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Abstract We give new sufficient ergodicity conditions for two-state proba-
bilistic cellular automata (PCA) of any dimension and any radius. The proof
of this result is based on an extended version of the duality concept. Under
these assumptions, in the one dimensional case, we study some properties of
the unique invariant measure and show that it is shift-mixing. Also, the decay
of correlation is studied in detail. In this sense, the extended concept of du-
ality gives exponential decay of correlation and allows to compute explicitily
all the constants involved.

Keywords Probabilistic cellular automata · Invariant measures · Duality
Decay of correlation

Mathematics Subject Classification (2000) 28D99 · 37A25 · 60J05 ·
60J85 · 60K35

1 Introduction

Probabilistic cellular automata (PCA) are discrete time Markov processes
which have been intensely studied since at least Stavskaja and Pjatetskii-
Shapiro [15] (1968). This kind of processes have as state space a product space
X = AG where A is any finite set and G is any locally finite and connected
graph. In this work we will focus our attention on G = Z

d and A = {0, ..., n}
for some integer n ≥ 1. We may regard a PCA as an interacting particle
system where particles update its states simultaneously and independently.
Recall that a PCA is ergodic if there exists only one invariant measure µ and
starting from any initial measure µ0 the system converges to µ.
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Centro de Matemática, Cognição e Computação
Universidade Federal do ABC
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The aim of this paper is to use duality principles to study the ergodicity
of two-states PCA. More precisely our work gives new sufficient ergodicity
conditions for the expression of the PCA’s local transition probabilities (see
Theorem 2) and show that under these conditions the invariant measure is
shift-mixing with exponential decay of correlation. Relations between the
PCA and the dual process (see Lemma 4 and Lemma 2 ) also allow us to
give a very simple expression of the constant of the decay of correlation as
a function of the radius (of the PCA) and the transition probabilities of the
PCA (see Theorem 3). Moreover the proof of Theorem 2 shows in detail how
to compute the value of the invariant measure on cylinders. Results about
the decay of correlation is an answer to a question raised in [12].

The existence of a dual process satisfying the duality equation (see Def-
inition 1 and Liggett [9]) gives useful information (problems in uncountable
sets can be reformulated as problems in countable sets) on the PCA but is
not always sufficient to prove that a PCA is ergodic. In [12], Lopez, Sanz
and Sobottka introduced an extended concept of duality (see Definition 2)
and gave general results about ergodicity (see Theorem 1). They used this
powerful general theory to give results on multi-state one-dimensional PCA
of radius one and extended previous results about the Domany-Kinzel model
(see [2] for an introduction and [7] for extensions). Previously, in [8] Konno
has given ergodicity conditions for multi-state one-dimensional PCA using
self-duality equations.

Even if, in some cases, the existence of null transition probabilities allows
to prove ergodicity of a certain class of PCA (see [7] and [8]), it had been
conjectured that in the one-dimensional case positive noise cellular automata
are ergodic. However, P. Gacks, in 2000 , introduced a very complex coun-
terexample (see [4] and [5]) for noisy deterministic cellular automata. In that
case, the noisy one-dimensional cellular automata does not forget the past
and starting from different initial distribution, the PCA may converge to
different invariant measures. His result can be extended to noisy PCA with
positive rates. This conjecture was formulated only in the one-dimensional
case since in dimension 2 or higher, it is easier to show the existence of at
least two invariant measures. For example the two dimensional Ising model
[5] or the Toom example (see [16]) that exhibit eroder properties. From The-
orem 2 there exists a subclass of attractive PCA (class C) where the noisy
conjecture is verified (p(Ir) < 1 implies ergodicity).

In [12], the authors explore some ergodic conditions for multi-state PCA.
When the number of states is greater than 2, the conditions of ergodicity
are rather restrictive in order to be able to give general results. More general
ergodicity conditions are interesting (see [12], Section 3.2) but seems to be
very complex when the radius grows. In this paper, we restrict the study to
the 2 states case, which allows to show more easily general results for PCA
of any radius.

These sufficient ergodicity conditions can be compared to the Shlosman-
Dobrushin condition applied to PCA (see [13] and [14]). In some examples
(see section 3.1) our sufficient conditions induced by the concept of dual-
ity allow to show ergodicity and decay of correlations where the Dobrushin
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conditions can not be applied. Moreover, for some classes of ergodic PCA
Theorem 3 gives greater constants for the decay of spatial correlation.

This paper is organized as follows. In section 2, we present the basic
definitions, notations and some preliminary results. In section 3, we state the
main results, Theorem 2 and Theorem 3. We prove Theorem 2 in section 4.
We conclude the paper in section 5 with the proof of the decay of correlation.

2 Definitions, notations and preliminary results

2.1 Probabilistic Cellular Automata

We give a brief description of the theory of PCA.
Let A be a finite set and G a countable set. Let X = AG be endowed

with the product topology. A probabilistic cellular automata is a discrete
time Markov process on the state space X .

Let M(X) be the set of probability measures on X and F (X) the set of
real functions on X which depend only on a finite number of coordinates of
G.

The evolution of probabilistic cellular automata is given through their
transition operator.

Definition 1 A local transition operator is a linear operator

P : F (X) → F (X)

such that Pf ≥ 0 for all f ≥ 0 and PI = I, where I : X → X is the identity
function.

Definition 2 A local transition operator is called independent if

P (ϕφ) = P (ϕ)P (φ)

for all ϕ, φ ∈ F (X) such that the finite subsets of G on which they depend
do not intersect.

The independent local transition operators can be defined through the values
px(η, k) for x ∈ G, η ∈ X and k ∈ A, as

Pf (η) =

∫

X

f (σ)
∏

x∈G

px(η, dσ(x)), ∀f ∈ F (X),

where for all site x ∈ G, for all η, px(η, .) is a probability measure on A.
The value px(η, k), called transition probabilities, represent the probability
that the sites x ∈ G takes the value k in the next transition if the present
configuration of the system is η. For more details see Toom et al. [17], Maes
and Shlosman [13] and Lopez and Sanz [10].

Let d ≥ 1 be an integer number, R a finite subset of Z
d of cardinality

|R| and f a map from A|R|+1 to [0, 1]. In the particular case G = Z
d it
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follows from the discussion above that the discrete time Markov process η. =
{ηt(z) ∈ A : t ∈ N, z ∈ Z

d} whose evolution satisfies

P [ηt+1(z) = a|ηt(z + i) = bi, ∀ i ∈ R] = f (a, (bi)i∈R) ,

for all t ∈ N and z ∈ Z
d is a well defined (discrete time) stochastic process

which from now on will be called d-dimensional PCA. Here, P stands for

the probability measure on AZ
d

induced by the family of local transition
probabilities. Also, let E be the expectation operator with respect to this
probability measure.

Let µ0 be the initial distribution of the PCA. For any t ≥ 0, we call µt the
distribution of the process at time t. The measure µt is defined on cylinder

u = N(Λ, φ) = {ξ ∈ AZ
d

: ξ(x) = φ(x) ∀ x ∈ Λ} for some fixed φ ∈ AZ
d

and
Λ ⊂ Z

d, |Λ| < ∞ by

µt(u) =
∑

v∈Ct

µ0(v)Pη0∈v{ηt ∈ u},

where Ct is the family of all cylinders of X on the coordinates of Λ ( the
finite subset of Z

d used to defined u).
In this paper the notation |Λ| will represent the cardinality of Λ when Λ

is a finite subset of Z
d. If U = N(Ξ, φ) is a cylinder set, the notation |U | will

represent the cardinality |Ξ| of the set Ξ ⊂ Z
d. In the one dimensional case we

adopt the following notation: For any sequence of letters U = (u0, . . . , un) ∈
An+1, the set [U ]s = [u0 . . . un]s := {x ∈ AZ|x(s) = u0, . . . , x(s + n) = un}
will be called cylinder and |U | = n + 1.

2.2 Two-state Probabilistic Cellular Automata

In order to simplify the notation we will focus our attention on two-state

PCA, that is to say PCA η. on {0, 1}Z
d

. For any positive integer r, let us
define

Ir := {i = (i1, . . . , id) ∈ Z
d : −r ≤ i1, . . . , id ≤ r}.

Define a family of transition probabilities {p(J) : J ⊂ Ir} by

p(J) := P{ηt+1(z) = 1|ηt(z + j) = 1 : j ∈ J}.

Note that any PCA with state space {0, 1}Z
d

is completely characterized
by a positive integer number r called the radius of the PCA and the set of
transition probabilities {p(J) : J ⊂ Ir}.

2.3 The invariant probability measure

Definition 3 Let T be a measure-preserving transformation of a probability
space (X, F, µ), where F is the σ-algebra generated by the cylinder sets on X.
We say that the probability measure µ is T -mixing if ∀ U, V ∈ F

lim
n→∞

µ(U ∩ T−nV ) = µ(U)µ(V ).
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Since the cylinder sets generate the σ-algebra F, it follows that the measure
µ is T -mixing when the last relation is satisfied by any pair of cylinder sets
U and V (for more details see [18]).

2.4 Duality

The concept of duality is a powerful tool in the theory of interacting particle
system. It provides relevant information about the evolution of the process
under consideration from the study of other simpler process, the dual process.
The reformulated problems may be more tractable than the original problems
and some progress may be achieved. Now we give the (classical) definition of
duality taken from [9].

Definition 1 Let η. and ζ. be two Markov processes with state spaces X and
Y respectively, and let H (η, ζ) be a bounded measurable function on X×Y .
The processes η. and ζ. are said to be dual to one another with respect to H
if

E
η [H (ηt, ζ)] = E

ζ [H (η, ζt)]

for all η ∈ X and ζ ∈ Y .

Unfortunately, it is not true that every process has a dual. Recently, Lopez
et al [12] gave a new notion of duality which extends the previous one. More
precisely, they gave the following definition.

Definition 2 Given two discrete time Markov processes, ηt with state space
X and ζt with state space Y and H : X × Y → R and D : Y → [0,∞)
bounded measurable functions, the process η. and ζ. are said dual to one
another with respect to (H, D) if

Eη0=x [H (η1, y)] = D(y)Eζ0=y [H (x, ζ1)] . (1.1)

2.5 Duality and sufficient conditions for ergodicity

In order to state our results in section 3, we need to give the spirit and some
elements of the proof of the following Theorem, which appears in [12].

Theorem 1 [12] Suppose ηt is a Markov process with state space X and ξt is
a markov chain with countable state space Y, which are dual to one another
with respect to (H, D). If 0 ≤ D(y) < 1 for all y ∈ Y, then there exist a

stochastic process ξ̃t with state space Ỹ = Y ∪ {S} with S an extra state and

a bounded measurable function H̃ : X × Ỹ → R such that η. and ξ̃. are dual
to one another with respect to H. Furthermore, denoting by Θ the set of all
absorbing states of ξ., if

i) the set of linear combinations of {H(., y) : y ∈ Y} is dense in C (X), the
set of continuous maps from X to R;

ii) D(y) < 1 for any y /∈ Θ, and D := supy∈Y:D(y)<1{D(y)} < 1;

iii) H(., θ) ≡ c(θ) for all θ ∈ Θ with D(θ) = 1;
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then η. is ergodic and its unique invariant measure is determined for any
y ∈ Y by

µ̃(y) =
∑

θ∈Θd(θ)=1

c(θ)Pξ̃0=y

[

ξ̃τ = θ
]

, (1.2)

where τ is the hitting time of {θ ∈ Θ : D(θ) = 1} ∪ {S} for ξ̃t and µ̂ =
limt→∞ µ̂t with

µ̂t(y) =

∫

X

H(x, y)dµt(x).

Sketch of the proof. First recall that τ is the hitting time of the dual
process ξ̃. entering an absorbing state θ ∈ Θ̃. If there exists a dual process ξ̃
and a function H̃ that satisfies the following (classical) duality equation

Eη0=x

[

H̃ (η1, y)
]

= Eξ̃0=y

[

H̃
(

x, ξ̃1

)]

, (1.3)

it is possible to show that µ̂s(y) =
∫

X
H(x, y)dµs(x) = Eξ̃0=y[µ̂(ξ̃s)]. If P{τ <

∞} = 1, it follows that

lims→∞ µ̂s(y) = lims→∞

∑

θ∈Θ̃ Eξ̃0=y[µ̂(ξ̃s)|ξ̃t = θ, τ ≤ s]Pξ̃0=y{ξ̃t = θ, τ ≤ s}

+ lims→∞ Eξ̃0=y[µ̂(ξ̃s)|τ > s]Pξ̃0=y{τ > s}

=
∑

θ∈Θ̃ µ̂(θ)Pξ̃0=y{ξ̃τ = θ}.

Finally, when the set of linear combinations of the set {H̃(., y)|y ⊂ Z
d}

is dense in C(X) (the set of continuous functions from X to R) the sequence
(µn)n∈N converges in the weak* topology. Also, the limit measure µ does not
depend on the initial measure µ0.

Hence, we have seen that the key point is to prove that P{τ < ∞} = 1.
One way to show this, is to introduce the new type of duality (see Equation
1.1). If there exists a dual process ξ. with state space Y that verifies the
new concept of duality (see Equation 1.1) then we can define a standard

dual process ξ̃. with state space Ỹ = Y ∪ {S} and such that the set of all

absorbing states is Θ̃ = Θ ∪ {S} where Θ denote the set of all the absorbing
states of ξ.. Here S is an extra absorbing state and the transition probabilities
of ξ̃. satisfy

Pξ̃0=ỹ0
{ξ̃1 = ỹ1} =







D(ỹ0)Pξ0=ỹ0
{ξ1 = ỹ1} , if ỹ0, ỹ1 ∈ Y

1 − D(ỹ0) , if ỹ0 ∈ Y, ỹ1 = S

1 , if ỹ0 = ỹ1 = S.

Taking H̃(x, y) = H(x, y) when y ∈ Y and H̃(x, S) = 0 we obtain that the

dual process ξ̃. satisfies the standard duality equation 1.3 and that µ̂(S) =
0. Note that since D = supy∈Y:D(y)<1{D(y)} < 1, at each iteration the
probability to enter the extra absorbing state S is positive and this implies
the following result:

Lemma 1 Under the conditions of Theorem 1, for all integer i ≥ 1 one has

P(τ > i) ≤ Di.
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Proof. By the Markov property we have that

Pξ̃0=ỹ0
{τ > i} ≤ D × Pξ̃0=ỹ0

{τ > i − 1}.

Then, the result follows by using the mathematical induction principle.
2

Note that Lemma 1 implies that P{τ < ∞} = 1 which finishes the proof
of Theorem 1.

2

Before stating the main results of this paper, we introduce one more
piece of notation: let ∞1∞ denote the all one configuration, i.e. ∞1∞ =
(1Zd(x))x∈Zd . Analougsly, ∞0∞ denote the all zero configuration.

3 Main Results and Examples

A PCA of radius r is called attractive if for any J ⊂ Ir and j ∈ Ir we
have p(J ∪{j}) ≥ p(J). We consider here the following subclass of attractive
PCA. For any r ∈ N, let ℘(Ir) be the set of all subsets of Ir . We say that a
two-state PCA of radius r belongs to C if its transition probabilities satisfy
p(J) =

∑

J′⊂J λ(J ′) where λ is some map from ℘(Ir) → [0, 1).

The definition of the class C is constructive. The following Proposition gives
sufficient conditions for an attractive PCA to belong to C.

Proposition 1 A two-state probabilistic cellular automaton η. belongs to C

if its transition probabilities satisfy the following set of inequalities:
(a) For any i ∈ Ir,

p({i}) ≥ p(∅).

(b) For any 1 ≤ k ≤ |Ir| − 1 and for any j0, . . . , jk ∈ Ir

p({j0, . . . , jk}) ≥ (−1)k
p(∅) −

k−1
X

n=0

(−1)k+1−n
X

{l0,...,ln}⊂{j0,...,jk}

p({l0, . . . ln}).

Theorem 2 Let η. be a two-states d-dimensional probabilistic cellular au-
tomaton of radius r that belongs to C. If p(Ir) < 1 then η. is an ergodic
PCA and there exists a dual process ξ which satisfy equation 1.1. Moreover,
for any cylinder set U we can find (αk ∈ Z)k∈K and (Y (k) ⊂ Z

d)k∈K with
|K| < ∞ such that

µ(U) =
∑

k∈K

αk

(

∞
∑

l=1

Pξ0=Y (k){ξl = ∅|ξl−1 6= ∅}

)

.

Remark 1 Note that in some cases it is possible to exchange the role of the
two states (0 ↔ 1) in order to show ergodicity using the previous results.

Corollary 1 Under the conditions in Theorem 2 we have that if λ(∅) =
0 then the unique invariant measure is δ0, where δ0 is the Dirac measure
on ∞0∞. Analogously, we have that if λ(∅) = 1 then the unique invariant
measure µ is δ1, where δ1 is the Dirac measure on ∞1∞.
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Theorem 3 Let η. be a one-dimensional probabilistic cellular automaton ∈ C

of radius r with p(Ir) =: D ∈ [0, 1). Then, the unique invariant measure µ
is shift-mixing. Also, if D 6= 0, for any pair of cylinders [U ]0 = [u0 . . . uk]0,
[V ]0 = [v0 . . . vk′ ]0 and t ≥ |U | + |V | we have

|µ([U ]0 ∩ σ−t[V ]0) − µ([U ]0) × µ([V ]0)| ≤ exp (−a × t) × K(U, V ),

where σ is the shift on {0, 1}Z, a = 1/2r×ln (1/D) and K(U, V ) is a constant
depending only on U , V , D and r.

Remark 2 This last result can be extended to d-dimensional PCA.

3.1 Examples and comparison with known results

3.1.1 The Domany-Kinzel model

This is a one-dimensional PCA η. of radius r = 1 introduced in [2] with
transition probabilities

P{ηt+1(z) = 1|ηt(z − 1, z, z + 1) = 000 or 010} = p(∅) = p({0}) = a0,

P{ηt+1(z) = 1|ηt(z − 1, z, z + 1) = 100 or 110} = p({−1})

= p({−1, 0}) = a1,

P{ηt+1(z) = 1|ηt(z − 1, z, z + 1) = 001 or 011} = p({1}) = p({0, 1}) = a1

and

P{ηt+1(z) = 1|ηt(z − 1, z, z + 1) = 101 or 111} = p({−1, 1})

= p({−1, 0, 1}) = a2,

where, for any subset V ⊂ Z, η(V ) ∈ {0, 1}V denote the restriction of a
configuration η ∈ {0, 1}Z to the set of positions in V .
Using Proposition 1 we obtain that η. ∈ C when p({−1, 1}) ≥ p({−1}) +
p({1}) − p(∅), which is equivalent to the condition a2 ≥ 2a1 − a0. From
Theorem 2 the PCA η. is ergodic if p(Ir) = p({−1, 0, 1}) = a2 < 1. From
Theorem 3 the unique invariant measure is shift-mixing with exponential
decay of spatial correlation such that for any pair of cylinders [U ]0 and [V ]0
and for all t ≥ |U | + |V | we obtain

|µ([U ]0 ∩ σ−t[V ]0) − µ([U ]0) × µ([V ]0)| ≤ K exp (−(1/2 ln (1/a2))t),

where K can be explicitly computed (see the end of the Proof of Theorem 3).
Using Theorem 2 we can compute, for example, the measure of the cylinder
[01]0 which is

µ([01]0) = µ([1]1) − µ([11]0) = µ̂({1}) − µ̂({0, 1})

=

∞
∑

t=1

Pξ0={1}{ξt = ∅|ξt−1 6= ∅}

+
∞
∑

t=1

Pξ0={0,1}{ξt = ∅|ξt−1 6= ∅},

where ξ. is the associated dual process.
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3.1.2 Two-dimensional example

Let η be a two-state, two-dimensional PCA of radius one. In this case I1 =
{(l, k)| − 1 ≤ l, k ≤ 1} is a square of 9 sites. The transition probabilities

{p(J)|J ⊂ I1} of η. are defined by p(J) = α
∑|J|

k=0 C9
k = α × 2|J| where Cl

k

are the binomial coefficients. This PCA belongs to C since for any J ⊂ I1

we can write λ(J) = α and obtain that P (J) =
∑

J′⊂J λ(J ′). This PCA is
a kind of generalization to dimension 2 of the Domany-Kinzel model (each
site has the same weight) with only one parameter. The sufficient ergodicity
condition is p(Ir) < 1 which implies that α × 29 < 1 (α < 2−9) and the
constant of decay of spatial correlation is a = 1

2 ln(1/(29 × α)).

3.1.3 Comparison with Dobrushin condition

In [3], Dobrushin gives sufficient ergodicity conditions for interacting par-
ticule systems. Using our notation, these conditions applied to PCA can be
translated as γ < 1 (see [13] and [14]), where

γ =
∑

j∈Ir

sup
J⊂Ir

|p(J ∪ {j}) − p(J)|.

In the case of the Domany-Kinsel model, which belongs to the class C, we
obtain γ = supJ⊂Ir

|p(J ∪ {−1}) − p(J)| + supJ⊂Ir
|p(J ∪ {1}) − p(J)| =

2(a2 − a1) since η. ∈ C (a2 ≥ 2a1 − a0). If a2 < 1 (condition of Theorem 2)
and 2(a2 − a1) ≥ 1 the Dobrushin suficient conditions can not be applied.

For the two-dimensional example we have γ = α
(

∑9
k=1 k × C9

k

)

. In this case

γ > p(Ir) and even if γ < 1 the constant of decay of correlation 1
2 ln(1/(p(Ir))

is greater than 1
2 ln(1/(γ)), the constant of decay of correlation given in [13].

More generally, if a PCA belongs to C the sufficient condition p(Ir) < 1
can be rewritten as p(Ir) =

∑

J⊂Ir
λ(J) < 1 and the Dobrushin sufficient

condition can be rewritten as γ =
∑

J 6=∅, J⊂Ir
λ(J) × |J | < 1.

4 Proof of Theorem 2 and Proposition 1

4.1 PCA in C and their Dual Process

In [12], the authors give sufficient ergodicity conditions for one-dimensional
multi-state PCA of radius one using a dual process satisfying equation 1.1.
Here we will use an analogous dual process to give sufficient ergodicity condi-
tions for two-state, d-dimensional PCA of radius r using the following duality
equation:

Eη0=x[H(η1, Y )] = D(Y )Eξ0=Y H [(x, ξ1)], (1.4)

where η. is a PCA with state space {0, 1}Z
d

. The state space of the dual
process ξ. is the class of all finite subsets of Z

d. As in [12] we define the
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function H by

H(x, Y ) =

{

1 , if x(z) = 1, ∀z ∈ Y
0 , otherwise.

The rule for the evolution of the process ξt is given by

ξt+1 = ∪z∈ξt
B(z)

where for any nonempty set J ⊂ Ir we have

P

[

B(z) = {z + j|j ∈ J}
]

= π(J)

and
P
[

B(z) = ∅
]

= π(∅).

Then, take the function D such that D(Y ) = D|Y | for any finite subset
Y ⊂ Z

d, where D ∈ [0, 1]. Note that D(∅) = 1 and ∅ is the unique absorbing
state for this dual process.

4.2 The functions H and µ̂

Note that, for this particular choice of H , we have

µ̂(Zd) =

∫

X

H(x, Zd)dµ(x) = µ(∞1∞) = 0

and

µ̂(∅) =

∫

X

H(x, ∅)dµ(x) = µ({0, 1}Z
d

) = 1,

where X = {0, 1}Z
d

and ∞1∞ is the all one configuration (1Zd(x))x∈Zd . The
following Lemma is used in the proof of Theorem 2 and Theorem 3.

Lemma 2 The set of linear combinations of {H(., y)|y ∈ Z
d} is dense in

C
(

{0, 1}Z
d

, R
)

, the set of continuous function from {0, 1}Z
d

to R. For any

cylinder U = N(Λ, ϕ) ⊂ {0, 1}Z
d

(with Λ ⊂ Z
d, |Λ| < ∞ and ϕ ∈ AZ

d

) we
have

µ(U) =
∑

Y (i)

αiµ̂(Y (i)),

where αi ∈ Z, Y (i) ⊂ Z
d and max{|Y (i)|} < ∞.

Proof. For the sake of simplicity, we only give the proof for the two-state,
one-dimensional case. The key point of the proof consists in showing that any
cylinder [U ]t := [u0 . . . un]t, (ui ∈ {0, 1} and t, n ∈ N) can be decomposed
into a non-commutative sequence of subtractions and unions of intersections
of cylinders of the type [1]t, t ∈ Z. We denote by T ([U ]t) this decomposition.
One way to accomplish this decomposition is to follow the following rules:

T ([1]t) = [1]t, T ([0]t) = {0, 1}Z
d

− [1]t.
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Then, for all t, n ∈ Z and U = u0 . . . un we have

T ([U1]t) = T ([U ]t) ∩ [1]t+n+2.

Thus,
T ([U0]t) = T ([U ]t) − T ([U ]t) ∩ [1]t+2+n.

For instance,

T ([100]0) = T ([10]0) − T ([101]0)
= (T ([1]0) − T ([11]0)) − (T ([10]0) ∩ [1]2)
= [1]0 − [11]0 − (([1]0 − [11]0) ∩ [1]2)
= ([1]0 − [11]0 − ([1]0 ∩ [1]2)) ∪ [111]0.

Then, note that 1[1000]0 , the characteristic function of the cylinder [1000]0,
can be written as

1[1000]0(x) = 1[1]0(x) + 1[111]0(x) − 1[1]0∩[1]2(x) − 1[11]]0(x)

= H(x, {0}) + H(x, {0, 1, 2})− H(x, {0, 2})− H(x, {0, 1}).

Since for any finite subset Y ⊂ Z we have 1∩i∈Y [1]i(x) = H(x, Y ), it follows

that for all n ∈ N, t ∈ Z and U ∈ {0, 1}n
1[U ]t =

∑

αiH(x, Y (i)). This, in

turn, implies that the set of linear combinations of the set {H(., Y )|Y ∈ Z
d}

is dense in C({0, 1}Z
d

). We finish the proof by observing that for any cylinder
[U ]t, we have

µ([U ]t) =

∫

1[U ]t(x)dµ(x)

=

∫

∑

αiH(x, Y (i))dµ(x)

=
∑

αiµ̂(Y (i)).

2

Remark 3 Using the definition of H taken in [12] which takes into consid-
eration the multi-state case, it is possible to prove Proposition 2 for more
general d-dimensional PCA.

4.3 Proof of Theorem 2

We first establish a sequence of equalities between the transition probabilities
of the PCA (P (J)|J ∈ Ir) and the transition probabilities of the dual process
((π(J)|J ∈ Ir)).

We can rewrite the right hand of equation (1.4) to obtain

Eη0=x[H(η1, Y )] = Pη0=x{η1(z) = 1 ∀z ∈ Y }.

Hence, using the independence property of η. we get that

Pη0=x{η1(z) = 1 ∀z ∈ Y } =
∏

z∈Y

Pη0=x{η1(z) = 1}.
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For the left hand of equation 1.4 we have

Eξ0=Y [H(x, ξ1)] = Pξ0=Y {x(z) = 1 , ∀z ∈ ξ1}.

For any x ∈ {0, 1}Z
d

we denote by Cx the set {z ∈ Z
d|x(z) = 1}. Then

Pξ0=Y {x(z) = 1 ∀z ∈ ξ1} = Pξ0=Y {ξ1 ⊂ Cx}.

Using the independence property of the dual process we can assert that

Pξ0=Y {ξ1 ⊂ Cx} =
∏

z∈Y

P{B(z) ⊂ Cx}.

Finally we can rewrite equation 1.4 as
∏

z∈Y

Pη0=x{η1(z) = 1} = D|Y |
∏

z∈Y

P{B(z) ⊂ Cx}

=
∏

z∈Y

D × P{B(z) ⊂ Cx}
(1.5)

which implies that
∏

z∈Y

p(Jz) =
∏

z∈Y

D × ∆z, (1.6)

where Jz = {i − z|i ∈ {Cx ∩ {j + z}|j ∈ Ir}} and ∆z is given by

∆z = π(∅) +
∑

i∈Ir

11(x(z + i)) × π({i})

+
∑

i,j∈Ir

1{1}(x(z + i)) × 1{1}((x(z + j)) × π({i, j}) + . . .

+
∑

i1,...,ik∈Ir

(

k
∏

l=1

1{1}(x(z + ik))

)

× π({i1, . . . , ik})

+ . . . +

(

∏

i∈Ir

1{1}(x(z + i))

)

× π(Ir).

By simplicity of notation we write π(i1, . . . ik) and p(i1, . . . ik) instead of
π({i1, . . . ik}) and p({i1, . . . ik}).

Since equation 1.6 is true for all x ∈ {0, 1}Z
d

we obtain the following
equations for π(.),

p(∅) = Dπ(∅)
p(i) = D[π(∅) + π(i)]
p(i, j) = D[π(∅) + π(i) + π(j) + π(i, j)]
p(i, j, k) = D[π(∅) + π(i) + π(j) + π(i, j) + π(i, k) + π(j, k) + π(i, j, k)]

where i, j, k ∈ Ir.
More generally, for any 0 ≤ k ≤ |Ir| − 1,

p(i0, ..., ik) = D
h

π(∅)+
k

X

l=0

π(l)+. . .+

k−1
X

i=0

X

l0,...,li∈{i0,...,ik}

π(l0, ..., li)+π(l0, l1, ..., lk)
i

.

(1.7)
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Since

π(∅) +

|Ir |
∑

k=0





∑

l0,l1,...lk∈Ir

π(l0, l1, . . . lk)



+ π(Ir) = 1,

we get that D = p(Ir).

By definition, the dual process is completely determined by the parame-
ters 0 ≤ π(J) ≤ 1 (J ⊂ Ir). From the sequence of equations 1.7 the dual pro-
cess associated with the particular functions H and D exists if the transition
probabilities of the PCA satisfy p(J) = D

∑

J⊂Ir
π(J) with 0 < p(Ir) ≤ Ir.

In this case we have that λ(J) = Dπ(J) and we claim that a PCA η. admits a
dual process that satisfies the duality equation 1.1 with particular functions
H and D given in section 4.1 if and only if this PCA belongs to the class C.

To show that the PCA is ergodic we need to verify the three conditions of
Theorem 1.
Condition i) is verified since from Lemma 2, the set of linear combinations

of functions belonging to {H(., Y ), |Y ∈ Z
d} is dense in C

(

{0, 1}Z
d

, R
)

.

Condition ii) is satisfied since supY 6=∅{D(Y )} = D = p(Ir) < 1.

Condition iii) follows from the fact that H(., ∅) = 1 and D(∅) = D|∅| = 1.

Since ∅ is the only absorbing state for ξ., using Theorem 1 (equation 1.2) we
get that for any nonemptyset Y ⊂ Z

d

µ̂(Y ) = µ̂(∅)Pξ0=y{ξτ = ∅} =
+∞
∑

t=1

Pξ0=y{ξt = ∅|ξt−1 6= ∅}.

From Lemma 2, for any cylinder set U there exist αk ∈ R and Y (k) finite
subset of Z

d such that µ(U) =
∑

αkµ̂(Y (k)), which implies the last statement
of Theorem 2.

2

4.3.1 Proof of Corollary 1

When λ(∅) = 1, starting from any initial measure µ0, we obtain that µ1 = δ1.
When λ(∅) = 0, Theorem 2 and Lemma 2 imply that for each cylinder U
that does not contain the point ∞0∞ we get

µ(U) =
∑

αi

(

∞
∑

k=0

PY0=Y (i){Yk = ∅|Yk−1 6= ∅}

)

= 0

since π(∅) = λ(∅)
p(Ir) = 0. Finally we get that µ(∞0∞) = 1−µ({0, 1}Z

d

−∞0∞) =

1 which finishes the proof. 2
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4.4 Proof of Proposition 1

Since the {π(J)|J ⊂ Ir} represent the transition probabilities of the dual
process for all J ∈ Ir one has π(J) ≥ 0 and Proposition 1 is a simple
consequence of the following Lemma .

Lemma 3 The transition probabilities π() of the dual process satisfy

π(∅) = p(∅)
D

π(i) = p(i)−p(∅)
D

π(i, j) = 1
D

[p(i, j) + p(∅) − p(i) − p(j)]
π(i, j, k) = 1

D
[p(i, j, k) − p(∅) + p(i) + p(j) + p(k) − p(i, j) − p(i, k) − p(j, k)]

π(i, j, k, l) = 1
D

[p(i, j, k, l) + p(∅) −
P

l0∈{i,j,k,l} p(l0) +
P

{l0,l1}⊂{i,j,k,l} p(l0, l1)
−

P

{l0,l1,l2}⊂{i,j,k,l} p(l0, l1, l2)]

More generally, for any 0 ≤ k ≤ |Ir| − 1 and for any j0, . . . , jk ∈ Ir

π(j0, . . . , jk) =
1

D

2

4(−1)k+1
p(∅) +

k
X

j=0

(−1)k−j
X

{l0,...,lj}⊂{j0,...,jk}

p(l0, . . . , lj)

3

5 .

Proof. of Lemma 3 From the proof of Theorem 2 a PCA belongs to class
C if and only if the transitions probabilities p() and π() satisfy the sequence
of equations 1.7. We use mathematical induction to solve the sequence of

equations 1.7. For the two first iterations it is easily seen that π(∅) = p(∅)
D

,

π(i) = p(i)−p(0)
D

and π(i, j) = 1
D

[p(i, j) + p(0) − p(i) − p(j)]. Then suppose
that the order k is true:

π(j0, . . . jk) =
1

D



(−1)k+1p(∅) +
k
∑

j=0

(−1)k−j
∑

(l0,...,lj)∈{j0,...,jk}

p(l0, . . . lj)



 .

Using equation 1.7 we obtain that π(j0, . . . , jk+1) equals

1

D



p(j0, . . . , jk+1) − dπ(∅) − D

k
∑

j=0





∑

(l0,...,lj)∈{j0,...,jk+1}

π(l0, . . . , lj)







 .

(1.8)
Then we suppose the rank k true and use equation 1.8 to obtain that the
term in p(∅) in π(j0, . . . , jk+1) is

− p(∅) −
k
∑

i=0





∑

l0,...,li∈{j0,...,jk+1}

(−1)i+1p(∅)





= p(∅)

(

−1 −
k
∑

i=0

Ck+2
i+1 (−1)i+1

)

= p(∅)
(

− 1 + Ck+2
0 (−1)0 + Ck+2

k+2 (−1)k+2 − (1 − 1)k+2
)

= (−1)k+2p(∅),
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where the constants Ck
i represent the binomial coefficients. Next we obtain

that the term in
∑

l0∈{j0,...,jk+1}
p(l0) in π(j0, . . . , jk+1) is equal to

−
k
∑

i=0

∑

(l0,...,li)∈{j0,...,jk+1}





∑

h0∈{l0,...,li}

p(h0)



 (−1)i

= −
∑

l0∈{j0,...,jk+1}

p(l0)

(

k
∑

i=0

Ck+1
i (−1)i

)

= −
∑

l0∈{j0,...,jk+1}

p(l0)
(

(1 − 1)k+1 − Ck+1
k+1 (−1)k+1

)

=
∑

l0∈{j0,...,jk+1}

p(l0)(−1)k+1.

Note that Ck+1
i represents the number of ways to choose l1, . . . , li in j1, . . . , jk+1

when we have chosen l0 and j0. More generally, for 0 ≤ M ≤ k, the term in
∑

(l0,...,lM )∈{j0,...,jk+1}

p(l0, . . . , lM ) in π(j0, . . . , jk+1) is equal to

−
k
∑

i=M

∑

(l0,...,li)∈{j0,...,jk+1}





∑

(h0,...,hM)∈{l0,...,lj}

p(h0, . . . , hM )



 (−1)i−M

= −
∑

(l0,...,lM )∈{j0,...,jk+1}

p(l0, . . . , lM )

(

k−M
∑

i=0

Ck+1−M
i (−1)i

)

= −
∑

(l0,...,lM )∈{j0,...,jk+1}

p(l0, . . . , lM )
(

(1 − 1)k+1−M − (−1)k+1−M
)

=
∑

(l0,...,lM )∈{j0,...,jk+1}

p(l0, . . . , lM )(−1)k+1−M .

2

5 Decay of Correlation

For the sake of simplicity we study the decay of correlation for PCA with
state space {0, 1}Z. An extension of this result to the multi-dimensional case
is straightforward but requires too much notation.

5.1 Proof of Theorem 3

The proof of Theorem 3 requires the following two results. The second one is
new and is a key point for the proof of Theorem 3. The first one seems to be
well known. However, its proof can not be found or at least it is quite hard
to be found so we provide a proof of that result.
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Recall that µ stands for the unique invariant measure of an ergodic PCA.

Proposition 2 Every invariant measure of an ergodic PCA is shift-invariant.

Lemma 4 Let [U ]0 and [V ]0 be two cylinders. If µ([U ]0) =
∑

αiµ̂(Ai), µ([V ]0)
=
∑

βiµ̂(Bi) and t ≥ |U | + |V |, then

µ([U ]0 ∩ σ−t[V ]0) = µ([U ]0 ∩ [V ]t) =
∑

αiµ̂(Ai)(∗, t)
∑

βiµ̂(Bi),

where
∑

αiµ̂(Ai)(∗, t)
∑

βiµ̂(Bi) :=
∑

i,j

αiβj µ̂(Ai ∪ {Bi + t}).

Proof of Theorem 3

If D = 0, then p(∅) = 0. From Corollary 1, µ = δ0 and µ has exponential
decay of correlation. For the remainder of this proof we therefore take 0 <
D = p(Ir) < 1.

For any finite subset E of Z and s ∈ Z, define E + s := {x + s : x ∈ E}.
We claim that for any finite subsets E and F , if t ≥ 2Nr + |E|+ |F | we have

|µ̂(E ∪ {F + t}) − µ̂(E) × µ̂(F )| ≤ DN+1 1

1 − D
.

The proof of this claim uses Theorem 1 and 2 which together say that for
any finite subset E ⊂ Z, µ̂(E) = Pη0=E{ητ = ∅}. This, in turn, implies that

µ̂(E) =

∞
∑

k=0

Pη0=E{τ = k},

where τ is the hitting time for the process η.. In fact, by Lemma 1, for any
integer N > 0 we have

∣

∣

∣

∣

∣

µ̂(E) −
N
∑

k=0

Pη0=E{τ = k}

∣

∣

∣

∣

∣

≤ DN+1 1

1 − D
.

Note that if s ≥ 2ri + |E| + |F |, where i is any positive integer, then

Pη0=E∪{F+s}{τ = i} = Pη0=E{τ = i} ×
i
∑

j=0

Pη0={F+s}{τ = j}

+ Pη0={F+s}{τ = i} ×
i
∑

j=0

Pη0=E∪{F+s}{τ = j}.

It follows that if s ≥ |E| + |F | + 2N × r, then
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N
∑

i=0

PE0=E∪{F+s}{τ = i} =
N
∑

i=0

PE0=E{τ = i} ×
N
∑

i=0

PE0={F+s}{τ = i}.

This easily implies

|µ̂(E ∪ {F + s}) − µ̂(E) × µ̂(F )| ≤ DN+1 1

1 − D
, (1.9)

for s ≥ |E| + |F | + 2N × r, which proves our claim.

By Lemma 2, for any pair of cylinders [U ]0 and [V ]0, there exist finite
sequences of sets (Ai) and (Bi) and finite sequences of real numbers αi and
βi such that

µ([U ]0) =
∑

αiµ̂(Ai)

and

µ([V ]0) =
∑

βiµ̂(Bi).

Thus, by inequality 1.9,

∣

∣

∣αiβj µ̂(Ai ∪ {Bi + s} − αiµ̂(Ai) × βjµ̂(Bj))
∣

∣

∣ ≤ |αiβj |D
N+1 1

1 − D

for any pair of subsets Ai and Bj of Z and for any s ≥ |U | + |V | + 2Nr.

It follows from this that

∣

∣

∣

∑

i,j

αiβj µ̂
(

Ai ∪ {Bi + s}
)

−
∑

i

αiµ̂(Ai) ×
∑

j

βj µ̂(Bj)
∣

∣

∣ ≤ F (U, V )DN ,

where F (U, V ) =
∑

i,j |αiβj |
D

1−D
.

Using Lemma 4, if t ≥ |U | + |V | we obtain

∣

∣

∣µ
(

[U ]0 ∩ σ−t[V ]0
)

− µ([U ]0) × µ([V ]0)
∣

∣

∣ ≤ K(U, V ) exp
(

− t ×
ln (1/D)

2r

)

,

where K(U, V ) = F (U, V )D−(
|U|+|V |

2r
).

Finally, it follows from Proposition 2 that the invariant measure is shift-
invariant and that the exponential decay of correlations of cylinders implies
the mixing property.

2
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5.1.1 Proof of Proposition 2.

It is sufficient to show that for any cylinder [U ]t, where U ∈ {0, 1}l for some
l ∈ N , we have

µ(σ−1[U ]t) = µ([U ]t).

Since µ is the invariant measure of an ergodic PCA η., there exits a sequence
(µi)i∈N which converges in the weak* topology to µ, where µi is the distribu-
tion of a PCA η. at time i starting from an initial distribution µ0. It follows
that for any cylinder [U ]t we have

lim
n→∞

µn([U ]t) = µ([U ]t).

Since for any positive integer i we have

µi([U ]t) =
∑

Vj∈{0,1}n+1+2ir

µ0([Vj ]t−ir)Pη0∈[Vj ]t−ir
{ηi ∈ [U ]t},

we can choose µ0 as a shift-invariant probability measure. Hence, for any
positive integer i and any cylinder [U ]t we have

µi([U ]t) = µi(σ
−1[U ]t),

which finishes the proof.
2

5.1.2 Proof of Lemma 4

We prove the lemma using the principle of mathematical induction. First
we prove it for the case |U | = 1 and |V | = 1. Note that for any finite set
{j0, . . . , jk}, with j0, . . . , jk ∈ Z,

µ̂({j0, . . . , jk}) =

∫

{0,1}Z

H({j0, . . . , jk}, x)dµ(x)

= µ({∩[1]j |j ∈ {j0, . . . , jk}})

and observe that for any k ≥ 1 ∈ N we have

µ([1]0 ∩ [1]k) = µ̂({0} ∪ {k}).

Since µ([0]k) = 1 − µ̂({k}) = µ̂(∅) − µ̂({k}) and µ([1]0 ∩ [0]k) = µ([1]0) −
µ([1]0 ∩ [1]k) = µ̂({0})− µ̂({0, k}) we get, again, that

µ([1]0 ∩ [0]k) = µ̂({0} ∪ ∅) − µ̂({0} ∪ {k}).

Furthermore, we have µ([0]0 ∩ [1]k) = µ̂({1}) − µ̂({0, k}).
Finally, note that

µ([0]0 ∩ [0]k) = 1 − µ([1]0 ∩ [1]k) − µ([1]0 ∩ [0]k) − µ([0]0 ∩ [1]k)

= µ̂(∅) − µ̂({0} ∪ {k})− µ̂({0}) + µ̂({0} ∪ {k}) − µ̂({k})

+ µ̂({0} ∪ {k})

= µ̂(∅) + µ̂({0} ∪ {k})− µ̂({0}) − µ̂({k})

= [µ̂(∅) − µ̂({0})] (∗, t) [µ̂(∅) − µ̂({k})] ,
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which finishes the proof in the case |U | = |V | = 1.

Now, suppose that µ([U ]0 ∩ σ−t[V ]0) =
∑

i,j αiβj µ̂(Ai ∪ {Bi + t}) is

true for |U | = |V | = n. Consider t ≥ 2n + 1 and let [U ]0, [V ]0 be two
cylinders such that µ([U ]0) =

∑

αiµ̂(Ai) and µ([V ]0) =
∑

βj µ̂(Bj). Since
µ([U1]0) =

∑

αiµ̂(Ai ∪ {|U |}), we get

µ([U1]0[V 1]t) =
∑

i,j

αiβj µ̂(Ai ∪ {Bj + t} ∪ {|U |, |V | + t}).

Noting that µ([V 1]t) =
∑

αiµ̂({Bi + t}∪ {|V |+ t}) we get the desired result
for the case [U1]0 ∩ [V 1]t.

The result for the case [U1]0 ∩ [V 0]t follows by noting that

µ([U1]0 ∩ [V 0]t) = µ([U1]0 ∩ [V ]t) − µ([U1]0 ∩ [V 1]t)

=
∑

i,j

αiβj µ̂(Ai ∪ {|U |} ∪ {Bj + t})

−
∑

i,j

αiβj µ̂(Ai ∪ {Bj + t} ∪ {|U |, |V | + t})

=
∑

αiµ̂(Ai ∪ {|U |})(∗, t)
∑

αiµ̂({Bi + t})

−
∑

αiµ̂({Bi + t} ∪ {|V | + t}).

It can also be shown that

µ([U0]0 ∩ [V 1]t) = [
∑

αiµ̂(Ai) −
∑

αiµ̂(Ai ∪ {|U |})]

(∗, t) [
∑

αiµ̂({Bi + t} ∪ {|V | + t})].

Finally, using that

µ([U0]0 ∩ [V 0]t) = µ([U ]0 ∩ [V ]t) − µ([U1]0 ∩ [V 0]t)

− µ([U0]0 ∩ [V 1]t) − µ([U1]0 ∩ [V 1]t)

we can show that

µ([U0]0 ∩ [V 0]t) = [
∑

i,j

αiβj µ̂(Ai ∪ {Bi + t})

−
∑

i,j

αiβj µ̂(Ai ∪ {Bi + t} ∪ {|U |})](∗, t)

[
∑

i,j

αiβj µ̂(Ai ∪ {Bi + t})

−
∑

i,j

αiβj µ̂(Ai ∪ {Bi + t}) ∪ {|V | + t}]

which finishes the proof.
2
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Final Questions

i) Is there exist an ergodic PCA such that the unique invariant measure is
not shift-mixing?

ii) Is there exist an ergodic PCA such that the invariant measure has non-
exponential decay of correlation?
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