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A MORPHIC APPROACH TO COMBINATORIAL GAMES : THE

TRIBONACCI CASE

ERIC DUCHÊNE* AND MICHEL RIGO

Abstract. We propose a variation of Wythoff’s game on three piles of tokens,
in the sense that the losing positions can be derived from the Tribonacci word
instead of the Fibonacci word for the two piles game. Thanks to the corre-
sponding exotic numeration system built on the Tribonacci sequence, deciding
whether a game position is losing or not can be computed in polynomial time.

1. Introduction

Wythoff’s game is a well-known two-players take-away game played on two piles
each having a finite number of tokens [19]. A move consists in selecting a pile and
removing from it any positive number of tokens (same rule as for the game of Nim),
or removing the same positive number of tokens from both piles. The convention
is that the first player who is unable to move, loses the game. A winning strategy
for this game can be derived from the Fibonacci word. A position (x, y) of the
game (i.e., a pair coding the number of tokens in the two piles) is said to be a
P -position if the “Previous” (i.e., the second) player can win whatever move his
opponent shall make. The P -positions of Wythoff’s game are exactly the pairs
given by the positions of the n-th occurrence of a and the n-th occurrence of b in
the Fibonacci word (see Remark 7 for a proof of this statement). This observation
gives an interesting link between combinatorial game theory and combinatorics on
words.

In [11], A. Fraenkel defines a removal game on three piles, namely the Raleigh
game, which in his own terms is neither a generalization of the game of Nim nor
of Wythoff’s game. In [10], he presents a family of 2-pile games whose winning
strategies are studied through the use of exotic numeration systems. In general
most of the variants of Wythoff’s game are solved in polynomial time through
the use of numeration systems (see [7, 9, 12]). The originality of our approach to
compute the set of P -positions relies on iterated morphisms instead of numeration
systems. We present a variation of Wythoff’s game in the sense that the P-positions
can be derived from the natural generalization of the Fibonacci word to a three-
letters alphabet, the so-called Tribonacci word: the P -positions are exactly the
triples given by the positions of the n-th occurrence of letter a, b and c in the
Tribonacci word.

We propose a game based on three piles that we call the Tribonacci game. As
we shall quickly see the rules of this game are symmetric on the three piles. Con-
sequently instead of considering positions represented by arbitrary elements in N

3

Key words and phrases. Two-player combinatorial game, Combinatorics on words, Numeration
system, Tribonacci sequence.
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we can restrict ourselves to positions (a, b, c) with 0 ≤ a ≤ b ≤ c. The moves are
the following:

I. Any positive number of tokens from up to two piles can be removed.
II. From position (a, b, c), one can remove a positive number α ≤ a, β ≤ b,

γ ≤ c of tokens from the respective piles consisting of a, b, c tokens, subject
to the condition:

2 max{α, β, γ} ≤ α+ β + γ.

III. Let β > 2α > 0. From position (a, b, c) one can remove the same number
α of tokens from any two piles and β tokens from the other one with the
following condition. If a′ (resp. b′, c′) denotes the number of tokens in
the pile which contained a (resp. b, c) tokens before the move, then the
configuration

a′ < c′ < b′

is not allowed.

As for Wythoff’s game or for the game of Nim, the (normal) convention is that the
first player who is unable to move, loses the game.

Remark 1. Rules I and II can be considered as “natural” extensions of Wythoff’s
rules on three piles. The third rule is necessary so as to have a set of P-positions
where each positive integer appears at most once.

Observe that in rule III, changing the hypothesis β > 2α to β ≤ 2α gives a
special case of rule II.

Example 1. To see how the rules of the Tribonacci game work, let us consider a
few examples. Consider the configuration (12, 22, 30). Applying rule I, one can for
instance remove 12 tokens from the first and third piles to obtain (0, 18, 22) after
reordering. Unlike Wythoff’s game, one can remove different numbers of tokens
from two piles. So applying rule I by removing 12 tokens from the first pile and 5
tokens from the third one, we get from (12, 22, 30) to the configuration (0, 22, 25).
Applying rule II, we can go from (12, 22, 30) to (1, 2, 3) because 11+20+27 = 58 ≥
2.27. Finally consider applying rule III, from (a, b, c) = (12, 22, 30) if one removes
α = 1 token from the first and third piles and β = 12 tokens from the second pile,
one gets a′ = 11, b′ = 10 and c′ = 29 and the allowable inequalities b′ < a′ < c′

to obtain configuration (10, 11, 29). However, removing 1 token from the first two
piles and 10 tokens from the third one is not allowed because we get a′ = 11, b′ = 21
and c′ = 20 and in this case, a′ < c′ < b′. But removing 1 token from the first two
piles and 9 tokens from the third one is allowed. One gets a′ = 11, b′ = 21 and
c′ = 21 with the allowable configuration a′ < b′ = c′.

To describe the set of P -positions of our Tribonacci game, we shall consider
three formalisms (morphic formalism, recursive definition and game formalism)
and show that they are all equivalent. Since the morphic formalism is the simplest
one to produce an infinite word and to define a corresponding set of positions,
we shall start with this description in Section 2. Using classical construction, the
morphic description leads us to the introduction of the Tribonacci number system.
In Section 3, we propose a recursive definition of the Tribonacci word. The reader
will have to wait until Section 4 to see the link between the morphism and the
Tribonacci game defined above. In Section 5, representations in the Tribonacci
number system of the P -positions are shown to have a simple syntactic property
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depending only on their last two (least significant) digits. Moreover this allows us
to have a winning strategy that can be computed in polynomial time (which is for
instance a central question in [10]).

Remark 2. Let us mention that our game has no link with the Ducci’s four-number
game problem which occurs when iterating the operator D acting on 4-tuples,

D(w, x, y, z) := (|w − x|, |x− y|, |y − z|, |z − w|),

and which is also related in some sense to the Tribonacci sequence (for details, see
for instance [18]).

2. The morphic formalism

In this section, we do not yet consider our Tribonacci game rather we simply
introduce the Tribonacci sequence over the alphabet {a, b, c} and present some of
its properties which are immediate consequences of the construction using iterated
morphism.

We define a sequence (An, Bn, Cn)n≥0 of triples of integers directly related to
the Tribonacci word. Consider the morphism τ : {a, b, c} → {a, b, c}∗ defined by
τ(a) = ab, τ(b) = ac and τ(c) = a. Iterating this morphism starting with a gives
the well-known Tribonacci word t = (tn)n≥1 = limn→+∞ τn(a),

t = abacabaabacababacabaabacabacabaabacababacabaabacabaab · · · .

Observe that we use the convention that the first letter of t has index 1. Let us
recall that this word appears also in symbolic dynamics or in fractal geometry (see
for instance [6, 14]). Many combinatorial properties of the Tribonacci word are
studied in [17]. For X = A,B,C (resp. x = a, b, c), define the sets

X = {X1 < X2 < X3 < · · · } = {n ∈ N | tn = x}.

Moreover we set A0 = B0 = C0 = 0. The sequence (An)n≥1 (resp. (Bn)n≥1,
(Cn)n≥1) is indexed as A003144 (resp. A003145, A003146) in the Sloane’s encyclo-
pedia of integer sequences [16]. These three sequences together first appeared in
[4] where Table 1 is defined recursively. Many properties of these sequences were
already studied in [4]. The relationship with the Tribonacci sequence was explicitly
presented later in [1].

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
An 0 1 3 5 7 8 10 12 14 16 18 20 21 23 25 27
Bn 0 2 6 9 13 15 19 22 26 30 33 37 39 43 46 50
Cn 0 4 11 17 24 28 35 41 48 55 61 68 72 79 85 92

Table 1. First values of the sequences (An)n≥0, (Bn)n≥0 and (Cn)n≥0.

Trivially, the sets A, B and C give a partition of N≥1.

Remark 3. Since for any letter x ∈ {a, b, c}, τ(x) begins with a, it is obvious that
∆n(a) := An+1 −An is given by ψa(tn) where ψa : a, b 7→ 2, c 7→ 1.

Remark 4. Looking at τ2(a) = abac, τ2(b) = aba and τ2(c) = ab, one can see that
b always occurs in second position. Since τ 2(t) = t, we get that ∆n(b) := Bn+1−Bn

is given by ψb(tn) where ψb : a 7→ 4, b 7→ 3, c 7→ 2.
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Remark 5. In the same way, looking at τ 3(a) = abacaba, τ3(b) = abacab and
τ3(c) = abac, one can see that c always occurs in the fourth position. Since τ 3(t) =
t, we get that ∆n(c) := Cn+1−Cn is given by ψc(tn) where ψc : a 7→ 7, b 7→ 6, c 7→ 4.

In view of the last three remarks, we have the following result.

Theorem 1. With the above notation, for all n ≥ 1, we have

(∆n(a),∆n(b),∆n(c)) ∈ {(2, 4, 7), (2, 3, 6), (1, 2, 4)}.

In particular, ∆n(a) + ∆n(b) + 1 = ∆n(c).

The Tribonacci number system is a positional numeration system given by the
linearly recurrent sequence T0 = 1, T1 = 2, T2 = 4 and Tk+3 = Tk+2 + Tk+1 + Tk

for all k ≥ 0. Using a greedy algorithm [8] and a variation of the Zeckendorf’s
expansion defined for the Fibonacci sequence [20], any positive integer n has a
unique decomposition

n =
∑̀

i=0

ci Ti

with ci ∈ {0, 1} for all i ∈ {0, . . . , ` − 1}, c` = 1 and no three consecutive digits
being equal to 1. This result is a consequence of the following facts:

• For all n ≥ 1, we have Tn/Tn−1 ≤ 2. Therefore all the coefficients ci
appearing in the decomposition belong to {0, 1}. Indeed, assume that there
exists i ∈ {0, . . . , `} such that ci ≥ 2. Then ciTi + · · · + c0T0 ≥ Ti+1 which
contradicts the greediness of the algorithm.

• Again by greediness of the algorithm and by definition of the Tribonacci
sequence, no three consecutive digits can be equal to 1.

• Uniqueness of the decomposition follows from the fact that any decom-

position of n =
∑`

i=0 ci Ti with ci ∈ {0, 1} for all i ∈ {0, . . . , ` − 1},
c` = 1 and no three consecutive digits being equal to 1 is a greedy de-
composition. We proceed by induction. We have c0T0 < T1. Assume that
ciTi + · · · + c0T0 < Ti+1 for 0 ≤ i < `. Let D = ci+1Ti+1 + · · · + c0T0. If
ci+1 = 0 then D < Ti+1 < Ti+2. If ci+1 = 1 then D < 2Ti+1 ≤ Ti+2.

The word ρT (n) = c` · · · c0 is said to be the Tribonacci representation of n. It
is convenient to assume that 0 can be equally represented by the word 0 or by the
empty word ε.

1 1 5 101 9 1010 13 10000 17 10100
2 10 6 110 10 1011 14 10001 18 10101
3 11 7 1000 11 1100 15 10010 19 10110
4 100 8 1001 12 1101 16 10011 20 11000

Table 2. The Tribonacci representations of the first 20 positive integers.

Remark 6. Using a result linking morphic sequences and (abstract) numeration
systems [15, Theorem 24], it is not difficult to see that tn = a (resp. tn = b, tn = c)
if and only if the Tribonacci representation of n− 1 ends with 0 (resp. 01, 11).

Indeed, in a canonical way we can associate to the morphism τ a deterministic
finite automaton A having {a, b, c} as set of states and {0, 1} as alphabet (this kind
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of construction already appeared in the seminal paper [5]). If δ : {a, b, c}×{0, 1}→
{a, b, c} is the transition function of A, then

δ(a, 0) = a, δ(a, 1) = b, δ(b, 0) = a, δ(b, 1) = c, δ(c, 0) = a.

Notice that δ is not a total function, i.e., A is not complete. LetM = L(A)\0{0, 1}∗

where L(A) is the language accepted by the automaton A where all states are final
and a is the initial state. Let Mn be the n-th word (n ≥ 1) of the genealogically
ordered language M . (Suppose x, y are two words on a totally ordered alphabet
(Σ, <). Then x is genealogically less than y if |x| < |y| or, if |x| = |y| and x =
uav, y = ubw where u, v, w ∈ Σ∗, a, b ∈ Σ and a < b). Since L(A) = {0, 1}∗ \
{0, 1}∗111{0, 1}∗, the numerical value val(Mn) ofMn with respect to the Tribonacci
system is val(Mn) = n− 1. See for instance Table 3.

n 1 2 3 4 5 · · ·
Mn ε 1 10 11 100 · · ·

val(Mn) 0 1 2 3 4 · · ·

Table 3. First words in M and their numerical value.

Moreover, using again [15], feeding A with Mn leads to the state tn.

3. Recursive definition

Observe that the n-th occurrence of c in t belongs to the image under τ of
the n-th occurrence of b in t which appears itself in the image under τ of the n-
th occurrence of a. Hence it is clear that for all n ≥ 1, Bn − An and Cn − Bn

are positive, i.e., An < Bn < Cn. The aim of this section is to obtain a recursive
characterization of t (see Theorem 2). Notice that this characterization differs from
the one given initially in [4] (especially for the formula giving Bn). As usual, the
notation Mex stands for Minimum EXcluded value [2].

Theorem 2. Assume Xn denotes the position of the n-th occurrence of x in the
Tribonacci word t, X = A,B,C (resp. x = a, b, c). For all n ≥ 1, t satisfies







An = Mex{Ai, Bi, Ci : 0 ≤ i < n}
Bn = An + Mex{Bi −Ai, Ci −Bi : 0 ≤ i < n}
Cn = An +Bn + n.

Moreover, t is the only word over a ternary alphabet {a, b, c} satisfying these rela-
tions.

The following result is also discussed in [1] where a “simple” construction of t is
given. For the sake of completeness and since all the necessary material is already
introduced, we recall the proof.

Lemma 1. Assume Xn denotes the position of the n-th occurrence of x in the
Tribonacci word t, X = A,B,C (resp. x = a, b, c). For all n ≥ 1, we have

Cn = An +Bn + n.
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Proof. For X = A,B,C (resp. x = a, b, c), we use notation of Remarks 3, 4 and 5,
it is clear that for all n ≥ 1,

Xn = X1 +

n−1
∑

i=1

∆i(x).

Therefore, using Theorem 1, we get

Cn = 4 +

n−1
∑

i=1

(∆i(a) + ∆i(b) + 1) = A1 +

n−1
∑

i=1

∆i(a) +B1 +

n−1
∑

i=1

∆i(b) + n

and the result follows. �

Remark 7 (A characterization of the Fibonacci word). Consider the morphism
ϕ : a 7→ ab, b 7→ a generating the celebrated Fibonacci word f = limn→∞ ϕn(a) =
abaababaabaababaabab · · · e.g., see [13]. Let us denote by an (resp. bn) the position
of the n-th occurrence of a (resp. b) in f , i.e.,

(an)n≥1 = 1, 3, 4, 6, 8, 9, . . . and (bn)n≥1 = 2, 5, 7, 10, 13, 15, . . . .

It is not difficult to see that, for all n ≥ 1, the Fibonacci word is the only word over
a binary alphabet satisfying

(1) an = Mex{ai, bi : 0 ≤ i < n} and bn = an + n.

Indeed, the n-th occurrence of a produces using ϕ the n-th occurrence of b in f .
Since all b’s are produced by letters a, during the iteration process, all the remaining
gaps are filled with a and an = Mex{ai, bi : 0 ≤ i < n}.

For the second part, since ab is a prefix of f then b1 = a1 + 1. Assume that
bn−1 = an−1 + n − 1 for some n ≥ 2. Notice that if an − an−1 = 1 (resp. 2) then
bn − bn−1 = 2 (resp. 3). Therefore, bn = an + n.

The sequence (an, bn)n≥1 was studied in [19, 9] from a game theoretical point
of view. In [19] it is shown that the P -positions of Wythoff’s game are exactly
the (xn, yn) satisfying the same relation as (1). Consequently, the P -positions of
Wythoff’s game are exactly the pairs given by the positions of the n-th occurrence
of a and the n-th occurrence of b in the Fibonacci word.

If x = (xn)n≥0 is an infinite word over a finite alphabet of integers, then we
denote by S(x) the corresponding summatory sequence, i.e., for all n ≥ 0,

S(x)n =
n

∑

i=0

xi.

Let Y ⊆ N be a set of integers. The characteristic sequence of Y is an infinite word
χY = (xn)n≥0 over {0, 1} defined by xi = 1 if and only if i ∈ Y .

Lemma 2. Let µ : {a, b, c} → {2, 3}∗ and ν : {a, b, c} → {1, 2}∗ be two morphisms
defined by

µ(a) = µ(b) = 3, µ(c) = 2, ν(a) = ν(b) = 21 and ν(c) = 2.

For any infinite word w ∈ {a, b, c}ω, the sets

Sµ = {S(2µ(w))n | n ≥ 0} and Sν = {S(1 ν(w))n | n ≥ 0}

form a partition of N≥1.



TRIBONACCI GAME 7

Proof. Let χµ (resp. χν) be the characteristic sequence of Sµ (resp. Sν). Each
letter of w gives a subword of χµ (resp. χν), assuming that a 1 appears earlier
(which is always the case since χµ (resp. χν) starts with 001 (resp. 01). We give
the possible subwords written in bold case

a b c
χµ 1001 1001 101
χν 1011 1011 101

It is clear that in χµ, each 1 is preceded with 0 (the values taken by µ are at least 2
which means that Sµ does not contain two consecutive integers) and in χν , each 1
is followed by 0 (the images of ν all start with 2). Since we consider the summatory
sequences obtained from the sequences 2µ(w) and 1ν(w) starting respectively with
2 and 1, the subwords obtained in χµ and χν corresponding to the same letter in
w are thus shifted by one. Namely, we have

a b c
χµ 01001 01001 0101
χν 10110 10110 1010

Gluing together such possible factors gives the result. �

Remark 8. The above result can be trivially extended to two morphisms defined
on an arbitrary finite alphabet Γ and taking values in an alphabet Σ ⊂ N≥1 of
integers. Suppose that for all a ∈ Γ, µ(a) does not start nor end with 1 and is of
the form

µ(a) = w1 1 a2w21 a3w3 · · · 1 ak wk where ai ∈ Σ \ {1}, wi ∈ Σ∗.

It is obvious that if for all n ≥ 2, we set ζ(n) := 2 (1)n−2, then the morphism ν
defined by

ν(a) = ζ(w1) 3 (1)a2−2 ζ(w2) 3 (1)a3−2 ζ(w3) · · · 3 (1)ak−2 ζ(wk)

can be used to define a partition of N≥1.

Corollary 3. Assume Xn denotes the position of the n-th occurrence of x in the
Tribonacci word t, X = A,B,C (resp. x = a, b, c). The sets

{Bi −Ai | i ≥ 1} = {1, 3, 4, 6, 7, 9, 10, 12, 14, 15, 17, 18, 20, 21, 23, 24, . . .}

and

{Ci −Bi | i ≥ 1} = {2, 5, 8, 11, 13, 16, 19, 22, 25, 28, 31, 33, 36, 39, 42, . . .}

give a partition of N≥1. In particular, the mappings n 7→ Bn−An and n 7→ Cn−Bn

are increasing.

Proof. In view of Theorem 1, the sequence ((Cn+1 − Bn+1) − (Cn − Bn))n≥1 =
(∆n(c)−∆n(b))n≥1 is given by µ(t) where µ is the same as in the previous lemma
(indeed, for all x ∈ {a, b, c}, µ(x) = ψc(x) − ψb(x)). Moreover, C1 − B1 = 2.
Therefore, the set {Ci −Bi | i ≥ 1} is given by the summatory sequence S(2µ(t)).

In the same way, the sequence ((Bn+1 − An+1) − (Bn − An))n≥1 = (∆n(b) −
∆n(a))n≥1 is given by γ(t) where γ(a) = 2, γ(b) = γ(c) = 1. Notice that

γ ◦ τ = ν
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where ν is the same as in the previous lemma. Since B1−A1 = 1, the set {Bi−Ai |
i ≥ 1} is given by S(1 γ(t)). To conclude, recall that t = τ(t). Therefore,

S(1 γ(t)) = S(1 γ(τ(t))) = S(1 ν(t))

and the result follows using the previous lemma. �

With the following lemma, we get the proof of Theorem 2.

Lemma 3. Assume Xn denotes the position of the n-th occurrence of x in the
Tribonacci word t, X = A,B,C (resp. x = a, b, c). For all n ≥ 1, we have

{

An = Mex{Ai, Bi, Ci : 0 ≤ i < n}
Bn = An + Mex{Bi −Ai, Ci −Bi : 0 ≤ i < n}.

Proof. We proceed by induction on n. Assume that the result holds for all values
less than n ≥ 2. Let t := Bn−1−An−1 = Mex{Bi−Ai, Ci−Bi : 0 ≤ i < n−1}. Then
as shown in the proof of the previous corollary, Bn−An = t+1 or t+2 (the images
of γ are 1 or 2). In the first case, again using Corollary 3, if Bn −An = t+ 1 then
Cn−1−Bn−1 6= t+1 and we conclude that Bn−An = t+1 = Mex{Bi−Ai, Ci−Bi :
0 ≤ i < n}. In the second case, assume that Bn − An = t + 2. Therefore, we just
have to show that there exists m < n such that Cm − Bm = t + 1. The existence
of such a m > 0 is again guaranteed by Corollary 3 and m < n because for all
x = a, b, c, µ(x) − γ(x) ≥ 1. Indeed, we have Ci − Ai ≥ i for all i ≥ 1 and thus
since Bn−1 − An−1 = t, Cn−1 − Bn−1 ≥ t + n − 1 ≥ t + 1 for n ≥ 2. Moreover
i 7→ Ci −Bi is increasing hence m < n.

Up to now, and in view of Lemma 1, we have shown that positions of the n-th
occurrences of b and c in t are well-defined and appear after the n-th occurrence of
a. To conclude the proof, observe that filling the gaps with a’s corresponds exactly
to the Mex definition. �

Let X = A,B,C. In what follows, to avoid many intricated subscripts, we
equally consider sequences (Xn)n≥0 as functions X : N → N : n 7→ An. We can
therefore use composition of functions. The following two lemmas give properties
of t that we use in the next section.

Lemma 4. Assume Xn denotes the position of the n-th occurrence of x in the
Tribonacci word t, X = A,B,C (resp. x = a, b, c). We have for all n ≥ 1,

C(n) −B(n) = 1 + B(A(n)) −A(A(n))

and for all n ≥ 0,

C(n) −B(n) + 1 = B(A(n) + 1) −A(A(n) + 1).

Proof. If y = y1 · · · yk is a finite word over a finite alphabet of integers, similar
to the infinite case we use the notation S to denote S(y) = y1 + · · · + yk. Let
t[1, n] := t1 · · · tn be the prefix of length n of t. Notice that

(2) |τ(t[1, n])| = A(n+ 1) − 1 , i.e., τ(t[1, n]) = t[1, A(n+ 1) − 1].

Indeed, for all i = 1, . . . , n, τ(ti) contains exactly one a. Therefore, to determine
the length of τ(t[1, n]), one only needs to look for the (n+ 1)-st a in t.
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It is clear that for all n ≥ 1, C(n) − B(n) is given by S(2µ(t[1, n − 1])) and
B(n) −A(n) = S(1 γ(t[1, n− 1])). We obtain, for all n ≥ 1

C(n) −B(n) = S(2µ(t[1, n− 1])) = S(2 ν(t[1, n− 1]))

= S(2 γ(τ(t[1, n− 1]))) = S(2 γ(t[1, A(n) − 1]))

= 1 + S(1 γ(t[1, A(n)− 1])) = 1 +B(A(n)) −A(A(n)).

To get the second formula, notice that

B(A(n) + 1) −A(A(n) + 1) − [B(A(n)) −A(A(n))] = γ(tA(n)) = γ(a) = 2.

�

Lemma 5. Assume Xn denotes the position of the n-th occurrence of x in the
Tribonacci word t, X = A,B,C (resp. x = a, b, c). For all n ≥ 0, we have

B(n) = A(A(n) + 1) − 1.

Proof. From (2), we get τ(t[1, A(n)]) = t[1, A(A(n) + 1)− 1] and since tA(n) is the
n-th occurrence of a in t, then the last letter of τ(t[1, A(n)]) is the n-th occurrence
of b in t. �

4. Game formalism

We have collected in the previous section all the necessary results that we need
to prove our main result about the Tribonacci game.

Theorem 4. The set S = {(An, Bn, Cn) | n ≥ 0} is the set of P -positions of the
Tribonacci game.

Proof. We proceed in two steps (in graph theoretical terms, we show that the set
of P -positions is the kernel of the acyclic1 game graph G whose set of vertices is
the set of positions and where a directed edge from u to v exists iff there is a legal
move between the positions corresponding to u and v).

• Whatever the chosen rule (I, II or III) is, a player moving from a position
(An, Bn, Cn) in S always lands in a position not in S.

• Given a position (a, b, c) not in S, there exists a move to some position
(An, Bn, Cn) ∈ S.

Let us first introduce some notation to simplify our presentation. Remember that
due to the symmetry of the rules, we have only to consider positions (a, b, c) ∈ N

3

such that a ≤ b ≤ c. So the notation (a, b, c) contains the extra information
a ≤ b ≤ c. If one removes non-negative integers α, β and γ respectively from the
three piles a, b and c, we get a′ = a − α, b′ = b − β and c′ = c − γ and we use
brackets [a′, b′, c′] instead of parentheses to specify that the resulting triple is not
necessarily ordered. We shall therefore write

(a, b, c)
α,β,γ
−→ [a′, b′, c′].

Notice that if a′ < b′ = c′ or a′ = b′ < c′ or a′ = b′ = c′, we consider naturally that
the triple remains ordered. In particular, we write [a′, b′, c′] = (a′, b′, c′) if the order
of the piles is unchanged after the move. Finally, we write

(a, b, c)
R
−→ (x, y, z)

1Since tokens are taken from the piles at each move, it is obvious that the game graph of the
Tribonacci game is acyclic. This ensures existence and uniqueness of the kernel.
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to specify that the position (x, y, z) has been obtained from (a, b, c) using rule R
(I, II or III). As an example, we write

(12, 22, 30)
(11,0,12)
−→ [1, 22, 18] 6= (1, 18, 22) and (12, 22, 30)

I
−→ (1, 18, 22).

• For the first part of the proof, we show that S is a stable subset of the game
graph G, i.e., S is a set of pairwise non-adjacent vertices. Assume that a player
moves from a position (An, Bn, Cn) in S to another position (Am, Bm, Cm) in S.
Clearly m < n. We show that such a move never occurs by considering the possible
application of the different rules. First observe that we cannot apply rule I to obtain

(An, Bn, Cn)
I

−→ (Am, Bm, Cm)

for some m. Since {Aj | j ≥ 1} ∪ {Bj | j ≥ 1} ∪ {Cj | j ≥ 1} is a partition of
N≥1, none of the elements in the first triple is equal to any element of the second
triple. But with rule I at least one of the piles should remain unchanged which is
a contradiction. Now consider applying rule II:

(An, Bn, Cn)
II
−→ (Am, Bm, Cm).

As a first case, suppose that the resulting position has been obtained from

(An, Bn, Cn)
α,β,γ
−→ [Am, Bm, Cm] = (Am, Bm, Cm)

with α, β, γ > 0 satisfying the condition of rule II. Using Theorem 1, (α, β, γ) =
(An−Am, Bn−Bm, Cn−Cm) is a linear combination (with non-negative coefficients)
of the vectors (1, 2, 4), (2, 3, 6) and (2, 4, 7) and therefore γ > α+β. This contradicts
the fact that rule II has been applied. As a second case, assume that the position
(Am, Bm, Cm) has been obtained from

(An, Bn, Cn)
α,β,γ
−→ [x, y, z] 6= (Am, Bm, Cm).

Otherwise stated [x, y, z] is a non-trivial permutation of (Am, Bm, Cm). Since for
X = A,B,C, Xn > Xm, there exist some α′, β′, γ′ > 0 such that

(An, Bn, Cn)
α′,β′,γ′

−→ [Am, Bm, Cm] = (Am, Bm, Cm).

In view of the first case, we still have

(3) γ′ > α′ + β′.

Moreover our key argument is to observe that

(4) α+ β + γ = α′ + β′ + γ′.

If z = Cm, then γ = γ′. Otherwise z = Am or Bm which are less than Cm,
therefore γ > γ′. Taking into account these two cases and using (3) and (4), we
obtain γ ≥ γ′ > α′ + β′ ≥ α+ β which also contradicts the fact that rule II should
have been applied. Lastly, consider applying rule III:

(An, Bn, Cn)
III
−→ (Am, Bm, Cm)

where the resulting position has been obtained from

(An, Bn, Cn)
α,β,γ
−→ [x, y, z].
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We have five cases to consider depending on which permutation of (Am, Bm, Cm)
corresponds to the reordering of [x, y, z] (remember that one permutation is for-
bidden with rule III). With the same reasoning as before, there exist α′, β′, γ′ > 0
such that

(An, Bn, Cn)
α′,β′,γ′

−→ [Am, Bm, Cm] = (Am, Bm, Cm).

Clearly (3) and (4) still hold and invoking again Theorem 1, we can conclude that

(5) α′ < β′ < γ′.

(a) If [x, y, z] = (Am, Bm, Cm), then with the same reasoning α < β < γ. But
since we have applied rule III (we have to remove the same number of
tokens from two piles), we should have α = β, α = γ or β = γ leading to a
contradiction.

(b) If [x, y, z] = [Cm, Bm, Am], then β′ = β, α < α′ and γ′ < γ. Consequently,
α < α′ < β′ < γ′ < γ and α < β < γ contradicts rule III.

(c) If [x, y, z] = [Bm, Am, Cm], then γ′ = γ, α′ > α and β′ < β. If α = β,
then An − Bm = Bn − Am and we get Bn − An = Am − Bm. This is
a contradiction because Bj − Aj > 0 for j > 0 and thus Bn − An > 0
but Am − Bm ≤ 0. If α = γ, then An − Bm = Cn − Cm and we get
An − Am > An − Bm = Cn − Cm. This is a contradiction by Theorem 1.
For the last case, assume that β = γ. Since γ ′ = γ, using (4) we get
α′ + β′ = α + β and α′ − α = β − β′ = γ − β′ = γ′ − β′. Consequently,
α′ ≥ γ′ − β′ which contradicts (3). We have therefore shown that α, β, γ
are three distinct integers which contradicts rule III.

(d) If [x, y, z] = [Bm, Cm, Am], then α < α′, β < β′ and γ > γ′. If α = γ
(resp. β = γ), then γ′ < α′ (resp. γ′ < β′) which contradicts (5). Let us
now assume that α = β, then An − Bm = Bn − Cm and we conclude as
in (c) using Corollary 3. Once again, we have shown that α, β, γ are three
distinct integers which contradicts rule III.

(e) If [x, y, z] = [Cm, Am, Bm], then α < α′, β > β′ and γ > γ′. This case can
be treated as the previous one. We apply Corollary 3 to show that β 6= γ.

• For second part of the proof, we show that S is an absorbing subset of the game
graph G, i.e., any vertex not in S has a successor in S. Let (a, b, c) be a position
not in S. There are a few cases that we can directly deal with:

• If a = 0, then (a, b, c)
I

−→ (0, 0, 0) = (A0, B0, C0).

• If b = c, then (a, b, c)
II
−→ (0, 0, 0).

• If a = b and c ≤ 2a, then (a, b, c)
II
−→ (0, 0, 0).

• If a = b and c > 2a, then (a, b, c)
III
−→ (0, 0, 0).

• If c ≤ a+ b then (a, b, c)
II
−→ (0, 0, 0).

So in what follows, we may assume that

(6) 0 < a < b < c and c > a+ b.

There exists a unique n > 0 such that a is a component of the triple (An, Bn, Cn).
We therefore discuss three cases, according to a.

(a) If a = Cn, then An < Bn < Cn = a < b < c. Therefore, setting β :=
b−An > 0 and γ := c−Bn > 0, we get

(a, b, c)
0,β,γ
−→ [Cn, An, Bn].
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That is, we can apply rule I to reach the position (An, Bn, Cn).
(b) If a = Bn, then we consider two sub-cases.

(b.1) Assume c ≥ Cn. In this case, since An < Bn = a < b, we set
β := b−An > 0 and γ := c− Cn. We get

(a, b, c)
0,β,γ
−→ [Bn, An, Cn]

and we can therefore apply rule I to reach the position (An, Bn, Cn) ∈ S.
(b.2) Otherwise c < Cn. Since we may assume that a+ b < c, we have

2Bn < c (because Bn = a < b). Consequently, 2Bn < Cn. On the other
hand, Bn − An ≥ n (as show in the proof of Corollary 3, the difference
between two consecutive elements in the set {Bj − Aj | j ≥ 0} is at least
one). Thus, using Lemma 1, Bn ≥ An + n = Cn − Bn and we get a
contradiction, 2Bn ≥ Cn. So case (b.2) never occurs.

(c) Assume a = An. In this case, we consider three sub-cases.

(c.1) If b ≥ Bn and c ≥ Cn, then (a, b, c)
I

−→ (An, Bn, Cn).
(c.2) If b < Bn and c ≥ Cn. Set t := b − a > 0. In particular,

t < Bn − An. Therefore there exists 0 < m < n such that t = Bm − Am

or t = Cm − Bm. Indeed, we know from Theorem 2 that Bj − Aj =
Mex{Bi −Ai, Ci −Bi | 0 ≤ i < j}. Moreover, m > 0 because t > 0.

(c.2.1) Assume t = Bm−Am. Set α := a−Am > 0 and γ := c−Cm > 0.
We notice that b−Bm = a−Am and we obtain

(a, b, c)
α,α,γ
−→ [Am, Bm, Cm].

If α ≥ γ (resp. α < γ) we conclude by applying rule II (resp. III).
(c.2.2) Assume t = Cm −Bm. Then Cm+1 −Bm+1 = t+ 2 or t+ 3. As

a consequence of Corollary 3, there exists K such that BK − AK = t + 1.
Notice that Bn −An ≥ t+ 1 (because t = b− a = b−An and Bn > b). So
K ≤ n. By Lemma 4, we know that

t+ 1 = Cm −Bm + 1 = B(Am + 1) −A(Am + 1)

and we conclude that K = Am +1. By Lemma 5, Bm < AK . Since K ≤ n,
AK ≤ An = a and we conclude that Bm < a. Since b− a = t = Cm −Bm,
we have that Cm < b. Finally, Am < Cm < Cn ≤ c. We set α := a− Bm,
β := b− Cm, γ := c−Am and

(a, b, c)
α,β,γ
−→ [Bm, Cm, Am].

Depending on the values α, β, γ > 0, the conclusion follows using rule II or
III.

(c.3) Assume b ≥ Bn and c < Cn. Set m := c− a− b, and notice by (6)
that m > 0. We show that

(a, b, c)
II
−→ (Am, Bm, Cm).

First observe that m ≤ n− 1 because

c− a− b ≤ Cn − 1 −An −Bn = n− 1

where the last equality comes from Theorem 2. Next, notice that c > Cm.
Indeed, we have

c− Cm = m+ a+ b− (Am +Bm +m) = An −Am + b−Bm
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and since n > m, then An > Am and b ≥ Bn > Bm. So up to now, we
know that

α := a−Am > 0, β := b−Bm > 0 and γ := c− Cm > 0

but we still have to check that the conditions for applying II hold. First
notice that max(α, β, γ) = γ. Indeed, it is clear that An −Am ≤ Bn −Bm

(the reader can refer to the proof of Corollary 3 for arguments) and since
b ≥ Bn, we conclude that α ≤ β. Moreover, it follows from the definitions
that

γ − β = c− (Am +Bm +m) − (b−Bm)

= c− b−Am − (c− a− b) = a−Am = An −Am > 0.

To conclude this part, we just have to show that 2γ ≤ α + β + γ. Here,
inequality sign can in fact be replaced with an equality, because

α+ β − γ = a+ b− c− (Am +Bm − Cm) = m−m = 0.

(c.4) Assume b < Bn and c < Cn. Once again, set m := c− a− b.
(c.4.1) Assume as a first sub-case that α := a−Am ≥ 0, β := b−Bm ≥ 0

and γ := c−Cm ≥ 0. If α β γ = 0 then one can immediately apply rule I. So
let us assume now that αβ γ > 0. Then An = a > Am and so n > m. Just
as for (c.3), we would like to apply rule II. With the same justifications
as in (c.3), one shows that β < γ. To obtain that max(α, β, γ) = γ, notice
that

γ − α = c− (Am +Bm +m) − a−Am

= c− a−Bm − (c− a− b) = b−Bm > 0.

The conclusion of this case follows the same lines as (c.3), γ = α+ β.
(c.4.2) Assume that we are now in the situation where at least one of

the elements α, β, γ defined in (c.4.1) is negative. Set

M := max{k ∈ N | Ak ≤ a, Bk ≤ b, Ck ≤ c}.

Since a = An, we conclude that M ≤ n. Moreover, M 6= n since b < Bn

and c < Cn. So M + 1 ≤ n and AM+1 ≤ An but by definition of M we
must therefore have BM+1 > b or CM+1 > c. We consider these two cases
separately.

(c.4.2.1) Suppose that BM+1 > b. Then BM+1 −AM+1 > b−a (indeed
remember that AM+1 ≤ An = a). By Theorem 2, there exists K ≤M such
that b−a = BK −AK or CK −BK . Moreover b−a > 0 implies that K > 0.

Assume first that b−a = BK −AK . Since K ≤M < n, for X = A,B,C
(resp. x = a, b, c), we have XK ≤ XM ≤ x and therefore α′ := a − AK =
b−BK > 0 and γ′ := c− CK ≥ 0, i.e.,

(a, b, c)
α′,α′,γ′

−→ [AK , BK , CK ].

Thus, if γ′ = 0 we apply rule I, otherwise if α′ ≥ γ′ > 0 we apply rule II
and if α′ < γ′ we apply rule III to obtain a position in S.

Assume now that b−a = CK −BK . To conclude this part, we show that
there exists α′, γ′ > 0 such that

(a, b, c)
α′,α′,γ′

−→ [BK , CK , AK ].
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Notice that c ≥ CK > AK so γ′ := c−AK > 0. We develop now the same
arguments as in case (c.2.2). By Lemma 4, we know that

b− a+ 1 = CK −BK + 1 = B(AK + 1) −A(AK + 1).

Moreover b−a < Bn−An and we conclude that AK +1 ≤ n so A(AK +1) ≤
An. By Lemma 5, we have BK < A(AK +1) ≤ a. Therefore α′ := a−Bk =
b−Ck > 0. Hence the conclusion follows using rule II or III depending as
usual on the values α′ and γ′.

(c.4.2.2) Suppose that BM+1 ≤ b and CM+1 > c. Since AM+1 ≤ a, we
have

m− (M + 1) = c− a− b− (CM+1 −AM+1 −BM+1) < 0

and thus m ≤ M but this contradicts the fact that at least one of the
elements α, β or γ is negative. Consequently this case never occurs.

�

5. Polynomial winning strategy

We conclude this paper by discussing algorithmic complexity issues about the
computation of the winning and losing positions of the Tribonacci game. Table 1
is the key argument to decide whether a given position is a P -position or not. For
a given position (a, b, c), one has to check whether it appears or not in the table. If
one uses Theorem 2 to build Table 1 up to position (a, ∗, ∗) then this process has
an exponential complexity with respect to the size of the input a. Indeed, if an
integer a is represented in a given base t, whatever the base is or even in an exotic
numeration system like the Tribonacci system, the length of the representation is
blogt ac + 1. So building the table up to a has a linear complexity with respect to
a, but an exponential complexity compared to blogt ac.

Another way to decide whether or not a given triple (a, b, c) is a P -position
would be to have an algebraic characterization of the sequences (An)n≥0, (Bn)n≥0

and (Cn)n≥0, as it is the case for Wythoff’s game. For this latter game, P -positions
(an, bn) are exactly (bnΦc, bnΦ2c) where Φ is the golden ratio (see [19]). For the
Tribonacci game, such a result does not exist as shown by the following theorem.

Theorem 5. There exist no real numbers α, α′, β, β′, γ, γ′ such that An = bnα+α′c,
Bn = bnβ + β′c or Cn = bnγ + γ′c for all n ∈ N.

Proof. Let (Xn)n≥1 be a nondecreasing sequence of integers. In [3], a necessary
condition for the existence of real numbers δ, δ′ such that Xn = bnδ + δ′c for all
n ≥ 1, is that for all r ≥ 2,

d(r) = max
1≤i<k≤r

Xk −Xk−i − 1

i
< d(r) = min

1≤i<k≤r

Xk −Xk−i + 1

i
.

• By Theorem 1, we have Ck −Ck−1 ∈ {4, 6, 7}. Hence applying the previous
result to the sequence (Cn)n≥1 and choosing in the above formula i = 1 and

Ck−Ck−1 = 7 (resp. 4), we obtain d(r) ≥ 6 (resp. d(r) ≤ 5). Consequently,
we get d(r) < d(r) and the conclusion follows for (Cn)n≥0.

• Similarly, we have Bk −Bk−1 ∈ {2, 3, 4} and d(r) ≤ 3 ≤ d(r).
• By considering the factor cabac (resp. abaaba) of t and in view of Remark 3,

there exists k (resp. `) such that Ak − Ak−5 = 8 (resp. A` − A`−6 = 12).

Therefore d(r) ≤ 9/5 < 11/6 ≤ d(r) and the conclusion follows for (An)n≥0.



TRIBONACCI GAME 15

�

Despite this negative result, the morphic formalism, and especially Remark 6,
gives here a polynomial time algorithm to decide whether or not a given position is
a P -position. This latter result is a direct consequence of the following statement
combined with the proof of Theorem 4.

Theorem 6. A configuration (a, b, c) is a P -position of the Tribonacci game if and
only if there exists a word w ∈ {0, 1}∗ such that w does not contain three consecutive
1’s and ρT (a − 1) = w0, ρT (b − 1) = w01 and ρT (c − 1) = w011, where ρT (n) is
the Tribonacci representation of n.

Proof. We have already noticed in Remark 6 that tn = a (resp. tn = b, tn = c) if
and only if ρT (n− 1) ends with 0 (resp. 01, 11).

We also know that the n-th occurrence of c in t belongs to the image under τ
of the n-th occurrence of b in t which appears itself in the image under τ of the
n-th occurrence of a. Recall the notation of Remark 6. Let Mi be the i-th word in
M . Assume Mi leads to state a in A (in particular Mi is of the form w0 for i > 1
or M1 = ε). This means that ti = a and ρT (i − 1) = Mi. Suppose ti is the n-th
occurrence of a in t. Since the n-th occurrence of b in t appears as the second letter
in τ(ti), by the properties of A (see [15]), Mi1 = w01 produces this letter. With
the same argument, Mi11 = w011 produces the n-th occurrence of c in t. �

Example 2. The following table illustrates the previous result.

An Bn Cn ρT (An − 1) ρT (Bn − 1) ρT (Cn − 1)
1 2 4 ε 1 11
3 6 11 10 101 1011
5 9 17 100 1001 10011
7 13 24 110 1101 11011

Table 4. First P -positions and the corresponding Tribonacci representations.

Deciding whether a given position (a, b, c) is a P -position or not can be done in
polynomial time as follows. One first computes ρT (a − 1), ρT (b − 1), ρT (c − 1).
This can be done in O(log2(c)) because the length of ρT (c − 1) is proportional
to log2(c − 1) and we apply a greedy algorithm to compute the coefficients of the
Tribonacci representation. Then, it suffices to check (in linear time) the simple
syntactic condition given by the previous theorem.

All this study around the Tribonacci game leads naturally to consider the fol-
lowing question.

Question 7. Could the Tribonacci game be generalized to a k-bonacci game with
rules constructed in such a way that the losing positions are given by the positions
of the n-th occurrence of the letters a1, . . . , ak in the k-bonacci word given by the
morphism ξ(ai) = a1ai+1 for i < k and ξ(ak) = a1 ?

According to our investigations, the answer might be positive but even for k = 4
formulating the rules of such a game is tedious task.
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Grande Traverse 12 (B37),
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