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Abstract

Using an extended version of the duality concept between two stochas-
tic processes, we give new ergodicity conditions for two states probabilistic
cellular automata (PCA) of any dimensions and any radius. Under these
assumptions, in the one dimensional case, we study some properties of
the unique invariant measure and show that it is shift mixing. Also, the
decay of correlation is studied in detail. In this sense, the extended con-
cept of duality gives exponential decay of correlation. When the extended
concept of duality can not be applied we are able to get, once again, ex-
ponential decay of correlation using well known results from the theory of
branching processes.

keywords Probabilistic cellular automata, Invariant measures, Duality,
Decay of correlations.

1 Introduction and known results

Probabilistic cellular automata (PCA) are discrete time Markov processes
which have been intensely studied since at least Stavskaja and Pjatetskii-Shapiro
[13] (1968). This kind of processes have as state space a product space X = AG

where A is any finite set and G is any locally finite and connected graph. On
this work we will focus our attention on G = Z

d and A = {0, ..., n} for some
integer n ≥ 1. We may regard a PCA as an interacting particle system where
particles update its states simultaneously and independently. Recall that a
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PCA is ergodic if there exists only one invariant measure µ and starting from
any initial measure µ0 the system converges to µ.

The aim of this paper is to use the duality principle to study the ergodicity
of two-states PCA. More precisely our work gives new ergodicity conditions
for the expression of the PCA’s local transition probabilities (see Proposition
2) and show that under these conditions the invariant measure is shift mixing
with exponential decay of correlation. Relations between the PCA and the dual
process (see Lemma 3 and Proposition 1 ) also allow us to give a very simple
expression of the constant of the decay of correlation as a function of the radius
(of the PCA) and the transition probabilities of the PCA. (see Theorem 2)
and show in detail the way to compute the value of the invariant measure on
cylinders (see Remark 3). Moreover, the comparison between the dual process
and a Branching process allows to show that a certain class of dual process
eventually enters in an absorbing state which implies (see Theorem 1 ) that
the associated PCA is ergodic and its invariant measure is shift-mixing with
exponential decay of correlation (see Proposition 5). In this case, the conditions
on the transition probabilities for the dual process can be expressed as conditions
on the probabilities of transition of the associated PCA using Lemma 2. Results
about the decay of correlations is an answer to one question raised in [12].

The existence of a dual process that satisfy the duality equation (see Defi-
nition 1 and Liggett [9]) gives useful information (problems in uncountable sets
can be reformulated in term of countable sets) on the PCA but is not always
sufficient to prove that a PCA is ergodic. In [12], Lopez, Sanz and Sobottka
introduced an extended concept of duality (see Definition 2) and give general
results about ergodicity (see Theorem 1 and Remark 1). They used this power-
ful general theory to give results on multi-states one-dimensional PCA of radius
one and extend for example previous results about the Domany-Kinzel model
(see [3] for an introduction and [7] for extensions) in the case there is no null
transition probability. Previously, in [8] Konno has given ergodicity conditions
for multi-states one-dimensional PCA using a self-duality equations.

Even if, in some cases, the existence of null transition probabilities allows
to prove the ergodicity of a certain class of PCA (see [7] and [8]), it had benn
conjectured that in the one dimensional case positive noise cellular automata are
ergodic. However, P. Gacks, in 2000 , showed a very complex counterexample
(see [4] and [5]) for noisy deterministic cellular automata. In that case, the
noisy one-dimensional cellular automata does not forget the past and starting
from different initial distribution, the PCA may converge to different invariant
measures. His result can be extended to noisy PCA with positive rates. This
conjecture was formulated only in the one dimensional case since in dimension
2 or higher, it is easier to show the existence of at least two invariant measures.
For example the two dimensional Ising model [5] or the Toom example (see [14])
that exhibit eroder properties.

In [12], the authors explore some ergodic conditions on multi-state PCA.
When the number of states is greater than 2, the conditions of ergodicity are
rather restrictive in order to be able to give general results. More general er-
godicity conditions are interesting (see [12], Section 3.2) but seems to be very
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complex when the radius grow. In this paper, we restrict the study to the 2
states case, which allows to show more easily general results for PCA of any
radius. In the case of d-dimensional PCA we are able to give explicit ergodicity
conditions even if in this case ergodicity seems to be a less common phenomenon.

Finally, we show that the set of all invariant measures associated to one
dimensional with any radius ergodic PCA that satisfy our conditions is a con-
nected set if we endow this set with the weak* topology.

1.1 Probabilistic Cellular Automata

Let A a be a finite set, d ≥ 1 an integer, R a finite subset of Z
d of cardinal

|R| and f a map from A|R|+1 to [0, 1]. A d-dimensional PCA is a discrete time
Markov process η. = {ηt(z) ∈ A|t ∈ N, z ∈ Z

d} such that its evolution satisfy

P [ηt+1(z) = a if ηt(z + i) = bi, ∀ i ∈ R] = f (a, (bi)i∈R) , (1.1)

for all t ∈ N and z ∈ Z
d.

Let µ0 be the initial distribution of the PCA. For any t ≥ 0, we call µt the
distribution of the process at time t. The relation between µt and µ0 is given
by

µt(u) =
∑

µ0(v)Pη0∈v{ηt ∈ u},

where u and v are cylinders on AZ
d

(u = {ξ ∈ F Z
d

|ξ(x) = φ(x) ∀ x ∈ Λ} for

some fixed φ ∈ AZ
d

and Λ ⊂ Z
d, |Λ| < ∞). In the one dimensional case we adopt

the following notation. For any sequence of letters U = (u0 . . . un) ∈ An+1, the
set [U ]s = [u0 . . . un]s := {x ∈ AZ|x(s) = u0, . . . , x(s + n) = un} will be called
cylinder.

1.2 Duality

The notion of duality allows the study of properties of a given stochastic process
by studying the properties of another one, whose analysis should be easier than
the previous one in order to get some advances. Now we give the (classical)
definition of duality taken from [9].

Definition 1 Let η. and ζ. be two Markov processes with state spaces X and Y
respectively, and let H (η, ζ) be a bounded measurable function on X × Y . The
processes η. and ζ. are said to be dual to one another with respect to H if

E
η [H (ηt, ζ)] = E

ζ [H (η, ζt)] (1.2)

for all η ∈ X and ζ ∈ Y .

Unfortunately, is not true that every process accepts a dual. Recently, Lopez
et al [12] gave a new notion of duality which extends the previous one. More
precisely, they gave the following definition.
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Definition 2 Given two discrete time Markov processes, ηt with state space X
and ζt with state space Y and H : X × Y → R and D : Y → [0,∞) bounded
measurable functions, the process η. and ζ. are said dual to one another with
respect to (H, D) if

Eη0=x [H (η1, y)] = D(y)Eζ0=y [H (x, ζ1)] . (1.3)

This extension allows to show the following theorem.

Theorem 1 [12] Suppose ηt is a Markov process with state space X and ξt is a
markov chain with countable state space Y , which are dual to one another with
respect to (H, D). If 0 ≤ D(y) < 1 for all y ∈ Y , then there exist a stochastic
process ξ̃t with state space Ỹ = Y ∪ P with P an extra state and a bounded
measurable function H̃ : X × Ỹ → R such that η. and ξ̃. are dual to one another
with respect to H. Furthermore, denoting by Θ the set of all absorbing states of
ξ., if

i) the linear combinations of {H(., y) : y ∈ Y } is a dense set of C (X), the
set of continuous map from X to R;

ii) D(y) < 1 for any y /∈ Θ, and d = supy∈Y :D(y)<1{D(y)} < 1;

iii) H(., θ) ≡ c(θ) for all θ ∈ Θ with D(θ) = 1;

then η. is ergodic and its unique invariant measure is determined for any y ∈ Y
by

ν̃(y) =
∑

θ∈Θd(θ)=1

c(θ)Pξ̃0=y

[

ξ̃τ = θ
]

, (1.4)

where τ is the hitting time of {θ ∈ Θ : D(θ) = 1}∪{P} for ξ̃t and µ̂ = limt→∞ µ̂t

with

µ̂t(y) =

∫

X

H(x, y)dµt(x).

Sketch of the proof. In order to state our results in section 3, we need to give
the spirit and some elements of the proof of Theorem 1. First recall that τ is
the hitting time of the process η. entering an absorbing state θ. If there exists
a dual process ζ̃ and a function H̃ that satisfies the following (classical) duality
equation

Eη0=x

[

H̃ (η1, y)
]

= Eζ̃0=y

[

H̃
(

x, ζ̃1

)]

, (1.5)

it is possible to show that µ̂s(y) = µ̂s(y) =
∫

X H(x, y)dµs(x) = Eη0=y[µ̂(ηs)]. If
P{τ < ∞} = 1, it follows that

lims→∞ µ̂s(y) = lims→∞
∑

θ E[µ̂(ηs)|ηt = θ, τ ≤ s]P{ηt = θ, τ ≤ s}
+ lims→∞ E[µ̂(ηs)|τ > s]P{τ > s}
=
∑

c(θ)P{ητ = θ}.

Finally, when the set of linear combinations of the set {H̃(., y)|y ⊂ Z
d}

is dense in C(X) (the set of continuous functions from X to R) the sequence
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(µn)n∈N converges in the weak* topology. Also, the limit measure µ does not
depend on µ0.

Hence, we have seen that the key point is to prove that P{τ < ∞} = 1. One
way to show this, is to introduce the new type of duality (see Equation 1.3). If
there exists a dual process with state space Y that verifies Equation 1.3 then we
can define a standard dual process ξ̃. with state space Ỹ such that Ỹ = Y ∪ P.
Here P is an extra absorbing state and the transition probabilities verify

Pξ̃0=ỹ0
{ξ̃1 = ỹ1} =







D(ỹ0)P{ξ1 = ỹ1} , if ỹ0, ỹ1 ∈ Y
1 − D(ỹ0) , if ỹ0 ∈ Y, ỹ1 = P

1 , if ỹ0 = ỹ1 = P.

Taking H̃(x, y) = H(x, y) when y ∈ Y and H̃(x, y) = 0 when y = P we obtain
that the dual process ξ̃. verify the standart duality equation 1.2. Note that
since d = supy∈Y :D(y)<1{D(y)} < 1, at each iteration the probability to enter
the special “neutral“ absorbing state P is positive and this imply the following
result:

Lemma 1 Under the conditions of Theorem 1, for all integer i ≥ 1 one has

P(τ ≥ i) ≤ d
i+1

1−d
.

Proof. It is sufficient to show that Pξ0=y0
{τ = i} ≤ Pξi−1 6=P{ξi 6= P} ×

Pξ0=y0
{ξi−1 6= P} = d × Pξ0=y0

{ξi−1 6= P} ≤ di. 2

Note that Lemma 1 implies that P{τ < ∞} = 1 which finishes the proof of
Theorem 1.

Remark 1 [12] Substituting conditions (ii) by D(y) = 1 for all y ∈ Y and
P{τ < ∞} = 1 in Theorem 1, we obtain again the ergodicity for η..

2 Class of two states ergodic PCA

In order to simplify the notation we will focus our attention on two states PCA,

that is to say PCA η. on {0, 1}Z
d

. In this case, for all sites z ∈ {0, 1}Z
d

, the
transition function of η. is characterized by the equation

P{ηt+1(z) = 1|ηt(z + R(i)) = ai|i ∈ IR, R(i) ∈ R ⊂ Z
d} = p

(

a1, . . . , a|R|

)

,

where R is a finite subset of Z
d, R[1], . . . , R[|R|] are its elements listed in the

lexicographical order and IR = [1..|R|]|. Note that any PCA with state space

{0, 1}Z
d

is completely characterized by the set R and the probabilities p(a1, . . . , a|R|).
To simplify the equations we can rewrite the definition of a PCA as the set
R and the set of probabilities {p(∅) ∪ p(i0, . . . , ik)|0 ≤ k ≤ |R| − 1} where
p(i0, . . . , ik) = p(a1, . . . , a|R|) if at = 1 when t ∈ {i0, . . . , ik} else at = 0.
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2.1 Duality and ergodicity

In [12], the authors give ergodicity conditions for one-dimensional multi-states
PCA of radius one (window of size 3) acting on Z. Here, we will use an analog
dual process to give ergodicity conditions for two-states multi-dimensional PCA
with any size of window R using the following duality equation:

Eη0=x[H(η1, y)] = D(y)Eξ0=yH [(x, ξ1)], (1.6)

where η. is a process with state space {0, 1}Z
d

and the state space of the dual
process ξ. are all the finite subsets of Z

d. As in [12] we define the function H
as:

H(x, Y ) =

{

1 if x(z) = 1, ∀z ∈ Y
0 Otherwise.

We choose a dual process such that the evolution of points belonging only to
one component are independent of the rest. The evolution rule of the process
ξt is given by ξt+1 = ∪z∈ξt

B(z) such that for all 0 ≤ k ≤ |R| and i0, . . . ik ∈
{0, . . . |R|} one has

P

[

B(z) = {z + R(i0), . . . , z + R(ik)}
]

= π(i0, . . . ik)

and
P
[

B(z) = ∅
]

= π(∅).

Next, we take the function D such that for all finite subset Y ⊂ Z
d one has

D(Y ) = D|Y | with D ∈ [0, 1]. Note that D(∅) = 1 and ∅ is the unique absorbing
state for this dual process. Then for the right hand of equation (1.4) we obtain

Eη0=x[H(η1, Y )] = Pη0=x{η1(z) = 1 ∀z ∈ Y1}.

Hence, using the independence property of η. we get that

Pη0=x{η1(z) = 1 ∀z ∈ Y1} = Πz∈Y1
Pη0=x{η1(z) = 1}.

For the left hand of equation 1.6 we have

EY0=Y [H(x, Y1)] = PY0=Y {x(z) = 1 , ∀z ∈ Y1}.

Denoting by Ix the set {z ∈ Z|x(z) = 1}, we obtain

PY0=Y {x(z) = 1 ∀z ∈ Y1} = PY0=Y {Y1 ⊂ Ix}.

Using the independent properties of the dual process we can assert that

PY0=Y {Y1 ⊂ Rx} = Πz∈Y0
PY0=Y {B(z) ⊂ Ix}.

Finally we can rewrite equation 1.6 as

Πz∈Y1
Pη0=x{η1(z) = 1} = D|Y0|Πz∈Y0

× PY0=Y {B(z) ⊂ Ix}
= Πz∈Y0

D× PY0=Y {B(z) ⊂ Ix}
(1.7)
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which implies that

Πz∈Y0
p
(

x(z + R[1]), . . . , x(z + R[|R|])
)

= Πz∈Y0
p(i0, . . . , ik) such that z + R(i) =

{

1 if i ∈ {i0, . . . , ik}
0 Otherwise.

= Πz∈Y0
D ×









π(∅) +
∑

i∈[1..|R|] 1x(z+R[i])(1))π(i)

+
∑

i,j∈[1..|R|] 1x(z+R[i])x(z+R[j])(11)π(i, j) + . . .

+
∑

i1,...ik∈[1..|R|] 1x(z+R[i1])...x(z+R[ik])(1
k)π(i1, . . . , ik)

+ . . . + 1x(z+R[1])...x(z+R[|R|])(1
|R|)π(1, . . . , |R|)









,

(1.8)

where 1n is an n-uple with all its entries equal to one and 1A is indicator
function of the set A.

Since equation 1.8 is true for all x ∈ {0, 1}Z
d

and since it is always possible
to define the PCA η. in such a way that the set R is an hypercube in Z

d, we
obtain the following equations for π(.),

p(∅) = Dπ(∅)
p(i) = D[π(∅) + π(i)] (1 ≤ i ≤ R − 1)
p(i, j) = D[π(∅) + π(i) + π(j) + π(i, j)]
p(i, j, k) = D[π(∅) + π(i) + π(j) + π(i, j) + π(i, k) + π(j, k) + π(i, j, k)]
. . . . . .

More generally for 0 ≤ k ≤ |R| − 1,

p(i0, ..., ik) = D
[

π(∅) +
∑k

l=0 π(l) + . . . +
∑k−1

i=0

∑

l0,...,li∈{i0,...,ik}
π(l0, ..., li)

+π(l0, l1, ..., lk)
]

.

(1.9)
Since

π(∅) +

R−1
∑

k=0





∑

l0,l1,...lk∈{i0,...,iR}

π(l0, l1, . . . lk)



+ π(0, 1, . . . , |R| − 1) = 1,

we have D = p(0, 1, 2, . . . , |R| − 1) = p(1, 1 . . . , 1).

2.1.1 Relation between the function µ̂ and the invariant measure µ

Using this particular function H we observe that µ̂(Zd) =
∫

X
H(x, Zd)dµ(x) =

µ(∞1∞) = 0 and µ̂(∅) =
∫

X H(x, ∅)dµ(x) = µ({0, 1}Z
d

) = 1, where X =

{0, 1}Z
d

and ∞1∞ is the all one configuration (1Zd(x))x∈Zd . The first citation
of the first part of the following proposition appears in [11]. The second part,
which follows from the proof of the first part, is used in Remark 3 and Corollary
1 below. Also, it is used in Section 3.

Proposition 1 The set of linear combinations of {H(., y)|y ∈ Z
d} is dense

in C
(

{0, 1}Z
d

, R
)

, the set of continuous function of {0, 1}Z
d

→ R. For all
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cylinder U = NΛ(ϕ) ⊂ {0, 1}Z
d

with (Λ ∈ Z
d and ϕ ∈ AZ

d

), one has µ(U) =
∑

Y (i) αiµ̂(Y (i)) where αi ∈ Z, Y (i) ⊂ Z
d and max{|Y (i)|} ≤ |Λ|.

Proof. For simplification, we will only give the proof for the two states, one-
dimensional case. The key point of the proof consist in showing that any cylinder
[U ]t := [u0 . . . un]t, (ui ∈ {0, 1} and t, n ∈ N) can be decompose into a non
commutative sequence of subtraction and union of intersections of cylinders of
the type [1]t, t ∈ Z. We denote by T ([U ]t) this decomposition. One way to
realize this decomposition is to follow the following rules:

T ([1]t) = [1]t, T ([0]t) = 1 − [1]t

and for all t, n ∈ Z and U = u0 . . . un one has

T ([U1]t) = T ([U ]t) ∩ [1]t+n+2 and

T ([U0]t) = T ([U ]t) − T ([U ]t) ∩ [1]t+2+n.

For example

T ([100]0) = T ([10]0) − T ([101]0)
= (T ([1]0) − T ([11]0)) − T ([10]0) ∩ [1]2
= [1]0 − [11]0 − ([1]0 − [11]0) ∩ [1]2
= [1]0 − [11]0 − [1]0 ∩ [1]2 ∪ [111]0.

Then, note that 1[1000]0 the characteristic function of the cylinder [1000]0 can
be written as 1[1000]0(x) = 1[1]0(x) + 1[111]0(x) − 1[1]0∩[1]2(x) − 1[11]]0(x) =
H(x, {0})+ H(x, {0, 1, 2})−H(x, {0, 2})−H(x, {0, 1}). Since for all finite sub-
set Y ⊂ Z one has 1∩i∈Y [1]i(x) = H(x, Y ) we have that for all n ∈ N, t ∈ Z and
U ∈ {0, 1}n

, 1[U ]t =
∑

αiH(x, Y (i)), which implies that the set of linear combi-

nations of the set {H(., Y )|Y ∈ Z
d} is dense in C({0, 1}Z

d

). We finish the proof
by observing that for all cylinders [U ]t, we have µ([U ]t) =

∫

1[U ]t(x)dµ(x) =
∫ ∑

αiH(x, Y (i))dµ(x) =
∑

αiµ̂(Y (i)).
2

Remark 2 Using the definition of H taken in [12] which take into consideration
the multi-state case, it is possible to prove Proposition 1 for more general PCA

acting on AZ
d

.

2.2 A class of ergodic PCA

Let 1{i0,...,in}(e0, . . . , e|R|−1) =

{

1 if ej = 1 for all j ∈ {i0, . . . in}
0 Otherwise.

Then,

Proposition 2 Let η. be a d-dimensional probabilistic cellular automaton de-
fined thanks to a fix windows R = {R(e0), . . . R(e|R|−1)} ∈ Z

d with transition
probabilities p(e0, . . . , e|R|−1). Consider

p(e0, . . . , el) =

l
∑

n=1





∑

i1≤...≤in∈[−l..l]

λ(i1, . . . , in) × 1{i1,...,in}(e1, . . . , el)



+p.
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If for all l, n ∈ [0..|R| − 1] one has 0 ≤ p, λ(i0, . . . , in) ≤ 1,

|R|−1
∑

n=0

∑

i0,...,in∈{i0,...,i|R|−1}

λ(i0, . . . , in) ≤ 1

and

p(1, 1 . . . , 1) =

|R|−1
∑

n=0





∑

i0≤...≤in∈[1..|R|−1]

λ(i0, . . . , in)



+ p < 1,

then η. is an ergodic PCA.

Proof. By definition, the dual process is completely determined by the
parameters 0 ≤ π(∅), π(i0), . . . , π(i0, . . . , i|R| − 1) ≤ 1 which satisfy

π(∅) +

|R|−1
∑

k=0





∑

i0,...,ik∈[0..|R|]

π(i0, . . . ik)



 = 1.

For all k ∈ [0, |R| − 1] with i0, . . . , ik ∈ [0..|R| − 1] we take the parameters
π(i0, . . . , ik) = 1

D
λ(i0, . . . , ik). In this case, the equations 1.9 are trivially satis-

fied and then the dual process is well defined.
To show that the PCA is ergodic we need to verify the three conditions of

Theorem 1.
From Proposition 1, the set of linear combinations of functions belonging to

{H(., Y ), |Y ∈ Z
d} is dense in C

(

{0, 1}Z
d

, R
)

. Then, condition i) is verified.

Since H(., ∅) = 1 and D(∅) = D|∅| = 1 condition iii) follows. Finally, condition
ii) is verified because D = p(1, 1, . . . , 1) < 1 implies sup

Y 6=∅
{D(Y )} < 1. 2

Remark 3 When a PCA verifies the conditions of Proposition 2, the value

of the unique invariant measure µ on any cylinder U in AZ
d

: µ(U) can be
compute explicitly using Proposition 1 (µ(U) = αiµ̂(Y (i))) and the fact that for
all Y (i) ∈ Z

d one has µ̂(Y (i)) =
∑∞

k=0 PY0=Y (i){Yk = ∅} (see Theorem 1 and
Proposition 2).

Corollary 1 Under the conditions of Proposition 2, when p = 0 we have that
µ = δ0. Also, when p = 1 we have that µ = δ1, where δ0 and δ1 are respectively
the Dirac measure on ∞0∞ and on ∞1∞.

Proof. When p = 1, clearly starting from any initial measure µ0, we ob-
tain that µ1 = δ1. When p = 0, Proposition 1 and Remark 3 imply that
for each cylinder U that does not contain the point ∞0∞ one has µ(U) =
∑

αi

(
∑∞

k=0 PY0=Y (i){Yk = ∅}
)

= 0 since π(∅) = p = 0. Finally we get that

µ(∞0∞) = 1 − µ({0, 1}Z
d

−∞ 0∞) = 1 which permit to conclude. 2

Remark 4 Proposition 2 could be reformulated as follows. If η. is a PCA with
a window R of cardinal |R|, every finite sequence

(

p(i0, i1, . . . , in)
)

n∈[0..|R|−1]

induces a convex curve in [0..|R| − 1] × [0, 1].

9



2.3 Existence of a Dual Process

Note that Proposition 2 may be useful to construct ergodic PCA but is not
suitable to give ergodicity conditions when the rules of a PCA are still defined.
From the relations between the probabilities p() and π() given before we obtain:

Lemma 2 The probabilities of transitions π() of the dual process verify

π(∅) = p(∅)
D

π(i) = p(i)−p(∅)
D

π(i, j) = 1
D

[p(i, j) + p(∅) − p(i) − p(j)]
π(i, j, k) = 1

D
[p(i, j, k) − p(∅) + p(i) + p(j) + p(k) − p(i, j) − p(i, k) − p(j, k)]

π(i, j, k, l) = 1
D

[p(i, j, k, l) + p(∅) −
∑

l0∈{i,j,k,l} p(l0) +
∑

(l0,l1)∈{i,j,k,l} p(l0, l1)

−
∑

(l0,l1,l2)∈{i,j,k,l} p(l0, l1, l2)]

More generally for 0 ≤ k ≤ |R| − 1

π(i0, . . . , ik) =
1

D



(−1)k+1p(∅) +

k
∑

j=0

(−1)k−j
∑

(l0,...,lj)∈{i0,...,ik}

p(l0, . . . , lj)



 .

Proof. We can prove the general equation by mathematical induction For

the two first iterations it is easily seen that π(∅) = p(∅)
D

, π(i) = p(i)−p(0)
D

and
π(i, j) = 1

D
[p(i, j) + p(0) − p(i) − p(j)]. Then suppose that the order k is true:

π(i0, . . . ik) =
1

D



(−1)k+1p(∅) +

k
∑

j=0

(−1)k−j
∑

(l0,...,lj)∈{i0,...,ik}

p(l0, . . . lj)



 .

Using equation 1.9 we obtain that π(i0, . . . , ik+1)

=
1

D



p(i0, . . . , ik+1) − dπ(∅) − D

k
∑

j=0





∑

(l0,...,lj)∈{i0,...,ik+1}

π(l0, . . . , lj)







 .

(1.10)
Then we suppose the rank k true and use equation 1.10 to obtain that the term
in p(∅) in π(i0, . . . , ik+1) is

−p(∅)−
k
∑

j=0





∑

l0,...,lj∈{i0,...,ik+1}

(−1)j+1p(∅)



 = p(∅)



−1 −
k
∑

j=0

Ck+2
j+1 (−1)j+1





= p(∅)
(

− 1 + Ck+2
0 (−1)0 + Ck+2

k+2 (−1)k+2 − (1 − 1)k+2
)

= (−1)k+2p(∅)

10



where the constants Ck
j represent the binomial coefficients. Next we obtain that

the term in
∑

l0∈{i0,...,ik+1}
p(l0) in π(i0, . . . , ik+1) is equal to

−
k
∑

j=0

∑

(l0,...,lj)∈{i0,...,ik+1}





∑

h0∈{l0,...,lj}

p(h0)



 (−1)j

= −
∑

l0∈{i0,...,ik+1}

p(l0)





k
∑

j=0

Ck+1
j (−1)j





= −
∑

l0∈{i0,...,ik+1}

p(l0)
(

(1 − 1)k+1 − Ck+1
k+1 (−1)k+1

)

=
∑

l0∈{i0,...,ik+1}

p(l0)(−1)k+1.

Note that Ck+1
j represents the number of ways to choose l1, . . . , lj in i1, . . . , ik+1

when we have chosen l0 and i0. More generally, for 0 ≤ M ≤ k, the term in
∑

(l0,...,lM)∈{i0,...,ik+1}
p(l0, . . . , lM ) in π(i0, . . . , ik+1) is equal to

−
k
∑

j=M

∑

(l0,...,lj)∈{i0,...,ik+1}





∑

(h0,...,hM)∈{l0,...,lj}

p(h0, . . . , hM )



 (−1)j−M

= −
X

(l0,...,lM )∈{i0,...,ik+1}

p(l0, . . . , lM )

 

k−M
X

j=0

C
k+1−M
j (−1)j

!

= −
∑

(l0,...,lM )∈{i0,...,ik+1}

p(l0, . . . , lM )
(

(1 − 1)k+1−M − (−1)k+1−M
)

=
∑

(l0,...,lM )∈{i0,...,ik+1}

p(l0, . . . , lM )(−1)k+1−M .

2

Since for all i0, . . . , ik ∈ R one has π(i0, . . . ik) ≥ 0, we get the following

Proposition 3 If the rules of the PCA η. verify

p(i) ≥ p(∅)
p(i, j) ≥ p(i) + p(j) − p(∅)
p(i, j, k) ≥ p(i, j) + p(i, k) + p(j, k) + p(∅) − p(i) − p(j) − p(k)
p(i, j, k, l) ≥ −p(∅) +

∑

l0∈{i,j,k,l} p(l0) −
∑

l0,l1∈{i,j,k,l} p(l0, l1)

+
∑

l0,l1,l2∈{i,j,k,l} p(l0, l1, l2)

More generally for 0 ≤ k ≤ R − 1

p(i0, . . . , ik) ≥ (−1)kp(∅) −
∑k

j=1(−1)k+1−j
∑

l0,...lj
p(l0, . . . lj)

with p(1, . . . , 1) < 1 then η. is an ergodic PCA.

Note that in some case it is possible to exchange the role of the two states
0 ↔ 1 in order to show ergodicity using the previous results.
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2.4 Duality and branching Process

When the PCA under consideration does not verify the conditions of Proposition
3, the probability of the hitting time being finite may verify P{τ < ∞} = 1 which
imply that the PCA is still ergodic (see Remark 1). Using basic and well known
results from the Branching Process Theory (see [1] for general results and [6], [12]
for special applications to cellular automata) we can expand the set of ergodic

two states PCA to the following case:
∑k

i=0

∑

(l0,...,li)
(i + 1) × π(l0, . . . , li) :=

m < 1. Using the branching process theory, we can used the standard version
of duality which lead to a simplified version of equations 1.9 taking D = 1
and the conditions on π(l0, . . . , li) can be rewritten as conditions on p(l0, . . . , li)
using Lemma 2. When m < 1 we still have that P{τ < ∞} = 1. Indeed, the
dual process of the PCA is a set valued Markov chain. In this context, a usual
discrete time branching process Bt is coupled to the set valued Markov chain
ξt in such a way that |ξt| ≤ Bt. Then, if the branching process Bt does not
survive, the process ξt will be absorbed by the empty set. Since this happens
with probability one when the mean number of offsprings of a single individual
is less or equal than one we are able to prove the ergodicity. This generalize
results given in [6] using dual process for particular two state one dimensional
PCA call spin flip mixing automata.

3 Some properties of the invariant measure in

the one-dimensional case

For the sake of simplification we only give results for PCA on {0, 1}Z. Extensions
to the multi-dimensional case require too much notation. In the one dimensional
case, R = {i ∈ Z}∩ [−r, r] where r is the so called radius of the PCA. We denote
by E(Z, r) the set of all ergodic PCA η. of radius r from {0, 1}Z → {0, 1}Z

which satisfy Proposition 3. We call M(Z, r) the set of all invariant measures
of ergodic PCA η. in E(Z, r). Also, let M(Z) denote the set limr→∞ ∪M(Z, r).
The following Proposition seems to be well known. However, it’s proof can not
be found or at least it is quite hard to be found.

Proposition 4 Every measure µ ∈ M(Z) is shift-invariant.

Remark 5 This result can be easily extended to PCA on AZ
d

.

Proof. It is sufficient to show that for all cylinders [U ]t (U ∈ {0, 1}l , l ∈ N),
one has µ(σ−1[U ]t) = µ([U ]t). Since µ ∈ M(Z) then there exits a sequence
(µi)i∈N which converges in the weak* topology to µ, where µi is the distribution
of a PCA η. at time i starting from an initial distribution µ0. It follows that
for all cylinders [U ]t, one has limn→∞ µn([U ]t) = µ([U ]t). Since for all positive
integer i one has

µi([U ]t) =
∑

Vj∈{0,1}n+1+2ir

µ0([Vj ]t−ir)Pη0∈[Vj ]t−ir
{ηi ∈ [U ]t},

12



we can choose µ0 as a shift-invariant probability measure. Hence, for any pos-
itive integer i and any cylinder [U ]t we have µi([U ]t) = µi(σ

−1[U ]t), which
finishes the proof.

2

The following Lemma is a key property of the function µ̂, which will be used
in the proof of Theorem 2.

Lemma 3 Let [U ]0 and [V ]0 be two cylinders. If µ([U ]0) =
∑

αiµ̂(Ai), µ([V ]0)
=
∑

βiµ̂(Bi) and t ≥ |U | + |V |, then

µ([U ]0 ∩ σ−t[V ]0) = µ([U ]0 ∩ [V ]t) =
∑

αiµ̂(Ai)(∗, t)
∑

βiµ̂(Bi),

where
∑

αiµ̂(Ai)(∗, t)
∑

βiµ̂(Bi) :=
∑

i,j αiβj µ̂(Ai ∪ {Bi + t}).

Proof. We prove the theorem by using the principle of mathematical induc-
tion. Let’s prove first the case |U | = 1 and |V | = 1. Note that for all finite
sets {i0, . . . , ik}, (i0, . . . , ik ∈ Z), µ̂({i0, . . . , ik}) =

∫

H({i0, . . . , ik}, x)dµ(x) =
µ({∩[1]j |j ∈ {i0, . . . , ik}}) and observe that for all k ≥ 1 ∈ N one has µ([1]0 ∩
[1]k) = µ̂({0} ∪ {k}).

Since µ([0]k) = 1 − µ̂({k}) = µ̂(∅) − µ̂({k}) and µ([1]0 ∩ [0]k) = µ([1]0) −
µ([1]0 ∩ [1]k) = µ̂({0}) − µ̂({0, k}) we get, again, that µ([1]0 ∩ [0]k) = µ̂({0} ∪
∅)− µ̂({0}∪ {k}). Furthermore, we have µ([0]0 ∩ [1]k) = µ̂({1})− µ̂({0, k}). To
finish the case |U | = |V | = 1 note that

µ([0]0 ∩ [0]k) = 1 − µ([1]0 ∩ [1]k) − µ([1]0 ∩ [0]k) − µ([0]0 ∩ [1]k)

= µ̂(∅) − µ̂({0} ∪ {k}) − µ̂({0}) + µ̂({0} ∪ {k})− µ̂({k})

+ µ̂({0} ∪ {k})

= µ̂(∅) + µ̂({0} ∪ {k}) − µ̂({0}) − µ̂({k})

= [µ̂(∅) − µ̂({0})] (∗, t) [µ̂(∅) − µ̂({k})] .

Now, suppose that µ([U ]0 ∩ σ−t[V ]0) =
∑

i,j αiβj µ̂(Ai ∪ {Bi + t}) is true
for |U | = |V | = n. Consider t ≥ 2n + 1 and let [U ]0, [V ]0 be two cylinders
such that µ([U ]0) =

∑

αiµ̂(Ai) and µ([V ]0) =
∑

βj µ̂(Bj). Since µ([U1]0) =
∑

αiµ̂(Ai ∪ {|U |}), we get

µ([U1]0[V 1]t) =
∑

i,j

αiβj µ̂(Ai ∪ {Bj + t} ∪ {|U |, |V | + t}).

Noting that µ([V 1]t) =
∑

αiµ̂({Bi + t} ∪ {|V | + t}), we get the desired result
for the case [U1]0 ∩ [V 1]t.
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The result for the case [U1]0 ∩ [V 0]t follows by noting that

µ([U1]0 ∩ [V 0]t) = µ([U1]0 ∩ [V ]t) − µ([U1]0 ∩ [V 1]t)

=
∑

i,j

αiβj µ̂(Ai ∪ {|U |} ∪ {Bj + t})

−
∑

i,j

αiβj µ̂(Ai ∪ {Bj + t} ∪ {|U |, |V | + t})

=
∑

αiµ̂(Ai ∪ {|U |})(∗, t)
∑

αiµ̂({Bi + t})

−
∑

αiµ̂({Bi + t} ∪ {|V | + t}).

It can also be shown that

µ([U0]0∩[V 1]t) = [
X

αiµ̂(Ai)−
X

αiµ̂(Ai∪{|U |})](∗, t)[
X

αiµ̂({Bi+t}∪{|V |+t})].

Finally, using that µ([U0]0∩[V 0]t) = µ([U ]0∩[V ]t)−µ([U1]0∩[V 0]t)−µ([U0]0∩
[V 1]t) − µ([U1]0 ∩ [V 1]t) we can show that

µ([U0]0 ∩ [V 0]t) = [
∑

i,j

αiβj µ̂(Ai ∪ {Bi + t})

−
∑

i,j

αiβj µ̂(Ai ∪ {Bi + t} ∪ {|U |})](∗, t)

[
∑

i,j

αiβj µ̂(Ai ∪ {Bi + t})

−
∑

i,j

αiβj µ̂(Ai ∪ {Bi + t}) ∪ {|V | + t}]

which finishes the proof.
2

Theorem 2 Let η. be a PCA ∈ M(Z) of radius r with p(1, 1 . . . , 1) = D ∈ [0, 1).
Then, the unique invariant measure µ is shift-mixing. Also, if D 6= 0, for all
pairs of cylinders [U ]0 = [u0 . . . uk], [V ]0 = [v0 . . . vk′ ] and t ≥ |U |+ |V | we have

|µ([U ]0 ∩ σ−t[V ]0) − µ([U ]0) × µ([V ]0)| ≤ exp (−a × t) × K(U, V ),

where a = 1/2r × ln (1/D) and K(U, V ) is a constant depending only on U , V ,
D and r.

Proof. From Proposition 4 the invariant measure is shift-invariant and the
exponential decay of correlations of cylinders imply the mixing property. If
D = 0, then p = p(0, . . . 0) = 0 and µ = δ0 (see Corollary 1). Hence, suppose
that 0 < D = p(1, 1 . . . , 1) < 1. For all finite subset E of Z and s ∈ Z define
{E + s} = {x + s|x ∈ E}. We claim that for all finite subset E and F , if
t ≥ 2Nr + |E| + |F | we have

|µ̂(E ∪ {F + t}) − µ̂(E) × µ̂(F )| ≤ DN+1 1

1 − D
.
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The proof of this claim uses Theorem 1 and Proposition 2 which say that for
any finite subset E ⊂ Z, µ̂(E) = Pη0=E{ητ = ∅}, which in turn implies that

µ̂(E) =
∞
∑

k=0

Pη0=E{τ = k},

where τ is the hitting time for the process η.. By Lemma 1, for any integer
N > 0 we have

∣

∣

∣

∣

∣

µ̂(E) −
N
∑

k=0

Pη0=E{τ = k}

∣

∣

∣

∣

∣

≤ DN+1 1

1 − D
.

Then, note that for all positive integer i, if s ≥ 2ri + |E| + |F |

Pη0=E∪{F+s}{τ = i} = Pη0=E{τ = i} ×
i
∑

j=0

Pη0={F+s}{τ = j}

+ Pη0={F+s}{τ = i} ×
i
∑

j=0

Pη0=E∪{F+s}{τ = j}.

It follows that if s ≥ |E| + |F | + 2N × r we get

N
∑

i=0

PE0=E∪{F+s}{τ = i} =

N
∑

i=0

PE0=E{τ = i} ×
N
∑

i=0

PE0={F+s}{τ = i}

which implies the claim : when s ≥ |E| + |F | + 2N × r one has

|µ̂(E ∪ {F + s}) − µ̂(E) × µ̂(F )| ≤ DN+1 1

1 − D
. (1.11)

By Proposition 1, for any pair of cylinders [U ]0 and [V ]0 there exist finite se-
quences of sets (Ai) and (Bi) and finite sequences of real numbers αi and βi

such that µ([U ]0) =
∑

αiµ̂(Ai) and µ([V ]0) =
∑

βiµ̂(Bi). By inequality 1.11,
for any pair of subsets of Z, Ai and Bj with s ≥ |U | + |V | + 2N × r we get

∣

∣

∣αiβj µ̂(Ai ∪ {Bi + s} − αiµ̂(Ai) × βj µ̂(Bj))
∣

∣

∣ ≤ |αiβj | × DN+1 1

1 − D
,

which implies that
∣

∣

∣

∑

i,j

αiβj µ̂
(

Ai ∪ {Bi + s}
)

−
∑

i

αiµ̂(Ai) ×
∑

j

βj µ̂(Bj)
∣

∣

∣ ≤ F (U, V ) × DN ,

where F (U, V ) =
∑

i,j |αiβj | ×
D

1−D
. Then, if 0 < D < 1 and t ≥ |U | + |V | we

have, by Lemma 3, that

∣

∣

∣µ([U ]0 ∩ σ−t[V ]0 − µ([U ]0)µ([V ]0))
∣

∣

∣ ≤ K(U, V ) × exp
(

− t ×
ln (1/D)

2r

)

,
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where K(U, V ) = F (U, V ) × D−( |U|+|V |
2r

).
When D = 0, then p = 0 and from Corollary µ = δ0 and µ has exponential

decay of correlations.
2

Remark 6 When the transition rules of the PCA do not verify the hypothe-
sis of Proposition 3 but verifies the condition m :=

∑k
i=0

∑

(l0,...,li)
(i + 1) ×

π(l0, . . . , li) < 1 we can use the theory of branching processes to study the de-
cay of correlations of the PCA. The relation between p(l0, ..., li) and π(l0, . . . , li)
given by Lemma 2 when D = 1 is left to the reader.

If (Bn)n∈N
is a branching process with mean number of offspring given by

m < 1, then its extinction occurs exponentially fast implying that the correlation
of the PCA decays exponentially fast. If a PCA η. satisfies the conditions of
proposition 3 with p(1, . . . , 1) not necessarily strictly less than one, we say that
η. satisfies the duality condition. We prove the following

Proposition 5 Let η. be a PCA satisfying the duality condition and such that
the transition probabilities of its dual verify m < 1. Then, for any pair of
cylinders [U ]0 = [u0 . . . uk], [V ]0 = [v0 . . . vk′ ] and integer t ≥ |U | + |V |

|µ([U ]0 ∩ σ−t[V ]0) − µ([U ]0) × µ([V ]0)| ≤ K (U, V, m) exp (−a × t),

where a = ln (1/m)
2r .

Proof. Since the transition probabilities satisfy equation 1.9, the dual process
exists. As pointed out in [12], consider a branching process Bn defined as
follows. As usual, Bn is the number of particles or individuals in the n-th
generation starting at time zero with a single particle. Then, each individual,
independently of everithing else produce 0 offspring with probability π (∅), 1

offspring with probability
∑

k0

π (lk0
) and so on. Then, the mean number of

offspring of a single individual is m. The key point here is that the the dual
and the branching process can be coupled in such a way that Bn dominates the
dual process ξn in the sense that |ξn| ≤ Bn ∀n ≥ 0.

Notice that P[Bn > 0] ≤ E[Bn] = mn. Then, if t ≥ |E|+ |F |+ 2Nr we have
that

|µ̂(E ∪ {F + t}) − µ̂(E) × µ̂(F )| ≤ mN+1 1

1 − m
. (1.12)

The proof of the inequality above follows in the same lines of the proof of
Theorem 2. Then, using Lemma 3 we can conclude, exactly as in the proof of
theorem 2, that

|µ([U ]0 ∩ σ−t[V ]0) − µ([U ]0) × µ([V ]0)| ≤ K (U, V ) × e−at

where a = ln (1/m)
2r and K (U, V ) is a positive constant depending only on U, V, m

and r. 2
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Remark 7 When Proposition 3 does not apply and the mean number of off-
spring of the branching process dominating the dual process is greater than one,
we have that the probability of surviving for the process Bn is positive. In this
case, nothing can be said about the ergodicity nor about the decay of correlations
of the PCA using the tools from branching processes theory. Also, the result
of Proposition 5 can not be directly extended to the case m = 1 because the
probability of surviving is bounded above by a non summable quantity.

4 The set of invariant measures

Proposition 2 and 3 guarantee the existence of a correspondence between the
set of parameters of the transition function and the unique invariant measure
belonging to M(Z, r). We remark that M(Z, r) is endowed with the weak*
topology For any PCA η. ∈ E(Z, r) we denote by λ(η.) the set of all parameters
or transition probabilities needed to define the evolution of η.. That it is to say,

λ(η.) = {pλ(e−r, . . . , er)|e−r, . . . , er ∈ {0, 1}2r+1}.

Also, let µη. denote the invariant measure associated to η. and P (Z, r) denote
the set {λ(ηt)|ηt ∈ E(Z, r)}. Then, for each pairs of PCA η1

. and η2
. in E(Z, r),

we call ∆λ(η1
. , η2

. ) the value of

sup{|pη1
t (e−r, . . . er) − pη2

t (e−r, . . . er)|e−r, . . . , er ∈ {0, 1}2r+1}.

Proposition 6 Let [U ]0 be any cylinder and η1
. , η2

. two given PCA. Then,

lim
∆λ(η1,η2)→0

µη1
t ([U ]0) − µη2

t ([U ]0) = 0.

Proof. From Proposition 2 and 3 it follows that the set P (λ, r) is a closed subset
of [0, 1]2r+1. Since P (Z, r) has no isolated points, it follows from Proposition 3
that if λ(η1

. ), λ(η2
. ) ∈ P (Z, r) then, for any cylinder [U ]0 = [u0 . . . un]0, i ∈ {0, 1}

we have limn→∞ µi
n([U ]0) = µi([U ]0) where

µi
n([U ]0) =

∑

[Vj ]∈{0,1}n+1+2nr

µ0([Vj ]−nr) × Pηi
0
∈[Vj ]−nr

{ηi
n ∈ [U ]0}

and µ0 is the so called uniform product measure B(1
2 , 1

2 ). For any cylinder [U ]0,
i ∈ {1, 2} and ǫ > 0 there exists an integer N such that for all n, m ≥ N ,
|µi

n([U ]0)−µi
m([U ]0)| ≤

ǫ
2 . To finish the proof we need to show that there exists

γ > 0 such that if ∆λ(η1, η2) ≤ γ then for all n ≥ N we have |µ1
n([U ]0) −

µ2
n([U ]0)| ≤

ǫ
2 . Now, for all 2 ≤ j ≤ n and i ∈ {1, 2} we have

µi
j([u0, . . . , un]0) =

∑

v−r ,...,vn+r∈{0,1}n+2r+1

µi
j−1([v−r, . . . , vn+r]0)Π

n
l=0P[l].
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Note that P[l] = P(ul|vl−r , . . . vl+r) = p(vl−r , . . . , vl+r) if ul = 1 and that
P[l] := 1 − p(vl−r, . . . , vl+r) when ul = 0. Also,

µi
1([u−ir, . . . , un+ir]) = C(i, r)

∑

v0,...,vn+2ir+1∈J

(

n+ir
∏

l=−ir

P(ul|vl−r, . . . vl+r)

)

,

where C(i, r) =
(

1
2

)n+1+2(i+1)r
and J = {0, 1}n+2ir+1. It follows that the maps

µi
n([U ]0) are polynomial functions on the sets of parameters λ(ηi

. ). Then, the
existence of γ follows, which finishes the proof.

2

Corollary 2 The sets M(Z, r) are compact and connected sets and M(Z) =
limr→∞ ∪M(Z, r) is a connected set.

Proof. The sets P (Z, r) are compact and connected sets which implies that
M(Z, r) are compact and connected too.

2

Final questions

i) Is there exist an ergodic PCA such that the unique invariant measure is
not shift-mixing?

ii) If there exist a negative answer to the first question, is there exist an
ergodic PCA such that the invariant measure has non exponential decay
of correlation?

iii) Under which conditions the set M(d) = limr→∞ ∪M(r, d) is a compact
set?

iv) Is there anyway to extend the sets M(Zd)?
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