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Abstract The MPEG Reconfigurable Video Coding (RVC)
framework is a new standard under development by MPEG
that aims at providing a unified high-level specification of
current and future MPEG video coding technologies using
dataflow models. In this framework, a decoder is built as a
configuration of video coding modules taken from the stan-
dard MPEG toolbox library or proprietary libraries. The el-
ements of the library are specified by a textual description
that expresses the I/O behavior of each module and by a
reference software written using a subset of the CAL Ac-
tor Language named RVC-CAL. A decoder configuration is
written in an XML dialect by connecting a set of CAL mod-
ules. Code generators are fundamental supports that enable
the direct transformation of a high level specification to ef-
ficient hardware and software implementations. This paper
presents a synthesis tool that from a CAL dataflow program
generates C code and an associated SystemC model. The
generated code is validated against the original CAL de-
scription simulated using the Open Dataflow environment.
Experimental results of the translation of two descriptions
of an MPEG-4 Simple Profile decoder with different granu-
larities are shown and discussed.
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1 Introduction

Processor frequencies no longer double every two years as
predicted by Moore’s law. Multicore architectures are now
being proposed so that computational power keeps increas-
ing. The main issue of this approach is that standard pro-
gramming languages (C, C++, . . . ) are sequential and not
suitable for parallel multicore architectures. The dataflow
programming concept consists of describing an application
with a directed graph where edges represent the flow of data
between operations. Dataflow programming highlights the
potential parallelism of the application, which can be used
to distribute calculations over available cores.

MPEG is currently working on the development of the
RVC standard. The key concept behind this project is to
describe decoders using dataflow graphs: RVC provides
a high-level description of the MPEG standard written in
a specific language called RVC-CAL. Appropriate tools
must implement the design flow and provide the optimiza-
tion steps necessary for efficient implementations. Unipro-
cessor software code generation must be addressed before
considering more complex implementations (multicore or
hardware/software co-design). This paper presents a non-
normative (in terms of relation with the RVC standard) soft-
ware code generator called Cal2C that from a dataflow pro-
gram generates C code and an associated SystemC model.
We show that the algorithm described with RVC-CAL can
be automatically transformed, compiled and executed effi-
ciently on a uniprocessor system.

The paper is organized as follows: Section 2 presents
dataflow programming within the RVC-CAL environment.
Section 3 describes the Cal2C software code generator. Re-
sults obtained with Cal2C are shown in section 4. Section 5
outlines perspectives of future work, while we conclude in
section 6.
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2 Dataflow programming for RVC

RVC aims at providing a system-level specification for ex-
isting and future MPEG standards [11]. In RVC, an abstract
video decoder is built as a block diagram in which blocks de-
fine processing entities, indifferently called actors or Func-
tional Units (FUs), and connections represent the data flow
between actors. RVC provides both a normative standard li-
brary of FUs described with the RVC-CAL language, and
a set of decoder descriptions expressed as networks of FUs
using the FU Network Language (FNL).

RVC-CAL is a subset of the CAL Actor Language
(CAL) normalized as a part of the RVC standard. It restricts
the datatypes, operators, and features that can be used when
describing an FU. CAL [2] is an actor-oriented language cre-
ated as part of the Ptolemy project [3], a Java framework that
supports heterogeneous modeling, simulation, and design of
concurrent dataflow systems made of actors.

FNL is an XML dialect with which networks can be de-
scribed. FNL is based on a format used in the Open Dataflow
environment1 and standardized by MPEG. FNL supports lo-
cal variable declarations, instantiation of blocks with param-
eters, and hierarchy: Blocks can be FUs or networks. Con-
trarily to other languages supported by OpenDF, FNL can-
not create networks programmatically (e.g. with for loops).

2.1 RVC-CAL language

An RVC-CAL actor is a modular component that encapsu-
lates its own state. It can neither access nor modify the state
of any other actor. An actor performs computation as a se-
quence of atomic steps called firings. During a firing, com-
putation is done by one action, chosen among the several
actions an actor may have. An action defines the amount of
tokens consumed on the input, may change the actor state,
and may output tokens using a function of inputs tokens and
actor state.

Figure 1 shows an actor A that makes use of both
functional and imperative features of RVC-CAL to extract
red, green, blue components and luminance out of a pixel
where colors are packed together. The actor has a parameter
COMPUTE Y that states whether luminance should be com-
puted, and several constants that contains the masks and
shift offsets for the different components. Actor A’s single
anonymous action requires COUNT tokens on the PIX in-
put port to fire.

The body of an action is the same as a procedure’s body
in most imperative programming languages. Variables may
be declared and initialized before any statement. Statements
may be conditionals (if/then/else), loops (for/while),
calls to functions and procedures, and assignments to local

1 OpenDF is available on http://opendf.sf.net

actor A (bool COMPUTE_Y) uint(size =24) PIX ⇒
uint(size =8) R, uint(size =8) G, uint(size =8) B,
uint(size =8) Y:

int RSHIFT = 16; int RMASK = 255;
int GSHIFT = 8; int GMASK = 255;
int BSHIFT = 0; int BMASK = 255;
int COUNT = 8;

action: PIX:[pix] repeat COUNT ⇒
R:[r] repeat COUNT ,
G:[g] repeat COUNT ,
B:[b] repeat COUNT ,
Y:[y] repeat COUNT

var
int i := 0

do
// imperative version to compute R, G, B
while i < COUNT do

r[i] := bitand(rshift(pix[i], RSHIFT), RMASK );
g[i] := bitand(rshift(pix[i], GSHIFT), GMASK );
b[i] := bitand(rshift(pix[i], BSHIFT), BMASK );

i := i + 1;
done

// functional version to compute Y
y :=

if COMPUTE_Y then
[rshift(

66 * r[i] + 129 * g[i] + 25 * b[i] + 128,
8) + 16 :
for int i in Integers(1, COUNT) ]

else
[ 0 : for int i in Integers(1, COUNT) ]

end;
end

end

Fig. 1 A sample actor showing both RVC-CAL programming styles

and state variables, either scalar or array. The language is
strictly structured, in the sense that gotos are not allowed.
Similarly it is not possible to break, to continue or to
return a value. Needless to say, an actor cannot exit ei-
ther.

RVC-CAL also borrows from functional programming.
For instance pure (side-effect free) functions are distinct
from imperative procedures. The expressions that can be
written in conditions and in the right-hand side of assign-
ments resemble what is found in functional languages. They
include if/then/else conditional expressions as well as
generators. A generator is a kind of inline for loop that cre-
ates a list whose members are described by an expression.

The differences that are most significant between CAL
and RVC-CAL are: (1) RVC-CAL supports only six types,
which are divided into four primitive types (bool, float, int,
uint) and two extended types (List, String) (2) all vari-
ables must be typed, this means that integers, signed or not,
must have a size, and lists must be declared with the type of
their elements and their maximum size (3) type parameters
(called generics in Java or templates in C++) such as T in
actor A [T] must not be used in type expressions such as
List[T] (4) advanced features of CAL are prohibited, such
as channel selectors and multi-ports, or lambda-functions.
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For instance CAL allows developers to use λ -
expressions. An example of a λ -expression is f (x,y) = x+y,
where f can be evaluated partially: We can write g = f (5),
which is equivalent to declare g(y) = 5 + y. Compilers
for languages that support λ -expressions must use closures
made of the code of the expression and a set of variables and
their values at the time the closure is created. Hardware syn-
thesis of programs written in a functional language is easier
if the language is restricted, especially if closures are for-
bidden [4]. Indeed, closures require dynamic memory allo-
cation in the general case, something which is trivial in a
software environment but requires a heavy machinery with
hardware [15].

2.2 Semantics

In this document, we use the following conventions: a des-
ignates an action and the set of all actions inside an actor
is written A. In the actor A of Figure 2, A equals to the set
{a.x,a.y,b,c}.

actor A () uint(size =16) I1 , uint(size =8) I2 ⇒
int(size =32) O :

// t and u are int(size =16)
// v is List(type:int(size =8), size =5)
a.x: action I1:[t, u], I2:[v] repeat 5 ⇒

O:[ [t, u] + [0] + v ] repeat 8

a.y: action ⇒ end

b: action I1: [ i ] ⇒ end

c: action ⇒ end

priority
b > a;
a > c;
a.x > a.y;

end

schedule fsm s0 :
s0 ( b ) --> s0;
s0 ( a ) --> s1;
s1 ( c ) --> s0;

end
end

Fig. 2 A sample actor showing action-level control structures

Actions may be tagged. A tag is a non-empty list of iden-
tifiers separated by colons. The tag of an action a is writ-
ten ta. |ta| denotes the length of ta. The empty tag ε verifies
|ε| = 0. The set of non-empty tags of an actor is denoted
T . There is a prefix relation, noted v, between tags: t v t ′

means that t is a prefix of t ′. For instance with tags a and
a.x from actor A shown in Figure 2, we have av a.x and a
v a. A set of actions that start with the same tag as an action
a is described as follows:

t̂a = {ax ∈A| ta v tax} (1)

An action may have firing conditions, called guards,
where the action firing depends on the values of input tokens
or the current state. When an actor fires, an action has to be
selected based on the number and values of tokens avail-
able and whether the guard is true. Action selection may be
further constrained using a Finite State Machine (FSM), to
select actions according to the current state, and priority in-
equalities, to impose a partial order among action tags. An
FSM is defined by the triple (S,s0,δ ) where S is the set of
states, s0 ∈ S is the initial state, and δ is the state-transition
function: δ : S×T → S. Note that a state transition allows a
set of actions obtained with t̂ from equation 1 to be fireable.
Priorities have the form t1 > t2. These inequalities induce a
binary relation on the actions as follows:

a1 > a2⇔ ∃ t1, t2 : t1 > t2 ∧ a1 ∈ t̂1 ∧ a2 ∈ t̂2
∨ ∃ a3 : a1 > a3 ∧ a3 > a2

(2)

FNL and RVC-CAL are expressive enough to create
dataflow programs that follow a variety of computation
models which differ by the trade-off they offer between ex-
pressive power and analyzability [3]. A network can be exe-
cuted with the Synchronous Dataflow (SDF) model [9] if all
actions inside an actor have the same token rates and at least
one action may fire when actor is executed.

An important property of the SDF model is that liveness
and boundedness can be decided at compile-time. Actors
can be scheduled statically at compile-time and the memory
requirement may be fixed a priori.

If actors contain state- and/or data-dependent firing con-
ditions (called dynamic actors for short), then Dataflow Pro-
cess Networks (DPN) [10] must be used. A DPN contains
actors that communicate with each other using unidirec-
tional FIFOs, where reads are blocking and writes are non-
blocking. Contrarily to Kahn processes [7], actors may test
an input for the absence of data. DPNs must be scheduled
dynamically, hence actors are scheduled at runtime by an
actor scheduler.

Each time an actor is scheduled, if the input tokens avail-
able and the actor state allow it, an action is fired. Testing an
action’s fireability is done by an action scheduler according
to Algorithm 1, which is a reformulation of the conditions
to fire an action as described in the CAL Language Report
[2].

Algorithm 1 selects an action as follows. If the actor has
a Finite State Machine (FSM), the set of eligible actions at
runtime is found by Algorithm 2, otherwise the set equals A.
The subset of eligible actions for which the is activable(a)
function is true form the activated set. This function re-
turns true if there are enough tokens to execute action a and
the guard of action a evaluates to true. The set of fireable
actions is computed by Algorithm 3 as the set of activated
actions with a priority greater or equal to the priority of all
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other actions. Finally, the action selected to fire is any fire-
able action.

Input: A, δ , current state
Data: eligible, activated, fireable
Output: action selected
if actor has an FSM schedule then1

eligible← select eligible(A, δ , current state);2
else3

eligible← A;4
end5
activated← {a ∈ eligible | is activable(a)};6
fireable← select fireable(activated);7
action selected← any action in fireable;8

Algorithm 1: Action Scheduler

Algorithm 2 founds the set of eligible actions. This set
contains the actions that can be fired according to the FSM
and the current state, in addition to all anonymous actions.
This allows high priority anonymous actions to run out-
side an FSM whenever needed and can be used when one
wishes to execute a given action from different states with-
out changing state and without writing transitions.

With proper data structures, the set of transitions is
computed by select eligible in O(1), and if the subsets a ∈ t̂
have been pre-computed at compile-time the eligible actions
are found in O(n) on the order of transitions.

Input: A, δ , current state
Data: transitions
Output: eligible actions
transitions← {t | (s f , t,st) ∈ δ where s f = current state};1
eligible← {a ∈A | ta = ε ∨a ∈ t̂ where t ∈ transitions};2

Algorithm 2: select eligible

Algorithm 3 determines the set of fireable actions at run-
time in a time O(n2) on the order of activated.

Input: activated, priorities
Output: fireable actions
fireable← {a1 ∈ activated | ∀ a2 ∈ activated, a1 ≥ a2};1

Algorithm 3: select fireable

2.3 Motivations and issues for software code generation

The main motivation for a software code generator for RVC-
CAL was that there did not exist one even though it is
necessary for successful development with the language.
Cal2HDL [6] is able to generate high-speed VHDL from
CAL, but this is far from an ideal solution for two reasons.

On the one hand synthesis time is too long when develop-
ing an application. Simulation is an answer, but it runs very
slowly, which increases development time. A software code
generator is somewhere in-between by generating reason-
ably fast code in a reasonable amount of time. On the other
hand the VHDL language is used as a description language
for programmable logic such as FPGAs, and FPGAs are typ-
ically used as coprocessors to speed up repetitive computa-
tions. A software code generator is thus also necessary to ob-
tain the software part of mixed hardware/software programs
from RVC-CAL.

Translating actors and networks to software raises a
number of issues. Contrarily to hardware code generation,
having one thread per action in a software code is not effi-
cient. FPGAs can execute several pieces of code in a truly
parallel manner. Multi-core processors also provide true par-
allelism to a lesser extent, but it comes at a far higher cost
because of the necessary synchronizations between cores.
To lower the impact of this cost the pieces of code executed
at the same time must be large enough, yet data dependen-
cies limit the amount of available parallelism.

3 Cal2C software code generator

Cal2C is open-source software under a BSD-like license
programmed in Objective Caml, a functional ML-like lan-
guage. Cal2C takes as input CAL actors and FNL networks
and generates one C file per actor and a single C/C++ file
from all the networks. We chose to use C as the target lan-
guage for our software code generator because this language
has become universal for software development and as a
consequence there are libraries and compilers available for
almost every platform. Figure 3 presents an overview of the
process detailed in the following sections.

Ai AST AST AST actions

action
scheduler

N1

. . . flatten N f AST
actor

scheduler

Nn

Actor code generation

i ∈ [1..m]

parse instantiate transform

FNL code generation

parameterize

C file

C/C++ file

Cal2C Generated
files

Fig. 3 Code generation for m actors and n networks
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A hierarchical network composed of several networks
and actors is flattened, and transformed to a C/C++ actor
scheduler (section 3.1). Each CAL actor is parsed to an
abstract representation called Abstract Syntax Tree (AST),
which is transformed by instantiation using parameters from
the flat network, and translated to C (section 3.2). The struc-
ture of the code generated is discussed in section 3.3.

3.1 FNL code generation

Flattening an FNL network facilitates the actor code gen-
eration. Actors instances are renamed to ensure they have
unique names, and actors are closed, which means their pa-
rameters are replaced by constant values. This has three con-
sequences: (1) there can be a direct mapping between an ac-
tor instance and a C file generated, (2) the state variables of
an actor can simply become global variables, (3) the gener-
ated code is more efficient because all uses of a parameter
can be replaced by its value.

On the contrary, dealing with a hierarchical network is
more complicated. Parameters have to be carried all the way
through the hierarchy. The state of actors must be dynami-
cally allocated each time an actor is instantiated, and given
as a parameter to every action of the actor. The code that
would be generated for a given network would be cleaner
however, because there would be less code and it would be
more structured. We deliberately chose to have a more effi-
cient and cleaner code in actors at the expense of the network
generated code’s quality.

The flat network is used to automatically create an ac-
tor scheduler written in SystemC [5], a uniprocessor sim-
ulation framework. We chose SystemC because it provides
us with a user-level scheduler, threads, FIFOs, and a model
that closely matches ours: An actor becomes a SC MODULE,
input and output ports sc ports, connections sc fifos. A
restriction of SystemC compared to FNL networks is that
broadcast (multiple connections from a single output port to
several input ports) is not supported, so special “broadcast”
actors are inserted.

The actor scheduler implements Dataflow Process Net-
works (DPN) semantics on top of the SystemC model.
sc fifos cannot peek data, so it is necessary to add a buffer
per FIFO to store the tokens peeked. Also, sc fifos have
blocking reads and writes while the DPN model has non-
blocking writes. Therefore, after an action is found to be fire-
able, the action scheduler must test whether there is enough
room to store the tokens the action will produce. Note that
contrarily to RVC-CAL, unrestricted CAL does not make
it possible to know in advance the number of tokens that
may be produced by an action. Lack of room in output ports
means that writing would block, which is not allowed by
DPN semantics. The action scheduler thus simply indicates
that the actor cannot fire and that it must wait. At this point,

SystemC’s scheduler suspends the actor, and attempts to fire
another one picked from the list of currently sleeping actors.

SystemC sc fifos admit a maximum size that must be
specified at compile-time. FIFOs should be big enough for
the network to be executed without artificially deadlocking,
which occurs when an actor cannot write to a FIFO and no
other actor can be fired to consume tokens from the same
FIFO. With this in mind, choosing too big a size for ev-
ery FIFO in the network will induce high latency and low
average throughput with the current actor scheduler imple-
mentation. The user can use a default size for all FIFOs and
fine-tune some particular FIFOs if necessary.

The action scheduler of each actor needs to check the
presence and values of tokens on its input ports, get tokens
from its input ports, and put tokens on its output ports. All
these operations are dependent of the API that is used by
the actor scheduler. To keep the actor code generic and actor
scheduler-agnostic, actor scheduler and action scheduler ex-
change data through a set of well-defined functions. These
functions are declared in the action scheduler and defined
(implemented) by the actor scheduler. The functions have
the following signatures:

– int hasTokens Ai p j(int n) returns 1 if the input port p j
of actor Ai has at least n tokens present and 0 otherwise.

– void peek Ai p j(int n, T[] tokens) peeks n tokens from
the port p j of actor Ai and puts them into tokens.

– void read Ai p j(int n, T[] tokens) reads n tokens from
the port p j of actor Ai and puts them into tokens.

– int hasRoom Ai p j(int n) returns 1 if the output port p j
of actor Ai has room for at least n tokens and 0 otherwise.

– void write Ai p j(int n, T[] tokens) writes n tokens to
the port p j of actor Ai.

Note that the functions hasTokens, peek Ai p j, and
read Ai p j must use a “snapshot” of the tokens available
on all input ports of actor Ai at a time t because the firability
of all actions shall be evaluated in the exact same conditions.
This is the case with our implementation of DPN using Sys-
temC because we allow the scheduler to switch to another
actor only when the so-called actor cannot fire. This guaran-
tees that the state of FIFOs will not change while an action
scheduler examines them.

3.2 Actor code generation

The first stage of the compilation process is to parse each
CAL actor to an Abstract Syntax Tree (AST). To this end
we used a LL(k) parser bundled with OCaml called Camlp4.
The grammar parsed is embedded in the code where a Syn-
tax Directed Translation generates a node for each grammar
rule or group of rules. For instance a simplified version of
the AST generated for the CAL statement x := if a > b
then a else b end is shown in Figure 4.
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After parsing the AST is modified when the actor is in-
stantiated. Instantiation closes the actor i.e. it removes its
parameters and replaces them by local variable declarations
whose values are specified in the parent network.

StmtAssignVar

x ExprIf

ExprBOp

ExprVar

a

BOpGT ExprVar

b

a b

Fig. 4 AST of x := if a > b then a else b end

The next step is a series of transformations to the AST.
The first one is type checking. It begins by annotating every
expression in the AST with the type found according to the
inference rules of the type system. An inference rule has the
general form:

Γ ` P

Γ ` expr : t
(3)

It is read as follows: under the assumptions about the types
of the variables in Γ , if the premises P are true, then the ex-
pression expr is well-typed and has type t. If an expression
cannot be typed it is invalid according to the type system
and it is not possible to generate code for the actor. If all
expressions are well-typed, Cal2C checks that expressions
assigned to variables have types that are compatible with the
types of the so-called variables. If this is not the case, then
compilation stops.

Once the AST is proven to be correctly typed, we apply a
constant propagation algorithm. Such an algorithm is able to
find values that are constant for all executions and propagate
them through the program. Constant propagation is neces-
sary to ensure a successful compilation of the C code. Vari-
ables of an actor can be initialized from the initial value of
other variables of the actor, especially the variables initial-
ized from parameters that are also variable declarations at
this stage. Actor variables are translated to C global decla-
rations, but in C global declarations cannot reference other
global variables, even if they are constant. Propagating those
constants solves the problem.

The last transformation converts the typed CAL AST to
an Intermediate Representation closer to C. To our knowl-
edge, CIL [12] (C Intermediate Language) is the framework
that is best-suited for our purpose because it has a robust In-
termediate Representation and the code it generates is a lot
more readable than what SUIF [16] or LLVM [8] can gen-
erate. Before converting CAL to CIL names of variables,
actions, etc. must be altered to be valid C identifiers. Some
characters that are allowed in CAL identifiers but not in C

(for instance ’.’ or ’$’) must be replaced. After that, Cal2C
transforms CAL functional expressions into CIL imperative
constructs: ifs for if-then-else expressions, for loops for
list generators. In the process temporary variables are cre-
ated to hold temporary results in compound expressions.
Figure 5 presents the CIL representation obtained from the
CAL AST shown in Figure 4. C code is obtained by calling
the pretty-printer of the CIL API on the CIL tree.

Block

If

BinOp

Lval

Var

a

Gt Lval

Var

b

Block

Instr

Set

Var

tmp 0

Var

a

Block

Instr

Set

Var

tmp 0

Var

b

Instr

Set

Var

x

Var

tmp 0

Fig. 5 CIL AST obtained from the CAL AST of Figure 4

3.3 Structure of the code generated for an actor

As shown in Figure 3 the code generated for actions is sepa-
rated from the code generated for the action scheduler. Each
action becomes a functionally equivalent C function, and the
action scheduler is implemented in yet another function. The
rationale for separating actions from the action scheduler is
two-folded: (1) the generated code is smaller than if the code
for actions were generated inside the action scheduler, be-
cause actions may be referenced several times in a Finite
State Machine (2) the generated code is easier to read be-
cause it has a structure similar to the original CAL code.
Additionally, this does not impact performance because an
optimizing compiler will automatically inline small-enough
functions.

void a x ( )
{

unsigned s h o r t I1 [ 2 ] ;
unsigned char I2 [ 5 ] ;
i n t O [ 8 ] ;

r e a d A I 1 ( 2 , I1 ) ;
r e a d A I 2 ( 5 , I2 ) ;

. . .

wr i t e A O ( 8 , I2 ) ;
}

Fig. 6 Action a.x translated to a functionally-equivalent C function

Figure 6 shows how the a.x action of actor A detailed
in Figure 2 is translated to C. The function wears a name
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deduced from the CAL name with respect to the rules de-
fined in section 3.2, i.e. the dot in a.x is replaced with an
underscore. The function starts by reading tokens from the
ports it uses, and puts them into local arrays. The function
then executes the C equivalent of the CAL action body and
finally writes tokens to output ports.

The action scheduler for an actor A is a function
A scheduler() called every time an actor fires. This func-
tion is an implementation of Algorithm 1 described in sec-
tion 2.2 that selects a fireable action if input tokens and actor
state allow it. Because action scheduler functions are virtu-
ally called all the time during the execution of a network, it
is crucial they be as fast as possible.

The following describes how to generate optimal code
to compute the different steps of Algorithm 1. The imple-
mentation of select eligible(A) is detailed in section 3.5.
This function selects the actions eligible according to the
current FSM, or every action if the actor has no FSM.
is activable(a) is translated to C conditions that are evalu-
ated at runtime each time the action scheduler is run, and are
true if (1) there are enough tokens to execute action a and (2)
the guard of action a evaluates to true. Testing the number
and values of tokens on port j of actor i is done by calling the
functions from the actor scheduler presented in section 3.1,
hasTokens Ai p j and peek Ai p j. The last step is finding
the fireable actions, i.e. the actions in activated with the
highest priority. This is done by the select fireable function
described in section 3.4.

3.4 Computing select fireable at compile-time

Computing the set of fireable actions can be done in the gen-
erated code with if-then-else statements by sorting actions
by priority at compile time. To this end a total order of pri-
orities is obtained from the partial order priority relations by
topologically sorting a Directed Acyclic Graph (DAG) cre-
ated by Algorithm 4.

Algorithm 4 works on a directed graph G = (V,E) where
V ⊆ T is the set of vertices and E ⊆ V 2 is the set of edges.
A vertex is a tag involved in a priority relation. An edge
from source to target is equivalent to the priority relation
source > target. The graph G is initially filled from the pri-
ority relations. The second for loop iterates over each tag ta′
present in the graph. If there exists in the graph a tag ta that
is the longest strict prefix of ta′ , the algorithm adds edges
between the predecessors of ta and the tag ta′ and between
the tag ta′ and the successors of ta.

Figure 7 presents the initial graph created from the prior-
ities of the sample actor given in Figure 2 after the first step
of Algorithm 4 and the final graph after the second step of
the algorithm. The final graph is sorted by topological order
that gives a total order from the priorities that were stated:

Input: priorities
Output: G = (V,E) as a DAG
V ← /0;1
E← /0;2
// creation of the initial graph3
for each t1 > t2 relation do4

V ←V ∪{t1}∪{t2};5
E← E ∪{(t1, t2)};6

end7
// transformation into the final graph8
for ta′ ∈V do9

if ∃ ta @ ta′ ∧ ta ∈V ∧max(|ta|) then10
E← E ∪{(tp, ta′ ) | (tp, ta) ∈ E};11
E← E ∪{(ta′ , ts) | (ta, ts) ∈ E};12

end13
end14

Algorithm 4: Creating a DAG from priorities

[b;a.x;a.y;c]. Since the actor does not define any relations
between a and a.x or a and a.y, the topological order of the
graph will yield either [b;a;a.x;a.y;c] or [b;a.x;a;a.y;c]. In
the present example this is not relevant because there is no
action a. If there was one however, this would lead to non-
deterministic behavior, in which case the code generator or
simulator is free to choose whether to test a before a.x. In
our case the choice is made by the underlying graph library
ocamlgraph [1], using a lexical order over vertices with the
same topological rank.

b a c

a.x a.y

(a) initial graph

b a c

a.x a.y

(b) final graph

Fig. 7 From a sparsely-connected priority graph to a DAG

3.5 Computing select eligible at compile-time

By transforming select eligible into adequate C code, the
set of eligible actions is computed in O(1).

In the translation of an FSM (S,s0,δ ), the set of states
S becomes a C enum filled with the states. State names
are modified to provide valid C identifiers. Cal2C creates
a switch statements with as many cases as there are states;
they are labeled with created identifiers. The current state is
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available through an integer variable named state whose
range is the enum.state is initialized to the initial state s0.

Each triple (s f , tai ,st) of the state transition function δ is
transformed as follows. Inside the case s f , the set of eligible
actions is defined as

eligible =
n⋃

i=1

t̂ai (4)

As explained in section 3.4, actions of eligible are sorted by
priority and translated to if-then-else statements. The state-
transition is done by an assignment state = st; added at
the end of each then branch. As an example, the translation
of the FSM of the actor of Figure 2 is presented on Figure 8.

sw i t ch ( s t a t e ) {
case s0 :

i f ( i s a c t i v a b l e A b ( ) ) {
A b ( ) ;
s t a t e = s0 ;

} e l s e i f ( i s a c t i v a b l e A a x ( ) ) {
A a x ( ) ;
s t a t e = s1 ;

} e l s e i f ( i s a c t i v a b l e A a y ( ) ) {
A a y ( ) ;
s t a t e = s1 ;

}
break ;

case s1 :
i f ( i s a c t i v a b l e A c ( ) ) {

A c ( ) ;
s t a t e = s0 ;

}
}

Fig. 8 FSM of Figure 2 translated to C

4 Case study: two MPEG-4 SP decoders

Cal2C is able to successfully translate two different MPEG-
4 Simple Profile decoder descriptions. These decoders differ
both from the topology of the network and from the gran-
ularity of actors. The first decoder D1 contains 54 actors
that come from the Video Tool Library, the normative FU
database [14]. Y, Cb and Cr components are decoded sep-
arately, exposing coarse grain parallelism in the network.
Similarly actors expose only coarse-grain parallelism. For
instance, the Inverse Discrete Cosine Transform (IDCT) is
implemented with a single actor that performs the IDCT us-
ing an 8-point based sequential algorithm in a single action.

The second decoder D2 is a proprietary decoder from
Xilinx, available in the OpenDF project [6]. Being targeted
at hardware it emphasizes fine-grain parallelism and pipelin-
ing. It decodes Y, Cb and Cr components serially, and its
IDCT is a network that performs computations at pixel level.
This decoder totals up 32 actors.

decoder throughput
OpenDF Cal2C Cal2HDL

D1 20 4318 -
D2 16 3614 290000

Table 1 Runtime of MPEG-4 SP decoder’s descriptions

The video sequence used in the experiment is ”Fore-
man” with 300 frames, 176x144 (QCIF), IPPP mode, en-
coded at 30 fps. These experiments were run on an Intel
E8500 Core2Duo processor at 3.2 GHz. Only one of the
cores was used by generated software because of SystemC.
The throughputs of the two descriptions are expressed in
macroblocks per second and compared in table 1. The first
column gives the throughput of the CAL model simulated
using the Open Dataflow runtime environment. The second
column gives the throughput of the binary programs com-
piled from the code generated by Cal2C using Microsoft
Visual Studio 2008 with maximal optimizations. The third
column gives the throughput of the circuit synthesized from
Cal2HDL on a Xilinx Virtex-2 (this result comes from [6]).

The fidelity of the generated code can be tested in two
ways. The first one is a general method that allows a single
actor to be tested. In the simulator, tokens read and writ-
ten by an actor A to test are recorded in separate files, say
fin and fout . The designer then generates code for a simple
network that contains three actors, a source actor that pro-
duces tokens read from fin, the A actor, and a sink actor that
compares tokens produced by A against tokens in fout . The
second way of testing the fidelity of the generated code for
a whole decoder is to match decoded macroblocks against a
reference YUV file.

Results show that not only is Cal2C robust enough to
successfully generate code for both decoders, but it also gen-
erates code that decodes the sample QCIF sequence at 30 fps
in both cases. Results also indicate that the code generated
from coarse grain actors performs better than code gener-
ated from fine grain actors. This is due to the fact that in
our current implementation an actor performs computation
in its own thread, which means the coarser the actor the more
work it will do without triggering a context switch.

5 Perspectives

As said in section 3.1, SystemC is a good choice for eas-
ily implementing DPNs, but it is far from an ideal solution.
Each actor, or SC MODULE, is executed in its own thread.
Each time an actor must wait, several context switches
occur because the SystemC scheduler does not take the
dataflow nature of the model into account, and schedules any
sleeping actor even if it could clearly not fire (e.g. no data
on its input ports). When networks contain tens of threads
(like the decoders we tested), those context switches adds a
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visible overhead. Another limitation of SystemC is that FI-
FOs can be read from/written to only one token at a time
by calling read/write functions, which is a double source of
overhead. The cost of calling a function only to load/store an
integer is not negligible, and neither are the memory copies
between SystemC FIFOs and peekable buffers.

We believe that it is necessary to implement our own
user-level scheduler. A decent DPN scheduler should have
the three following characteristics: (1) no use of threads, (2)
specific to the network it is generated for, (3) direct access
to peekable FIFOs via pointers.

The DPN model was chosen to be as general as pos-
sible. Indeed, our initial goal was to create a compiler that
translated any actor that could be written with the RVC-CAL
language. The selected computation model considers all ac-
tors as dynamic and schedules them at runtime. This over-
head may be reduced by using restricted dataflow computa-
tion models when possible, such as the SDF model. Even
though a network may not be statically schedulable as a
whole, regions of the network may be. The SDF model al-
lows for compile-time analysis, making it possible to stat-
ically schedule such regions at compile-time with bounded
memory. The scheduler is turned into a simple sequencer
that executes periodically actors in a predefined order inside
a single thread. We plan to implement analysis techniques
in Cal2C that would detect such statically schedulable re-
gions, which may improve significantly the efficiency of the
compiled program.

As a matter of fact, the SDF model also has advantages
for scheduling and code generation in the context of multi-
core targets. For instance, PREESM [13] is a tool that sched-
ules and maps actors at compile-time over multicore targets
and generate optimized distributed code (including commu-
nication and synchronization between cores). Our final goal
is to provide a complete framework using Cal2C, PREESM
and Cal2HDL to generate efficient code for heterogeneous
platforms with multicores and programmable logic devices.

6 Conclusion

This paper presents a software code generator that automat-
ically translates dataflow programs written in RVC-CAL to
C and a SystemC model. We show how to generate read-
able C code from the actions and action scheduler of actors,
and define a clear interface between the actor scheduler and
the action schedulers. Cal2C successfully translates two de-
scriptions of an MPEG-4 SP decoder. The results obtained
so far show the efficiency of the generated code considering
it uses a uniprocessor simulation framework. Perspectives
are given to improve the efficiency of the generated code.

Another contribution is that the results presented here
show that a network of RVC-CAL FUs provided by the

MPEG group can be translated automatically into an effi-
cient software implementation. This specification can also
be translated into RTL code targeting FPGAs leading to
smaller and faster design than a handmade VHDL refer-
ence design [6]. In our opinion, RVC-CAL is a high-level
language well suited for functional description and for fast
prototyping methods that aim to provide hardware/software
optimized implementations.
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