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Abstract

This paper describes a compound Poisson-based random effects structure for mod-
eling zero-inflated data. Data with large proportion of zeros are found in many
fields of applied statistics, for example in ecology when trying to model and predict
species counts (discrete data) or abundance distributions (continuous data). Stan-
dard methods for modeling such data include mixture and two-part conditional
models. Conversely to these methods, the stochastic models proposed here behave
coherently with regards to a change of scale, since they mimic the harvesting of
a marked Poisson process in the modeling steps. Random effects are used to ac-
count for inhomogeneity. In this paper, model design and inference both rely on
conditional thinking to understand the links between various layers of quantities :
parameters, latent variables including random effects and zero-inflated observa-
tions. The potential of these parsimonious hierarchical models for zero-inflated
data is exemplified using two marine macroinvertebrate abundance datasets from
a large scale scientific bottom-trawl survey. The EM algorithm with a Monte Carlo
step based on importance sampling is checked for this model structure on a sim-
ulated dataset : it proves to work well for parameter estimation but parameter
values matter when re-assessing the actual coverage level of the confidence regions
far from the asymptotic conditions.
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1. Introduction1

Often data contain a greater number of zero observations than would be pre-2

dicted using standard, unimodal statistical distributions. This currently happens3

in ecology (see [16]) when counting species (over-dispersion for discrete data) or4

recording biomasses (atoms at zero for continuous data). Such data are generally5

referred to as zero-inflated data and require specialized treatments for statistical6

analysis [12]. Common statistical approaches to modeling zero-inflated data make7

recourse either to mixture models, such as the Dirac function for the occurrence8

of extra zeros in addition to a standard probability distribution (see for instance9

[21]), or to two-part conditional models (a presence/absence Bernoulli component10

and some other distribution for non zero observations given presence such as in11

[25]). These models are well-known [4] and offer the advantages of separate fits and12

separate interpretations of each of their components. Parameters are well under-13

stood and interpreted as the probability of presence, and the average abundance14

of biomass if present.15

However, a major flaw of those models is their non-additive behavior with re-16

gards to variation in within-experiment sampling effort [26]. Consider for instance17

the fishing effort measured by the ground surface swept by a bottom-trawl during18

a scientific survey of benthic marine fauna. If during experiment i, observation19

Yi is made with some experimental effort corresponding to the harvesting of some20

area Di and is assumed to stem from a stochastic model with parameters θ(Di),21

then the additivity properties of coherence are naturally required: if we consider22

two (possibly subsequent) independent experiments i and i′ on the different non23

overlapping areas Di and Di′ , we would expect that the random quantity Yi + Yi′24

stems from the same stochastic model with parameters θ(Di ∪Di′). A compound25

Poisson distribution is a sum of independent identically distributed random vari-26

ables in which the number of terms in the sum has a Poisson distribution. Com-27

pound Poisson distributions are candidate models purposely tailored to verify the28

previous desired infinite divisibility property since the class of infinitely divisible29

distributions coincides with the class of limit distributions of compound Poisson30

distributions ([9], theorem 3 of chapter 27).31

Depending on the nature of the term in the random sum, the compound dis-32

tribution can be discrete or continuous. The construction of such a compound33

distribution with an exponential random mark for continuous data and with a34

geometric one for counts is recalled in section 2. This approach is worthwhile for35

two reasons. The first is parsimony : there is only one parameter for the Poisson36

distribution plus an additional one for the probability distribution function - pdf -37

of each component of the random sum. Secondly, the compound construction may38

assist our understanding in cases where the data collection can be interpreted in39

terms of sampling a latent marked Poisson field. That is to say that the data40
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appear in latent ”clumps” that are ”harvested” during the experiment, the Pois-41

son parameter being the presence intensity of such clumps. A random variable42

is used to mimic the quantity (or the number of individuals in the discrete case)43

independently in each clump. At the upper level of the hierarchy, random effects44

are added to depict heterogeneous conditions between blocks of experiments.45

In section 3, we develop a stochastic version of the EM algorithm [7] with a46

Monte-Carlo step (using importance sampling) for this non Gaussian random ef-47

fect model with zero-inflated data. Maximum likelihood estimates and the corre-48

sponding variance-covariance matrix are derived. The computational task remains49

rather tractable thanks to simplifying gamma-exponential conjugate properties in50

the continuous case (and beta-geometric conjugacy in the discrete case).51

In section 4, the hierarchical model [29] with compound Poisson distribution for52

zero-inflated data is exemplified using a real case study with two marine species,53

urchin and starfish abundance data from a scientific bottom-trawl survey of the54

southern Gulf of St. Lawrence, Canada. The EM algorithm performs well in55

obtaining the maximum likelihood estimates of parameters, but for one of the56

two species we notice some discrepancy between the actual coverage of the con-57

fidence intervals and their theoretical levels (as given by the asymptotic normal58

approximation). Consequently, we further focus on variance covariance matrix es-59

timation in section 5 and investigate via simulation the behavior of coverage level60

of confidence intervals for various experimental designs, in search of a practical61

fulfillment of the asymptotic conditions. Finally, we briefly discuss some inferen-62

tial and practical issues encountered when implementing such hierarchical models63

for zero-inflated data.64

2. Model construction65

We propose a hierarchical construction to represent data with extra zero col-66

lected over a non-homogeneous area. The model is divided into two main layers :67

in the first one, we model the sampling process within a homogeneous sub-area68

(strata) and in the second layer, we introduce heterogeneity between strata at the69

top of the hierarchy using random effects. The first subsections detail the hierar-70

chical constructions for continuous data. In the last subsection 2.4, we sketch out71

an obvious modification to represent count data.72

2.1. Compound Poisson process to introduce extra zeros73

Imagine that data Y are obtained by harvesting an area D and that there are74

some clumps distributed according to an homogeneous Poisson process : clumps75

are uniformly distributed with a constant intensity, say µ.76

By harvesting an area D, we pick an integer-valued random variable N of
clumps. According to Poisson process property N follows a Poisson distribution of
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parameter µD. For each clump i the independent random variables Xi or marks
(with the same probability distribution) represent for instance the possible biomass
in each clump to be collected.
The final return will consist of the sum over N clumps of the amount contained
in each clump. With the convention that Y = 0 if N = 0 , the random sum :

Y =
N
∑

i=0

Xi, (2.1)

is said to follow a compound Poisson distribution. Figure 1 exemplifies a realization77

of the total amount of a collect (i.e., sum of the marks) in a sampled region D.78

79

The Poisson-based additivity property avoids the drawback of classical models80

mentioned in the introduction. Generally, D is the area of the sampled area81

included in R2. We assume an homogeneous region µ(D) = µD, so that the82

expected number of collected clumps is proportional to the catching effort. The83

difficulty with the generalization to an inhomogeneous Poisson process lies in the84

inference step, not in the modeling step. Consequently we used another approach85

to deal with heterogeneity (see section 2.3). In the following, we mostly omit86

to index quantities with this catching effort for presentation clarity, explicitly87

mentioning it only when necessary.88

Summary statistics about such compound distribution Y are easily obtained89

(the characteristic function is given in appendix A) :90

E(Y ) = µD E(X)

Var(Y ) = µD E(X2)

Parameter µ rules the occurrence of zero values when assuming P(X = 0) = 091

i.e. that the random mark is non atomic at 0 :92

P(Y = 0) = exp (−µD).

2.2. Choice of the random component X for continuous data93

For real-valued data with extra zeros, we will concentrate in this paper on the
exponential distribution of parameter ρ for component X such that E(X) = ρ−1,
leading to

E(Y ) =
µD

ρ
and Var(Y ) = 2

µD

ρ2
.
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Figure 1: Realization of a marked Poisson process on a region of R2, the sample is conducted
over a region D. Here the total catch is y = 7.7, the effective number of collected clumps is 8.

To keep on with an ecological interpretation of the model, assuming that the94

mark X follows an exponential distribution of parameter ρ, means for the biologist95

that the probability of finding a large amount of biomass within a clump is expo-96

nentially decreasing and that the average quantity in each clump is ρ−1. When97

no clump is collected, there occurs a zero for the model Y . We choose the expo-98

nential distribution because of parsimony and because of its interesting conjugate99

property detailed in section 3.1.2.100

This compound Poisson distribution was termed law of leaks (LOL) by [6],
where X represents elementary unobserved leaks occurring at N holes (uniformly
located) along a gas pipeline. In summary :

(Y ∼ LOL(µ, ρ)) ⇐⇒







Y =
∑N

i=1Xj ,
N ∼ P(µ),

(X1, . . . , XN)
i.i.d
∼ E(ρ)






(2.2)

For the discrete case, a similar definition holds with the corresponding geomet-101

ric distribution for the marks (see section 2.4).102

2.3. Random effects103

Although the previous compound construction could have formally been ex-
tended to non-homogeneous Poisson processes, it is easier but still quite realistic
to relax the assumption of homogeneity by considering homogeneous blocks (or
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strata), modeling possible inter-block dispersion using random effects. We con-
sider S blocks ; in a given block s there are Is grouped observations. We denote
by Ys = (Ys 1, . . . , Ys Is) the random vector in block s and by Y = (Y1, . . . , YS)
the whole vector over the S blocks. The coefficients a and b of the gamma pdf
Γ(a, b) for a random variable µ are such that E(µ) = a

b
and Var(µ) = a

b2
. The

random effect model RLOL(a, b, c, d) representing the occurrence of the sample Y
is defined by the following set of equations.

Y ∼ RLOL(a, b, c, d) ⇐⇒











(µ1, . . . , µS)
i.i.d
∼ Γ(a, b),

(ρ1, . . . , ρS)
i.i.d
∼ Γ(c, d),

Ys,1, . . . , Ys,Is | µs, ρs
i
∼ LOL (µsDs,k, ρs) ∀s ∈ {1, . . . , S} .

(2.3)
The choice of a gamma distribution for the random effect is motivated by conjugate104

properties which are useful in the inference of the model. Section 4.1.3 will show105

that it may also be quite a realistic distribution for some datasets. The hierarchical106

construction is summed up by the directed acyclic graph (DAG as termed by [23])107

in Figure 2.108

Figure 2: DAG of the RLOL model

2.4. Compound Poisson process for count data109

A similar but discrete version to model count data, can be obtained by changing110

the nature of the random marks of the Poisson process. In this paper, we study111

a geometric distribution with parameter p = P(X = 1). The core of the model is112

thus given by the following compound Poisson process with geometric marks :113

(Y ∼ DLOL(µ, p)) ⇐⇒







Y =
∑N

i=1Xj,
N ∼ P(µ),

(X1, . . . , XN)
i.i.d
∼ G(p)







To preserve conjugate properties, the gamma distribution for the random effect
on the marks is replaced by a beta distribution so that the count data version of
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the model is given by :

Y ∼ RDLOL(a, b, c, d) ⇐⇒











(µ1, . . . , µS)
i.i.d
∼ Γ(a, b),

(p1, . . . , pS)
i.i.d
∼ β(c, d),

Ys,1, . . . , Ys,Is | µs, ps
i
∼ DLOL(µsDs,k, ps) ∀s ∈ {1, . . . , S} .

(2.4)
where DLOL means Discrete version of Law of leaks and RDLOL discrete law of114

leaks with random effects.115

In most of the paper, we will simply state the main results when technical116

aspects of the proofs are shared between discrete and continuous cases.117

3. Estimation via the EM algorithm with importance sampling118

Hierarchical models such as 2.3 or 2.4 cannot be straightforwardly estimated119

because of the latent variables. The random effects (µ, ρ) and the unknown num-120

bers of clumps N must be integrated out to obtain the likelihood. The likelihood121

has no closed form and estimators cannot be directly derived. In such a case,122

a classical strategy is to use Expectation Maximization algorithm ([7]) to derive123

max-likelihood estimates. In our case the E step is not analytically accessible. An124

alternative is to use a stochastic version of this EM algorithm such as Monte-Carlo125

EM ( MCEM see [18] or [19]) or stochastic approximation of EM (SAEM see [8]).126

We detail in this section how to implement a MCEM algorithm using Impor-127

tance sampling to obtain the maximum likelihood estimation and its empirical128

variance matrix. Similar results concerning count data process are summed up129

in the last subsection. From this point onwards we will use brackets to denote130

pdf ’s as many conditioning terms will appear in the probabilistic expressions de-131

rived from the model fully specified by the set of equations (2.3). The brackets132

denote either a density or a discrete probability distribution, as in [10]. Following133

Bayesian conventions, we will also allow the parameters to appear as condition-134

ing terms (i.e., instead of writing P(X) we will specify [X|a, b, c, d]) so as to help135

the reader understand which layer of the hierarchical model (2.3) the probability136

expression refers to (see Fig 2).137

3.1. Implementation of the MCEM algorithm138

In this paper, θ stands for the set of parameters (a, b, c, d) in the RLOL model.139

Given the random effects, the data within a block are independent :140

L(θ;Y,N, µ, ρ) =

S
∑

s=1

Ls

where Ls denotes the complete log-likelihood in block s, i.e. :141
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Ls = Ls(θ;Ys, Ns, µs, ρs) =

(

∑

i=1Is

ln ([Ys,i|Ns,i, ρs] [Ns,i|µs])

)

+ (3.1)

ln ([µs|a, b]) + ln ([ρs|c, d])

Following [28], the pivotal quantity in the EM algorithm (recalled in appendix142

D) is the conditional expectation of the complete log-likelihood :143

Q(θ, θ′) = Eθ′ (L(θ;Y,N, µ, ρ)|Y)

3.1.1. Maximization step144

To maximize Q(θ, θ′) with respect to θ, we focus on the terms that involve θ :145

Q(θ, θ′) = C−θ(Y ) + (a− 1) ×

S
∑

s=1

Eθ′
(

lnµs | Ys
)

+ Sa ln b− b

S
∑

s=1

Eθ′
(

µs | Ys
)

− S ln(Γ(a))

+ (c− 1) ×
S
∑

s=1

Eθ′
(

ln ρs | Ys
)

+ Sc ln d− d
S
∑

s=1

Eθ′
(

ρs | Ys
)

− S ln(Γ(c)), (3.2)

where C−θ(Y ) denotes a constant which does not depend on θ.146

Differentiating with respect to θ, we obtain the set of equations to be satisfied147

at the maximum argmax
θ

Q(θ, θ′):148

a

b
=

S
∑

s=1

Eθ′
(

µs | Ys
)

S
(3.3)

ln a− ψ(a) = ln













S
∑

s=1

Eθ′
(

µs | Ys
)

S













−

S
∑

s=1

Eθ′
(

lnµs | Ys
)

S
(3.4)

c

d
=

S
∑

s=1

Eθ′
(

ρs | Ys
)

S
(3.5)
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ln c− ψ(c) = ln













S
∑

s=1

Eθ′
(

ρs | Ys
)

S













−

S
∑

s=1

Eθ′
(

ln ρs | Ys
)

S
(3.6)

ψ(x) denotes the digamma function defined as the first logarithmic derivative149

of Γ(x). No analytical expression can be derived for θ as the argument of the150

maximum of Q(θ, θ′), but a Newton-Raphson algorithm is efficient and easy to151

implement with a good empirical starting point as indicated in annex B.152

3.1.2. Expectation step by conditioning onto the number of clumps153

The right-hand side of equations 3.3 to 3.6 involves Eθ′
(

µs | Ys
)

, Eθ′
(

ln(µs) | Ys
)

,154

Eθ′
(

ρs | Ys
)

and Eθ′
(

ln(ρs) | Ys
)

. To compute these expected values, we will pro-155

ceed by conditioning onto the hidden number of clumps N. Proposition 3.1 shows156

that, given N, these four target quantities are simply marginal expectations of157

the sufficient quantity Ns+, the only necessary function of N that needs to be158

evaluated within each block s.159

In a second step, integration over the number of clumps is performed by re-160

course to importance sampling within a block s as detailed in proposition 3.3.161

Proofs of propositions are given in appendix E162

Proposition 3.1. Assuming Y ∼ RLOL(θ′) with θ′ = (a′, b′, c′, d′), S strata and163

Is records in stratum s as in 2.3 , then the complete conditional distributions of µs164

and ρs in one particular stratum s are given by165

µs|N,Y, θ
′ ∼ Γ(a′ +Ns+, b

′ +Ds+), (3.7)

and166

ρs|N,Y, θ
′ ∼ Γ(a′ +Ns+, b

′ + Ys+), (3.8)

where in stratum s, Ns+ =
∑Is

i=1Nsi denotes the total number of clumps caught,167

Ys+ =
∑Is

i=1 Ysi is the entire quantity harvested and Ds+ =
∑Is

i=1Dsi is the whole168

catching effort.169

The quantities involved in the E step are given by170
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Eθ′
(

µs | ys
)

=
a′ + Eθ′

(

Ns+|ys
)

b′ +Ds+

, (3.9)

Eθ′
(

ln(µs) | ys
)

=Eθ′
(

ψ(a′ +Ns+)
∣

∣ys
)

− ln(b′ +Ds+), (3.10)

Eθ′
(

ρs | ys
)

=
c′ + Eθ′

(

Ns+|ys
)

d′ + Ys+
, (3.11)

Eθ′
(

ln(ρs) | ys
)

=Eθ′
(

ψ(c′ +Ns+)
∣

∣ys
)

− ln(d′ + Ys+). (3.12)

This result merely comes from the conjugacy property between gamma and171

Poisson distributions for µ (gamma and exponential distribution concerning ρ).172

The moments of gamma and log gamma, beta and log beta distributions are re-173

called in appendix C.174

In order to go one step further into the calculus, we have to perform the integra-175

tion over N+. Proposition 3.2 gives the distribution of N+|Y+, θ up to a constant.176

Subsequently, the integration over N+ will make recourse to importance sampling177

as proposed in [15]. This Monte Carlo algorithm is detailed in proposition 3.3.178

Proposition 3.2. Assuming Y ∼ RLOL(a, b, c, d) with S strata, and Is records
in stratum s, the conditional distribution of Ns|θ, ys is given (up to a constant K)
by

[Ns|θ
′, ys] = K

(

Γ(a′ +Ns+)Γ(c′ +Ns+)

b′ +Ds+)Ns+(d′ + Ys+)Ns+

) Is
∏

i=1, yi>0

(

yNsi

si

Γ(Nsi)Γ(Nsi + 1)

) Is
∏

i=1, yi=0

δ(Nsi)

(3.13)

To draw a sample according to the rather intricate looking distribution 3.13, an179

importance sampling based algorithm is detailed in the following proposition for180

one replicate (often termed particle). In order to obtain a G-sample, this procedure181

is repeated for each block G times.182

Proposition 3.3 (Generate one particle in one particular stratum s according to183

distribution 3.13). A particle g is a vector (N
(g)
s+ , N

(g)
s1 , . . . , N

(g)
sIs

) in a particular184

stratum s. Omitting s to make the reading easier, we may assume with no loss of185

generality that the first I+ terms are non zero and the I − I+ followings are the186

zero ones. The algorithm to generate one particle g runs as follows:187

1. Generate N
(g)
i = 0 wherever yi=0 for i = I − I+ + 1, . . . , I.188
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2. Generate the value of the random sum N
(g)
+ according to the importance dis-

tribution :

fIS(N+) ∝

(

1

b′ +D+

)N+ (

Y +

d′ + Y +

)N+

Γ(a′ +N+)Γ(c′ +N+)
(

∏I+

i=1 Γ
(

yi

Y +N+ + 1
)

)

Γ (N+ − I+ + 1)

189

As the one dimensional importance distribution fIS is a quickly decreasing190

function of N+, its normalizing constant can be easily approximated and a191

bounded interval is used in practice as the support of N+.192

3. Generate each N
(g)
i for i = 1, . . . , I+ so that the vector (N

(g)
1 −1, . . . , N

(g)
I+

−1)193

is distributed according to a multinomial distribution M(N
(g)
+ −I+, (y1/Y+, . . . , yI+/Y+)).194

4. Associate to the vector (N
(g)
+ , N

(g)
1 , . . . , N

(g)
I ) generated at the previous step,

the importance weight :

w(g) =

I+
∏

i=1

Γ
(

N
(g)
+

yi

Y+
+ 1
)

Γ(N
(g)
i + 1)

The proof of this proposition is straightforward from importance sampling the-195

ory (see for instance chapter 3 of [22]).196

197

The weighted sample of N+ may be used to approximate the expected con-
ditional value defined in equations 3.9 to 3.12. For instance, quantity 3.10 is
approximated by :

Eθ′
(

ln(µs) | ys
)

≈

(

1
∑G

g=1 ω
(g)

G
∑

g=1

ω(g) × ψ(a′ +N
(g)
s+ )

)

− ln(b′ +Ds+).

3.1.3. Empirical Variance Matrix198

This section is devoted to the evaluation of the empirical variance matrix, so199

as to provide confidence regions. Because of the EM principle, we assume that200

the algorithm has converged to the maximum likelihood value θ̂. The empirical201

Fisher information matrix is then given by proposition 3.4. To explicitly compute202

this information matrix, we propose to numerically integrate over N thanks to203

importance sampling as performed for the point estimation step. Technical details204

are also given in appendix F.205
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Proposition 3.4. Assuming Y ∼ RLOL(a, b, c, d) with S strata, and Is records in
stratum s as in 2.3. Let us denote Ie(θ) the empirical information matrix defined
by

Ie(θ) = −
∂2 ln [Y|θ]

∂θi ∂θj
(3.14)

At the maximum likelihood estimator θ̂, the following equality holds :

Ie(θ̂,Y) = S









−ψ′(â) 1

b̂
0 0

1

b̂
− â

b̂2
0 0

0 0 −ψ′(ĉ) 1

d̂

0 0 1

d̂
− ĉ

d̂2









+

S
∑

s=1

(As +Bs) (3.15)

with206

As =











Eνs
(ψ′(a⋆s))

−1
b⋆s

0 0
−1
b⋆s

Eνs (a⋆
s)

(b⋆s)2
0 0

0 0 Eνs
(ψ′(c⋆s))

−1
d⋆

s

0 0 −1
d⋆

s

Eνs (c⋆s)
(d⋆

s)2











and207

Bs =













Varνs
(ψ(a⋆s)) −Covνs (a⋆

s ,ψ(a⋆
s))

b⋆s
Covνs

(ψ(a⋆s), ψ(c⋆s)) −Covνs (c⋆s ,ψ(a⋆
s))

d⋆
s

−Covνs (a⋆
s ,ψ(a⋆

s)
b⋆s

Varνs (a⋆
s)

b⋆s
2 −Covνs (a⋆

s ,ψ(c⋆s)
b⋆s

Covνs (a⋆
s ,c

⋆
s)

b⋆s d
⋆
s

Covνs
(ψ(a⋆s), ψ(c⋆s)) −Covνs (a⋆

s ,ψ(c⋆s))
b⋆s

Varνs
(ψ(c⋆s)) −Covνs (c⋆s ,ψ(c⋆s))

d⋆
s

−Covνs (c⋆s ,ψ(a⋆
s)

d⋆
s

Covνs (a⋆
s ,c

⋆
s)

b⋆s d
⋆
s

−Covνs (c⋆s ,ψ(c⋆s)
d⋆

s

Varνs (c⋆s)

d⋆
s
2













,

where a⋆s = â +Ns+, b⋆s = b̂ +Ds+, c⋆s = ĉ +Ns+, d⋆s = d̂ + Ys+ and νs stands208

for the probability measure of Ns+|θ̂,Y.209

As for the first derivative phase of the EM algorithm detailed in section 3.3,210

the operations E
N|θ̂,Y and Var

N|θ̂,Y , needed to evaluate As and Bs, can be eas-211

ily implemented by recourse to the very same Monte-Carlo N+ sample that was212

previously drawn by importance sampling.213

3.1.4. Prediction of the random effects214

It is of interest to predict the random effects in each stratum, for instance to215

help illustrate the heterogeneity between units. In a linear mixed model context,216

the Best Linear Unbiased Estimator is defined by the conditional expectation of217

the random effect according to the data y and the point estimation. We follow218
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the same avenue of thought and define a predictor of the random effects by the219

conditional expectation. Using formula 3.9 and 3.11, the random effect predictors220

are given by :221

µ(pred)
s = E(µs|y, θ̂) =

â+ E

(

Ns+|ys, θ̂
)

b̂+Ds+

, (3.16)

and222

ρ(pred)
s = E(ρs|y, θ̂) =

ĉ+ E

(

Ns+|ys, θ̂
)

d̂+ Ys+
, (3.17)

The following section aims at highlighting the differences between the contin-223

uous case detailed previously and the discrete one.224

3.2. MCEM algorithm for RDLOL model225

3.2.1. Straightforward transposition to the discrete case226

The definition of the model designed for the discrete case and called RDLOL227

model is given by equation 2.4, in this case the pivotal quantity Q(θ, θ′) reads :228

Q(θ, θ′) = C−θ(Y ) + (a− 1)

S
∑

s=1

Eθ′

(

lnµs | Ys

)

+ Sa ln b− b

S
∑

s=1

Eθ′

(

µs | Ys

)

− S ln(Γ(a))

+ ln

(

Γ(c+ d)

Γ(c)Γ(d)

)

+ (c− 1)
S
∑

s=1

Eθ′

(

ln ps | Ys

)

+ (d− 1)
S
∑

s=1

Eθ′

(

ln(1 − ps) | Ys

)

(3.18)

229

The equations satisfied at the maximum for (a, b) are again 3.3 and 3.4. Due to
the substitution of a gamma pdf into a beta pdf for the random effects governing
the geometric discrete marks in the random sum of counts, parameters c and d
verify equations 3.19 and 3.20 (equivalent to equations 3.5 and 3.6 in the continuous
data model) :

ψ(c+ d) − ψ(c) = −

S
∑

s=1

Eθ′
(

ln ps | Ys
)

S
(3.19)

ψ(c) − ψ(d) =

S
∑

s=1

Eθ′

(

ln

(

ps
1 − ps

)∣

∣

∣

∣

Ys

)

S
(3.20)
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The approach used for the continuous case is reproduced to obtain, in each stra-230

tum s the conjugate conditional density of µ, p , so that the analog to propositions231

3.1 and 3.2 is :232

Proposition 3.5. Assuming Y ∼ RDLOL(θ′) with θ′ = (a′, b′, c′, d′), S strata
and Is records in stratum s as in 2.4 , then the complete conditional distributions
of µs and ps in one particular stratum s are given by

µs|Ns+, θ
′ ∼ Γ(a′ +Ns+, b

′ +Ds+), (3.21)

and

ps|Ns+, θ
′ ∼ β(c′ +Ns+, d

′ + Ys+ −Ns+). (3.22)

233

Furthermore the conditional distribution function of Ns is :

[

Ns|θ
′,Y

]

∝









I
+

∏

i=1

(

Ysi − 1
Nsi − 1

)

DNsi

si

Nsi!













I
∏

i=I−I++1

δ(Nsi)





(

Γ(a′ +Ns+)Γ(Ns+ + c′)Γ(Y+ −Ns+ + d′)

(b′ +Ds+)Ns+

)

(3.23)

The choice of an efficient importance sampling distribution in the discrete case234

is not the straightforward adaptation of the continuous gives and a mixture has to235

be used to obtain an efficient and well behaved algorithm, detailed in appendix H.236

3.2.2. The covariance matrix in the discrete case237

The covariance matrix in the discrete case benefits from the same conditional238

independence decompositions and the adaptation of the continuous case is straight-239

forward given the moments of the beta distribution in appendix C; the result is240

detailed in appendix G. The weighted sample of N+ is used to compute the expec-241

tations and variance-covariance terms in the matrix components.242

3.2.3. Prediction of the random effects243

The predictions of the random effects are just given by the conditional expec-244

tations. Unsurprisingly, the predictions in the discrete case and in the continuous245

one look very similar. µ
(pred)
s is still given by formula 3.16 and246

p(pred)
s = E(ps|y, θ̂) =

ĉ + E

(

Ns+|ys, θ̂
)

ĉ+ d̂+ Ys+
, (3.24)
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4. Applications247

In this section, we apply the EM estimation procedure to two real datasets248

of ecological interest. We then study the validity of asymptotic assumptions by249

assessing the coverage level of confidence regions.250

4.1. Real dataset - Gulf of St.Lawrence survey251

A multi-species bottom-trawl survey of the southern Gulf of St.Lawrence (NW252

Atlantic) has been conducted each September since 1971. The purpose of this253

survey is to estimate the abundance and characterize the geographic distribution254

of marine biota. The survey follows a stratified random design, with 38 strata255

defined largely as homogeneous habitats using depth, temperature and sediments256

properties. The target fishing procedure at each fishing station is a 30-min straight-257

line tow at a speed of 3.5 knots (i.e., 3.21km trawled distance). However the actual258

distance trawled can vary due to winds, currents and the avoidance of damaging259

rough bottoms; sampling effort is therefore variable among trawl tows, but this260

source of additional variability is easily accommodated in the models presented261

here ( the Ds,k in eq 2.3). For our case study, we use data on the abundance of sea262

urchins and Sunflower starfishes collected during three survey years (1999-2001),263

in a total of 540 bottom-trawl sets. The time period was chosen to minimize264

inter-annual changes in abundance while ensuring a sufficient sample size. The265

species were selected because inter-annual changes in their geographic distribution266

resulting from movements of individuals at the scale of survey sampling can be267

assumed to be approximately nil.268

The histograms of urchin and starfish catches in kg per survey tow clearly reflect269

zero-inflated distributions (Fig 3 and 4). A large number of tows capture no urchin270

(nor starfish) and catches in non-zero tows tend to follow a skewed distribution. At271

the scale of the survey, sea urchins are distributed in patches of localized variable272

abundance, interspersed by numerous and relatively large areas where the species273

is absent (Fig 5). Such patchy distributions of organisms are prevalent in ecological274

science. Data in two strata are always zero, thus rendering estimation impossible275

if we were to fit one model per stratum or to consider ρs as fixed effects. Because276

the hierarchical framework allows some transfer of information between strata, the277

other data help to predict ρ in these two strata.278

4.1.1. Maximum likelihood point estimation279

The estimation procedure follows the EM algorithm detailed in appendix D
(with a stopping rule when the sixth decimal does not change between iterations)
and gives values of

θ̂Urch = (â, b̂, ĉ, d̂) = (0.997797, 1.05107, 5.05733, 13.0312),
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Figure 3: Histogram of urchin biomass
(kg/tow) from individual tows in the south-
ern Gulf of St. Lawrence, bottom-trawl sur-
veys: 1999-2000-2001

Figure 4: Histogram of Sunflower Starfishes
biomass (kg/tow) from individual tows in
the southern Gulf of St. Lawrence, bottom-
trawl surveys: 1999-2000-2001

Figure 5: Locations of urchin catches (symbols) and stratum boundaries (lines) in the southern
Gulf of St. Lawrence bottom-trawl surveys 1999-2000-2001. The radii of the circles are propor-
tional to the biomass (in kg/tow) caught. The ”*” denote sites with no urchins caught. Starfishes
are not plotted.
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and
θ̂Sun = (â, b̂, ĉ, d̂) = (1.91879, 1.80704, 1.90002, 0.898734),

as a maximum likelihood point estimates respectively for Urchin and Sunflower280

starfishes datasets.281

A visual diagnosis of the goodness of fit is very informative. According to282

the RLOL model, data are drawn from a mixture and we cannot add directly283

a density line on the histograms of figures 3 and 4 since the zero ordinate of284

these figures is somewhat artificial : it depends on the width of the histogram285

bins and has been chosen so that the overall cumulative greyed surface is 100%.286

The expected histograms presented in figures 6 and 7 have been obtained using287

1000 replications of the model with the same design at θ̂, and averaging the 1000288

generated histograms. Obviously the obtained model histogram (averaging all the289

random effects) is smoother than the empirical distribution. The observed number290

of zeros falls below the expected number but within the 90% confidence interval291

for each species (as indicated by the vertical line on figures 6 and 7) and the overall292

shape of the distribution fits quite well the data in both cases.293

Figure 6: Comparisons between urchins
dataset and averaged histogram (1000 sim-

ulations of datasets at θ̂Urch)

Figure 7: Comparisons between Sunflower
Starfishes dataset and averaged histogram
(1000 simulated datasets at θ̂Sun)
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4.1.2. Confidence intervals294

Relying on proposition 3.4, the asymptotic covariance matrices are evaluated
at those maximum likelihood arguments :









var(âUrch,Y)

var(b̂Urch,Y)
var(ĉUrch,Y)

var(d̂Urch,Y)









=









0.0587
0.1020
1.6804
14.4793









Corr(θ̂Urch,Y) =









1 0.825 0.035 0.058
0.825 1 0.036 0.081
0.035 0.036 1 0.936
0.058 0.081 0.936 1









and








var(âSun,Y)

var(b̂Sun,Y)
var(ĉSun,Y)

var(d̂Sun,Y)









=









0.2555
0.3003
0.2609
0.0894









Corr(θ̂Sun,Y) =









1 0.902 −0.055 −0.046
0.902 1 −0.056 −0.023
−0.055 −0.056 1 0.906
−0.046 −0.023 0.906 1









Essentially only â and b̂ (resp ĉ and d̂) are correlated.295

To evaluate the actual coverage of confidence regions in the present sampling296

conditions (that may be far from asymptotics), 16000 simulations were launched,297

assuming the same number of strata and the same number of data points per298

stratum as the urchin catches (resp. sunflower starfishes) with θ̂ as hypothetic true299

parameter, thus disregarding possible bias. As a practical working conclusions,300

Figures 8 and 9 show how to correct theoretical asymptotical confidence intervals.301

The results are quite different from one dataset to the other.302

• On Urchins dataset, to get an actual 90% confidence region, we must ex-303

pand as far as the asymptotic ellipse corresponding to a 99.964% normal304

approximation as shown in Figure 8.305

• On Sunflower Starfish dataset, things work better and the 94% asymptotical306

confidence interval is quite a good surrogate for an actual 90% confidence307

region!308

To understand Table 1, we suggest to consider the median column as the refer-309

ence confidence interval (based on simulation/ EM re-estimation). The right col-310

umn gives bootstrap+ EM re-estimation. We notice that the Bootstrap approach311
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90% Confidence Intervals
(asymptotic) (via simulation) (via booststrap)

Urchins case
0.587 < a < 1.384 0.335 < a < 1.637 0.72 < a < 1.00
0.496 < b < 1.547 0.163 < b < 1.880 0.61 < b < 1.03
2.827 < c < 7.092 1.476 < c < 8.443 1.23 < c < 4.37
6.387 < d < 18.905 2.419 < d < 22.872 1.68 < d < 10.89

Starfishes case
1.087 < a < 2.750 1.294 < a < 2.951 1.217 < a < 1.859
0.905 < b < 2.708 1.198 < b < 3.141 0.938 < b < 1.663
1.059 < c < 2.740 1.344 < c < 3.182 1.147 < c < 2.035
0.406 < d < 1.390 0.558 < d < 1.559 0.347 < d < 0.858

Table 1: Comparison of the asymptotic 90% confidence interval with the one obtained by simu-
lation for each parameter component for both species

is completely unappropriate for our model. The estimation is clearly biased with a312

shift to the right (verified on simulations not shown here) although we tried to cor-313

rect bias as proposed in [13]. The width of confidence intervals are underestimated314

for both species and does not even contain the θ̂-value. The hierarchical structure315

of the model may explain part of this bad behavior of bootstrap method but this316

would need further investigations not in the scope of this paper. The left column317

of Table 1 exhibits two different behaviors according to the species considered.318

• The asymptotic variance of maximum likelihood parameters under-estimate319

strongly the true sampling characteristics in the Urchin case. This may be320

due to the large numbers of zero’s for that species: consequently relatively321

less non zero data remain for the ρ′s (inverse of patch abundance) and the322

estimation of c and d that rule the between units variation of ρ’s may become323

difficult.324

• The Sunflower Starfishes case exhibits much better properties regarding the325

approximation of the covariance matrix. For this species, less zeros data326

occur and we guess that enough information is made available in the sample327

to get correct estimations.328

Figures 10 and 11 present the predictions for the random effects in each stra-329

tum.330

4.1.3. Validation of the gamma assumption for random effects331

We have assumed that the random effects µ and ρ were distributed according to332

gamma distributions. This choice was essentially made for technical convenience333
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Figure 8: The ligthest ellipse corresponds
to 90% confidence ellipsoid and the dark-
est one is 99.96% and contains 90% of the
simulated values.

Figure 9: The ligthest ellipse corresponds
to 90% confidence ellipsoid and the darkest
one is 94% and contains 90% of the simu-
lated values.

Figure 10: Predictions of the random ef-
fects µs in each stratum correspond to the
expected number of clumps collected dur-
ing a measurement with standardcatching
effort.

Figure 11: Predictions of the inverse of ρs

in each stratum. These quantities give the
expected biomass to be collected within a
clump.

20



because conjugate properties make the estimation easier. The validity of this334

assumption can be checked by considering random effects as fixed and estimate335

them independently in each stratum. Figures 12 and 13 present a pp-plot of336

empirical versus estimated probability distributions for µ and ρ.337

Figure 12: pp-Plot with estimates of µs versus a fitted gamma distribution.

The pp-plot for µ suggests that the gamma distribution is appropriate (Fig 12);338

this is not true of the gamma pp-plot for ρ (Fig 13). First there are only 36 points339

estimates because 2 strata are empty and ρ’s for these strata are not defined.340

Second the probability plot does not adjust to a straight 45 degrees line. Looking341

more closely at four extreme points in the ρ pp-plot, we found that they come from342

strata with less than two non-zero data points. Excluding these 4 points produces343

the much more acceptable fit of Figure 14.

Figure 13: pp-Plot with estimates of ρs ver-
sus a fitted gamma distribution. The ex-
tremal points correspond to strat with at
least 75% of zeros

Figure 14: pp-Plot with estimates of ρs

against a fitted gamma distribution after
excluding the four outliers.

344
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4.2. Simulations Studies345

The previous section showed different behaviors depending on the species : the346

EM procedure provides rather reliable estimates for the starfish RLOL statistical347

features but not for the Urchin ones. The purpose of this section is to check the348

role of the sampling designs. Simulation studies are performed to explore the349

quality of the EM estimation procedure and to check the actual coverage of the350

asymptotic variance-covariance matrix approximation.351

4.2.1. Simulation design352

For a given set of parameters θ = (a, b, c, d), we draw 1000 samples according353

to RLOL model given in eq 2.3 with a number S of strata and M measured points354

per each stratum. S has been chosen varying as k2 with k = 3, 4, 5, 6, 8, 10, 12, 15355

and M = 5, 10, 15, 20, 25, 30, 40.356

For each simulation, the estimation procedure depicted in section 3 yields one357

point estimate and one estimation of the asymptotic covariance matrix. Assuming358

that the asymptotic approximation holds and using a normal approximation, con-359

fidence intervals can be given for the true value. As we work within a simulation360

context, the true value is known and one can compute the actual proportion of361

samples for which the asymptotic confidence interval covers the true value.362

4.2.2. RLOL Results363

The simulation study is achieved for two values of parameters θ corresponding364

to the two applications developped in section 4.1. We choose θUrchin = (1, 1, 5, 13)365

and θSunstars = (1.9, 1.8, 1.9, 0.9) as true parameter references for the simulations.366

We first present a study of the bias and then an investigation of the actual coverage367

of confidence intervals.368

Bias study369

We can study the bias by simulation according to the numbers of strata and the370

number of measure points within strata. Figures 15 and 16 present the results for371

relative bias obtained with 1000 simulations in each configuration. As expected372

it decreases quickly with the number of strata and only marginal amelioration is373

obtained as soon as the number of data per stratum becomes reasonable.374

Confidence intervals study375

Using 1000 simulations in each cell, the empirical proportion of the asymptotic376

90% confidence ellipsoids that cover the true value is given in Figures 17 and 18.377

With 1000 trials in a binomial distribution with probability p of success, a confi-378

dence interval for p = 0.90 is approximatively [88%, 92%] : cells from Figures 17379

and 18 that belongs to that interval have been colored in light grey. Results about380

confidence intervals strongly depend on the value of θ. The asymptotic approxima-381

tion seems quite satisfying for θSunstars : the asymptotical conditions are quickly382
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Figure 15: Urchins : Average relative bias in log scale depending on the number of strata and
the number of measure points.

Figure 16: Starfish : Average relative bias in log scale depending on the number of strata and
the number os measure points.

fulfilled and the design of the case study seems acceptable. For θUrchin however,383

the present design should be strongly re-enforced (up to 40 points per stratum384

with 36 strata!) before yielding acceptable estimations, and confidence regions385

based on asymptotical theory are definitely too optimistic.386

These two sets of parameter recover two very different situations : the larger387
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number of zeros in the Urchin case may render the estimation procedure more388

difficult than in the Starfish situation. However one should note that the difference389

is not markedly pronounced : 34% instead of 24%! Such a simulation study390

shows that the quality of variance covariance matrix estimation used to build an391

ellipsoid of confidence behaves has to be checked through this simulation approach392

by instance to verify whether the asymptotic conditions are fulfilled and that the393

analyst should beware of overconfidence.394

Figure 17: Urchin-like case. Effective pro-
portion of 90% confidence intervals that
cover the true value. Shading in particu-
lar cells reflects the degree of overlap: M-S
combination that produces confidence inter-
vals that are too liberal are in black whereas
the lightest grey shade reflects confidence
intervals that properly characterize param-
eter uncertainty

Figure 18: Sunstar-like case. Effective pro-
portion of 90% confidence intervals that
cover the true value. Shading in particu-
lar cells reflects the degree of overlap: M-S
combination that produces confidence inter-
vals that are too liberal are in black whereas
the lightest grey shade reflects confidence
intervals that properly characterize param-
eter uncertainty.

5. Conclusion and Perspectives395

The following conclusions have been reached:396

1. Compound Poisson distributions can conveniently represent the presence of397

a large number of zeros and a skewed distribution of non-zero values. To398

deal the occurrence of zero-inflated data, very parsimonious models can be399

designed (with two parameters only) : a Poisson random sum of independent400

geometric random variables in the discrete case and with exponential random401

variables in the continuous one. They offer an alternative to the traditionnal402
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delta gamma models and behave coherently when changing the scale of the403

catch effort, thanks to the Poisson process underpinning the model.404

2. Compound Poisson distributions can be interpreted using a hierarchical frame-405

work. They describe the data collection involved in sampling individuals406

gathered in (latent) patches drawn from the homogeneous Poisson process407

with abundance tuned by the distributional parameter of the random com-408

ponents of the Poisson sum. The introduction of a random effect structure409

at the top of the hierarchy is straightforward and accommodates non homo-410

geneity among strata that are themselves considered as homogeneous units.411

Such designs with random effects and data with extra zeros are commonly412

encountered in ecological analyzes, but gamma random effects are yet rarely413

advocated : variation between strata is typically modeled using a normal (or414

lognormal) distribution because its sufficient statistics match the common-415

sense interpretation of mean and variance. However, gamma random effects416

allow for partial conjugate properties with the compound Poisson model for417

zero-inflated data. Beyond this theoretical convenience, the parameters of418

the gamma distribution are well estimated in the Starfish like simulation419

examples and they can describe the entire range of variability between units420

for the real case study.421

3. Independence between the latent features ρ and µ has been a priori assumed422

for the random effects between units. This absence of prior correlation is423

quite a stringent hypothesis as we might expect ρ and µ to covary (e.g, low424

non-zero realized abundance could stem from either a small µ or a large425

ρ). Working with a gaussian copula for a joint bivariate distribution for426

the couple (µ, ρ) is a bad remedy, because we would have lost the conjugate427

properties and increased computational load. To keep partial conjugacy , a428

better idea is considering the natural extension of the gamma family, but429

such bivariate distributions are rather restrictive since they can only take430

into account positive correlation and need that the two marginals share the431

same shape parameter. However such a model would remain parsimonious432

with 4 parameters: one is gained to depict correlation and one is lost to433

depict the marginals’shape. The issue of correlation has been addressed in434

[2] who proved via simulation that the correlation between ρ and µ has little435

bearing on the property we are ultimately trying to predict in practice, i.e.436

the realized biomass in a tow. Finally, the correlation indicates that the437

latent variables ρ and µ are model concepts that should themselves not be438

overinterpreted; they don’t actually characterize the true size and number of439

organism patches.440

4. Stochastic EM inferential techniques (with importance sampling for the non441
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explicit expectation steps) require a modest computational effort since the442

random effects are taken partially conjugate with the compound Poisson443

distributions. Auxiliary importance distributions can be proposed by careful444

inspection the structure of the joint distribution of the latent variables and445

integrating out as much as can analytically be done. Much advantage is446

taken from conditional independence, especially when computing the Fisher447

information matrix by re-sampling with the simulated missing data that448

have been previously generated to evaluate the maximum likelihood estimate.449

However, the value of results given here depends on the errors involved with450

the use of maximum likelihood asymptotic formula on one hand and on451

the precision of Monte Carlo sampling algorithms on the other hand. Due452

to the multidimensional nature of the latent variables to be simulated , the453

variability between several trials of the importance sampling techniques when454

evaluating the information matrix (and its inverse) can be important enough,455

especially when few data makes a rather flat likelihood function.456

5. Asymptotic errors bounds need to be checked and corrected if necessary. We457

relied on a simulation study to get a more reliable idea of their ranges. The458

simulated sets of zero-inflated data show that, in the Starfish case, one can459

readily trust the confidence intervals based on the information matrix while460

in the Urchin case, one should beware of being overconfident. The asymp-461

totic conditions may not be encountered rapidly. For the Starfish case study,462

the design allowed a reasonable estimation of the RLOL model features. For463

the other species with a 10% higher probability of getting zero values, safisfy-464

ing precision estimates with 40 strata need at least collecting 40 data points465

per stratum before the confidence coverage gets reasonably close to its theo-466

retically recommended approximate value. Because 1600 stations represents467

generally unrealistically large sampling effort for a marine bottom-trawl sur-468

vey in that Urchin example, statisticians need to inform practitioners (before469

launching the data collection) about possible underestimation of uncertainty.470

6. Covariates for the fixed effect of environmental variable (depth, temperature471

and habitat type) could be added to the model, potentially enhancing eco-472

logical interpretation of the observed patterns in organism abundance and473

distribution. However, it may bring a lot of additional burden during the in-474

ferential computations since many of the conjugate properties would be lost.475

For the same reasons, non exchangeable strata (with for instance an intrinsic476

CAR structure on the top of the hierarchy as described in (author?) [3])477

have not been considered here. Simple (low dimensional) importance sam-478

pling should be replaced with brute force Hastings Metropolis techniques479

[11]. In such a context, it may be worthwhile to work on encoding prior480
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knowledge [14] into probability distributions and switch the problem into a481

Bayesian framework [5], relying on ready-made tools such as WinBugs for482

inference [24].483

7. In the case study, the random effect models with compound Poisson distri-484

bution for the occurrence of zero-inflated data fit the data well and allow485

transfer of information between strata to help predict in data-poor units. Its486

hierarchical structure favors discussion between ecologists and statisticians,487

and helps query its interpretation in term of ecological situations with extra488

zeros.489
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APPENDICES561

A. Compound Poisson process characteristic function562

When X is real valued, we denote by f̂ the Fourrier transform1 of f (i.e the
characteristic function of X) :

f̂(ω) = E(eiωX)

From equation 2.1, the compound Poisson distribution g is such that :

ĝ(ω) =

∞
∑

n=0

e−µ
µn

n!

(

f̂(ω)
)n

= e−µ(1−f̂(ω)) (A.1)

1For non negative integer valued random variables X the probability generating function

P (z) =

∞
∑

0

Pr(X = n)zn is the corresponding machinery for handling discrete distributions :

the same results can be found in this case by setting the change of variables z = eiω
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This equation exhibits the infinite divisibility property of Y with regards to563

parameter µ, which offers a nice conceptual interpretation when returning to the564

marked Poisson process underneath this stochastic construction : the resulting565

quantity Y is obtained by collecting a random number of primarily (hidden)566

batches Xi distributed at random with intensity µ. Such a conceptual latent567

process of aggregates would be intuitive for many ecologists. Conversely, one can568

easily check by writing the logarithm of their characteristic functions, that tradi-569

tional models for zero-inflated data (think for instance of the delta-gamma model570

or the Zero-Inflated Poisson model such as [21]) lack of coherence for adapting to571

a change of the scale in the experiment.572

Among the many choices for the probability distribution f of the random mark
of the sum, this paper focuses, for parsimony and realism, on the exponential
distribution for X (continuous case) that is :

f(x) = ρe−ρx

so that f̂(ω) = ρ

ρ+iω
and ĝ(ω) = e−µ( iω

ρ+iω
) . For the discrete case, we suggest573

the corresponding geometric distribution : f(x) = 1x>0 × (1− r)× rxeiwx leading574

to f̂(ω) = 1−r
1−reiω and ĝ(ω) = e

−µ

„

r(1−eiω)

1−reiω

«

for the exponential compound Poisson575

count model.576

B. Initialization of the Newton-Raphson algorithm577

The main point on Newton-Raphson algorithm consists in choosing a good
initial point. In this paper we use this algorithm to find the zero of

ln(a) − ψ(a) − C = 0

Note that function ψ verifies the following asymptotic series’ expansion [1] :

ψ(x) ∼
x→∞

ln(x) −
1

2x
−

∞
∑

n=1

B2n

2nx2n

∼
x→∞

ln(x) −
1

2x
−

1

12 x2
+

1

120 x4
+ . . .

The convergence is very fast (see Figure 19) so that we choose to initiate Newton-578

Raphson algorithm with x0 = 1
2C

.579
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Figure 19: Difference between log(x) − ψ(x) and 1/2x

C. Computation of the moments of gamma and log gamma, beta and580

log beta distribution implied in the expection step581

C.1. First and second moments for the sufficient statistics of the gamma pdf582

Let Z be a random variable with gamma distribution, Z ∼ Γ(s, t). Using
laplace transform it is easy to obtain the first moment of ln(Z) :

E
(

eλ ln(Z)
)

= E
(

Zλ
)

=
ts

Γ(s)

∫ +∞

0

yλys−1e−tydy =
Γ(s+ λ)

Γ(s)tλ
.

Differentiating this equation with respect to λ, we have the expected value of ln(Z)
(when λ = 0) and Z ln(Z) (when λ = 1):

∂E
(

Zλ
)

∂λ

∣

∣

∣

∣

∣

λ=0

= E (ln(Z)) = ψ(s) − ln(t), (C.1)

and
∂E
(

Zλ
)

∂λ

∣

∣

∣

∣

∣

λ=1

= E (Z ln(Z)) =
s

t
(ψ(s+ 1) − ln(t)) . (C.2)

Taking the second order derivative, we show :583

∂2E
(

Zλ
)

∂λ2

∣

∣

∣

∣

∣

λ=0

= E
(

ln(Z)2
)

= ψ′(s) + ψ(s)2 − 2 ln(t)ψ(s) + ln(t)2. (C.3)
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Therefore the variance-covariance matrix between Z and ln(Z) is :

(

s
t2

1
t

1
t

ψ′(s)

)

C.2. First and second moments for the sufficient statistics of the beta pdf584

Let S be a random variable with beta distribution S ∼ β(s, t).

E
(

eλ ln(S)
)

=
Γ(s+ t)

Γ(s+ t+ λ)

Γ(s+ λ)

Γ(s)

So that, by first and second differentiation, one gets, (the derivation is quite
straightfully performed if working with ln E

(

eλ ln(S)
)

) :

E (ln(S)) = ψ(s) − ψ(s+ t) , E (ln(1 − S)) = ψ(t) − ψ(s+ t)

E
(

ln(S)2
)

= ψ′(s) − ψ′(s+ t) + (ψ(s) − ψ(s+ t))2

One can extend the properties of characteristic function by considering the
function of the two arguments λ and µ

E
(

eλ ln(S)+µ ln(1−S)
)

=
Γ(s+ t)

Γ(s+ t+ λ)

Γ(s+ λ)

Γ(s)

Γ(t+ µ)

Γ(t)

By cross-differentiation under regularity conditions (working with ln E
(

Sλ(1 − S)µ
)

585

makes things easier here also) , the joint moment can be analytically obtained :586

∂2E
(

Sλ(1 − S)µ
)

∂λ∂µ

∣

∣

∣

∣

∣

λ=0,µ=0

= E (ln(S) ln(1 − S))

= −ψ′(s+ t) + E (ln(S)) E (ln(1 − S))

Therefore the variance-covariance matrix between ln(S) and ln(1 − S) reads :

(

ψ′(s) − ψ′(s+ t) −ψ′(s+ t)
−ψ′(s+ t) ψ′(t) − ψ′(s+ t)

)

D. EM algorithm principle587

From a constructive point of view, one often writes

[x, z |θ ] = [x |θ, z ] × [z |θ ] ,
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but using Bayes rule, we may write the reverse logarithmic form :

ln [x |θ ] = ln[x, z |θ ] − ln [z |θ, x ] (D.1)

Let us remark that relation D.1 is valid whatever z represents.588

D.1. Recall about EM algorithm and control of the gradient589

Under regularity conditions for the joint distribution [x, z |θ ] and the condi-
tional one [z |θ, x ] , integrating relation D.1 with respect to the probability density
[z |θ′, x ] :

ln [x |θ ] =

∫

z

ln[x, z |θ ] [z |θ′, x ] dz −

∫

z

ln [z |θ, x ] [z |θ′, x ] dz

= Q(θ, θ′) −H(θ, θ′) (D.2)

The maximum of θ 7→ H(θ, θ′) is achieved in θ = θ′ [27].590

So H(θ, θ′) < H(θ′, θ′).Let us consider D.2 for θ and θ′

ln [x |θ ] − ln [x |θ′ ] = (Q(θ, θ′) −Q(θ′, θ′)) + (H(θ′, θ′) −H(θ, θ′))

EM algorithm is based upon an iterative procedure which exhibits θ such that
Q(θ, θ′) > Q(θ′, θ′) . The best θ is obtained by

θ = argmax
θ

Q(θ, θ′)

During iteration we can monitor the value of the gradient for the log likelihood :

∂ ln [x |θ ]

∂θ
=
∂ ln[x, z |θ ]

∂θ
−
∂ ln [z |θ, x ]

∂θ
(D.3)

Integrating the right hand term with respect to conditional density [z |θ, x ] ,and
keeping in mind that, for any sufficiently regular pdf f(z; θ) of variable z with

parameter θ one can write:

∫

z

∂ ln f(z,θ)
∂θ

f(z; θ)dz = ∂
∂θ

∫

z

∂ ln f(z,θ)
∂θ

f(z; θ)dz = 0, we

have

∂ ln [x |θ ]

∂θ
=

∫

z

∂ ln[x, z |θ ]

∂θ
[z |θ, x ] dz −

∫

z

∂ ln [z |θ, x ]

∂θ
[z |θ, x ] dz

∂ ln [x |θ ]

∂θ
=

∫

z

∂ ln[x, z |θ ]

∂θ
[z |θ, x ] dz (D.4)

33



We may use this equality (computed by Monte Carlo method) to perform a591

gradient method to obtain the maximum likelihood or just to check along the592

iterations that the gradient is going to zero.593

D.2. Score function594

From now on, let’s call Sc(θ, z, x) = ∂ ln[x,z|θ ]
∂θ

the score, i.e the complete loglike-

lihood gradient and Sc(θi, z, x) = ∂ ln[x,z|θ ]
∂θi

its ith component. ∇θ, equation D.4
proves that its conditional expectation (with respect to [z |θ, x ]) is always equal to
the likelihood gradient. Pushing the derivation game one step further leads to:

∂

∂θj

{

∂ ln [x |θ ]

∂θi

}

=

∫

z

{

∂Sci
∂θj

[z |θ, x ] + Sci
∂ [z |θ, x ]

∂θj

[z |θ, x ]

[z |θ, x ]

}

dz

∂2 ln [x |θ ]

∂θi∂θj
=

∫

z

{

∂2 ln [x, z |θ ]

∂θi∂θj
+ Sci

(

Scj −
∂ ln [x |θ ]

∂θj

)}

[z |θ, x ] dz

(D.5)

D.3. Information matrix595

To obtain the covariance matrix of the estimators at the maximum of likeli-
hood, the empirical information matrix needs to be computed. The second order
derivative is obtained by differentiating D.1:

∂2 ln [x |θ ]

∂θi∂θj
=
∂2 ln[x, z |θ ]

∂θi∂θj
−
∂2 ln [z |θ, x ]

∂θi∂θj
(D.6)

At the maximum θ = θ̂, formula D.3 implies∂ ln[x|θ ]
∂θjj

= 0 so that equation D.5

takes a more friendly aspect because the score term ∂ ln[x|θ ]
∂θj

in the right hand side

vanishes at θ = θ̂ . Equation D.6 becomes therefore much more handy because
it only involves conditional expectations of first and second derivatives of the
complete likelihood terms :

∂2 ln(
[

x
∣

∣

∣
θ̂
]

)

∂θi∂θj
=

∫

z





∂2 ln
[

x, z
∣

∣

∣
θ̂
]

∂θi∂θj
+
∂ ln

[

x, z
∣

∣

∣
θ̂
]

∂θi

∂ ln
[

x, z
∣

∣

∣
θ̂
]

∂θj





[

z
∣

∣

∣
θ̂, x
]

dz

(D.7)

As
∫

z

(

∂ ln[x,z|θ̂ ]
∂θj

)

[

z
∣

∣

∣
θ̂, x
]

dz =
∂ ln[x|θ̂ ]
∂θj

= 0, the second term in the right hand596

side of eq D.7 can be considered as the conditional variance of the gradient of the597
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complete log-likelihood ln
[

x, z
∣

∣

∣
θ̂
]

. This expectation can be numerically com-598

puted with the same techniques to which recourse was made for the EM algorithm.599

E. Detailed proofs of propositions600

E.1. Proof of proposition 3.1601

Since we detail the computation for one particular s, we will omit to mention
it in order to make the reading easier. We also note respectively y, D and N
the vectors of data, catching efforts and corresponding number of clumps in one
stratum.
We define J as

J(N, ρ, µ) =
[

ρ, µ,N
∣

∣a, b, c, d, y,D
]

. (E.1)

Then J satisfies the following set of equations :

∝

[

y, ρ, µ,N |a, b, c, d,D
]

∝

(

I
∏

i=1

[yi |Ni, ρ ] [Ni |µ,Di ]

)

[µ |a, b ] [ρ |c, d ]

∝

(

I
∏

i=1

[yi |Ni, ρ, µ ] [Ni |ρ, µ ]

)

(

µa−1e−µb
) (

ρc−1e−ρd
)

with the convention that [A|B] ∝ f(A,B) means that the coefficient of propor-
tionality only depends on B. We note I⋆ the number of zero value y and we reorder
the vector y so that the I+ = I − I∗ non zero yi are the first, so that J may be
written as :

J(N, ρ, µ) ∝

(

I−I⋆
∏

i=1

(

yNi

i e−ρyi
ρNi

Γ(Ni)

)(

e−µDi(µDi)
Ni

Γ(Ni + 1)

)

)

(

I
∏

i⋆=I−I⋆+1

δ(Ni∗)e
−µDi⋆

)

(

µa−1e−µb
)(

ρc−1e−ρd
)

Defining Y+ =
∑I

i=1 yi, N+ =
∑I

i=1Ni and D+ =
∑I

i=1Di, we obtain :

J(N, ρ, µ) ∝

(

I+
∏

i=1

yNi

i

Γ(Ni)Γ(Ni + 1)

)

e−ρ(Y++d)ρN++c−1e−µ(D++b)µN++a−1

Conditionally to the latent vector N , the random effects ρ and µ are independent.
Isolating the terms which depend on µ on one side and those depend on ρ on the
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other, we find that

[

µ|N, θ, y,D
]

∼ Γ(a +N+, b+D+)
[

ρ|N, θ, y
]

∼ Γ(c+N+, d+ Y+)

For the expectation step we only need to compute Eθ

(

µs | Ys
)

, Eθ

(

ln(µs) | Ys
)

and the same sufficient statistics concerning ρ.
Since µs|Ns, θ, y follows a gamma distribution Γ(a+Ns+, b+Ds+), the conditional
expected value µs given Ns and θ = (a, b, c, d) is (a+Ns+)/(b+Ds+).
Then

Eθ′
(

µs | ys
)

= Eθ′

(

a′ +Ns+

b′ +Ds+

∣

∣y

)

=
a′ + Eθ′

(

Ns+|ys
)

b′ +Ds+

.

If Z follows gamma distribution Γ(s, t), then E(ln(Z)) = ψ(s) − ln(t) (see annex
C), so that

Eθ′
(

ln(µs) | ys
)

= Eθ′
(

ψ(a′ +Ns+)
∣

∣ys
)

− ln(b′ +Ds+).

We have respectively for ρs

Eθ′
(

ρs | ys
)

=
c′ + Eθ′

(

Ns+|ys
)

d′ + Ys+
,

and
Eθ′
(

ln(ρs) | ys
)

= Eθ′
(

ψ(c′ +Ns+)
∣

∣ys
)

− ln(d′ + Ys+).

E.2. Proof of proposition 3.2602

Let us define J as the distribution of
[

ρ, µ,N
∣

∣θ′, y,D
]

in one particular stratum603

s. We will write J in a bottom-up perspective and consider the distribution of µ604

and ρ conditionned by N , because µ and ρ are conditionally independant.605

J is given by :

J(N, ρ, µ) =
[

ρ, µ,N
∣

∣θ′, y,D
]

=
[

ρ
∣

∣N, θ, y
] [

µ
∣

∣N, θ′, y,D
] [

N
∣

∣, θ, y,D
]

Using the independent conditional gamma distributions of µ and ρ and inte-
grating according to µ and ρ given N, we can exhibit all the terms depending on
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N .

∫

ρ

∫

µ

J(N, ρ, µ)dµ dρ =
[

N
∣

∣θ, y,D
]

∝

I+
∏

i=1

(

yNi

i

Γ(Ni)Γ(Ni + 1)

) I
∏

i⋆=I−I⋆+1

δ(Ni⋆)

(

(b′ +D+)N+(d+ Y+)N+

Γ(a +N+)Γ(c+N+)

)−1

E.3. Proof of proposition 3.4606

In the following Z will stand for all the hidden variables i.e Z = (N,µ,ρ) ,
|Mij | is another notation for matrix M that details the content of the ith row and

jth column, and ∂F (θ)
∂θ

stands for the gradient of F written as a vector whose ith

component is the scalar ∂F (θ)
∂θi

. The key equation involves rewriting equation D.7
as the expectation of the second order derivative of the complete log-likelihood and
the variance of the score (its gradient) to be taken with regards to the conditional

distribution
[

Z
∣

∣

∣
x, θ̂
]

(see annex D.3)

∣

∣

∣

∣

∣

∣

∂2 ln(
[

x
∣

∣

∣
θ̂
]

)

∂θi∂θj

∣

∣

∣

∣

∣

∣

= EZ|x

∣

∣

∣

∣

∣

∣

∂2 ln(
[

x, Z
∣

∣

∣
θ̂
]

)

∂θi∂θj

∣

∣

∣

∣

∣

∣

+ VarZ|x

(

∂ ln [x, Z |θ ]

∂θ

)

(E.2)

Computing the first term of the right hand side of equation E.2 is easy, since
[x |z, θ ] = [x |z ] (consequently the complete log-likelihood ln([x, z |θ ]) can be sep-
arated as ln([x |z ]) + ln([z, |θ ])) and the gamma random effects [z|θ] belong to an
exponential family. As a consequence, annex F shows that

E

∣

∣

∣

∣

∣

∣

∂2 ln(
[

x, Z
∣

∣

∣
θ̂
]

)

∂θi∂θj

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∂2 ln(
[

x, z
∣

∣

∣
θ̂
]

)

∂θi∂θj

∣

∣

∣

∣

∣

∣

= S









−ψ′(â) 1

b̂
0 0

1
b

− â

b̂2
0 0

0 0 −ψ′(ĉ) 1

d̂

0 0 1

d̂

−ĉ

d̂2









As shown in Figure 20. , given Ys, Ys′ and θ, the latent variables Zs and Zs′ of two
stratum s and s′ are conditionnaly independent, therefore :

VarZ|x

(

∂ ln [x, Z |θ ]

∂θ

)

=

S
∑

s=1

VarZs|x









ln(µs)
−µs

ln(ρs)
−ρs
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Figure 20: The random effects in each stratum are conditionally independent given the data and
the set of parameters

To evaluate the variance of the score in stratum s, we will take advantage of
successive conditioning due to the hierarchical structure depicted in Figure 2.
Recalling that the latent variable Zs includes, in addition to (µs, ρs), the vector
Ns , i-e the latent number of clumps for each record, the variance conditional
decomposition formula gives:

VarZs|x









ln(µs)
−µs

ln(ρs)
−ρs









= ENs|x









Var









ln(µs)
−µs

ln(ρs)
−ρs

|Ns

















+VarNs|x









E









ln(µs)
−µs

ln(ρs)
−ρs

|Ns

















So that we have

Ie(θ̂, x) = S













−ψ′(â) 1

b̂
0 0

1

b̂
− â

b̂2
0 0

0 0 −ψ′(ĉ) 1

d̂

0 0 1
d̂

− ĉ

d̂2













+

S
∑

s=1

(As +Bs)
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with

As = EN|x









Var









ln(µs)
−µs

ln(ρs)
−ρs

|N

















and Bs = VarNs|x









E









ln(µs)
−µs

ln(ρs)
−ρs

|Ns

















.

Given Ns, µs and ρs are independent. Moreover the pdf [ρs|Ns, Ys, a, b, c, d] and
[µs|Ns, Ys, a, b, c, d] are gamma and analytic expressions are available for the ex-
pectation and variance of the gamma sufficient statistics, as detailed in equations
C.1 to C.3. The key functions of Ns+ are (as′, bs′, cs′, ds′) = (a+Ns+, b+Ds+, c+
Ns+, d+ Ys+) such that :

E









ln(µs)
−µs

ln(ρs)
−ρs

|N









=











ψ(a′s) − ln(b′s)

−a′s
b′s

ψ(c′s) − ln(d′s)

− c′s
d′s











and then Bs is obtained by taking the covariance of this vector :

Bs = VarNs+|θ̂,x









E









ln(µs)
−µs

ln(ρs)
−ρs

|Ns+

















Given Ns additional advantage is taken from the conditional independence of ρs
and µs as shown in Figure 21, .

Figure 21: Given N, ρs ⊥ µs
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Var









ln(µs)
−µs

ln(ρs)
−ρs

|N









=









−ψ′(a′) 1
b′

0 0
1
b′

− a′

b′2
0 0

0 0 −ψ′(c′) 1
d′

0 0 1
d′

−c′

d′2









and the expression for As follows easily.607

F. Second derivative of the complete log-likelihood608

Let us first recall the complete log likelihood of the model :

ln [x, z |θ ] = C−θ + (a− 1)

S
∑

s=1

lnµs + Sa ln b− b

S
∑

s=1

µs − S ln Γ(a)

+ (c− 1)
S
∑

s=1

ln ρs + Sc ln d− d
S
∑

s=1

ρs − S ln Γ(c)

In the first derivative, the latent variables µ and ρ appear not surprisingly only
through their arithmetic or geometric means (sufficient statistics for the gamma
pdf ). Using standard notation µ̄ for the arithmetic mean 1

S

∑S

s=1 µs, we have :

∂ ln [x, z |θ ]

∂a
= S

(

ln(µ) + ln b− ψ(a)
) ∂ ln [x, z |θ ]

∂c
= S

(

ln(ρ) + ln d− ψ(c)
)

∂ ln [x, z |θ ]

∂b
= S

(a

b
− µ

) ∂ ln [x, z |θ ]

∂d
= S

( c

d
− ρ
)

The gradient of the complete log-likelihood (so-called the ”score”) may be split609

into two parts : the first one ∆θ does not depend on the latent variable z while610

the other one ∆z gathers terms depending on z (and possibly of θ), i.e :611





∂ ln
[

x, z
∣

∣

∣
θ̂
]

∂θ



 = ∆θ + ∆z

with

∆θ = S









ln b− ψ(a)
a
b

ln d− ψ(c)
c
d









∆z = S









ln(µ)
−µ

ln(ρ)
−ρ









In addition here, ∆z does not contain terms with θ, consequently the second
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order derivatives are easy to obtain and don’t involve the latent variable :

∂2 ln [x, z |θ ]

∂a∂a
= −Sψ′(a)

∂2 ln [x, z |θ ]

∂c∂c
= −Sψ′(c)

∂2 ln [x, z |θ ]

∂a∂b
=
S

b

∂2 ln [x, z |θ ]

∂c∂d
=
S

d
∂2 ln [x, z |θ ]

∂b∂b
= −

Sa

b2
∂2 ln [x, z |θ ]

∂d∂d
=

−Sc

d2

G. Second derivative of the complete log-likelihood with discrete data612

The complete log likelihood of the model, in the discrete case, reads :

ln [x, z |θ ] = C−θ + (a− 1)
S
∑

s=1

lnµs + Sa ln b− b
S
∑

s=1

µs − S ln Γ(a)

S ln

(

Γ(c+ d)

Γ(c)Γ(d)

)

+ (c− 1)

S
∑

s=1

ln ps + (d− 1)

S
∑

s=1

ln(1 − ps)

In the first derivative, the latent variables µ and p appear only through their
arithmetic or geometric means (sufficient statistics for the gamma and beta pdf ).
Using standard notation µ̄ for the arithmetic mean 1

S

∑S
s=1 µs, we have :

∂ ln [x, z |θ ]

∂a
= S

(

ln(µ) + ln b− ψ(a)
) ∂ ln [x, z |θ ]

∂c
= S

(

ln(p) + ψ(c+ d) − ψ(c)
)

∂ ln [x, z |θ ]

∂b
= S

(a

b
− µ

) ∂ ln [x, z |θ ]

∂d
= S

(

ln(1 − p) + ψ(c+ d) − ψ(d)
)

The gradient of the complete log-likelihood (so-called the ”score”) may be split613

into two parts : the first one ∆θ does not depend on the latent variable z while614

the other one ∆z gathers terms depending on z (and possibly of θ), i.e :615





∂ ln
[

x, z
∣

∣

∣
θ̂
]

∂θ



 = ∆θ + ∆z

with

∆θ = S









ln b− ψ(a)
a
b

ψ(c+ d) − ψ(c)
ψ(c+ d) − ψ(d)









∆z = S









ln(µ)
−µ

ln(p)

ln(1 − p)
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In addition here, ∆z does not contain terms with θ, consequently the second
order derivatives are easy to obtain and don’t involve the latent variable; with Z
standing for all the hidden variables i.e Z = (N,µ,p):

∣

∣

∣

∣

∣

∣

∂2 ln(
[

x, z
∣

∣

∣
θ̂
]

)

∂θi∂θj

∣

∣

∣

∣

∣

∣

= S











−ψ′(â) 1

b̂
0 0

1
b

− â

b̂2
0 0

0 0 −ψ′(ĉ) + ψ′(ĉ+ d̂) ψ′(ĉ+ d̂)

0 0 ψ′(ĉ+ d̂) −ψ′(d̂) + ψ′(ĉ+ d̂)











As shown in Figure 20 for the continuous case , given Ys, Ys′ and θ, the latent vari-
ables Zs and Zs′ of two strata s and s′ are conditionnaly independent, therefore :

VarZ|x

(

∂ ln [x, Z |θ ]

∂θ

)

=

S
∑

s=1

VarZs|x









ln(µs)
−µs

ln(ps)
ln(1 − ps)









To evaluate the variance of the score in stratum s, we will take advantage from
successive conditioning due to the hierarchical structure depicted in Figure 2 still
true for the discrete case. The variance conditional decomposition formula gives:

VarZs|x









ln(µs)
−µs

ln(ρs)
−ρs









= ENs|x









Var









ln(µs)
−µs

ln(ps)
ln(1 − ps)

|Ns

















+VarNs|x









E









ln(µs)
−µs

ln(ps)
ln(1 − ps)

|Ns

















So that we have

Ie(θ̂, x) = S











−ψ′(â) 1

b̂
0 0

1
b

− â

b̂2
0 0

0 0 −ψ′(ĉ) + ψ′(ĉ+ d̂) ψ′(ĉ + d̂)

0 0 ψ′(ĉ+ d̂) −ψ′(d̂) + ψ′(ĉ+ d̂)











+
S
∑

s=1

(As+Bs)

with

As = EN|x









Var









ln(µs)
−µs

ln(ps)
ln(1 − ps)

|N

















and Bs = VarNs|x









E









ln(µs)
−µs

ln(ps)
ln(1 − ps)

|Ns

















.

Given Ns, µs and ρs are independent. Moreover the pdf [ρs|Ns, Ys, a, b, c, d] and
[ps|Ns, Ys, a, b, c, d] are gamma and beta so that analytic expressions are available
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for the expectation and variance of the gamma sufficient statistics, as detailed in
equations C.1 to C.3. The key functions of Ns+ are (as′, bs′, cs′, ds′) = (a+Ns+, b+
Ds+, c+Ns+, d+ Ys+ −Ns+) such that :

E









ln(µs)
−µs

ln(ps)
ln(1 − ps)

|N









=









ψ(a′s) − ln(b′s)

−a′s
b′s

ψ(c′s) − ψ(c′s + d′s)
ψ(d′s) − ψ(c′s + d′s)









and then the matrix Bs is obtained by taking the covariance of this vector.Given
Ns additional advantage is taken from the conditional independence of ps and µs
(as shown on Figure 21 for the continuous case).

Var









ln(µs)
−µs

ln(ρs)
−ρs

|N









=









−ψ′(a′) 1
b′

0 0
1
b′

− a′

b′2
0 0

0 0 ψ′(c′s) − ψ′(c′s + d′s) −ψ′(c′s + d′s)
0 0 −ψ′(c′s + d′s) ψ′(d′s) − ψ′(c′s + d′s)









and the expectation to obtain As is performed via importance sampling.616

To sum it up

Ie(θ) = −
∂2 ln [Y|θ]

∂θi ∂θj
(G.1)

At the maximum likelihood estimator θ̂, the following equality occurs :

Ie(θ̂,Y) = S











−ψ′(â) 1

b̂
0 0

1
b

− â

b̂2
0 0

0 0 −ψ′(ĉ) + ψ′(ĉ+ d̂) ψ′(ĉ + d̂)

0 0 ψ′(ĉ+ d̂) −ψ′(d̂) + ψ′(ĉ+ d̂)











+

S
∑

s=1

(As+Bs)

(G.2)
with

As =











Eνs
(ψ′(a′s))

−1
b′s

0 0

−1
b′s

E
Ns+|Y,θ̂

(a′s)

b′s
2 0 0

0 0 Eνs
(ψ′(c′s) − ψ′(c′s + d′s)) −Eνs

(ψ′(c′s + d′s))
0 0 −Eνs

(ψ′(c′s + d′s)) Eνs
(ψ′(d′s) − ψ′(c′s + d′s))
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and

Bs = VarNs+|θ̂,x









ψ(a′s) − ln(b′s)

−a′s
b′s

ψ(c′s) − ψ(c′s + d′s)
ψ(d′s) − ψ(c′s + d′s)









where a′s = â +Ns+, b′s = b̂ +Ds+, c′ = ĉ+Ns+ and d′s = d̂+ Ys+ −Ns+ ( b′s617

is the only term that is not a function of Ns+, thus behaving like a constant with618

regards to the VarNs+|θ̂,x operator)619

H. The discrete algorithm620

If we adapt bluntly from the continuous version, the algoritm would write621

1. Generate N
(g)
i = 0 wherever yi=0 fori = I − I+ + 1, . . . , I.622

2. Generate a value of N+ according to

N+ ∝

Γ(a′ +N+)Γ(c′ +N+)Γ(d′ + Y+ −N+)D
N+

+

(b′ +D+)a′+N+
∏I+

j=1 Γ
(

N+
YjDj

(Y D)+

)

3. Generate each Ni for i = 1, . . . , I+, so that the vector N is distributed623

according to a multivariate hypegeometric Fisher distribution [17] given by624

[N |N+] =
g(N ;N+, Y ,D/D+)

KN+

with

g(N ;N+, Y ,D) =

I
∏

i=I∗+1

(

Yj
Nj

)

(Dj/D+)Nj ,

KN+ =
∑

y∈S

g(y;N+, Y ,D),

and

S =

{

N ∈ Z
I+

+ |

I
∑

i=I∗+1

Ni = N+

}

.

4. Associate to the vector the weight

w(g) = K
N

(g)
+

I
∏

i=I∗

Γ
(

N
(g)
+

YjDj

(Y D)+

)

Γ(Nj)
.
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Importance Sampling relying this time on the multivariate hypergeometric distri-
bution seems to stand naturally as the core of the algorithm to evaluate (3.23).
But during our first trials, the above adaptation of the continuous version per-
formed very badly, leading to a large variance of the importance weights, i.e. a
degeneracy phenomenon that would put the all weight onto a very few contributing
particles. In order to put more weight onto particles that have a good chance to
efficiently attain the target distribution, a mixture was chosen as the importance
distribution for a modified algorithm. The idea is similar in spirit to the auxiliary
particle filtering of [20]. More precisely, the first step consists of determining an

approximate mean of Ns+ in stratum s, denoted N
(ref)
s+ . One draws a L-sample of

Ns+ according to

g(N+) ∝

Γ(a′ +N+)Γ(c′ +N+)Γ(d′ + y+ −N+)D
N+

+

Γ(b′ +D+)a′+N+Γ(N+ + 1)Γ(N+)Γ(Y+ −N+ + 1)

The g distribution corresponds to the conditional distribution of N+ given the

sum of the data collected in stratum s but ignoring the individual records. N
(ref)
s+

is given by the mean over a sample that is

N
(ref)
s+ =

1

L

∑

N
(i)
+

and provides a good estimation of the location of Ns+. As previously we omit the625

index s to make the reading easier. Subsequently, the following algorithm relies626

on independent but non identically distributed simulations :627

1. Generate N
(g)
i = 0 wherever yi = 0 for i = I − I+ + 1, . . . , I.628

2. Draw µ(g) ∼ Γ(a′ +N
(ref)
+ , b′ +D+) and p(g) ∼ β(c′+N

(ref)
s+ , d′+Ys+−N

(ref)
s+ )629

3. Given µ(g) and ρ(g), draw N
(g)
sk ∼ [Nsk|µ

(g), p(g), ysk] that is :

[N
(g)
i = k] = Ki

(

µ(g)p(g)Di

1 − p(g)

)Ni 1

Γ(Ni)Γ(Yi −Ni + 1)Γ(Ni + 1)
1{0<Nsk≤Ysi},

where Ki denotes the normalizing constant.630

4. Compute the weight of each particle g using

w(g) =

I+
∏

i=1

Γ(Ni + 1)

Ki(µ(g)p(g))Ni

(

Γ(a′ +Ns+)Γ(Ns+ + c′)Γ(Y+ −Ns+ + d′)

(b′ +Ds+)Ns+

)
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