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The formation of tabular compaction-band arrays: Theoretical and
numerical analysis

A.I. Chemenda �

Géosciences Azur, Université de Nice-Sophia Antipolis, CNRS, 250 Rue Albert Einstein, 06560 Valbonne, France

The bifurcation analysis of compaction banding is extended to the formation of a tabular

discrete compaction-band array. This analysis, taken together with the results of finite-

difference simulations, shows that the bifurcation results in the formation of

intermittent loading (elastic–plastic) and unloading (elastic) bands. The obtained

analytical solution relates the spacing parameter w (the ratio between the band

thickness to the band-to-band distance) to all constitutive and stress-state parameters.

Both this solution and numerical models reveal strong dependence of w on the

hardening modulus h: w increases with h reduction. The band thickness in the numerical

models is mesh dependent, but in terms of mesh-zone-size varies only from �2 to 4

depending on the constitutive parameters and independently on the mesh resolution.

The thickness of the ‘‘elementary’’ compaction bands in real granular materials is equal

to a few grain sizes. It follows that one grid zone in the numerical models corresponds

approximately to one grain in the real material. The numerical models reproduce both

discrete and continuous propagating compaction banding observed in the rock samples.

These phenomena were shown to be dependent on the evolution of h and the dilatancy

factor with deformation.

1. Introduction

The bifurcation theory (Hill, 1962; Mandel, 1964, 1966; Rudnicki and Rice, 1975; Rice, 1976) was originally applied to the

formation of shear localization bands (slip surfaces, Lüders lines). Perrin and Leblond (1993) have shown that bifurcation

from homogeneous deformation can also result in formation of planar localization bands without shear deformationwithin

them. This issue was then analyzed in more detail in Issen and Rudnicki (2000) and Bésuelle (2001).

The non-shear bands can be either parallel (compaction bands) or orthogonal (dilation bands) to the least compressive

stress s1, with all band types being parallel to the intermediate stress direction (si are the principal stresses: s3ps2ps1;

the compressive stress is negative, i ¼ 1,2,3). Most studies deal with the compaction bands since they have been clearly

observed in nature (e.g., Mollema and Antonellini, 1996; Sternlof et al., 2004) and were reproduced in laboratory in

geomaterial samples (e.g., Olsson and Holcomb, 2000; Klein et al., 2001; Wong et al., 2001; Baud et al., 2004, 2006; Fortin

et al., 2006) as well as in other materials such as metal foams (Bastawros et al., 2000), polycarbonate honeycomb (Papka

and Kyriakides, 1999), etc.

As in the case of shear bands, the analysis of the compaction banding in the previous works was limited to the

continuous bifurcation and so did not deal with the formation of discrete bands (band sets). On the other hand, it is such
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sets (tabular arrays) that are typically observed in nature (Fig. 1). These arrays are characterized by a certain dominant (for

each case) spacing l. This parameter (l) is very important both for reservoir applications (e.g., hydraulic compartitioning

and permeability) and interpretation of the experimental data, and is certainly defined by the material properties and the

stress state.

In the multi-shear-band analysis corresponding to the formation of a localization band network accompanied by the

elastic unloading of the material outside the bands, Chemenda (2007) found that l is related to the band thickness d. Both

parameters enter the bifurcation condition as a ratio w ¼ d/l and cannot be separated since the classical phenomenological

plasticity theory used does not have a spatial scale. More complete theory based on the micro-physical analysis should

contain such a scale (the grain size, for example). The integration of the material microstructure is attempted in more

sophisticated (gradient, non-local, etc.) constitutive formulations (see Vardoulakis and Sulem (1995) and Bésuelle and

Rudnicki (2004) for a review), but the parameters of these models are very poorly constrained by observations, which

renders their practical use problematic.

There remains a possibility to estimate l from the above-mentioned multi-band analysis by assigning a certain realistic

value to d which varies little, whether in the field examples or in the laboratory samples, and typically equals a few to

several grain sizes. The multi-band analysis has been performed for an arbitrary orientation in the stress space of the

network of conjugated shear bands which can be pure shear, shear-dilatation or shear-compaction (Chemenda, 2007). The

obtained solution relating w to the constitutive and stress-state parameters at bifurcation is, however, not valid for the band

sets parallel and orthogonal to s3: the transition from the conjugated, oblique to s3 band network to the orthogonal/

parallel to s3 band sets is not as straightforward as in the case of continuous bifurcation analysis where the transition is

continuous (Bésuelle, 2001).

The present paper deals with the case when the band set is orthogonal to s3 (all band types are also parallel to s2)

which corresponds to the compaction banding. The analysis is much simpler than for shear banding since the bands lie in

the principal plan (s1,s2) and there is neither rigid body spins nor stress axe rotation during bifurcation. Two cases are

considered: one when the bifurcation occurs in the regime of continuing loading, with the whole body remaining in the

elastic–plastic state (continuous bifurcation), and the other, when the inter-band zones undergo the elastic unloading

during bifurcation (discontinuous bifurcation). For the continuous bifurcation we obtained the same critical condition as

Perrin and Leblond (1993) and in Issen and Rudnicki (2000) and Bésuelle (2001). For the discontinuous bifurcation, the

critical condition contains a spacing parameter w ¼ d/l which is a function of stress state and all constitutive parameters

including the hardening modulus h. As for shear banding, w increases (l reduces) with h reduction. The compaction

banding is possible when the constitutive parameter values are in a certain range, which is much wider than for the

continuous bifurcation. It follows that compaction banding can occur at much larger (smaller negative or even positive)

dilatancy factor values than those predicted by the continuous bifurcation analysis. These values correspond well to those

for geomaterials (Wong et al., 2001; Baud et al., 2006). The theoretical results are confirmed by the finite-difference

numerical models which also reveal a predicted strong dependence of l on the constitutive and stress-state parameters.

Fig. 1. Compaction bands in Aztec Sandstone, the Valley of Fire State Park, Nevada (for geological details of the site see e.g. (Sternlof et al., 2004). Pen at

the bottom of the photo for scale.
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The numerical models reproduce both discrete and continuous propagating banding observed in the rock samples (Klein

et al., 2001; Wong et al., 2001; Olsson, 2001; Baud et al., 2004).

2. Velocity field at the onset of the formation of the compaction bands

Consider conditions for bifurcation of the homogeneous deformation field into a regular deformation pattern in Fig. 2a.

This pattern is formed under initially uniform stressing by a set of compaction bands parallel to x1 (axes xi are oriented in the

principal directions). One can outline an elementary deformation element (or cell) of which the whole pattern can be

composed (Fig. 2b). Limit the analysis to this cell. Consider the perturbation ui of the velocity field caused by the deformation

bifurcation (ui is the difference between the velocity field at the onset of bifurcation and the field just before the bifurcation).

Both ui and their spatial derivatives ui,j (j ¼ 1,2,3) are non-zero only in the direction orthogonal to the bands. The velocities ui
at the cell boundaries are indicated in Fig. 2b. Assume that the deformation field is uniform both within the localization

band and outside it. The definition of the velocity gradient field within the cell is then straightforward from Fig. 2b:

uð1Þ3;3 ¼ ub=d,

uð2Þ3;3 ¼ �ub=l,

uðrÞ
k;l

¼ 0; if kala3, (1)

where r ¼ 1, 2, with r ¼ 1 standing for the localization band, and r ¼ 2 for the inter-band zone; k,l ¼ 1,2,3.

3. Bifurcation condition

The following is based on Hill (1962), Mandel (1964, 1966) and Rudnicki and Rice (1975). Since both the properties and

the deformation field are uniform within the localization band and outside it, the stress field is uniform as well. Therefore,

the equilibrium equations are met in both zones and hence the stress can change only across the band boundary. Writing

the equations of continuing equilibrium in terms of first Piola–Kirchhoff stress pij, _pij;i ¼ 0 (Hill, 1962) and considering that

at the onset of bifurcation the stress can change only at the band boundary in a direction perpendicular to it obtain

_p33;3 ¼ 0, (2)

where

_pij ¼ _sij þ sijuk;k � skjui;k, (3)

and _sij is the material time derivatives of the Cauchy stress sij. From (2) follows the condition of the continuity of the

traction rate at the band boundary:

_pð1Þ
33 � _pð2Þ

33 ¼ 0, (4)

x3

x1

2

1 υb

υ
1
 =

 0

υ
1
 =

 0

υ3 = 0

υ3 = 0

λ

d

Fig. 2. Regular set of compaction bands (a) and an elementary cell of the deformation pattern (b). d is the localization band thickness; l is the inter-band

distance; tb is the velocity vector at the compaction band boundary during bifurcation relative to x1-parallel cell boundaries (tb is orthogonal to the band);

xi are the principal axes. 1 and 2 denote localization band and inter-band zones, respectively.
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where _pðrÞ
33 are stresses at the internal (r ¼ 1) and external (r ¼ 2) sides of the localization band, respectively. The strain and

deformation rates are related by a linear, homogeneous tensor relation:

s
rðrÞ

ij ¼ LðrÞ
ijkl

DðrÞ
kl
, (5)

where Dij ¼ (1/2)(ui,j+uj,i); s
r
ij is the invariant to rigid body spins Jaumann derivative of the Cauchy stress:

s
r
ij ¼ _sij �W ikskj þ sikWkj, (6)

Wij ¼ (1/2)(ui,j�uj,i) and Lijkl is the incremental elastic–plastic stiffness tensor.

Substituting the velocity gradient from (1) into (3) and (6) obtain _pij ¼ s
r
ij ¼ _sij which simplifies (4) and (5) to their

usual form while neither neglecting the rotational effects nor assuming that the acting stresses are small compared to the

stiffness moduli (this is true only when the localization bands are parallel to a principal plane when the rotation of the

principal axes does not occur during the bifurcation). Instead of (4) and (5) we thus have, respectively

_sð1Þ
33 � _sð2Þ

33 ¼ 0 (7)

and

_sðrÞ
ij ¼ 1

2
LðrÞ
ijkl

ðuðrÞ
k;l

þ uðrÞ
l;k
Þ. (8)

Substituting (1) and (8) into (7) yields the bifurcation condition:

Lð1Þ3333 þ wLð2Þ3333 ¼ 0, (9)

where w ¼ d/l is the spacing parameter. This equation can be also obtained from the general formulas derived by Garagash

(1981) based on the virtual work principle for a set of parallel bands (he considered shear bands arbitrarily oriented

in (x1, x3) plan).

To specify the stiffness tensors LðrÞ
ijkl

, assume the isotropic-hardening model with Drucker–Prager both yield f(sij) and

plastic potential F(sij) functions:

f ¼ t̄þ as� k, (10)

F ¼ t̄þ bs,

where a is the internal friction coefficient; k is the cohesion; b is the dilatancy factor; t̄ ¼ ðð1=2ÞsijsijÞ1=2 is the Mises

equivalent shear stress; sij ¼ sij�dijs is the stress deviator, dij is the Kronecker delta, and s ¼ (1/3)sii is the mean stress.

This model, along with Hooke’s equations, results in the following expressions for Lijkl (Rudnicki and Rice, 1975):

Lijkl ¼ G ðdikdjl þ dildkjÞ þ
K

G
� 2

3

� �

dkldij

� ��

� G

ðH þ GÞ þ abK
Nij þ

K

G
bdij

� �

Nkl þ
K

G
adkl

� ��

, (11)

where K and G are the bulk and shear elastic moduli, respectively; Nij ¼ sij=t̄; H ¼ dk=dḡp � sðda=dḡpÞ is the plastic

hardening modulus; dḡp ¼ ð2dep
ij
dep

ij
Þ1=2, deijp ¼ deij

p�(1/3)dep, deij
p is the increment of inelastic strain, and dep ¼ deii

p. The

dilatancy factor is defined as b ¼ d�p=dḡp (Nikolaevskiy, 1967).

4. Continuous bifurcation

In this case the material within and outside the localization bands is in elastic–plastic state and Lijkl
(1) ¼ Lijkl

(2) ¼ Lijkl,

where Lijkl is given by (11). The bifurcation condition (9) is transformed to

L3333ð1þ wÞ ¼ 0 (12)

which is satisfied when L3333 ¼ 0. Solving this equation for the hardening modulus yields

h
c
cr ¼

Hc
cr

G
¼ ð1þ nÞðb� aÞ2

9ð1� nÞ � 1þ n

1� n

1

2
N3 �

aþ b

3

� �2

� 1� 3

4
N2

3

� �

, (13)

where N3 ¼ ðs3=t̄Þ ¼ �ð1=2ÞðN þ ð1=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� 3N2
p

Þ, N ¼ s2=t̄, si is the principal deviatoric stress, superscript ‘‘c’’ stands

for compaction.

When the reducing normalized hardening modulus h reaches hccr during inelastic deformation, the uniform deformation

field should bifurcate resulting in formation of the compaction bands. This can occur only if hccr is not less than the critical

hardening modulus h
sh
cr at which the loss of stability takes place in the form of shear banding

h
c
crXh

sh
cr , (14)

otherwise the deformation localization will occur via shear banding. For the continuous bifurcation, hshcr obtained by

Rudnicki and Rice (1975) for a single shear band was shown to be the same as for the network of conjugated shear bands
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(Chemenda, 2007) and equal to

h
sh
cr ¼

Hsh
cr

G
¼ 1þ n

9ð1� nÞ ðb� aÞ2 � 1þ n

2
N þ aþ b

3

� �2

. (15)

Substituting (13) and (15) into (14) yields

N3X
ð1þ nÞðaþ bÞ

3
� ð1� nÞN (16)

or

bp� að1þ nÞ þ 3ðn� 1ÞN � 3N3

ð1þ nÞ
or

ap� bð1þ nÞ þ 3ðn� 1ÞN � 3N3

ð1þ nÞ . (17)

Expressions (13) and (16) are equivalent to those obtained in (Perrin and Leblond, 1993; Issen and Rudnicki, 2000;

Bésuelle, 2001) which is not surprising since they follow from (12) equivalent in turn to the condition of vanishing the

determinant of the acoustic tensor det|niLijklnl ¼ 0 for a compaction band, with the unit normal ni in the principal axes

being: n1 ¼ n2 ¼ 0; n3 ¼ 1.

Although the band spacing parameter w is present in Eq. (12), it does not enter the final expressions (13) and (16) and

hence is not defined, similar to the shear-banding problem (Chemenda, 2007).

The deformation accelerates within the localization (loading) bands and undergoes deceleration (unloading) outside

them. Therefore at the next stage of deformation (infinitesimal deformation past the continuous bifurcation point), the

constitutive response outside the bands should become elastic (Rice and Rudnicki, 1980) which corresponds to the

discontinuous or elastic–plastic bifurcation (Rice and Rudnicki, 1980; Ottosen and Runesson, 1991).

5. Discontinuous bifurcation

In this case Lð1Þ
ijkl

¼ Lijkl from (11) and

Lð2Þ
ijkl

¼ G ðdikdjl þ dildkjÞ þ
K

G
� 2

3

� �

dkldij

� �

. (18)

Substituting these into (9) and solving it for h and w yields

h ¼ H

G
¼ h

c
cr þ w

Cab
18ð2n� 1Þð1� nÞðwþ 1Þ , (19)

w ¼ 18ðh� h
c
crÞð2n� 1Þð1� nÞ

18ðh� h
c
crÞð2n� 1Þðn� 1Þ þ Cab

, (20)

where Cab ¼ [2b(1+n)�3N3(2n�1)][2a(1+n)�3N3(2n�1)]. It follows from (20) that at h ¼ h
c
cr w ¼ 0, meaning that the

distance l between the localization bands is infinite in this case. In other words, the critical condition for the continuous

bifurcation corresponds to the formation of a single discrete band in an infinite body. If before reaching h
c
cr , h drops rapidly

(instantaneously) during deformation to hoh
c
cr , w will be positive (l has a finite value) and defined by (20). Fig. 3 shows

N
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Fig. 3. Contour plots of the obtained solution w(a, b, n, N, h): (a) w(N, h) for a ¼ �0.2 and b ¼ �1.5; (b) w(a, h) for b ¼ �1.5 and N ¼ 0.577; (c) w(b, h) for
a ¼ �0.2 and N ¼ 1=

ffiffiffi

3
p

. In all cases n ¼ 0.3.
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that with the reduction of h, with other parameters constant, w increases (l reduces) whatever the values of these

parameters. The band pattern reaches a ‘‘saturation’’ state at w close to the unity, i.e., when the inter-band distance is close

to the band thickness. Although it is possible that the band network forms and is ‘‘distinguishable’’ at w41 (lod), we will

consider that the limit value of w is w ¼ 1. There exists thus a limited range for the h values, hcw¼1phph
c
w¼0, for which the

formation of a regular band pattern is possible (Fig. 4). This range varies strongly with constitutive parameters. It can

vanish or even become ‘‘negative’’ (Fig. 4b) when h
c
w¼0 ¼ h

c
croh

c
w40. If this condition is met, h becomes a growing function of

w (as follows from (19)) and reaches maximal value h
c
14h

c
cr at w ¼ N which corresponds to zero width of the unloading

band. Since during the loading program, the reducing h will first reach h
c
1 (and not h

c
w¼0 ¼ h

c
cr), the localization of

deformation will be impossible (the numerical models like those presented below, run in these conditions, bug).

The localization can only occur when h
c
w¼0Xh

c
w40. Considering (19) this condition will be satisfied if either

apQ ; bpQ

or

aXQ ; bXQ , (21)

where

Q ¼ 3ð2n� 1Þ
2ðð1þ nÞ N3.

Since Q is always positive and the compaction banding typically develops in the geomaterials at a negative b, only the

first set of inequalities in (21) may have practical sense, but it is not very limitative since the realistic a and b values

basically satisfy these inequalities. The condition which does impose limits on the constitutive parameters for the

compaction banding to occur can be found from the same principle applied above for the case of continuous bifurcation

(conditions (17)). It follows from inequality

h
cðwÞ4h

shðwÞ, (22)

where hsh(w) is the critical hardening modulus for the formation of shear-band network with spacing parameter w from

Chemenda (2007). Condition (22) is much less restrictive than h
c
crXh

sh
cr applied for the continuous bifurcation. This is

illustrated in Figs. 5a and c corresponding to different sets of the constitutive parameter values. Both show that the

continuous bifurcation (corresponding to h ¼ hcr) can occur only in the regime of shear banding for the chosen parameter

values. However, at sufficiently small h, compaction banding becomes possible. Since expression hsh(w) is very cumbersome

(Chemenda, 2007), the condition (22) cannot be expressed in a reasonably compact explicit form. Therefore we present it

graphically for two sets of the constitutive parameter values (Figs. 5b and d). These figures show that compaction banding

can occur at very small negative or even positive (Fig. 5d) b and not only at bobcr as follows from (17) for the continuous

bifurcation. For parameter values assumed in Figs. 5a and b, bcr ¼ �1.93, and in Figs. 5c and d, bcr ¼ 1.53 (these bcr values

correspond in Figs. 5b and d to Dhw ¼ 0 ¼ 0).

6. Numerical tests

2-D numerical simulations were performed using finite-difference, time-matching explicit code Flac3D. The

Drucker–Prager model with strain softening and b variation with ḡp was implemented in this code in C++ using User

Defined Models option.
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Fig. 4. Normalized hardening moduli h
c
w¼0 ¼ h

c
max ¼ h

c
cr and h

c
w¼1 ¼ h

c
min versus N, a and b: (a) a ¼ �0.1 and b ¼ �1.6; (b) b ¼ �1 and N ¼ 0.577;

(c) a ¼ �0.1 and N ¼ 1=
ffiffiffi

3
p

. In all cases n ¼ 0.3. 1, Range where compaction banding is impossible.
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Fig. 5. (a and c) Hardening moduli for compaction (hc) and shear (hsh) banding versus spacing parameterw. (b and d) Contour plots of

Dh(w,b) ¼ hc(w,b)�hsh(w,b). In (a and b) a ¼ 0.2, and b ¼ �0.7 in (a). In (c and d) a ¼ �0.2 and b ¼ �0.4 in (c). In all cases n ¼ 0.3 and N ¼ 1=
ffiffiffi

3
p

.

hc(w,b) is from solution (19) and hsh(w,b), from solution in Chemenda (2007).

−V3

x3

x1

−V1
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V3

Fig. 6. Set-up of a plane-strain numerical model. The model size is 1.25�5 cm (50�200 numerical zones); V1 ¼ 0, and V3 ¼ 4�10�14m/s.
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The numerical models are uniformly pre-stressed close to the yield surface and then subjected to slow velocity

boundary conditions (in order to ensure quasi-static deformation before the bifurcation) at plane-strain state (Fig. 6).

The inelastic deformation starts at the imposed (constant in the most of tests) h value. There is thus a drop of h from

hbh
c
cr (when no deformation bifurcation is possible) to the imposed value. In the first series of simulations only two

parameters are varied in different runs, h and the maximal effective inelastic shear deformation ḡpmax. The model is first

run with h close to h
c
w¼0 ¼ h

c
cr . The spacing parameter w (calculated automatically as a ratio of the total area with

elastic–plastic state to the total area with elastic state) stabilizes during this run starting from ḡpmax ¼ 3:2� 10�8. Other

models were run for different h until the same ḡpmax value had been reached (Fig. 7). The influence of ḡpmax on w at different h

was also tested.

In the second series of simulations the impact of h and b variation with ḡp on the model deformation was studied. The

last three models were conducted to test the theoretical prediction of the possibility of compaction banding at low |b|.

 - 1

 - 2

Fig. 7. Distribution of loading and unloading bands for different h at ḡpmax ¼ 3:2� 10�8: (a) h ¼ 1; (b) h ¼ 0.8; (c) h ¼ 0.6, and (d) h ¼ 0.4. Other parameter

values are: a ¼ 0.2, b ¼ �2, N ¼ 1=
ffiffiffi

3
p

, n ¼ 0.3. (1) Elastic–plastic state and (2) elastic state.

 < 4.0e-8
 < 3.3e-6

 < 4.0e-5
 < 3.3e-3

 < 2.0e-10
 < 3.4e-8

 - 1
 - 2

 - 1
 - 2

 - 1
 - 2

Fig. 8. Distribution of loading and unloading bands (a, c, and e), and the ḡp pattern (b, d, and f) for different ḡpmax values and h ¼ 0.6: (a) and (b)

ḡpmax ¼ 3:2� 10�8; (c) and (d) ḡpmax ¼ 3:2� 10�6; (e) and (f) ḡpmax ¼ 3:2� 10�3 . Other parameter values are given in Fig. 7 caption. (1) Elastic–plastic state

and (2) elastic state.
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6.1. Results

In the shear-banding simulations (Chemenda, 2007), the discontinuous bifurcation was always preceded by a very short

episode of continuous bifurcation, characterized by the dense band pattern with w approximately equal to the unity. At the

next stage, the material outside the loading bands entered the elastic state. The size of the elastic (unloading) zones then

rapidly grew, resulting in reduction of w until it reached a certain stationary value at the end of this transition from

continuous bifurcation to the stationary deformation pattern corresponding to the discontinuous bifurcation. The

compaction banding developed in a similar way, but started directly with the discontinuous bifurcation corresponding to

the transient stage with formation of a dense pattern of intermittent loading and unloading bands. The stationary

deformation pattern was reached at certain (very small) ḡpmax depending on h. Fig. 7 shows strong dependence of the

distance (spacing) l between the bands on h for the same ḡpmax: l reduces (the spacing parameter w increases) with h

reduction. In Figs. 8a, c, and e it is seen that for h ¼ const, l increases with ḡpmax, but not significantly (especially if one notes

that ḡpmax changes from Fig. 8a to e by five orders of magnitude) as is also seen in Fig. 9.

Fig. 10a demonstrates that starting from some resolution (density) of the numerical grid (number nz of the numerical

zones/elements), w can be considered constant for given h and ḡpmax values. The band thickness d, on the contrary, is directly

dependent on the grid zone-size Dl (Dl is the edge-length of the used cubic grid zones) and is equal to d̃Dl where factor d̃

(which can be considered as the relative/normalized band thickness) as well as the whole compaction-band pattern have

proved to be independent of Dl (Fig. 10b). The d̃ value depends on h: it is equal to �4 at h close to h
c
w¼0 and reduces to �2

with h reduction to h
c
w¼1.

h
c

χ
0 0.22 0.43 0.65 0.86 1.08

0.2

0.37

0.53

0.7

0.86

1.03

- 1

- 2

- 4

- 3

Fig. 9. Relation between the spacing parameter w and the normalized hardening modulus hc: comparison of theoretical and numerical results. (1)

Theoretical curve, and (2)–(4) points obtained from the numerical models for different ḡpmax values: (2) ḡpmax ¼ 3:2� 10�8; (3) ḡpmax ¼ 3:2� 10�6 , and (4)

ḡpmax ¼ 3:2� 10�3 . The constitutive parameter values are given in Fig. 7 caption.
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Fig. 10. (a) Variation of the spacing parameter w with the grid density (number of the grid elements nz) for different h and ḡpmax values; (b) fragments of

two numerical models (with loading bands) run under the same conditions (h ¼ 0.75 and ḡpmax ¼ 3:2� 10�6), but having different grid sizes nz. (1)

h ¼ 0.75 and ḡpmax ¼ 3:2� 10�6; (2) h ¼ 0.75 and ḡpmax ¼ 3:2� 10�4; (3) h ¼ 0.85 and ḡpmax ¼ 3:2� 10�4; (4) h ¼ 0.85 and ḡpmax ¼ 3:2� 10�6. Other

parameter values are given in Fig. 7 caption.
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If distribution of the loading and unloading bands is homogeneous through the model, the ḡp pattern shows a reduction

of the deformation velocity from the model ends toward its horizontal axis (Figs. 8b, d, and f). Such a velocity gradient is

also revealed in the sub-critical (h4h
c
cr) regime of deformation (Fig. 11).

In real material, h is not constant as in the above models and is known basically to decrease during deformation (with

ḡp). Such a reduction was introduced in the model in Fig. 12 where h reduces from sub-critical value 1.1 (hccr ¼ 1) to 0.6. At

the initial stages of the model run at h4h
c
cr one observes the same as in Fig. 11 gradual reduction of ḡp toward the model

center (Fig. 12a) and then the rapid concentration of the deformation at the model extremities (Figs. 12b–d). This

corresponds to the formation of two compaction bands similar to Fig. 7a where h ¼ 1 (in Fig. 12d, h ¼ 0.6). When h reduces

instantaneously from some sub-critical value to h ¼ 0.6, a dense set of bands shown in Fig. 7c is formed.

Like h, b cannot remain constant during the deformation of a real material: it should normally grow (compaction cannot

continue infinitely) and can become even positive at large deformation (Vajdova et al., 2004). Fig. 13 shows the result

of such a growth. The deformation of this model starts with formation of two compaction bands at the model extremities

(as in Fig. 7a), since initial h is large (close to h
c
cr and remaining constant during the model run). If b is constant, then

the banding pattern is not changed during deformation, only ḡp within the bands is increasing. Increase of bwith ḡp results
in the widening of these bands (Fig. 13) which propagate toward each other and merge at a sufficiently large shortening of

the model. The band widening starts when b within the bands increases to a certain value, to ��1.8 in Fig. 13 which

corresponds to ḡp � 2� 10�7. When b increases slower with ḡp, the band widening starts correspondingly at a larger ḡp.
In the models with simultaneous h reduction and b increase, ḡp variation along the model axes is smoother (in Fig. 13

the boundaries of the widening bands are sharp).

Fig. 14 shows two models run at high (compared to the continuous bifurcation prediction) dilatancy factor b ¼ �0.7 to

test the theoretical prediction presented in Fig. 5a. The models differ by the hardening moduli which are h ¼ �0.15

and �0.36 and correspond (according to Fig. 5a) to shear and compaction banding, respectively. The other constitutive

parameters are the same as in the previous models. The result is in total agreement with the prediction. The w values

calculated in the numerical models are almost exactly the same as those following from (20) (see graph at the top

of Fig. 14).

The deformation gradient seen in Fig. 14d persists at a larger deformation if the negative b is constant. However, it

disappears (ḡp becomes almost the same within all bands, reaching some ‘‘saturation’’ value of ḡp0) when b increases with

ḡp. This increase results in the discrete propagation banding (Fig. 15) which is also observed in the rock samples (Fig. 16). In

the model in Fig. 15, b increases from �0.7 to 0.18 reached at ḡp ¼ 2� 10�7 at the last stage shown in Fig. 15f. This ḡp value
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 < 2.5e-8

 < 4.34e-8

 < 1e-8

 < 3e-8

 < 5e-8
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 < 6e-8
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Fig. 11. Distribution of ḡp for successive stages of the model deformation in sub-critical (h4h
c
cr) regime; h ¼ 1.1 (hc

cr ¼ 1). Other parameter values are

given in Fig. 7 caption.
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corresponds to ḡp0 which thus is controlled by the rate of b increase (similar to the model of continuously widening bands in

Fig. 13). It is important that the compaction band set expressed in Fig. 15f in terms of ḡp distribution existed already (but

not seen yet in terms of ḡp or damage distribution) at the very beginning of the deformation bifurcation (Fig. 15a). The

‘‘visual’’ effect of propagating banding occurs also when h increases with ḡp at b ¼ const since the deformation slows down

within the bands where ḡp (hence h) has reached a sufficiently large value.

Fig. 17 presents three more models having both geometry and constitutive parameter values more representative of the

rock samples tested in laboratory (e.g., Baud et al., 2006; see also Fig. 16). The result is basically the same as in Fig. 14 and
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Fig. 12. ḡp pattern for successive stages of the model evolution at a ¼ 0.2, n ¼ 0.3, b ¼ �2, N ¼ 1=
ffiffiffi

3
p

, and h reducing from 1.1 at ḡp ¼ 0–0.6 at ḡp ¼
2� 10�7 as cosine function of ḡp: (a) h ¼ 1.04; (b) h ¼ 1; (c) h ¼ 0.8; (d) h ¼ 0.6.
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Fig. 13. ḡp pattern for successive stages of the model evolution at a ¼ 0.2, n ¼ 0.3, h ¼ 0.9, N ¼ 1=
ffiffiffi
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, and b linearly increasing from �2 at ḡp ¼ 0 to �1.8

at ḡp ¼ 2� 10�7.
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demonstrates a gradual transition from shear to compaction banding which occurs in different models with h reduction

(w increase).

7. Discussion

7.1. Continuous versus discontinuous bifurcation: evolution of the hardening modulus

As in the case of shear banding (Chemenda, 2007), the formation of a set of discrete compaction bands is predicted

theoretically and obtained in numerical models only in a regime of discontinuous bifurcation at hphcr when the material

outside the bands undergoes the elastic unloading, with inelastic deformation ḡp accelerating within the bands. This

phenomenon is closely related to the evolution of the hardening modulus h with ḡp. If h reduces continuously with ḡp then
the bifurcation will start in a continuous elastic–plastic regime at h ¼ hcr which will be followed very rapidly by the

discontinuous bifurcation as predicted by Rice and Rudnicki (1980) (the superscripts ‘‘sh’’ or ‘‘c’’ corresponding to shear and

compaction banding are omitted here as this discussion is valid for all types of localization bands). As was shown above,

only one band can be formed in this regime in an infinite body (the band spacing is infinite) and the material will continue

to fail only within this band with further h reduction. This is the case in the numerical model in Fig. 12, although instead of

one band, two bands were forming at the model extremities because of its perfect homogeneity and symmetry. The same is

true for shear banding. In reality, however, we observe the formation of conjugated band networks (see examples of shear

bands in Chemenda, 2007) or quasi-parallel band sets (e.g., Figs. 1 and 16). According to the presented results, for such

networks/sets to form, h should drop rapidly (instantaneously) during deformation to hohcr before reaching hcr as is the

case in the models in Figs. 7 or 14, 15, and 17. The formation of band networks/sets both in nature and in laboratory can be

considered therefore as indirect proof of a rapid h drop. It remains, however, unclear whether the whole network/set is
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Fig. 14. Results of two numerical models run at h ¼ �0.15 (a and b) and h ¼ �0.36 (c and d) and the same other parameters: a ¼ 0.2, b ¼ �0.7, n ¼ 0.3,

and N ¼ 1=
ffiffiffi

3
p

. (a) and (c) Distribution of the loading and unloading bands; (b) and (d) ḡp patterns with grey-level palettes interval of 2.5�10�8. The graph

at the top of this figure is a reduced copy of Fig. 5a with two points 1 and 2 added. The abscissas of these points w ¼ 0.25 and 0.71 were obtained in the

above numerical models run to ḡpmax ¼ 3:2� 10�8 at h ¼ �0.15 and �0.36, respectively. (1) Elastic–plastic state and (2) elastic state.
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initiated instantaneously, as predicts the above theory, or not. In the laboratory tests on rock samples, in the regime of

shear banding only one or two conjugated bands can usually be accommodated because of small sample size which limits l

value. The closely spaced shear-band/fracture networks were also observed in the rock samples as mentioned above,

although it is not clear whether they were generated simultaneously or not. The author observed instantaneous initiation

of shear-band networks at the surface of the elastic–plastic layer under axi-symmetric extension (the layer was made of

wax-type material; Fig. 9 in Chemenda et al., 2002).

The compaction band sets clearly do not appear simultaneously in the laboratory rock samples, but in a propagating

manner by progressively filling the sample from the ends to the center (Klein et al., 2001; Wong et al., 2001; Baud et al.,

2004) (Fig. 16). The numerical model in Fig. 15 shows, however, that it may not mean that all the bands are not initiated

simultaneously, but that the bands first visually appear at the sample ends and then progressively toward its center. This

propagating appearance is related to the evolution of the inelastic deformation ḡp which in reality is proportional to the

material damage degree. The latter defines in turn the material texture change. Starting from some ḡp value (first attained
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Fig. 15. Distribution of loading and unloading bands (a) and ḡp patterns (b–f) for successive stages of the model evolution at a ¼ 0.2, n ¼ 0.3, h ¼ �0.36,

N ¼ 1=
ffiffiffi

3
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and b linearly increasing from �0.7 at ḡp ¼ 0 to 0.18 at ḡp ¼ 2� 10�7. (a) and (b) correspond to the same stage of the model deformation. (1)

Elastic–plastic state and (2) elastic state.

Fig. 16. Propagating discrete compaction banding in Bentheim sandstone sample under vertical axi-symmetric compression at different axial strains eu
(from Baud et al., 2004): (a) eu ¼ 1.4�10�2; (b) eu ¼ 3.1�10�2; (c) eu ¼ 6�10�2.
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at the sample ends) the compaction bands become visually distinguishable which explains apparent propagating discrete

banding observed in the rock samples (Fig. 16). Careful inspection of the photos in this figure reveals incipient (hardly

visible) bands of damaged material in the ‘‘intact’’ sample segments. Yet the distribution of the of acoustic emission

hypocenters during shear and compaction banding in the sandstone samples also seems to show that these processes affect

the whole samples from the onset of strain localization (Fortin et al., 2006).

We thus conclude from the comparison of the laboratory experiments and field observations with theoretical analysis

and numerical simulations that hðḡpÞ for real materials can be discontinuous at certain ḡp value (values). This conclusion is

consistent with the fact that the localization in the rock samples systematically occurs at h4hcr (e.g. Wong et al., 1997;

Holcomb and Rudnicki, 2001) and can be characterized by the break of the stress–strain curves (see examples in Fig. 18).

What can cause an abrupt reduction of h? The function hðḡpÞ is defined in the rocks by the evolution of damage within

both the grains and the cement. When they are sufficiently brittle, the more or less gradual initial damage should be

followed by a rapid failure of one or both components with complex interaction between them. The result will be an abrupt

reduction in the dip of the stress–strain curve (like that in Fig. 18) at a certain deformation ḡplim depending on the micro-

physical characteristics of the material. It should be noted, however, that after the onset of the stress drop (coinciding

approximately with the bifurcation onset) in the laboratory tests, the deformation of the sample is no longer homogeneous.

The measured stress–strain curves record a combined response of the loading (damaging) material within the localization

bands (where the stress state and material properties change very rapidly) and unloading material outside the bands.

Therefore the dip of the stress–strain curve after the bifurcation point does not directly reflect the hardening modulus of

the material within the band. The stress drop during abrupt h reduction can be much smaller than in Fig. 18 or even be

undetectable (the precision and frequency of data acquisition may be insufficient). This is a major difficulty in ‘‘extracting’’

the constitutive parameters after the bifurcation point. Hopefully these parameters can be accessed using numerical

simulations (like those presented above) by simultaneously reproducing in the models both the sample deformation

pattern and the stress–strain curves.

The parameter ḡp
lim

is a material property and is absolutely not related to the lowest (most critical) bifurcation point

(corresponding to hcr) predicted from the continuous bifurcation analysis. If during loading hcr is not attained yet, but ḡp has
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Fig. 17. Distribution of loading and unloading bands in three models deformed to ḡpmax ¼ 2� 10�7 at a ¼ �0.2, b ¼ �0.4, n ¼ 0.3, E ¼ 5�109 Pa, N ¼ 1=
ffiffiffi

3
p

and different h values: (a) h ¼ �0.3; (b) h ¼ �0.54; (c) h ¼ �0.7. These three cases correspond to different strain localization regimes indicated in the

graph at the top of this figure which is a reduced copy of Fig. 5c. The model size is 2.5�5 cm (100�200 numerical zones). The boundary conditions are

the same as in Fig. 6. (1) Elastic–plastic state and (2) elastic state.
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already reached ḡplim, the bifurcation will occur at ḡp ¼ ḡplim in discontinuous mode and will result in a formation of a set of

bands with a spacing being defined by h value just after the point ḡp ¼ ḡp
lim

. If on the contrary, hcr is reached before ḡp ¼ ḡp
lim

,

then the bifurcation will start in continuous mode and be followed by discontinuous mode when h (hence l) is reduced

sufficiently (compared to hcr) for one band to be accommodated within the sample (the band can be formed only when the

corresponding l is smaller than the sample size). Again, for one band to form, h should reduce from hcr continuously,

otherwise a set of bands will be generated. Once one band (or two bands at the sample ends) is (are) formed, the further

inelastic deformation can continue only within this (these) band (bands). The abrupt drop of h at this stage will not change

the deformation pattern and will only accelerate the deformation within the existing bands. Increase in negative b during

such a deformation will result in widening the bands (Fig. 13) after the maximal deformation within them reached some

value defined by bðḡpÞ function (the same will result from the increase of hðḡpÞ which can be negative at bifurcation and

then increase with ḡp to positive value). Such a process was obtained both in the numerical model (Fig. 13) and in the rock

samples (e.g. Olsson, 2001; Baud et al., 2004).

7.2. Single- versus two-yield surface model and a and b values allowing compaction banding

The yield surface is defined by the evolution of t̄ with s at ḡp ¼ const when ḡpa0. For rock-type materials it is

characterized by positive a at low s, which becomes negative at the cap segment of the yield surface (Fig. 19). b also

reduces with s from more or less positive to negative values, but reveal strong deviation from normality and can be

negative at very low s when a has its maximal positive value (e.g. Vajdova et al., 2004). It seems that deviation

from normality becomes smaller at a cap when approaching s axis. This axis can be reached at a sharp angle (dashed line in
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Fig. 19. Schematic of the yield surface.
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Fig. 18. Examples of experimental curves, axial differential stress q versus axial strain eax ¼ |e3|, from axi-symmetric compression tests where shear-

compaction and pure compaction bands were generated. q ¼ |s3�Pc|, Pc is the confining pressure: (a) for Bentheim sandstone (Baud et al., 2004) and (b)
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Fig. 19) forming thus a vertex (see examples of the yield surfaces in Vajdova et al., 2004; Fortin et al., 2006). If a cap surface

reaches hydrostatic axis at a right angle, the above constitutive formulation results in a singularity near point (t̄, s*) both in

a and b (since ḡp ¼ 0, epa0 and d�p ¼ bdḡp). This can be easily avoided by tracking the history of inelastic deformation

using ep instead of ḡp (Issen, 2002) as is explained below.

Issen (2002) (see also Issen and Challa, 2008) also introduced a two-yield surface model. Both surfaces correspond to

Drucker–Prager yield function. The difference between the constitutive formulations consists in using two different forms

of Prager consistency condition: for low s it is ð@f=@sijÞdsij þ ð@f=@ḡpÞdḡp ¼ 0 and for large s, corresponding to a cap

surface, ð@f=@sijÞdsij þ ð@f=@�pÞd�p ¼ 0. The two surfaces meet at a corner (vertex) where the compaction banding is

supposed to occur. Although there is no clear evidence either of a two-surface model nor of existence or absence of the

vertex (Rudnicki, 2004), this model admits compaction banding at wide range of a and b values (at a vertex) including

those corresponding to the experimental data (the continuous bifurcation analysis for a single yield surface predicts too

negative a and b values (e.g., Baud et al., 2006)). On the other hand, the multi-band discontinuous bifurcation analysis in

this paper predicts compaction banding at realistic a and b values for a single yield surface: the maximal values of these

parameters can be close to zero. In the numerical models in Fig. 17, the parameter values are typical of sandstone samples

tested in laboratory: a ¼ �0.2, b ¼ �0.4, n ¼ 0.3, N ¼ 1=
ffiffiffi

3
p

(Baud et al., 2006). As in the rock samples, the height/width

ratio in this model is of 2. One can see the predicted gradual transition from shear to compaction banding in different tests

with h reduction. Not only b ¼ �0.4 in this model is realistic (the mono-band analysis predicts bcrE�1.5 for the same other

parameters), the details of irregular zigzag shape of the bands (Figs. 17b and c and also 15) are also very similar to those

observed in the samples deformed in laboratory (Fig. 16).

7.3. Band thickness, spacing and shape

Both theoretical analysis (Figs. 3 and 9) and numerical models (Figs. 7, 9, 14, and 17) show a rapid increase in the

compaction-band spacing parameter w ¼ d/l (reduction of spacing l) with reduction of the h. In the numerical models w
increases somewhat more slowly and reaches the ‘‘saturation’’ value w ¼ 1 at an h value lower than predicted (Fig. 9).

Since the constitutive formulation used involves no inherent length scale, neither d nor l in the numerical models

represents actual band thickness and spacing in a real material (even if it has exactly the same properties as the numerical

model). The theory gives no indication about the absolute values of these parameters. In the numerical models they are

strongly mesh dependent in the sense that they are proportional to the grid zone-size Dl. However, the ratio w ¼ d/l in

these models is practically constant (for given values of the constitutive parameters and ḡpmax) and mesh-independent at

sufficiently large resolution of the numerical grid (Fig. 10a). This is in accordance with the theoretical prediction. The

physical origin of such mesh independence is related to the energy necessary to accelerate the inelastic deformation within

the band (i.e., to form the band). This energy is supplied by the inter-band unloading (hence losing the energy) areas. The

thicker the band (the larger the Dl value) the more energy is necessary for the localization to occur; hence the larger inter-

band area should be unloaded. Therefore both d and l grow with Dl increase, but their ratio remains constant (if the energy

dissipating by the elastic waves in the case of dynamic deformation localisation is negligible compared to the work on an

inelastic deformation).

What could not be predicted theoretically is that the relative band thickness d̃m ¼ dm=Dlm in the numerical models is

also mesh-independent (see, for example, Fig. 10b), i.e., it does not depend on the numerical zone-size Dlm (subscript

‘‘m’’ stands for the model). Since both d̃m and wm are invariant to the mesh density, the average relative band spacing

l̃m ¼ lm=Dlm is mesh-independent as well.

The d̃m value in the above numerical simulations depends on h, but not strongly: it varies from ca. 4 to 2 when h reduces

from h
c
w¼0 to h

c
w¼1 and, on average, includes two grid zones (e.g. Fig. 10b). These d̃m values cannot be predicted from the used

constitutive formulation and may depend on the details of the numerical solution algorithm embedded in the calculation

code. d̃m was also shown to depend on the orientation of the grid: if the grid is parallel/orthogonal to the

principal directions, the band thickness is simply equal to one zone-size. In conclusion, d̃m is constant in the performed

simulations for given values of the constitutive parameters and does not depend on the mesh resolution (Fig. 10b) when it

is sufficiently high.

In reality the thickness of an ‘‘elementary’’ discrete compaction band (not accumulated thickness of accreted/extending

bands resulting from a large deformation) is as small as 2–3 grain sizes Dlr (e.g., Mollema and Antonellini, 1996; Baud et al.,

2004), which yields for the relative band thickness d̃r ¼ dr=Dlr 2–3 (subscript ‘‘r’’ corresponds to the real material). It occurs

thus that d̃m and d̃r vary approximately within the same range and that roughly d̃m � d̃r. In other words, the band thickness

in the numerical models appears to be approximately on scale with the band thickness in reality, with the scaling factor

being Dlr/Dlm. The same is true for the band spacing. It follows thus that both band thickness dm and band spacing lm
obtained in the numerical models can be upscaled to real conditions as drE(Dlr/Dlm)dm and lrE(Dlr/Dlm)lm. It seems that

the same scaling rule can be applied to the length of the band segments seen in the models (e.g., Fig. 10b) and also in nature

(Fig. 1).

There is a clear difference between the geometry of compaction bands in laboratory samples (Fig. 16) and in the field

(Fig. 1). In the first case the bands are thin, short, zigzag, and dense and in the second, they represent rather linear, long and

thick segments. It was also noted that the material damage intensity in the ‘‘laboratory’’ bands is much greater than in

16



natural bands (Tembe et al., 2008). All these observations are in general agreement with the obtained results. The longer,

thicker and more spaced the bands in the above models are, the closer h is to h
c
cr . In the laboratory, the spacing l is limited

by the sample size H and for the bifurcation to occur h should be reduced to the value for which loH. Reduction of h was

shown in the numerical models to result in the reduction of the band thickness.

Since h ¼ ððdk=dḡpÞ � sðda=dḡpÞÞ=G (e.g., Chemenda, 2007), h represents the rate of change of the material cohesive and/

or frictional strength with ḡp. This parameter can also be viewed as the rate of material damage, with the damage degree

being defined by both h and ḡp. Therefore, the material within the band deforming at lower hwill be damagedmore (for the

same ḡp). The rate b of the material compaction reduces with ḡp. This parameter becomes less negative which approaches

the conditions for the localization (relatively low h and high b) to those in the models in Figs. 15 and 17b and c. Since h

reduction can be discontinuous, the bifurcation can occur at any loH including l5H as is the case in Fig. 16. To reproduce

more closely the compaction-band patterns observed in the field and in the laboratory, a detailed constitutive description

of the material (given rock) is necessary.

The presented numerical models were subjected to the axi-symmetric loading which corresponds to the conventional

rock mechanics tests. The compaction banding was generated in the models at other stress states (other N values) as well in

accordance with the above theory.

8. Conclusion

The presented analysis of the formation of a compaction band set is very similar to shear-band network analysis

(Chemenda, 2007). The case considered in this paper, however, is simpler and the obtained solutions are more exact since it

was not necessary to make the usual assumption that the stresses acting in the system are small compared to the

elastic–plastic moduli and that the rotational effects are negligible. As for the shear banding, the compaction-band spacing

l is very sensitive to the normalized plastic hardening modulus h ¼ H/G and reduces from infinity to the band thickness or

less when h reduces from the maximal hmax to minimal hmin value. The h reduction from hXhmax to hminohohmax during

loading is rapid (instantaneous). Both hmax and hmin are defined by the constitutive parameters and the Lode-type stress-

state parameter N. If h is always larger than hmax, the bifurcation does not occur at all. If h reduces abruptly below hmin, the

deformation ‘‘jumps’’ into the post-localization state and the material becomes completely crushed. There exists thus a

limited range for the h values, hminphphmax, for which the formation of a regular incipient band pattern is possible. During

this process the material inside the bands undergoes accelerating inelastic deformation, while inter-band areas experience

elastic unloading.

A set of compaction bands is predicted to form at realistic dilatancy factor b values which are less negative (larger) than

the values following from the continuous bifurcation analysis. Very dense compaction banding with l comparable to d can

even be formed at positive b (Fig. 5d). The finite-difference numerical simulations confirm this result as well as the

predicted rapid reduction of the band spacing lwith h (Fig. 9). Spacing l also varies with other constitutive and stress-state

parameters: at h ¼ const l is minimal at N ¼ 1=
ffiffiffi

3
p

(axi-symmetric compression) and increases with N reduction. Yet, l

reduces with a growth and b reduction at h ¼ const (Fig. 3). The band shape also depends on the constitutive parameters. It

is very different for different b in numerical models (compare Fig. 10b with Figs. 15 and 17b and c). A very similar difference

is observed in real materials as well (compare Figs. 1 and 16).

Although the constitutive formulation used does not contain any inherent spatial scale (either absolute or relative), it

was shown that the deformation bifurcation phenomenon predicted within the frame of this formulation has a relative

scale w ¼ d/l. Parameter w was shown to be practically independent in numerical models on the grid resolution, and the

ratio d/Dl to be invariant to the grid zone-size Dl. The conclusion that follows is that both the band thickness dm and

spacing lm obtained in a numerical model can be upscaled to real conditions (materials) according to the following simple

formulas: drE(Dlr/Dlm)dm and lrE(Dlr/Dlm)lm, where Dlr is the grain size in the real material. The same rule seems to apply

to the length of the band segments. This result is important for applications of the numerical models to the natural/real

material/structures.
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Academic Press, pp. 219–321.

Chemenda, A., Deverchere, J., Calai, E., 2002. Three-dimensional laboratory modelling of rifting: application to the Baikal Rift, Russia. Tectonophysics 356,
253–273.

Chemenda, A., 2007. The formation of shear-band/fracture networks from a constitutive instability: theory and numerical experiment. J. Geophys. Res. 112,
B11404.
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