about β-expansions, more details can
be found in [13]. Let β > 1 be a real number and Aβ = {0, . . . , dβe − 1}. Any
x ∈ [0, 1] can be written as

x =

+∞∑

i=1

ci β
−i, with ci ∈ Aβ , ∀i ≥ 1.

The sequence (ci)i≥1 is said to be a β-representation of x. Amongst all the possible
β-representations of x, the maximal one for the lexicographic order is said to be
the β-expansion of x and is denoted dβ(x). If dβ(1) is finite or ultimately periodic,
then β is said to be a Parry number. If dβ(1) = t1 · · · tm is finite (tm 6= 0), we
set d∗β(1) := (t1 · · · tm−1(tm − 1))ω. Otherwise, i.e., when dβ(1) is infinite, we set

d∗β(1) := dβ(1). The set of β-expansions of all real numbers in [0, 1[ is denoted Dβ

and the set of all finite factors occurring in elements of Dβ is denoted F (Dβ).

Lemma 7 (Parry condition [14]). A sequence (xn)n≥1 belongs to Dβ if and only if

for all k ≥ 1,

(xn)n≥k <lex d
∗
β(1).

As a consequence of this result, if β is a Parry number, one can built in a canonical
way a finite deterministic automaton Aβ recognizing exactly the language F (Dβ)
(see [7] for details). For instance, if dβ(1) = t1 · · · tm, Aβ has Q = {1, . . . ,m} as
set of states. All states are final and 1 is the initial state. The (partial) transition
function δ : Q × Aβ → Q is defined as follows for 1 ≤ j < m, δ(j, tj) = j + 1 and
for 1 ≤ j ≤ m, δ(j, r) = 1 whenever r < tj . The other transitions are not defined
(or go to some “sink state”). The same kind of construction can be done in the
ultimately periodic case, the automaton Aβ has thus a second “component” taking
care of the period.

Recall that a Pisot number is an algebraic integer greater than one whose all
conjugates have modulus less than one. In particular, any Pisot number is a Parry
number.

Remark 6. Using classical results on linear recurrent sequences, if (un)n≥0 is linear
recurrent sequence whose characteristic polynomial is the minimal polynomial of a
Pisot number β > 1 then un ∼ cβn.
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Example 4. Let β ' 3.383 be the real root of X3 − 3X2 − X − 1. Since the
other two complex roots have modulus less than 1, β is a Pisot number. We have
dβ(1) = 311 and the automaton Aβ given in Figure 1. For convenience, states have
been denoted a, b, c instead of 1, 2, 3.

a

0

3

0

1

0,1,2

b c

Figure 1. The automaton Aβ .

This example can be easily generalizes to the polynomial X3 − sX2 − X − 1
which has a unique real root which is a Pisot number for all integers s ≥ 1.

4.2. Canonical linear recurrent numeration system. To any real number β >
1, if d∗β(1) = t1t2 · · · , one can canonically associate with β a strictly increasing

sequence of integers Uβ = (un)n≥1 defined by

(5) u1 = 1 and ∀n ≥ 1, un = t1un−1 + · · · + tnu0 + 1.

Indeed, the sequence is strictly increasing because t1 ≥ 1 and all the ti’s are nonneg-
ative. It is not difficult to see that this sequence turns out to be linearly recurrent
whenever d∗β(1) is ultimately periodic. Therefore one can associate with any Parry
number β > 1, a canonical positional numeration system built on the linear re-
current sequence Uβ. If dβ(1) = t1 · · · tm is finite (tm 6= 0), the sequence (un)n≥0

defined in (5) satisfies

un = t1un−1 + · · · + tmun−m for all n ≥ m,

u0 = 1 and for 1 ≤ i ≤ m− 1, ui = t1ui−1 + · · · + tiu0 + 1.
If dβ(1) = t1 · · · tm(tm+1 · · · tm+p)

ω (m and p being chosen minimal), then the
sequence (un)n≥0 defined in (5) satisfies for all n ≥ m+ p

un = t1un−1 + · · · + tm+pun−m−p + un−p − t1un−p−1 − · · · − tmun−m−p,

u0 = 1 and for 1 ≤ i ≤ m+ p− 1, ui = t1ui−1 + · · · + tiu0 + 1.

Definition 8. Any positive integer x can be greedily decomposed using terms of

the sequence Uβ , x =
∑`

i=0 xi Ui with x` 6= 0, and repUβ
(x) = x` · · ·x0 is said to

be the Uβ-representation of x. By convention, 0 is represented by the empty word
ε. Moreover, when β is a Parry number, the so-called Bertrand’s Theorem implies
that

repUβ
(N) = F (Dβ)

which in particular is recognized by Aβ (see [1]). We denote by valUβ
the function

mapping x` · · ·x0 onto
∑`

i=0 xi Ui.

Example 5. We continue Example 4. The sequence associated with β satisfies
u0 = 1, u1 = 3u0 + 1 = 4, u2 = 3u1 + u0 + 1 = 14 and for all n ≥ 0,

un+3 = 3un+2 + un+1 + un.
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So the first terms of Uβ are 1, 4, 14, 47, 159, . . .. For instance, the Uβ-representation
of 158 is 3103. More generally, the sequence associated with the real root of X3 −
sX2 − X − 1 satisfies u0 = 1, u1 = s + 1, u2 = s2 + s + 2 and for all n ≥ 0,
un+3 = s un+2 + un+1 + un.

Remark 7. For a Parry number β, the sequence Uβ counts the number un of words
of length n accepted by Aβ .

4.3. Morphisms and automata. Let ϕ : A → A∗ be a morphism and a ∈ A be
such that ϕω(a) is infinite. Set k := maxb∈A |ϕ(b)| and Σϕ = {0, . . . , k − 1}. To
ϕ one can associate in a canonical way a deterministic finite automaton Aϕ (this
construction goes back to Cobham in [4] where morphisms of constant length are
considered). This automaton has the alphabet A as set of states, all states are final,
the initial state is a and the transition function δ : A× Σϕ → A is given by

for all b ∈ A, if ϕ(b) = µ0 · · ·µr−1 then δ(b, i) = µi, i = 0, . . . , r − 1.

Notice that by definition of k, we have r ≤ k. We set

Lϕ := L(Aϕ) \ 0Σ∗
ϕ

where L(Aϕ) is the language accepted by Aϕ. The n-th word of Lϕ enumerated by
the genealogical ordering induced by the natural ordering of the digits is denoted
repLϕ

(n− 1) (indeed, the first word of the language is meant to represent zero and

that is the reason for this shift of one). Recall that to order words by genealogical
(or radix) ordering, first order words by increasing length and for words of the same
length, this ordering coincides with the lexicographical ordering.

Proposition 8. [15] Let ϕ : A → A∗ be a morphism and a ∈ A be such that

ϕω(a) = t1t2 · · · is infinite. With the above notation, we have

tn = δ(a, repLϕ
(n− 1)).

Remark 8. Let ϕ : A→ A∗ be a morphism and a ∈ A be such that ϕω(a) = t1t2 · · ·
is infinite. If there exists a Parry number β such that Aβ = Aϕ then

repUβ
= repLϕ

.

Moreover, since Uβ counts the number un of words of length n accepted by Aβ

where leading zeroes are allowed, un is also equal to the number of words of length
≤ n in Lϕ.

Example 6. The automaton Aϕ3
associated with ϕ3 is the same as in Figure 1 and

the first words (without leading zeroes) of the language accepted by this automaton
are

ε, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 23, 30, 31, 100, . . . .

Feeding Aϕ3
with these words and starting each time from the state a, gives the

sequence of states aaabaaabaaabaca which is a prefix of t(3). In particular, since

Aβ = Aϕ3
for β given in Example 4, to obtain t

(3)
n for any n ≥ 1, one has only

to compute the Uβ-representation of n − 1 (with Uβ the linear sequence given in
Example 5) and feed the automaton Aϕ3

with this representation repUβ
(n − 1).

The reached state δ(a, repUβ
(n− 1)) is t

(3)
n .
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Proposition 9. Let ϕ : A → A∗ be a morphism and a ∈ A be such that ϕω(a) =
t1t2 · · · is infinite. With the above notation, if tn = b and ϕ(b) = µ0 · · ·µr−1 then

δ(a, repLϕ
(n− 1) i) = µi, ∀i = 0, . . . , r − 1.

Proof. This is a direct consequence of the definition of the automaton Aϕ. Observe
that Lϕ is a prefix-closed language. If w ∈ Lϕ is such that δ(a1, w) = b with
ϕ(b) = µ0 · · ·µr−1, then w can be extended to exactly r words of length |w| + 1
in Lϕ : w0, . . . , w(r − 1). Roughly speaking, each word w in Lϕ corresponds to
exactly one letter b in ϕω(a). Through ϕ this letter b produces a word ϕ(b) which
corresponds exactly to the words w0, . . . , w(|ϕ(b)| − 1) ∈ Lϕ. �

4.4. Polynomial time decision procedure. Let A = {a1, . . . , a`}, ϕ : A → A∗

be a morphism and a1 ∈ A be such that ϕω(a1) = t1t2 · · · is infinite. Assuming that
each letter of A appears infinitely often in ϕω(a1), we denote by Ai,n the position
of the n-th letter ai in ϕω(a1), i = 1, . . . , `.

Theorem 10. Let A = {a1, . . . , a`}, ϕ : A → A∗ be a morphism and a1 ∈ A be

such that ϕω(a1) = t1t2 · · · is infinite. Assume that there exists a Pisot number

β such that Aϕ = Aβ and that the characteristic polynomial of Uβ is the minimal

polynomial of β. Given any `-tuple

T = (n1 < · · · < n`) ∈ N`

deciding whether there exists k ≥ 1 such that T = (A1,k, . . . , A`,k) can be done in

polynomial time.

Proof. We will first consider the case where the dβ(1) = t1 · · · tm is finite. Since
Aϕ = Aβ , ` = m and the morphism ϕ is given (up to a renaming of the letters of
A) by

ϕ :







a1 7→ at1
1 a2

a2 7→ at2
1 a3

...

am−1 7→ a
tm−1

1 am

am 7→ atm

1 .

Consequently, all letters of A occur infinitely often in ϕω(a1) and the n-th aj+1 is
obtained from the n-th aj . Therefore A1,n < A2,n < · · · < Am,n for all n ≥ 1.

The size of the instance is |T | =
∑

i log2(ni). By Remark 6, observe that the
length of repUβ

(n1) is proportional to logβ n1 = logβ 2 log2 n1. Therefore comput-

ing repUβ
(n1) from the binary representation of n1 can be done in polynomial time

with respect to log2 n1.
Observe that reading a word w in Aϕ starting from state a1 leads to state a1 if

and only if w does not have any prefix of t1 · · · tm−1 as a nonempty suffix. From
Proposition 8, there exists k ≥ 1 such that n1 = A1,k if and only if repUβ

(n1 − 1)
does not have any prefix of t1 · · · tm−1 as a nonempty suffix. This can again be
checked in polynomial time with respect to log2 n1.

For j = 1, . . . ,m, if δ(a1, repUβ
(n− 1)) = aj with n = Aj,k, using Proposition 9,

since ϕ(aj) = a
tj

j aj+1 and since the k-th aj+1 is obtained from the k-th aj , we get

δ(a1, repUβ
(n− 1) tj) = aj+1 and valUβ

(repUβ
(n− 1) tj) + 1 = Aj+1,k.
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Consequently, if there exists k ≥ 1 such that n1 = A1,k, one has still to check
wether







valUβ
(repUβ

(n1 − 1)t1) + 1 = n2

valUβ
(repUβ

(n1 − 1)t1t2) + 1 = n3

...
valUβ

(repUβ
(n1 − 1)t1t2 · · · tm−1) + 1 = nm.

To conclude observe that valUβ
(w) can be computed in polynomial time exactly as

repUβ
is.

The case where dβ(1) = t1 · · · tm(tm+1 · · · tm+p)
ω is ultimately periodic follows

essentially the same scheme. The main difference is that the form of automaton
Aβ is a little more complicated because it has an extra component which takes into
account the periodic part of dβ(1) (see for instance [7]). But again, we can deduce
from its form that the n-th aj+1 is obtained from the n-th aj . The criterion to
determine whether there exists k ≥ 1 such that n1 = A1,k is that repUβ

(n1 − 1)

should not have any prefix of t1 · · · tm(tm+1 · · · tm+p)
ω as a nonempty suffix. The

end of the proof can then be easily adapted. �

Example 7. Consider again the morphism ϕ3 which satisfies the assumptions of
the previous theorem. The sequence associated with β is given in Example 5. To

check that (20, 69, 234) is of the form (A
(3)
n , B

(3)
n , C

(3)
n ) for some n, we proceed as

follows. First we compute repUβ
(19) = 111 and observe that 3 and 31 are not

suffixes of 111 (recall that dβ(1) = 311). Then we check that valUβ
(1113) = 68 and

valUβ
(11131) = 234.

To conclude this section, we simply have to observe that the morphism associated
with Cubic(s) belongs to the family of morphisms described in the previous theorem.

Corollary 11. Cubic(s) is a tractable game.

Proof. The morphism ϕs satisfies the assumption of the previous theorem. More-
over, the number of moves from a position T = (a, b, c) is bounded by a + b + c
(which is exponential with respect to |T |). �

5. Proof of Theorem 7

Proof. In [6] the result is proved for s = 1. Let us therefore fix s ≥ 2. Throughout
this proof, we will omit reference to s which is given once and for all. We proceed
in two steps:

• Whatever the chosen rule is, a player moving from a position (An, Bn, Cn)
in P always lands in a position not in P .

• Given a position (a, b, c) not in P , there exists a move to some (An, Bn, Cn) ∈
P .

Let us first introduce some notations to simplify our presentation. Remember
that we consider positions (a, b, c) ∈ N3 such that a ≤ b ≤ c. So notation (a, b, c)
contains the extra information a ≤ b ≤ c. If one removes nonnegative integers i1,
i2 and i3 respectively from the three piles a, b and c, we get a′ = a− i1, b

′ = b− i2
and c′ = c− i3 and we use brackets [a′, b′, c′] instead of parentheses to specify that
the resulting triple is not necessarily ordered. We shall therefore write

(a, b, c)
i1,i2,i3
−→ [a′, b′, c′].
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Notice that if a′ < b′ = c′ or a′ = b′ < c′ or a′ = b′ = c′, we consider naturally that
the triple remains ordered. In particular, we write [a′, b′, c′] = (a′, b′, c′) if the order
of the piles is unchanged after the move. Finally, we write

(a, b, c)
R
−→ (x, y, z)

to specify that the position (x, y, z) is obtained from (a, b, c) using rule R. As an
example, we write

(12, 22, 30)
12,0,20
−→ [0, 22, 10] 6= (0, 10, 22) and (12, 22, 30)

I
−→ (0, 10, 22).

• First part of the proof. Assume that a player moves from a position (An, Bn, Cn)
in P to another position (Am, Bm, Cm) in P . Since the three sequences (Ai)i≥0,
(Bi)i≥0, (Ci)i≥0 are increasing, we have m < n. We show that such a move never
occurs by considering the possible application of the different rules.

First, we cannot have

(An, Bn, Cn)
I

−→ (Am, Bm, Cm).

Indeed none of the elements in the first triple is equal to any element of the second
triple because {Aj | j ≥ 1} ∪ {Bj | j ≥ 1} ∪ {Cj | j ≥ 1} is a partition of N≥1. The
application of rule I would imply that at least one pile remains unchanged.

Assume now that

(An, Bn, Cn)
II
−→ (Am, Bm, Cm).

a) As a first case, suppose that the resulting position has been obtained from

(An, Bn, Cn)
α,β,γ
−→ [Am, Bm, Cm] = (Am, Bm, Cm)

with α, β, γ > 0 satisfying the conditions of rule II. In view of Lemma 1, there exist
nonnegative coefficients µ, ν, δ such that

(6) (α, β, γ) = (An −Am, Bn −Bm, Cn − Cm) = µG1 + νG2 + δM.

Observe that the three coordinates of G1 (resp. G2, M) are ordered by increasing
order. Therefore α < β < γ and since rule II is satisfied, we know that γ ≤ s β+α.
Substituting in (6) G1, G2 and M with their values from Definition 4, this latter
inequality can be rewritten as

(7) µ ≤ (s− 2) δ − ν.

From (7), δ = 0 would imply µ = ν = 0 which is impossible since m < n. Hence
δ ≥ 1. From Corollary 2, we know that µ ≥ (s− 1)(δ − 1). Therefore, we get from
(7) that δ ≤ s− 1. By Corollary 2, ν ≥ 2 would imply δ ≥ s which contradicts the
latter inequality. Hence we have ν ∈ {0, 1}. Putting together all the informations
on µ, ν and δ, the triple (α, β, γ) belongs to Mal(s) which contradicts the fact that
rule II has been applied.

b) As a second case, assume that the position (Am, Bm, Cm) has been obtained
from

(An, Bn, Cn)
α,β,γ
−→ [x, y, z] 6= (Am, Bm, Cm).

Otherwise stated [x, y, z] is a non-trivial permutation of (Am, Bm, Cm). Observe
that z 6= Cm, because rule II forbids [x, y, z] = [Bm, Am, Cm]. Since for X =
A,B,C, we have Xn > Xm, there exist some 0 < α′ < β′ < γ′ such that

(An, Bn, Cn)
α′,β′,γ′

−→ [Am, Bm, Cm] = (Am, Bm, Cm).
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In view of a), we have either γ ′ > sβ′ + α′ or (α′, β′, γ′) ∈ Mal(s). Moreover
observe that

(8) α+ β + γ = α′ + β′ + γ′.

b.1) Assume that γ′ > sβ′ + α′.
b.1.1) We first treat the following situations. Assume [x, y, z] equals either to

[Am, Cm, Bm], [Bm, Cm, Am] or [Cm, Bm, Am]. Hence α ≤ α′, β ≤ β′ and γ > γ′.
Since γ′ > β′ > α′, we have to consider two cases:

• if α ≤ β < γ, then γ > γ ′ > sβ′ + α′ ≥ sβ + α which contradicts the fact
that rule II is applied;

• if β < α < γ, then γ > γ ′ > sβ′ + α′ ≥ sα′ + β′ ≥ sα + β which leads to
the same contradiction.

b.1.2) The last case is [x, y, z] = [Cm, Am, Bm]. Hence α < α′, β > β′ and
γ > γ′. There exist µ, ν, δ ≥ 0 such that

(Am, Bm, Cm) = µG1 + νG2 + δM.

Notice that

γ − γ′ = Cm − Bm = µ(1 + s2) + (δ + ν)(1 + s+ s2).

In the same way, sβ − sβ′ = s(Bm − Am) = (µ + ν)s2 + δ(s + s2). Hence we get
sβ−sβ′ ≤ γ−γ′. We have γ′ > sβ′+α′ and adding γ−γ′ on the l.h.s. and sβ−sβ′

on the r.h.s., we get γ > sβ+α′. Since α < α′, we conclude that γ > sβ+α which
contradicts rule II because we have α < β < γ (indeed, α < α′ < β′ < β).

b.2) We still have to consider the case (α′, β′, γ′) ∈Mal(s).
b.2.1) Assume that n = 1+s(s−1). From Lemma 6, we havem ≥ n−(s−1)2 =

s. We will now show that for all s ≤ k < n, Ck > Bn.
From Lemma 2 and by computing the prefix of length n = 1+s(s−1) of G1ψ(t),

we deduce that (An, Bn, Cn) = (s−1)M +(1+(s−1)2)G1 and (As, Bs, Cs) = sG1.
Hence Bn −Bs = s3 − s2 + s− 1 and Cs −Bs = s3 + s. Therefore Cs > Bn. Since
(Ck)k≥0 is increasing, we have Ck > Bn for all k ≥ s. In particular, it holds for
k = m, Cm > Bn. Moreover since Bn > An and Cm is equal to x or y, this would
mean α < 0 or β < 0 which is a contradiction.

b.2.2) Assume that n = 1 + s(s− 1) + t with t > 0. Again, from Lemma 6, we
have m ≥ s + t. From the previous point, we already know that Cs > B1+s(s−1).
According to Lemma 2, notice that for s ≥ 1, the third component of G1, G2 or M
is greater or equal than the second component of any of these elements. Therefore,
Ci > Bj implies Ci+t > Bj+t for all t ≥ 0 and in particular, we have

Cs+t > B1+s(s−1)+t = Bn.

Since (Ck)k≥0 is increasing, we have Ck > Bn for all k ≥ s + t. In particular, it
holds for k = m, Cm > Bn and we conclude as in the previous case.

b.2.3) Assume that n < 1 + s(s− 1). We have

n = 1 + q.s+ r, with 1 ≤ q ≤ s− 2, 0 ≤ r ≤ s− 2.

From the first part of Lemma 6, we get m ≥ 1 + q + r. As usual w = G1ψ(t) =
w1w2 · · · .

Assume first r = 0. Since 1 + q ≤ s − 1 and w1 · · ·w1+q = (G1)
1+q , we obtain

from Lemma 2 that C1+q −B1+q = (s2 + 1)(1 + q). From (4), in w1+q · · ·wn there
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are exactly q letters M and q(s − 2) letters G1. Hence from Lemma 2, we have
Bn −B1+q = q(s2 + 1). We deduce that

C1+q −Bn = (C1+q −B1+q) − (Bn −B1+q) = s2 + 1 > 0.

Since (Ck)k≥0 is increasing, we have Cm −Bn > 0 for all m ≥ 1 + q.
If r > 0, from the above discussion, we know that C1+q > Bn−r. As in the pre-

vious point, we conclude that C1+q+r > Bn. As before, since (Ck)k≥0 is increasing,
we have Cm −Bn > 0 for all m ≥ 1 + q + r.

Assume now that

(An, Bn, Cn)
III
−→ (Am, Bm, Cm).

The resulting position has been obtained from

(An, Bn, Cn)
α,β,γ
−→ [x, y, z] where [x, y, z] is a permutation of [Am, Bm, Cm].

We have five cases to consider depending on which permutation of (Am, Bm, Cm)
corresponds to the reordering of [x, y, z] (remember that one permutation is for-
bidden with rule III). With the same reasoning as before, there exist α′, β′, γ′ > 0
such that

(An, Bn, Cn)
α′,β′,γ′

−→ [Am, Bm, Cm] = (Am, Bm, Cm).

From Lemma 2, we have

β′ > α′ + s− 1,
γ′ > β′ + s− 1,
γ′ ≥ α′ + β′.

because these inequalities are satisfied for the corresponding components ofG1, G2,M .

(a) If [x, y, z] = (Am, Bm, Cm), then with the same reasoning α = α′, β = β′

and γ = γ′. Therefore β − α ≥ s and γ − β ≥ s but this contradicts the
fact that rule III has been applied.

(b) If [x, y, z] = [Cm, Bm, Am], then β′ = β, α < α′ and γ′ < γ. Consequently,

γ > γ′ > β′ + s− 1 = β + s− 1 > α′ + 2s− 2 > α+ 2s− 2

hence γ > β + s− 1 and β > α + s − 1, leading to the same contradiction
as in (a).

(c) If [x, y, z] = [Bm, Am, Cm], then γ′ = γ, α′ > α and β′ < β. Since β − α >
β′ − α′ ≥ s and since rule III is applied, then |γ − β| < s. Therefore

γ′ − s− β′ < β − β′ = α′ − α ≤ α′

where the central equality comes from (8). Consequently, we get

(9) γ′ − α′ − β′ < s.

Notice now that

(α′, β′, γ′) = (An −Am, Bn −Bm, Cn − Cm) = µG1 + νG2 + δM

for some nonnegative coefficients µ, ν, δ. From Lemma 2, we obtain

γ′ − α′ − β′ = µs2 + (ν + δ)(s2 + s− 1) ≥ s

which contradicts (9).
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(d) If [x, y, z] = [Bm, Cm, Am], then α < α′, β < β′ and γ > γ′. Since |γ−β| >
s, |γ−α| > s and since rule III is applied, then |β−α| < s. In other words,
|(Bn −An)− (Cm −Bm)| < s. By Corollary 5, Cm −Bm 6= Bi −Ai for all
i > 0 and we consider three cases. Recall that Proposition 4 states that

Bn −An = Mex({0, 1, . . . , Bn−1 −An−1} ∪ {Ci −Bi : 0 ≤ i < n}) + s− 1.

Assume first that Cm−Bm < Bn−1−An−1. In view of the above formula,

Bn −An ≥ Bn−1 −An−1 + s > Cm −Bm + s

which is a contradiction.
Assume now that Bn−1 − An−1 < Cm − Bm < Bn − An. In view of

Lemma 3, we necessarily have Cm − Bm = Bn−1 − An−1 + 1. Notice that
Mex({0, 1, . . . , Bn−1 −An−1} ∪ {Ci −Bi : 0 ≤ i < n}) ≥ Bn−1 −An−1 + 2.
Consequently, we obtain

Bn −An ≥ Cm −Bm + s

which is also a contradiction.
As a last case, assume that Cm − Bm > Bn − An. From Lemma 3,

there exists k such that Cm − Bm = Bk − Ak + 1 and Ak = Bm − 1. If
k > n then according to Lemma 2, (Cm −Bm)− (Bn −An) ≥ s which is a
contradiction. Consequently, the only remaining case is k = n which implies
that An = Bm − 1 which is a contradiction with the move (An, Bn, Cn) →
[Bm, Cm, Am].

(e) If [x, y, z] = [Cm, Am, Bm], then α < α′, β > β′ and γ > γ′. The only
possibility to apply rule III is |γ − β| < s but

γ − β = γ′ − β′ + (Cm −Bm) − (Bm −Am) ≥ s+ (Cm −Bm) − (Bm −Am) ≥ s.

Notice that last inequality comes from the fact Ci −Bi ≥ Bi −Ai for all i.

• Second part of the proof. Let (x, y, z) be a position not in P with x ≤ y ≤ z. Our
aim is to show that there exists an allowed move from (x, y, z) to some element in
P .

Note that when rule I or rule III is applied, the corresponding moves do not
belong to Mal(s).

There are a few cases that we can directly deal with:

• If x = 0, then (x, y, z)
I

−→ (0, 0, 0).

• If |x− y| < s or |z − y| < s, then (x, y, z)
III
−→ (0, 0, 0).

• If z ≤ x+ sy and (x, y, z) 6∈ Mal(s), then (x, y, z)
II
−→ (0, 0, 0).

• If z ≤ x+sy and (x, y, z) ∈Mal(s). There exist nonnegative integers µ, ν, δ
such that (x, y, z) = µG1 + νG2 + δM with 0 ≤ ν ≤ 1, 1 ≤ δ ≤ s− 1 and
(δ − 1)(s− 1) ≤ µ ≤ δ(s− 2) − ν. Now consider

(x′, y′, z′) = (µ+ ν + 1)G1 + (δ − 1)M.

First notice that under these conditions, (x′, y′, z′) ∈ P because the prefix
of (4) of length µ+ ν + δ (≤ (s− 1)2) contains exactly µ+ ν + 1 symbols
G1 and δ − 1 symbols M . Since

(x − x′, y − y′, z − z′) = (1 + ν, 2 + ν, (ν + 1)(1 + s) + 1)
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and |y − y′ − (x− x′)| = 1 < s, we play

(x, y, z)
III
−→ (x′, y′, z′) ∈ P .

So in all what follows, we may assume that

(10)







x > 0
x+ s ≤ y
y + s ≤ z
z > sy + x

There exists a unique n > 0 such that x is a component of the triple (An, Bn, Cn).
We therefore discuss three cases: x = An, x = Bn or x = Cn.

(a) If x = Cn, then An < Bn < Cn = x ≤ y ≤ z. Therefore, setting β :=
y −An > 0 and γ := z −Bn > 0, we get

(x, y, z)
0,β,γ
−→ [Cn, An, Bn]

and we can apply rule I.
(b) If x = Bn. This case splits into two sub-cases.

(b.1) If z ≥ Cn and since An < Bn = x ≤ y, we set β := y − An > 0
and γ := z − Cn. We get

(x, y, z)
0,β,γ
−→ [Bn, An, Cn]

and we can again apply rule I.
(b.2) Otherwise z < Cn and we will show that this situation never

occurs. From Lemma 2, we have Bn −An ≥ sn which leads to

(11) sBn ≥ sAn + s2n.

Again Lemma 2 gives Cn ≤ An + Bn + n(s2 + s − 1). Moreover, since
Bnx ≤ y, we have

(1 + s)Bn ≤ x+ sy < z < Cn

and putting these last two inequalities together, we get

sBn < An + n(s2 + s− 1).

From this last inequality and (11), we obtain An < n which never occurs.
(c) If x = An. This case splits into four sub-cases.

(c.1) If y ≥ Bn and z ≥ Cn, then (x, y, z)
I

−→ (An, Bn, Cn).
(c.2) If y < Bn and z ≥ Cn. Set t := y − x. In particular, s ≤

t < Bn − An (the left inequality coming from (10)). Furthemore, there
exists m ∈ N such that |t − (Bm − Am)| < s. Indeed, from Lemma 2,
(Bi+1 − Ai+1) − (Bi − Ai) ∈ {s, s+ 1} for all i. Notice that the existence
of such an m is not guaranteed for s = 1.

(c.2.1) Assume there exists m such that |t − (Bm − Am)| < s and
t ≥ Bm −Am. Hence,

Bm −Am ≤ t = y − x < Bn −An.

From this, Corollary 1 implies that m < n. Moreover m > 0 because
t ≥ s = B1 −A1. Thus Am < An = x, Cm < Cn ≤ z and y−x ≥ Bm −Am
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implies that y > Bm. Consequently since |t− (Bm−Am)| = |y−Bm− (x−
Am)| < s we play

(x, y, z)
III
−→ [Am, Bm, Cm].

(c.2.2) Assume that for all m such that |t − (Bm − Am)| < s, we have
t < Bm − Am. As before, we know that (Bm − Am) − (Bm−1 − Am−1) ∈
{s, s+ 1}. The only case to consider is

(Bm −Am) − (Bm−1 −Am−1) = s+ 1 and Bm −Am = t+ 1.

Indeed, if this is not the case then we would have |t− (Bm−1 −Am−1)| < s
and t ≥ Bm−1 − Am−1 and we would be in the situation of (c.2.1). So,
Bm − Am = t + 1 < Bn − An + 1. Since Bm − Am ≤ Bn − An, from
Corollary 1, we get m ≤ n. Now, From Lemma 4, there exists p such
that Cp − Bp = Bm−1 − Am−1 + 1 and from Lemma 3 we know that
Am−1 = Bp − 1. Hence,

|y − Cp − (x−Bp)| = |t− (Cp −Bp)| = |t− (Bm−1 −Am−1 + 1)| = |s− 1| < s.

Moreover, we have x = An ≥ Am > Am−1 = Bp − 1, implying z ≥ x ≥
Bp > Ap, and

Cp = t− s+ 1 +Bp ≤ y − x− s+ 1 + x ≤ y.

Consequently we play

(x, y, z)
III
−→ [Bp, Cp, Ap].

(c.3) If y ≥ Bn and z < Cn. From (10), we know that z − x − sy > 0
and with Lemma 5, we consider the smallest integer m > 0 such that

z − x− sy = f(m) = Cm −Am − sBm.

Moreover, under the considered assumptions we have

f(m) = z − x− sy < Cn −An − sBn = f(n)

then, since m is minimal and from (1), we get m < n. Indeed, if n < m
then there exists m′ < n < m such that f(m′) = f(m) which contradicts
the minimality of m. Now we get

z − Cm = x+ sy −Am − sBm = An −Am + s(y −Bm) > 0

because An > Am and y ≥ Bn > Bm. We set α := x−Am = An−Am > 0,
β := y −Bm and γ := z − Cm. Since β ≥ Bn −Bm > An −Am = α and

z − Cm
︸ ︷︷ ︸

γ

= y −Bm
︸ ︷︷ ︸

β

+An −Am + (s− 1)(y −Bm)
︸ ︷︷ ︸

>0

we get, 0 < α < β < γ. Moreover, γ = α+ sβ.
We will now prove that the move

(x, y, z)
II
−→ (Am, Bm, Cm)

is allowed. To do this, it remains to show that (α, β, γ) does not belong to
Mal(s). We proceed by contradiction and assume that (α, β, γ) ∈ Mal(s).

From Lemma 1, there exists nonnegative integers µ, ν, δ such that

(An −Am, Bn −Bm, Cn − Cm) = µG1 + ν G2 + δM.
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Since (α, β, γ) ∈ Mal(s), there exists nonnegative integers µ′, ν′, δ′ such
that

0 ≤ ν′ ≤ 1, 1 ≤ δ′ ≤ s− 1, (δ′ − 1)(s− 1) ≤ µ′ ≤ δ′(s− 2) − ν′

and

(α, β, γ) = (x−Am, y −Bm, z − Cm) = µ′G1 + ν′G2 + δ′M.

Since y ≥ Bn and z < Cn, there exist two integers εb ≥ 0 and εc > 0 such
that y = Bn + εb and z = Cn − εc. Therefore, we get





µ′ − µ
ν′ − ν
δ′ − δ



 = M−1





0
εb
−εc





where M is the matrix of the system given in (2) and thus






(s2 − s+ 1)(µ′ − µ) = −2 εb − 2 εc
(s2 − s+ 1)(ν′ − ν) = −s2 εb − (s− 1) εc
(s2 − s+ 1)(δ′ − δ) = (1 + s2) εb + s εc.

Consequently, δ < δ′ ≤ s−1. The finite word [(∆k(a),∆k(b),∆k(c))]m≤k<n

over {G1, G2,M} contains exactly µ (resp. ν, δ) letters G1 (resp. G2, M).
From the second part of Corollary 2, since δ < s−1, we deduce that ν < 2.
Moreover, we have 0 ≤ ν ′ < ν. Therefore, the only case which remains is
ν = 1 and ν′ = 0 and

s2 (εb − 1) + (s− 1) (εc + 1) = 0.

Since (s− 1) (εc + 1) > 0, this implies εb = 0. Hence, we obtain that

εc =
s2

s− 1
− 1.

If s > 2 then the r.h.s. of the equation is not an integer contradicting the
fact that εc is an integer. If s = 2, then εc = 3, δ = 0 and δ′ = δ + 2 = 2
contradicting the fact that δ′ ≤ s− 1.

Hence we conclude that (α, β, γ) 6∈Mal(s) and we can play (x, y, z)
II
−→

(Am, Bm, Cm).
(c.4) If y < Bn and z < Cn. Once again, consider the smallest integer

m > 0 such that z−x−sy = Cm−Am−sBm. Set α := x−Am, β := y−Bm

and γ := z − Cm.
(c.4.1) Assume as a first sub-case that α, β, γ ≥ 0. If αβ γ = 0 then

one can immediately apply rule I from (x, y, z) to (Am, Bm, Cm). So let
us assume now that αβ γ > 0. Then An = x > Am and so n > m. As
for (c.3), we would like to apply rule II. Since γ = α + sβ, we know that
γ > max{α, β}.

If α > β, then γ = α+ sβ < sα+ β and we can play

(x, y, z)
II
−→ (Am, Bm, Cm)

provided (β, α, γ) 6∈ Mal(s). Assume that (β, α, γ) ∈ Mal(s). There exist
nonnegative integers µ′, ν′, δ′ such that (β, α, γ) = µ′G1 + ν′G2 + δ′M .
Consider the multi-linear map generalizing the function f of Lemma 5

g : N3 → N : (u, v, w) 7→ w − u− sv.
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Notice that g(x, y, z) = g(Am, Bm, Cm) = f(m) and g(x, y, z)−g(Am, Bm, Cm) =
g(α, β, γ) = 0. But since

(α, β, γ) = (µ′(1+s)+ν′(2+s)+δ′(3+s), µ′+2(ν′+δ′), µ′(2+s+s2)+ν′(3+2s+s2)+δ′(4+2s+s2))

we also obtain that

g(α, β, γ) = (µ′ + ν′ + δ′)(s2 − s+ 1) > 0

which is a contradiction.
If α ≤ β, then since γ = α+ sβ we can play

(x, y, z)
II
−→ (Am, Bm, Cm)

provided (α, β, γ) 6∈ Mal(s). Assume that (α, β, γ) ∈ Mal(s). From
Lemma 1, there exist nonnegative integers µ, ν, δ such that

(An −Am, Bn −Bm, Cn − Cm) = µG1 + ν G2 + δM.

Since (α, β, γ) ∈Mal(s), there exist nonnegative integers µ′, ν′, δ′ such that

(12) 0 ≤ ν′ ≤ 1, 1 ≤ δ′ ≤ s− 1, (δ′ − 1)(s− 1) ≤ µ′ ≤ δ′(s− 2) − ν′

and

(α, β, γ) = (x−Am, y −Bm, z − Cm) = µ′G1 + ν′G2 + δ′M.

Since y < Bn and z < Cn, there exist integers εb > 0 and εc > 0 such that
y = Bn − εb and z = Cn − εc. Therefore, we get





µ′ − µ
ν′ − ν
δ′ − δ



 = M−1





0
−εb
−εc





where M is the matrix of the system given in (2) and






(s2 − s+ 1)(µ′ − µ) = 2 εb − 2 εc
(s2 − s+ 1)(ν′ − ν) = s2 εb − (s− 1) εc
(s2 − s+ 1)(δ′ − δ) = −(1 + s2) εb + s εc.

Since s2 − s + 1 is odd, µ′ − µ must be even and therefore we define two
integers k := (µ′ −µ)/2 and ` := ν′ − ν. We can consider the latter system
as a system of three equations with two unknowns εb and εc. The first two
equations have a nonzero determinant and are therefore sufficient to obtain
the following solution

{
εb = −k(s− 1) + `
εc = −ks2 + `.

From this and the third equation of the system, we deduce that






µ′ = µ+ 2k
ν′ = ν + `
δ′ = δ − k − `.

Let us show that ` ∈ {−1, 0, 1}. Since εb > 0, we get

(13) ` > k(s− 1).

Since ν′ ∈ {0, 1}, ν ≥ 0 and ν ′ = ν+ `, we deduce that ` ≤ 1. Proceed now
by contradiction and assume ` ≤ −2. In particular, this implies ν ≥ 2 and
in view of (13) we also have k < 0. From Corollary 2, we get δ ≥ s. Since
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δ′ − δ = −k − ` > 0, we obtain δ′ > δ ≥ s which is in contradiction with
(12).

Let us now discuss the possible values of k depending on `. Observe
first from (13) that ` ∈ {−1, 0} implies k < 0 and ` = 1 implies k ≤ 0.
Substituting µ′ and δ′ in the l.h.s. of the third inequality of (12), we have

µ+ 2k ≥ (s− 1)(δ − k − `− 1).

Moreover, with the same arguments as in the proof of Corollary 2, we get

µ ≤ (δ + 1)(s− 1) + 1.

From these two inequalities, we obtain

k ≥ −
1 + (s− 1)(`+ 2)

s+ 1
.

Therefore, the following table summarizes the four remaining cases to con-
sider.

` = −1 0 > k ≥ −s
s+1 > −1 k ∈ ∅

` = 0 0 > k ≥ −2s+1
s+1 > −2 k ∈ {−1}

` = 1 0 ≥ k ≥ −3s+2
s+1 > −3 k ∈ {−2,−1, 0}

• ` = 1, k = 0, εb = 1, εc = 1. We refer to the function f introduced in
Lemma 5. We have An = x, Bn = y + 1, Cn = z + 1 and

f(m) = Cm − sBm −Am = z − sy − x

= Cn − sBn −An + s− 1 = f(n) + s− 1.

From the second part of Lemma 5, we conclude that m > n which is
a contradiction.

In the following three cases, the triple (α, β, γ) may belong to Mal(s).
Nevertheless we will find an alternative way to play from (x, y, z) to an
element in P .

• ` = 0, k = −1, εb = s − 1, εc = s2. Let us show that in that

case, we can play (x, y, z)
III
−→ (An−1, Bn−1, Cn−1). We have here

An = x, Bn = y + s − 1 and Cn = z + s2. From Lemma 2, we get
y > Bn−1 and z > Cn−1. If (∆n−1(a),∆n−1(b),∆n−1(c)) ∈ {G1, G2},
then |y − Bn−1 − (x − An−1)| = 1 hence we can play the proposed
move. In the same way, if (∆n−1(a),∆n−1(b),∆n−1(c)) = M then
|y − Bn−1 − (x − An−1)| = 2. If s > 2, once again rule III can be
applied. If s = 2, then from (12) we get δ′ = 1 so δ = 0. This means
that there is no occurrence of M in [(∆k(a),∆k(b),∆k(c))]m≤k<n and
(∆n−1(a),∆n−1(b),∆n−1(c)) cannot be equal to M and this latter
situation never occurs.

• ` = 1, k = −1, εb = s, εc = s2 + 1. As in the previous case, we get

|y −Bn−1 − (x−An−1)| =

{
0 if (∆n−1(a),∆n−1(b),∆n−1(c)) ∈ {G1, G2},
1 if (∆n−1(a),∆n−1(b),∆n−1(c)) = M,

hence we can play (x, y, z)
III
−→ (An−1, Bn−1, Cn−1).
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• ` = 1, k = −2, εb = 2s − 1, εc = 2s2 + 1. Let us show that in that

case, we can play (x, y, z)
III
−→ (An−2, Bn−2, Cn−2). Notice that n ≥ 2

because if n = 1 we would have z = C1 − εc = −s2 + s + 1 < 0.
Observe that from Lemma 2, we get y = Bn − 2s + 1 > Bn−2 and
z = Cn − 2s2 − 1 > Cn−2. Up to a permutation the factor κ =
[(∆k(a),∆k(b),∆k(c))]k=n−2,n−1 can take four values G1G1, G1G2,
G1M and G2M . This leads to

|y −Bn−2 − (x−An−2)| =

{
1 if κ = G1G1, G1G2

2 if κ = G1M,G2M.

So we can play rule III as proposed except when s = 2 and κ = G1M
or G2M . But, if s = 2 then δ′ = 1 so δ = 0 and as for the case ` = 0,
k = −1 no M can appear in κ.

(c.4.2) Assume that we are now in the situation where at least one of
the elements α, β, γ defined in (c.4.1) is negative. Set

M := max{k ∈ N | Ak ≤ x, Bk ≤ y, Ck ≤ z}.

Since x = An, we conclude that M ≤ n. Moreover, M 6= n since y < Bn

and z < Cn. So M + 1 ≤ n and AM+1 ≤ An but by definition of M we
must therefore have BM+1 > y or CM+1 > z. We consider these two cases
separately.

(c.4.2.1) Suppose that BM+1 > y. Then BM+1−AM+1 > y−x (indeed
remember that AM+1 ≤ An = x).

By Lemma 2, there exists K ≤M such that

0 ≤ y − x− (BK −AK) ≤ s.

Assume first that there exists some K ≤M such that

(14) 0 ≤ y − x− (BK −AK) < s.

Since K ≤ M , we have x > AK , y ≥ BK and z ≥ CK . If y = BK

or z = CK then we play (x, y, z)
I

−→ (AK , BK , CK). Otherwise, we play

(x, y, z)
III
−→ (AK , BK , CK).

Assume now that (14) never occurs. Then there exists K ≤ M such
that y − x − (BK − AK) = s. In particular, this means that (BK+1 −
AK+1) − (BK − AK) = s + 1. From Lemma 4, there exists L ≤ K such
that CL − BL = BK − AK + 1. In view of Lemma 3, we also have AK =
BL − 1. So y − x − (CL − BL) = s− 1. Notice that z ≥ CM ≥ CL > AL,
x ≥ AM+1 > AM ≥ AK = BL − 1 and y − CL = x − BL + s − 1 > 0.

If x = BL, we play (x, y, z)
I

−→ [BL, CL, AL]. Otherwise, x > BL and we

play (x, y, z)
III
−→ [BL, CL, AL].

(c.4.2.2) Suppose that BM+1 ≤ y and CM+1 > z. Since z − CM+1 <
0 ≤ x−AM+1 + s(y −BM+1), we get

f(m) = z − x− sy < CM+1 − sBM+1 −AM+1 = f(M + 1).

By minimality of m, we have m ≤ M . Therefore α, β, γ ≥ 0 but this
contradicts the assumptions of (c.4.2).

�
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