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Abstract

Used to estimate the risk of an estimator or to perform model selec-

tion, cross-validation is a widespread strategy because of its simplicity

and its apparent universality. Many results exist on the model selection

performances of cross-validation procedures. This survey intends to relate

these results to the most recent advances of model selection theory, with a

particular emphasis on distinguishing empirical statements from rigorous

theoretical results. As a conclusion, guidelines are provided for choosing

the best cross-validation procedure according to the particular features of

the problem in hand.
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1 Introduction

Many statistical algorithms, such as likelihood maximization, least squares and
empirical contrast minimization, rely on the preliminary choice of a model, that
is of a set of parameters from which an estimate will be returned. When several
candidate models (thus algorithms) are available, choosing one of them is called
the model selection problem.

Cross-validation (CV) is a popular strategy for model selection, and more
generally algorithm selection. The main idea behind CV is to split the data (once
or several times) for estimating the risk of each algorithm: Part of the data (the
training sample) is used for training each algorithm, and the remaining part
(the validation sample) is used for estimating the risk of the algorithm. Then,
CV selects the algorithm with the smallest estimated risk.

Compared to the resubstitution error, CV avoids overfitting because the
training sample is independent from the validation sample (at least when data
are i.i.d.). The popularity of CV mostly comes from the generality of the data
splitting heuristics, which only assumes that data are i.i.d.. Nevertheless, the-
oretical and empirical studies of CV procedures do not entirely confirm this
“universality”. Some CV procedures have been proved to fail for some model
selection problems, depending on the goal of model selection: estimation or
identification (see Section 2). Furthermore, many theoretical questions about
CV remain widely open.

The aim of the present survey is to provide a clear picture of what is known
about CV, from both theoretical and empirical points of view. More precisely,
the aim is to answer the following questions: What is CV doing? When does
CV work for model selection, keeping in mind that model selection can target
different goals? Which CV procedure should be used for each model selection
problem?

The paper is organized as follows. First, the rest of Section 1 presents the
statistical framework. Although non exhaustive, the present setting has been
chosen general enough for sketching the complexity of CV for model selection.
The model selection problem is introduced in Section 2. A brief overview of
some model selection procedures that are important to keep in mind for un-
derstanding CV is given in Section 3. The most classical CV procedures are
defined in Section 4. Since they are the keystone of the behaviour of CV for
model selection, the main properties of CV estimators of the risk for a fixed
model are detailed in Section 5. Then, the general performances of CV for
model selection are described, when the goal is either estimation (Section 6) or
identification (Section 7). Specific properties of CV in some particular frame-
works are discussed in Section 8. Finally, Section 9 focuses on the algorithmic
complexity of CV procedures, and Section 10 concludes the survey by tackling
several practical questions about CV.

1.1 Statistical framework

Assume that some data ξ1, . . . , ξn ∈ Ξ with common distribution P are ob-
served. Throughout the paper—except in Section 8.3—the ξi are assumed to
be independent. The purpose of statistical inference is to estimate from the
data (ξi )1≤i≤n some target feature s of the unknown distribution P , such as
the mean or the variance of P . Let S denote the set of possible values for s.
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The quality of t ∈ S, as an approximation of s, is measured by its loss L ( t ),
where L : S 7→ R is called the loss function, and is assumed to be minimal for
t = s. Many loss functions can be chosen for a given statistical problem.

Several classical loss functions are defined by

L ( t ) = LP ( t ) := Eξ∼P [γ ( t; ξ ) ] , (1)

where γ : S × Ξ 7→ [0,∞) is called a contrast function. Basically, for t ∈ S

and ξ ∈ Ξ, γ(t; ξ) measures how well t is in accordance with observation of ξ,
so that the loss of t, defined by (1), measures the average accordance between
t and new observations ξ with distribution P . Therefore, several frameworks
such as transductive learning do not fit definition (1). Nevertheless, as detailed
in Section 1.2, definition (1) includes most classical statistical frameworks.

Another useful quantity is the excess loss

ℓ (s, t ) := LP ( t ) − LP (s ) ≥ 0 ,

which is related to the risk of an estimator ŝ of the target s by

R( ŝ ) = Eξ1,...,ξn∼P [ℓ (s, ŝ ) ] .

1.2 Examples

The purpose of this subsection is to show that the framework of Section 1.1
includes several important statistical frameworks. This list of examples does
not pretend to be exhaustive.

Density estimation aims at estimating the density s of P with respect to
some given measure µ on Ξ. Then, S is the set of densities on Ξ with respect
to µ. For instance, taking γ(t; x) = − ln(t(x)) in (1), the loss is minimal when
t = s and the excess loss

ℓ (s, t) = LP ( t ) − LP (s ) = Eξ∼P

[
ln

(
s(ξ)

t(ξ)

)]
=

∫
s ln

( s

t

)
dµ

is the Kullback-Leibler divergence between distributions tµ and sµ.

Prediction aims at predicting a quantity of interest Y ∈ Y given an explana-
tory variable X ∈ X and a sample of observations (X1, Y1), . . . , (Xn, Yn). In
other words, Ξ = X × Y, S is the set of measurable mappings X 7→ Y and the
contrast γ(t; (x, y)) measures the discrepancy between the observed y and its
predicted value t(x). Two classical prediction frameworks are regression and
classification, which are detailed below.

Regression corresponds to continuous Y, that is Y ⊂ R (or R
k for multivari-

ate regression), the feature space X being typically a subset of R
ℓ. Let s denote

the regression function, that is s(x) = E(X,Y )∼P [Y | X = x ], so that

∀i, Yi = s(Xi) + ǫi with E [ǫi | Xi ] = 0 .

A popular contrast in regression is the least-squares contrast γ ( t; (x, y) ) =
(t(x) − y)2, which is minimal over S for t = s, and the excess loss is

ℓ (s, t ) = E(X,Y )∼P

[
(s(X) − t(X))

2
]

.
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Note that the excess loss of t is the square of the L2 distance between t and s,
so that prediction and estimation are equivalent goals.

Classification corresponds to finite Y (at least discrete). In particular, when
Y = {0, 1}, the prediction problem is called binary (supervised) classification.
With the 0-1 contrast function γ(t; (x, y)) = 1lt(x) 6=y, the minimizer of the loss
is the so-called Bayes classifier s defined by

s(x) = 1lη(x)≥1/2 ,

where η denotes the regression function η(x) = P(X,Y )∼P (Y = 1 | X = x ).
Remark that a slightly different framework is often considered in binary clas-

sification. Instead of looking only for a classifier, the goal is to estimate also the
confidence in the classification made at each point: S is the set of measurable
mappings X 7→ R, the classifier x 7→ 1lt(x)≥0 being associated to any t ∈ S.
Basically, the larger |t(x)|, the more confident we are in the classification made
from t(x). A classical family of losses associated with this problem is defined by
(1) with the contrast γφ ( t; (x, y) ) = φ (−(2y − 1)t(x) ) where φ : R 7→ [0,∞)
is some function. The 0-1 contrast corresponds to φ(u) = 1lu≥0. The convex
loss functions correspond to the case where φ is convex, nondecreasing with
lim−∞ φ = 0 and φ(0) = 1. Classical examples are φ(u) = max {1 + u, 0}
(hinge), φ(u) = exp(u), and φ(u) = log2 (1 + exp(u) ) (logit). The correspond-
ing losses are used as objective functions by several classical learning algorithms
such as support vector machines (hinge) and boosting (exponential and logit).

Many references on classification theory, including model selection, can be
found in the survey by Boucheron et al. (2005).

1.3 Statistical algorithms

In this survey, a statistical algorithm A is any (measurable) mapping A :⋃
n∈N

Ξn 7→ S. The idea is that data Dn = (ξi )1≤i≤n ∈ Ξn will be used as

an input of A, and that the output of A, A(Dn) = ŝA(Dn) ∈ S, is an estimator
of s. The quality of A is then measured by LP

(
ŝA(Dn)

)
, which should be as

small as possible. In the sequel, the algorithm A and the estimator ŝA(Dn) are
often identified when no confusion is possible.

Minimum contrast estimators form a classical family of statistical algorithms,
defined as follows. Given some subset S of S that we call a model, a minimum
contrast estimator of s is any minimizer of the empirical contrast

t 7→ LPn
( t ) =

1

n

n∑

i=1

γ ( t; ξi ) , where Pn =
1

n

n∑

i=1

δξi
,

over S. The idea is that the empirical contrast LPn
( t ) has an expectation

LP ( t ) which is minimal over S at s. Hence, minimizing LPn
( t ) over a set S of

candidate values for s hopefully leads to a good estimator of s. Let us now give
three popular examples of empirical contrast minimizers:

• Maximum likelihood estimators: take γ(t; x) = − ln(t(x)) in the density
estimation setting. A classical choice for S is the set of piecewise constant
functions on a regular partition of Ξ with K pieces.

5



• Least-squares estimators: take γ(t; (x, y)) = (t(x) − y)2 the least-squares
contrast in the regression setting. For instance, S can be the set of piece-
wise constant functions on some fixed partition of X (leading to regresso-
grams), or a vector space spanned by the first vectors of wavelets or Fourier
basis, among many others. Note that regularized least-squares algorithms
such as the Lasso, ridge regression and spline smoothing also are least-
squares estimators, the model S being some ball of a (data-dependent)
radius for the L1 (resp. L2) norm in some high-dimensional space. Hence,
tuning the regularization parameter for the LASSO or SVM, for instance,
amounts to perform model selection from a collection of models.

• Empirical risk minimizers, following the terminology of Vapnik (1982):
take any contrast function γ in the prediction setting. When γ is the 0-1
contrast, popular choices for S lead to linear classifiers, partitioning rules,
and neural networks. Boosting and Support Vector Machines classifiers
also are empirical contrast minimizers over some data-dependent model
S, with contrast γ = γφ for some convex functions φ.

Let us finally mention that many other classical statistical algorithms can
be considered with CV, for instance local average estimators in the prediction
framework such as k-Nearest Neighbours and Nadaraya-Watson kernel estima-
tors. The focus will be mainly kept on minimum contrast estimators to keep
the length of the survey reasonable.

2 Model selection

Usually, several statistical algorithms can be used for solving a given statistical
problem. Let ( ŝλ )λ∈Λ denote such a family of candidate statistical algorithms.
The algorithm selection problem aims at choosing from data one of these algo-
rithms, that is, choosing some λ̂(Dn) ∈ Λ. Then, the final estimator of s is given
by ŝbλ(Dn)(Dn). The main difficulty is that the same data are used for training

the algorithms, that is, for computing ( ŝλ(Dn) )λ∈Λ, and for choosing λ̂(Dn) .

2.1 The model selection paradigm

Following Section 1.3, let us focus on the model selection problem, where can-
didate algorithms are minimum contrast estimators and the goal is to choose a
model S. Let (Sm )m∈Mn

be a family of models, that is, Sm ⊂ S. Let γ be a
fixed contrast function, and for every m ∈ Mn, let ŝm be a minimum contrast
estimator over model Sm with contrast γ. The goal is to choose m̂(Dn) ∈ Mn

from data only.

The choice of a model Sm has to be done carefully. Indeed, when Sm is a
“small” model, ŝm is a poor statistical algorithm except when s is very close to
Sm, since

ℓ (s, ŝm ) ≥ inf
t∈Sm

{ ℓ (s, t)} := ℓ (s, Sm ) .

The lower bound ℓ (s, Sm ) is called the bias of model Sm, or approximation
error. The bias is a nonincreasing function of Sm.
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On the contrary, when Sm is “huge”, its bias ℓ (s, Sm ) is small for most
targets s, but ŝm clearly overfits. Think for instance of Sm as the set of all
continuous functions on [0, 1] in the regression framework. More generally, if
Sm is a vector space of dimension Dm, in several classical frameworks,

E [ ℓ (s, ŝm(Dn) ) ] ≈ ℓ (s, Sm ) + λDm (2)

where λ > 0 does not depend on m. For instance, λ = 1/(2n) in density
estimation using the likelihood contrast, and λ = σ2/n in regression using the
least-squares contrast and assuming var (Y | X ) = σ2 does not depend on X .
The meaning of (2) is that a good model choice should balance the bias term
ℓ (s, Sm ) and the variance term λDm, that is solve the so-called bias-variance
trade-off. By extension, the variance term, also called estimation error, can be
defined by

E [ ℓ (s, ŝm(Dn) ) ] − ℓ (s, Sm ) = E [LP ( ŝm ) ] − inf
t∈Sm

LP ( t ) ,

even when (2) does not hold.
The interested reader can find a much deeper insight into model selection in

the Saint-Flour lecture notes by Massart (2007).

Before giving examples of classical model selection procedures, let us mention
the two main different goals that model selection can target: estimation and
identification.

2.2 Model selection for estimation

On the one hand, the goal of model selection is estimation when ŝ bm(Dn)(Dn)
is used as an approximation of the target s, and the goal is to minimize its
loss. For instance, AIC and Mallows’ Cp model selection procedures are built
for estimation (see Section 3.1).

The quality of a model selection procedure Dn 7→ m̂(Dn), designed for esti-
mation, is measured by the excess loss of ŝ bm(Dn)(Dn). Hence, the best possible
model choice for estimation is the so-called oracle model Sm⋆ , defined by

m⋆ = m⋆(Dn) ∈ arg min
m∈Mn

{ℓ (s, ŝm(Dn) )} . (3)

Since m⋆(Dn) depends on the unknown distribution P of data, one cannot
expect to select m̂(Dn) = m⋆(Dn) almost surely. Nevertheless, we can hope to
select m̂(Dn) such that ŝ bm(Dn) is almost as close to s as ŝ m⋆(Dn). Note that
there is no requirement for s to belong to

⋃
m∈Mn

Sm.

Depending on the framework, the optimality of a model selection procedure
for estimation is assessed in at least two different ways.

First, in the asymptotic framework, a model selection procedure m̂ is called
efficient (or asymptotically optimal) when it leads to m̂ such that

ℓ
(
s, ŝ bm(Dn)(Dn)

)

infm∈Mn
{ ℓ (s, ŝm(Dn) )}

a.s.−−−−→
n→∞

1 .

Sometimes, a weaker result is proved, the convergence holding only in probabil-
ity.

7



Second, in the non-asymptotic framework, a model selection procedure sat-
isfies an oracle inequality with constant Cn ≥ 1 and remainder term Rn ≥ 0
when

ℓ
(
s, ŝ bm(Dn)(Dn)

)
≤ Cn inf

m∈Mn

{ℓ (s, ŝm(Dn) )} + Rn (4)

holds either in expectation or with large probability (that is, a probability larger
than 1 − C′/n2, for some positive constant C′). Note that if (4) holds on
a large probability event with Cn tending to 1 when n tends to infinity and
Rn ≪ ℓ (s, ŝm⋆(Dn) ), then the model selection procedure m̂ is efficient.

In the estimation setting, model selection is often used for building adaptive
estimators, assuming that s belongs to some function space Tα (Barron et al.,
1999).Then, a model selection procedure m̂ is optimal when it leads to an estima-
tor ŝ bm(Dn)(Dn) (approximately) minimax with respect to Tα without knowing
α, provided the family (Sm )m∈Mn

has been well-chosen.

2.3 Model selection for identification

On the other hand, model selection can aim at identifying the “true model”
Sm0 , defined as the “smallest” model among (Sm )m∈Mn

to which s belongs.
In particular, s ∈ ⋃

m∈Mn
Sm is assumed in this setting. A typical example of

model selection procedure built for identification is BIC (see Section 3.3).
The quality of a model selection procedure designed for identification is

measured by its probability of recovering the true model m0. Then, a model
selection procedure is called (model) consistent when

P (m̂(Dn) = m0 ) −−−−→
n→∞

1 .

Note that identification can naturally be extended to the general algorithm
selection problem, the “true model” being replaced by the statistical algorithm
whose risk converges at the fastest rate (see for instance Yang, 2007).

2.4 Estimation vs. identification

When a true model exists, model consistency is clearly a stronger property than
efficiency defined in Section 2.2. However, in many frameworks, no true model
does exist so that efficiency is the only well-defined property.

Could a model selection procedure be model consistent in the former case
(like BIC) and efficient in the latter case (like AIC)? The general answer to this
question, often called the AIC-BIC dilemma, is negative: Yang (2005) proved in
the regression framework that no model selection procedure can be simultane-
ously model consistent and minimax rate optimal. Nevertheless, the strengths
of AIC and BIC can sometimes be shared; see for instance the introduction of
a paper by Yang (2005) and a recent paper by van Erven et al. (2008).

3 Overview of some model selection procedures

Several approaches can be used for model selection. Let us briefly sketch here
some of them, which are particularly helpful for understanding how CV works.
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Like CV, all the procedures considered in this section select

m̂(Dn) ∈ arg min
m∈Mn

{crit(m; Dn)} , (5)

where ∀m ∈ Mn, crit(m; Dn) = crit(m) ∈ R is some data-dependent criterion.
A particular case of (5) is penalization, which consists in choosing the model

minimizing the sum of empirical contrast and some measure of complexity of
the model (called penalty) which can depend on the data, that is,

m̂(Dn) ∈ arg min
m∈Mn

{LPn
( ŝm ) + pen(m; Dn)} . (6)

This section does not pretend to be exhaustive. Completely different approaches
exist for model selection, such as the Minimum Description Length (MDL)
(Rissanen, 1983), and the Bayesian approaches. The interested reader will
find more details and references on model selection procedures in the books
by Burnham and Anderson (2002) or Massart (2007) for instance.

Let us focus here on five main categories of model selection procedures, the
first three ones coming from a classification made by Shao (1997) in the linear
regression framework.

3.1 The unbiased risk estimation principle

When the goal of model selection is estimation, many model selection pro-
cedures are of the form (5) where crit(m; Dn) unbiasedly estimates (at least,
asymptotically) the loss LP ( ŝm ). This general idea is often called unbiased
risk estimation principle, or Mallows’ or Akaike’s heuristics.

In order to explain why this strategy can perform well, let us write the
starting point of most theoretical analysis of procedures defined by (5): By
definition (5), for every m ∈ Mn,

ℓ (s, ŝ bm ) + crit(m̂) − LP ( ŝ bm ) ≤ ℓ (s, ŝm ) + crit(m) − LP ( ŝm ) . (7)

If E [ crit(m) − LP ( ŝm ) ] = 0 for every m ∈ Mn, then concentration inequalities
are likely to prove that ε−n , ε+

n > 0 exist such that

∀m ∈ Mn, ε+
n ≥ crit(m) − LP ( ŝm )

ℓ (s, ŝm )
≥ −ε−n > −1

with high probability, at least when Card(Mn) ≤ Cnα for some C, α ≥ 0. Then,
(7) directly implies an oracle inequality like (4) with Cn = (1+ ε+

n )/(1− ε−n ). If
ε+

n , ε−n → 0 when n → ∞, this proves the procedure defined by (5) is efficient.

Examples of model selection procedures following the unbiased risk estima-
tion principle are FPE (Final Prediction Error, Akaike, 1970), several cross-
validation procedures including the Leave-one-out (see Section 4), and GCV
(Generalized Cross-Validation, Craven and Wahba, 1979, see Section 4.3.3).
With the penalization approach (6), the unbiased risk estimation principle is
that E [pen(m) ] should be close to the “ideal penalty”

penid(m) := LP ( ŝm ) − LPn
( ŝm ) .

Several classical penalization procedures follow this principle, for instance:
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• With the log-likelihood contrast, AIC (Akaike Information Criterion,
Akaike, 1973) and its corrected versions (Sugiura, 1978; Hurvich and Tsai,
1989).

• With the least-squares contrast, Mallows’ Cp (Mallows, 1973) and several
refined versions of Cp (see for instance Baraud, 2002).

• With a general contrast, covariance penalties (Efron, 2004).

AIC, Mallows’ Cp and related procedures have been proved to be optimal
for estimation in several frameworks, provided Card(Mn) ≤ Cnα for some
constants C, α ≥ 0 (see the paper by Birgé and Massart, 2007, and references
therein).

The main drawback of penalties such as AIC or Mallows’ Cp is their depen-
dence on some assumptions on the distribution of data. For instance, Mallows’
Cp assumes the variance of Y does not depend on X . Otherwise, it has a
suboptimal performance (Arlot, 2008b).

Several resampling-based penalties have been proposed to overcome this
problem, at the price of a larger computational complexity, and possibly slightly
worse performance in simpler frameworks; see a paper by Efron (1983) for boot-
strap, and a paper by Arlot (2008a) and references therein for generalization to
exchangeable weights.

Finally, note that all these penalties depend on multiplying factors
which are not always known (for instance, the noise-level, for Mallows’ Cp).
Birgé and Massart (2007) proposed a general data-driven procedure for estimat-
ing such multiplying factors, which satisfies an oracle inequality with Cn → 1
in regression (see also Arlot and Massart, 2009).

3.2 Biased estimation of the risk

Several model selection procedures are of the form (5) where crit(m) does not
unbiasedly estimate the loss LP ( ŝm ): The weight of the variance term com-
pared to the bias in E [ crit(m) ] is slightly larger than in the decomposition (2)
of LP ( ŝm ). From the penalization point of view, such procedures are overpe-
nalizing.

Examples of such procedures are FPEα (Bhansali and Downham, 1977) and
GICλ (Generalized Information Criterion, Nishii, 1984; Shao, 1997) with α, λ >
2, which are closely related. Some cross-validation procedures, such as Leave-
p-out with p/n ∈ (0, 1) fixed, also belong to this category (see Section 4.3.1).
Note that FPEα with α = 2 is FPE, and GICλ with λ = 2 is close to FPE and
Mallows’ Cp.

When the goal is estimation, there are two main reasons for using “biased”
model selection procedures. First, experimental evidence show that overpenal-
izing often yields better performance when the signal-to-noise ratio is small (see
for instance Arlot, 2007, Chapter 11).

Second, when the number of models Card(Mn) grows faster than any power
of n, as in the complete variable selection problem with n variables, then the
unbiased risk estimation principle fails. From the penalization point of view,
Birgé and Massart (2007) proved that when Card(Mn) = eκn for some κ > 0,
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the minimal amount of penalty required so that an oracle inequality holds with
Cn = O(1) is much larger than penid(m). In addition to the FPEα and GICλ

with suitably chosen α, λ, several penalization procedures have been proposed
for taking into account the size of Mn (Barron et al., 1999; Baraud, 2002;
Birgé and Massart, 2001; Sauvé, 2009). In the same papers, these procedures
are proved to satisfy oracle inequalities with Cn as small as possible, typically
of order ln(n) when Card(Mn) = eκn.

3.3 Procedures built for identification

Some specific model selection procedures are used for identification. A typical
example is BIC (Bayesian Information Criterion, Schwarz, 1978).

More generally, Shao (1997) showed that several procedures identify con-
sistently the correct model in the linear regression framework as soon as they
overpenalize within a factor tending to infinity with n, for instance, GICλn

with
λn → +∞, FPEαn

with αn → +∞ (Shibata, 1984), and several CV procedures
such as Leave-p-out with p = pn ∼ n. BIC is also part of this picture, since it
coincides with GICln(n).

In another paper, Shao (1996) showed that mn-out-of-n bootstrap penaliza-
tion is also model consistent as soon as mn ∼ n. Compared to Efron’s bootstrap
penalties, the idea is to estimate penid with the mn-out-of-n bootstrap instead
of the usual bootstrap, which results in overpenalization within a factor tending
to infinity with n (Arlot, 2008a).

Most MDL-based procedures can also be put into this category of model
selection procedures (see Grünwald, 2007). Let us finally mention the Lasso
(Tibshirani, 1996) and other ℓ1 penalization procedures, which have recently
attracted much attention (see for instance Hesterberg et al., 2008). They are
a computationally efficient way of identifying the true model in the context of
variable selection with many variables.

3.4 Structural risk minimization

In the context of statistical learning, Vapnik and Chervonenkis (1974) pro-
posed the structural risk minimization approach (see also Vapnik, 1982, 1998).
Roughly, the idea is to penalize the empirical contrast with a penalty (over)-
estimating

penid,g(m) := sup
t∈Sm

{LP ( t ) − LPn
( t )} ≥ penid(m) .

Such penalties have been built using the Vapnik-Chervonenkis dimension, the
combinatorial entropy, (global) Rademacher complexities (Koltchinskii, 2001;
Bartlett et al., 2002), (global) bootstrap penalties (Fromont, 2007), Gaus-
sian complexities or the maximal discrepancy (Bartlett and Mendelson, 2002).
These penalties are often called global because penid,g(m) is a supremum over
Sm.

The localization approach (see Boucheron et al., 2005) has been introduced
in order to obtain penalties closer to penid (such as local Rademacher com-
plexities), hence smaller prediction errors when possible (Bartlett et al., 2005;
Koltchinskii, 2006). Nevertheless, these penalties are still larger than penid(m)
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and can be difficult to compute in practice because of several unknown con-
stants.

A non-asymptotic analysis of several global and local penalties can be found
in the book by Massart (2007) for instance; see also Koltchinskii (2006) for
recent results on local penalties.

3.5 Ad hoc penalization

Let us finally mention that penalties can also be built according to particular
features of the problem. For instance, penalties can be proportional to the ℓp

norm of ŝm (similarly to ℓp-regularized learning algorithms) when having an
estimator with a controlled ℓp norm seems better. The penalty can also be
proportional to the squared norm of ŝm in some reproducing kernel Hilbert
space (similarly to kernel ridge regression or spline smoothing), with a kernel
adapted to the specific framework. More generally, any penalty can be used,
as soon as pen(m) is larger than the estimation error (to avoid overfitting) and
the best model for the final user is not the oracle m⋆, but more like

arg min
m∈Mn

{ℓ (s, Sm ) + κ pen(m)}

for some κ > 0.

3.6 Where are cross-validation procedures in this picture?

The family of CV procedures, which will be described and deeply investigated
in the next sections, contains procedures in the first three categories. CV proce-
dures are all of the form (5), where crit(m) either estimates (almost) unbiasedly
the loss LP ( ŝm ), or overestimates the variance term (see Section 2.1). In the
latter case, CV procedures either belong to the second or the third category,
depending on the overestimation level.

This fact has two major implications. First, CV itself does not take into
account prior information for selecting a model. To do so, one can either add
to the CV estimate of the risk a penalty term (such as ‖ŝm‖p), or use prior

information to pre-select a subset of models M̃(Dn) ⊂ Mn before letting CV
select a model among (Sm )

m∈ fM(Dn)
.

Second, in statistical learning, CV and resampling-based procedures are the
most widely used model selection procedures. Structural risk minimization is
often too pessimistic, and other alternatives rely on unrealistic assumptions.
But if CV and resampling-based procedures are the most likely to yield good
prediction performances, their theoretical grounds are not that firm, and too
few CV users are careful enough when choosing a CV procedure to perform
model selection. Among the aims of this survey is to point out both positive
and negative results about the model selection performance of CV.

4 Cross-validation procedures

The purpose of this section is to describe the rationale behind CV and to define
the different CV procedures. Since all CV procedures are of the form (5),
defining a CV procedure amounts to define the corresponding CV estimator of
the risk of an algorithm A, which will be crit(·) in (5).
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4.1 Cross-validation philosophy

As noticed in the early 30s by Larson (1931), training an algorithm and evaluat-
ing its statistical performance on the same data yields an overoptimistic result.
CV was raised to fix this issue (Mosteller and Tukey, 1968; Stone, 1974; Geisser,
1975), starting from the remark that testing the output of the algorithm on new
data would yield a good estimate of its performance (Breiman, 1998).

In most real applications, only a limited amount of data is available, which
led to the idea of splitting the data: Part of the data (the training sample) is
used for training the algorithm, and the remaining data (the validation sample)
is used for evaluating its performance. The validation sample can play the role
of new data as soon as data are i.i.d..

Data splitting yields the validation estimate of the risk, and averaging over
several splits yields a cross-validation estimate of the risk. As will be shown in
Sections 4.2 and 4.3, various splitting strategies lead to various CV estimates of
the risk.

The major interest of CV lies in the universality of the data splitting heuris-
tics, which only assumes that data are identically distributed and the train-
ing and validation samples are independent, two assumptions which can even
be relaxed (see Section 8.3). Therefore, CV can be applied to (almost) any
algorithm in (almost) any framework, for instance regression (Stone, 1974;
Geisser, 1975), density estimation (Rudemo, 1982; Stone, 1984) and classifi-
cation (Devroye and Wagner, 1979; Bartlett et al., 2002), among many others.
On the contrary, most other model selection procedures (see Section 3) are spe-
cific to a framework: For instance, Cp (Mallows, 1973) is specific to least-squares
regression.

4.2 From validation to cross-validation

In this section, the hold-out (or validation) estimator of the risk is defined,
leading to a general definition of CV.

4.2.1 Hold-out

The hold-out (Devroye and Wagner, 1979) or (simple) validation relies on a sin-
gle split of data. Formally, let I(t) be a non-empty proper subset of {1, . . . , n},
that is, such that both I(t) and its complement I(v) =

(
I(t)

)c
= {1, . . . , n} \I(t)

are non-empty. The hold-out estimator of the risk of A(Dn) with training set
I(t) is defined by

L̂H−O
(
A; Dn; I(t)

)
:=

1

nv

∑

i∈D
(v)
n

γ
(
A(D(t)

n ); (Xi, Yi)
)

, (8)

where D
(t)
n := (ξi)i∈I(t) is the training sample, of size nt = Card(I(t)), and

D
(v)
n := (ξi)i∈I(v) is the validation sample, of size nv = n− nt; I(v) is called the

validation set. The question of choosing nt, and I(t) given its cardinality nt, is
discussed in the rest of this survey.
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4.2.2 General definition of cross-validation

A general description of the CV strategy has been given by Geisser (1975): In
brief, CV consists in averaging several hold-out estimators of the risk corre-
sponding to different splits of the data. Formally, let B ≥ 1 be an integer and

I
(t)
1 , . . . , I

(t)
B be a sequence of non-empty proper subsets of {1, . . . , n}. The CV

estimator of the risk of A(Dn) with training sets
(

I
(t)
j

)
1≤j≤B

is defined by

L̂CV

(
A; Dn;

(
I
(t)
j

)
1≤j≤B

)
:=

1

B

B∑

j=1

L̂H−O
(
A; Dn; I

(t)
j

)
. (9)

All existing CV estimators of the risk are of the form (9), each one being uniquely

determined by the way the sequence
(

I
(t)
j

)
1≤j≤B

is chosen, that is, the choice

of the splitting scheme.
Note that when CV is used in model selection for identification, an alterna-

tive definition of CV was proposed by Yang (2006, 2007) and called CV with
voting (CV-v). When two algorithms A1 and A2 are compared, A1 is selected

by CV-v if and only if L̂H−O(A1; Dn; I
(t)
j ) < L̂H−O(A2; Dn; I

(t)
j ) for a majority

of the splits j = 1, . . . , B. By contrast, CV procedures of the form (9) can
be called “CV with averaging” (CV-a), since the estimates of the risk of the
algorithms are averaged before their comparison.

4.3 Classical examples

Most classical CV estimators split the data with a fixed size nt of the training

set, that is, Card(I
(t)
j ) ≈ nt for every j. The question of choosing nt is discussed

extensively in the rest of this survey. In this subsection, several CV estimators
are defined. Two main categories of splitting schemes can be distinguished,
given nt: exhaustive data splitting, that is considering all training sets I(t) of
size nt, and partial data splitting.

4.3.1 Exhaustive data splitting

Leave-one-out (LOO, Stone, 1974; Allen, 1974; Geisser, 1975) is the most
classical exhaustive CV procedure, corresponding to the choice nt = n−1 : Each
data point is successively “left out” from the sample and used for validation.

Formally, LOO is defined by (9) with B = n and I
(t)
j = {j }c

for j = 1, . . . , n :

L̂LOO (A; Dn ) =
1

n

n∑

j=1

γ
(
A

(
D(−j)

n

)
; ξj

)
(10)

where D
(−j)
n = (ξi )i6=j . The name LOO can be traced back to papers by

Picard and Cook (1984) and by Breiman and Spector (1992), but LOO has sev-
eral other names in the literature, such as delete-one CV (see Li, 1987), ordinary
CV (Stone, 1974; Burman, 1989), or even only CV (Efron, 1983; Li, 1987).
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Leave-p-out (LPO, Shao, 1993) with p ∈ {1, . . . , n} is the exhaustive CV
with nt = n − p : every possible set of p data points are successively “left out”
from the sample and used for validation. Therefore, LPO is defined by (9) with

B =
(
n
p

)
and (I

(t)
j )1≤j≤B are all the subsets of {1, . . . , n} of size p. LPO is also

called delete-p CV or delete-p multifold CV (Zhang, 1993). Note that LPO with
p = 1 is LOO.

4.3.2 Partial data splitting

Considering
(
n
p

)
training sets can be computationally intractable, even for small

p, so that partial data splitting methods have been proposed.

V-fold CV (VFCV) with V ∈ {1, . . . , n} was introduced by Geisser (1975) as
an alternative to the computationally expensive LOO (see also Breiman et al.,
1984, for instance). VFCV relies on a preliminary partitioning of the data into V
subsamples of approximately equal cardinality n/V ; each of these subsamples
successively plays the role of validation sample. Formally, let A1, . . . , AV be
some partition of {1, . . . , n} with Card (Aj ) ≈ n/V . Then, the VFCV estimator

of the risk of A is defined by (9) with B = V and I
(t)
j = Ac

j for j = 1, . . . , B,
that is,

L̂VF
(

ŝ; Dn; (Aj )1≤j≤V

)
=

1

V

V∑

j=1


 1

Card(Aj)

∑

i∈Aj

γ
(

ŝ
(

D(−Aj)
n

)
; ξi

)

 (11)

where D
(−Aj)
n = (ξi )i∈Ac

j
. By construction, the algorithmic complexity of

VFCV is only V times that of training A with n − n/V data points, which
is much less than LOO or LPO if V ≪ n. Note that VFCV with V = n is LOO.

Balanced Incomplete CV (BICV, Shao, 1993) can be seen as an alternative
to VFCV well-suited for small training sample sizes nt. Indeed, BICV is defined
by (9) with training sets (Ac )A∈T , where T is a balanced incomplete block
designs (BIBD, John, 1971), that is, a collection of B > 0 subsets of {1, . . . , n}
of size nv = n − nt such that:

1. Card {A ∈ T s.t. k ∈ A} does not depend on k ∈ {1, . . . , n}.

2. Card {A ∈ T s.t. k, ℓ ∈ A} does not depend on k 6= ℓ ∈ {1, . . . , n}.
The idea of BICV is to give to each data point (and each pair of data points)

the same role in the training and validation tasks. Note that VFCV relies on a
similar idea, since the set of training sample indices used by VFCV satisfy the
first property and almost the second one: Pairs (k, ℓ) belonging to the same Aj

appear in one validation set more than other pairs.

Repeated learning-testing (RLT) was introduced by Breiman et al. (1984)
and further studied by Burman (1989) and by Zhang (1993) for instance. The

RLT estimator of the risk of A is defined by (9) with any B > 0 and (I
(t)
j )1≤j≤B

are B different subsets of {1, . . . , n}, chosen randomly and independently from
the data. RLT can be seen as an approximation to LPO with p = n − nt, with
which it coincides when B =

(
n
p

)
.
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Monte-Carlo CV (MCCV, Picard and Cook, 1984) is very close to RLT: B
independent subsets of {1, . . . , n} are randomly drawn, with uniform distribu-
tion among subsets of size nt. The only difference with RLT is that MCCV
allows the same split to be chosen several times.

4.3.3 Other cross-validation-like risk estimators

Several procedures have been introduced which are close to, or based on CV.
Most of them aim at fixing an observed drawback of CV.

Bias-corrected versions of VFCV and RLT risk estimators have been pro-
posed by Burman (1989, 1990), and a closely related penalization procedure
called V -fold penalization has been defined by Arlot (2008c), see Section 5.1.2
for details.

Generalized CV (GCV, Craven and Wahba, 1979) was introduced as a
rotation-invariant version of LOO in least-squares regression, for estimating the
risk of a linear estimator ŝ = MY where Y = (Yi)1≤i≤n ∈ R

n and M is an
n × n matrix independent from Y:

critGCV(M,Y) :=
n−1 ‖Y − MY‖2

(1 − n−1 tr(M) )
2 where ∀t ∈ R

n, ‖t‖2
=

n∑

i=1

t2i .

GCV is actually closer to CL (Mallows, 1973) than to CV, since GCV can be
seen as an approximation to CL with a particular estimator of the variance
(Efron, 1986). The efficiency of GCV has been proved in various frameworks,
in particular by Li (1985, 1987) and by Cao and Golubev (2006).

Analytic Approximation When CV is used for selecting among linear mod-
els, Shao (1993) proposed an analytic approximation to LPO with p ∼ n, which
is called APCV.

LOO bootstrap and .632 bootstrap The bootstrap is often used for stabi-
lizing an estimator or an algorithm, replacing A(Dn) by the average of A(D⋆

n)
over several bootstrap resamples D⋆

n. This idea was applied by Efron (1983)
to the LOO estimator of the risk, leading to the LOO bootstrap. Noting that
the LOO bootstrap was biased, Efron (1983) gave a heuristic argument leading
to the .632 bootstrap estimator of the risk, later modified into the .632+ boot-
strap by Efron and Tibshirani (1997). The main drawback of these procedures
is the weakness of their theoretical justifications. Only empirical studies have
supported the good behaviour of .632+ bootstrap (Efron and Tibshirani, 1997;
Molinaro et al., 2005).

4.4 Historical remarks

Simple validation or hold-out was the first CV-like procedure. It was introduced
in the psychology area (Larson, 1931) from the need for a reliable alternative
to the resubstitution error, as illustrated by Anderson et al. (1972). The hold-
out was used by Herzberg (1969) for assessing the quality of predictors. The
problem of choosing the training set was first considered by Stone (1974), where
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“controllable” and “uncontrollable” data splits were distinguished; an instance
of uncontrollable division can be found in the book by Simon (1971).

A primitive LOO procedure was used by Hills (1966) and by
Lachenbruch and Mickey (1968) for evaluating the error rate of a predic-
tion rule, and a primitive formulation of LOO can be found in a paper by
Mosteller and Tukey (1968). Nevertheless, LOO was actually introduced inde-
pendently by Stone (1974), by Allen (1974) and by Geisser (1975). The rela-
tionship between LOO and the jackknife (Quenouille, 1949), which both rely on
the idea of removing one observation from the sample, has been discussed by
Stone (1974) for instance.

The hold-out and CV were originally used only for estimating the risk of an
algorithm. The idea of using CV for model selection arose in the discussion of
a paper by Efron and Morris (1973) and in a paper by Geisser (1974). The first
author to study LOO as a model selection procedure was Stone (1974), who
proposed to use LOO again for estimating the risk of the selected model.

5 Statistical properties of cross-validation esti-

mators of the risk

Understanding the behaviour of CV for model selection, which is the purpose
of this survey, requires first to analyze the performances of CV as an estimator
of the risk of a single algorithm. Two main properties of CV estimators of the
risk are of particular interest: their bias, and their variance.

5.1 Bias

Dealing with the bias incurred by CV estimates can be made by two strategies:
evaluating the amount of bias in order to choose the least biased CV procedure,
or correcting for this bias.

5.1.1 Theoretical assessment of the bias

The independence of the training and the validation samples imply that for
every algorithm A and any I(t) ⊂ {1, . . . , n} with cardinality nt,

E

[
L̂H−O

(
A; Dn; I(t)

)]
= E

[
γ

(
A

(
D(t)

n

)
; ξ

)]
= E [LP (A (Dnt

) ) ] .

Therefore, assuming that Card(I
(t)
j ) = nt for j = 1, . . . , B, the expectation of

the CV estimator of the risk only depends on nt :

E

[
L̂CV

(
A; Dn;

(
I
(t)
j

)
1≤j≤B

)]
= E [LP (A (Dnt

) ) ] . (12)

In particular (12) shows that the bias of the CV estimator of the risk of A is
the difference between the risks of A, computed respectively with nt and n data
points. Since nt < n, the bias of CV is usually nonnegative, which can be proved
rigorously when the risk of A is a decreasing function of n, that is, when A is a
smart rule; note however that a classical algorithm such as 1-nearest-neighbour
in classification is not smart (Devroye et al., 1996, Section 6.8). Similarly, the
bias of CV tends to decrease with nt, which is rigorously true if A is smart.
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More precisely, (12) has led to several results on the bias of CV, which can be
split into three main categories: asymptotic results (A is fixed and the sample
size n tends to infinity), non-asymptotic results (where A is allowed to make use
of a number of parameters growing with n, say n1/2, as often in model selection),
and empirical results. They are listed below by statistical framework.

Regression The general behaviour of the bias of CV (positive, decreasing
with nt) is confirmed by several papers and for several CV estimators. For
LPO, non-asymptotic expressions of its bias were proved by Celisse (2008b) for
projection estimators, and by Arlot and Celisse (2009) for regressograms and
kernels estimators when the design is fixed. For VFCV and RLT, an asymptotic
expansion of their bias was yielded by Burman (1989) for least-squares esti-
mators in linear regression, and extended to spline smoothing (Burman, 1990).
Note finally that Efron (1986) proved non-asymptotic analytic expressions of
the expectations of the LOO and GCV estimators of the risk in regression with
binary data (see also Efron, 1983, for some explicit calculations).

Density estimation shows a similar picture. Non-asymptotic expressions
for the bias of LPO estimators for kernel and projection estimators with the
quadratic risk were proved by Celisse and Robin (2008) and by Celisse (2008a).
Asymptotic expansions of the bias of the LOO estimator for histograms and ker-
nel estimators were previously proved by Rudemo (1982); see Bowman (1984) for
simulations. Hall (1987) derived similar results with the log-likelihood contrast
for kernel estimators, and related the performance of LOO to the interaction
between the kernel and the tails of the target density s.

Classification For the simple problem of discriminating between two popula-
tions with shifted distributions, Davison and Hall (1992) compared the asymp-
totical bias of LOO and bootstrap, showing the superiority of the LOO when
the shift size is n−1/2 : As n tends to infinity, the bias of LOO stays of or-
der n−1, whereas that of bootstrap worsens to the order n−1/2. On realistic
synthetic and real biological data, Molinaro et al. (2005) compared the bias of
LOO, VFCV and .632+ bootstrap: The bias decreases with nt, and is generally
minimal for LOO. Nevertheless, the 10-fold CV bias is nearly minimal uniformly
over their experiments. In the same experiments, .632+ bootstrap exhibits the
smallest bias for moderate sample sizes and small signal-to-noise ratios, but a
much larger bias otherwise.

CV-calibrated algorithms When a family of algorithm (Aλ )λ∈Λ is given,

and λ̂ is chosen by minimizing L̂CV(Aλ; Dn) over λ, L̂CV(Abλ; Dn) is biased
for estimating the risk of Abλ(Dn), as reported from simulation experiments
by Stone (1974) for the LOO, and by Jonathan et al. (2000) for VFCV in the
variable selection setting. This bias is of different nature compared to the pre-
vious frameworks. Indeed, L̂CV(Abλ, Dn) is biased simply because λ̂ was chosen

using the same data as L̂CV(Aλ, Dn). This phenomenon is similar to the op-
timism of LPn

( ŝ (Dn) ) as an estimator of the loss of ŝ (Dn). The correct
way of estimating the risk of Abλ(Dn) with CV is to consider the full algorithm
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A′ : Dn 7→ Abλ(Dn)(Dn), and then to compute L̂CV (A′; Dn ). The resulting

procedure is called “double cross” by Stone (1974).

5.1.2 Correction of the bias

An alternative to choosing the CV estimator with the smallest bias is to correct
for the bias of the CV estimator of the risk. Burman (1989, 1990) proposed a
corrected VFCV estimator, defined by

L̂corrVF(A; Dn) = L̂VF ( ŝ; Dn ) + LPn
(A(Dn) ) − 1

V

V∑

j=1

LPn

(
A(D(−Aj)

n )
)

,

and a corrected RLT estimator was defined similarly. Both estimators have
been proved to be asymptotically unbiased for least-squares estimators in linear
regression.

When the Ajs have exactly the same size n/V , the corrected VFCV criterion
is equal to the sum of the empirical risk and the V -fold penalty (Arlot, 2008c),
defined by

penVF(A; Dn) =
V − 1

V

V∑

j=1

[
LPn

(
A(D(−Aj)

n )
)
− L

P
(−Aj )
n

(
A(D(−Aj)

n )
)]

.

The V -fold penalized criterion was proved to be (almost) unbiased in the non-
asymptotic framework for regressogram estimators.

5.2 Variance

CV estimators of the risk using training sets of the same size nt have
the same bias, but they still behave quite differently; their variance

var(L̂CV(A; Dn; (I
(t)
j )1≤j≤B)) captures most of the information to explain these

differences.

5.2.1 Variability factors

Assume that Card(I
(t)
j ) = nt for every j. The variance of CV results from the

combination of several factors, in particular (nt, nv) and B.

Influence of (nt, nv) Let us consider the hold-out estimator of the risk. Fol-
lowing in particular Nadeau and Bengio (2003),

var
[
L̂H−O

(
A; Dn; I(t)

)]

= E

[
var

(
L

P
(v)
n

(
A(D(t)

n )
) ∣∣∣ D(t)

n

)]
+ var [LP (A(Dnt

) ) ]

=
1

nv
E

[
var

(
γ ( ŝ , ξ ) | ŝ = A(D(t)

n )
)]

+ var [LP (A(Dnt
) ) ] . (13)

The first term, proportional to 1/nv, shows that more data for validation

decreases the variance of L̂H−O, because it yields a better estimator of

LP

(
A(D

(t)
n )

)
. The second term shows that the variance of L̂H−O also depends

on the distribution of LP

(
A(D

(t)
n )

)
around its expectation; in particular, it

strongly depends on the stability of A.

19



Stability and variance When A is unstable, L̂LOO (A ) has often been
pointed out as a variable estimator (Section 7.10, Hastie et al., 2001; Breiman,
1996). Conversely, this trend disappears when A is stable, as noticed by
Molinaro et al. (2005) from a simulation experiment.

The relation between the stability of A and the variance of L̂CV (A ) was
pointed out by Devroye and Wagner (1979) in classification, through upper

bounds on the variance of L̂LOO (A ). Bousquet and Elisseff (2002) extended
these results to the regression setting, and proved upper bounds on the maxi-
mal upward deviation of L̂LOO (A ).

Note finally that several approaches based on the bootstrap have been pro-
posed for reducing the variance of L̂LOO (A ), such as LOO bootstrap, .632
bootstrap and .632+ bootstrap (Efron, 1983); see also Section 4.3.3.

Partial splitting and variance When (nt, nv) is fixed, the variability of
CV tends to be larger for partial data splitting methods than for LPO. Indeed,

having to choose B <
(

n
nt

)
subsets (I

(t)
j )1≤j≤B of {1, . . . , n}, usually randomly,

induces an additional variability compared to L̂LPO with p = n − nt. In the

case of MCCV, this variability decreases like B−1 since the I
(t)
j are chosen

independently. The dependence on B is slightly different for other CV estimators

such as RLT or VFCV, because the I
(t)
j are not independent. In particular, it

is maximal for the hold-out, and minimal (null) for LOO (if nt = n − 1) and
LPO (with p = n − nt).

Note that the dependence on V for VFCV is more complex to evaluate, since
B, nt, and nv simultaneously vary with V . Nevertheless, a non-asymptotic the-
oretical quantification of this additional variability of VFCV has been obtained
by Celisse and Robin (2008) in the density estimation framework (see also em-
pirical considerations by Jonathan et al., 2000).

5.2.2 Theoretical assessment of the variance

Understanding precisely how var(L̂CV(A)) depends on the splitting scheme is
complex in general, since nt and nv have a fixed sum n, and the number of splits
B is generally linked with nt (for instance, for LPO and VFCV). Furthermore,
the variance of CV behaves quite differently in different frameworks, depending
in particular on the stability of A. The consequence is that contradictory results
have been obtained in different frameworks, in particular on the value of V
for which the VFCV estimator of the risk has a minimal variance (Burman,
1989; Hastie et al., 2001, Section 7.10). Despite the difficulty of the problem,
the variance of several CV estimators of the risk has been assessed in several
frameworks, as detailed below.

Regression In the linear regression setting, Burman (1989) yielded asymp-
totic expansions of the variance of the VFCV and RLT estimators of the risk
with homoscedastic data. The variance of RLT decreases with B, and in the
case of VFCV, in a particular setting,

var
(
L̂VF(A)

)
=

2σ2

n
+

4σ4

n2

[
4 +

4

V − 1
+

2

(V − 1)2
+

1

(V − 1)3

]
+ o

(
n−2

)
.
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The asymptotical variance of the VFCV estimator of the risk decreases with V ,
implying that LOO asymptotically has the minimal variance.

Non-asymptotic closed-form formulas of the variance of the LPO estimator
of the risk have been proved by Celisse (2008b) in regression, for projection and
kernel estimators for instance. On the variance of RLT in the regression setting,
see the asymptotic results of Girard (1998) for Nadaraya-Watson kernel estima-
tors, as well as the non-asymptotic computations and simulation experiments
by Nadeau and Bengio (2003) with several learning algorithms.

Density estimation Non-asymptotic closed-form formulas of the variance of
the LPO estimator of the risk have been proved by Celisse and Robin (2008)
and by Celisse (2008a) for projection and kernel estimators. In particular, the

dependence of the variance of L̂LPO on p has been quantified explicitly for
histogram and kernel estimators by Celisse and Robin (2008).

Classification For the simple problem of discriminating between two popu-
lations with shifted distributions, Davison and Hall (1992) showed that the gap
between asymptotic variances of LOO and bootstrap becomes larger when data
are noisier. Nadeau and Bengio (2003) made non-asymptotic computations and
simulation experiments with several learning algorithms. Hastie et al. (2001)
empirically showed that VFCV has a minimal variance for some 2 < V < n,
whereas LOO usually has a large variance; this fact certainly depends on the
stability of the algorithm considered, as showed by simulation experiments by
Molinaro et al. (2005).

5.2.3 Estimation of the variance

There is no universal—valid under all distributions—unbiased estimator
of the variance of RLT (Nadeau and Bengio, 2003) and VFCV estimators
(Bengio and Grandvalet, 2004). In particular, Bengio and Grandvalet (2004)
recommend the use of variance estimators taking into account the correlation
structure between test errors; otherwise, the variance of CV can be strongly
underestimated.

Despite these negative results, (biased) estimators of the variance of L̂CV

have been proposed by Nadeau and Bengio (2003), by Bengio and Grandvalet
(2004) and by Markatou et al. (2005), and tested in simulation experiments in
regression and classification. Furthermore, in the framework of density estima-
tion with histograms, Celisse and Robin (2008) proposed an estimator of the
variance of the LPO risk estimator. Its accuracy is assessed by a concentration
inequality. These results have recently been extended to projection estimators
by Celisse (2008a).

6 Cross-validation for efficient model selection

This section tackles the properties of CV procedures for model selection when
the goal is estimation (see Section 2.2).
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6.1 Relationship between risk estimation and model se-

lection

As shown in Section 3.1, minimizing an unbiased estimator of the risk leads to an
efficient model selection procedure. One could conclude here that the best CV
procedure for estimation is the one with the smallest bias and variance (at least
asymptotically), for instance, LOO in the least-squares regression framework
(Burman, 1989).

Nevertheless, the best CV estimator of the risk is not necessarily the best
model selection procedure. For instance, Breiman and Spector (1992) observed
that uniformly over the models, the best risk estimator is LOO, whereas 10-
fold CV is more accurate for model selection. Three main reasons for such a
difference can be invoked. First, the asymptotic framework (A fixed, n → ∞)
may not apply to models close to the oracle, which typically has a dimension
growing with n when s does not belong to any model. Second, as explained in
Section 3.2, estimating the risk of each model with some bias can be beneficial
and compensate the effect of a large variance, in particular when the signal-to-
noise ratio is small. Third, for model selection, what matters is not that every
estimate of the risk has small bias and variance, but more that

sign (crit(m1) − crit(m2) ) = sign (LP ( ŝm1 ) − LP ( ŝm2 ) )

with the largest probability for models m1, m2 near the oracle.
Therefore, specific studies are required to evaluate the performances of the

various CV procedures in terms of model selection efficiency. In most frame-
works, the model selection performance directly follows from the properties of
CV as an estimator of the risk, but not always.

6.2 The global picture

Let us start with the classification of model selection procedures made by Shao
(1997) in the linear regression framework, since it gives a good idea of the
performance of CV procedures for model selection in general. Typically, the
efficiency of CV only depends on the asymptotics of nt/n :

• When nt ∼ n, CV is asymptotically equivalent to Mallows’ Cp, hence
asymptotically optimal.

• When nt ∼ λn with λ ∈ (0, 1), CV is asymptotically equivalent to GICκ

with κ = 1+λ−1, which is defined as AIC with a penalty multiplied by κ/2.
Hence, such CV procedures are overpenalizing by a factor (1+λ)/(2λ) > 1.

The above results have been proved by Shao (1997) for LPO (see also Li, 1987,
for the LOO); they also hold for RLT when B ≫ n2 since RLT is then equivalent
to LPO (Zhang, 1993).

In a general statistical framework, the model selection performance
of MCCV, VFCV, LOO, LOO Bootstrap, and .632 bootstrap for se-
lection among minimum contrast estimators was studied in a series of
papers (van der Laan and Dudoit, 2003; van der Laan et al., 2004, 2006;
van der Vaart et al., 2006); these results apply in particular to least-squares
regression and density estimation. It turns out that under mild conditions, an
oracle-type inequality is proved, showing that up to a multiplying factor Cn → 1,
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the risk of CV is smaller than the minimum of the risks of the models with a
sample size nt. In particular, in most frameworks, this implies the asymptotic
optimality of CV as soon as nt ∼ n. When nt ∼ λn with λ ∈ (0, 1), this
naturally generalizes Shao’s results.

6.3 Results in various frameworks

This section gathers results about model selection performances of CV when
the goal is estimation, in various frameworks. Note that model selection is con-
sidered here with a general meaning, including in particular bandwidth choice
for kernel estimators.

Regression First, the results of Section 6.2 suggest that CV is suboptimal
when nt is not asymptotically equivalent to n. This fact has been proved rigor-
ously for VFCV when V = O(1) with regressograms (Arlot, 2008c): with large
probability, the risk of the model selected by VFCV is larger than 1 + κ(V )
times the risk of the oracle, with κ(V ) > 0 for every fixed V . Note however
that the best V for VFCV is not the largest one in every regression frame-
work, as shown empirically in linear regression (Breiman and Spector, 1992;
Herzberg and Tsukanov, 1986); Breiman (1996) proposed to explain this phe-
nomenon by relating the stability of the candidate algorithms and the model
selection performance of LOO in various regression frameworks.

Second, the “universality” of CV has been confirmed by showing that it natu-
rally adapts to heteroscedasticity of data when selecting among regressograms.
Despite its suboptimality, VFCV with V = O(1) satisfies a non-asymptotic
oracle inequality with constant C > 1 (Arlot, 2008c). Furthermore, V -fold pe-
nalization (which often coincides with corrected VFCV, see Section 5.1.2) sat-
isfies a non-asymptotic oracle inequality with Cn → 1 as n → +∞, both when
V = O(1) (Arlot, 2008c) and when V = n (Arlot, 2008a). Note that n-fold pe-
nalization is very close to LOO, suggesting that it is also asymptotically optimal
with heteroscedastic data. Simulation experiments in the context of change-
point detection confirmed that CV adapts well to heteroscedasticity, contrary
to usual model selection procedures in the same framework (Arlot and Celisse,
2009).

The performances of CV have also been assessed for other kinds of estimators
in regression. For choosing the number of knots in spline smoothing, Burman
(1990) proved that corrected versions of VFCV and RLT are asymptotically
optimal provided n/(Bnv) = O(1). Furthermore, in kernel regression, several
CV methods have been compared to GCV in kernel regression by Härdle et al.
(1988) and by Girard (1998); the conclusion is that GCV and related criteria
are computationally more efficient than MCCV or RLT, for a similar statistical
performance.

Finally, note that asymptotic results about CV in regression have been
proved by Györfi et al. (2002), and an oracle inequality with constant C > 1 has
been proved by Wegkamp (2003) for the hold-out, with least-squares estimators.

Density estimation CV performs similarly than in regression for selecting
among least-squares estimators (van der Laan et al., 2004): It yields a risk
smaller than the minimum of the risk with a sample size nt. In particular,
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non-asymptotic oracle inequalities with constant C > 1 have been proved by
Celisse (2008b) for the LPO when p/n ∈ [a, b], for some 0 < a < b < 1.

The performance of CV for selecting the bandwidth of kernel density esti-
mators has been studied in several papers. With the least-squares contrast, the
efficiency of LOO was proved by Hall (1983) and generalized to the multivari-
ate framework by Stone (1984); an oracle inequality asymptotically leading to
efficiency was recently proved by Dalelane (2005). With the Kullback-Leibler
divergence, CV can suffer from troubles in performing model selection (see also
Schuster and Gregory, 1981; Chow et al., 1987). The influence of the tails of
the target s was studied by Hall (1987), who gave conditions under which CV
is efficient and the chosen bandwidth is optimal at first-order.

Classification In the framework of binary classification by intervals (that is,
with X = [0, 1] and piecewise constant classifiers), Kearns et al. (1997) proved
an oracle inequality for the hold-out. Furthermore, empirical experiments show
that CV yields (almost) always the best performance, compared to deterministic
penalties (Kearns et al., 1997). On the contrary, simulation experiments by
Bartlett et al. (2002) in the same setting showed that random penalties such as
Rademacher complexity and maximal discrepancy usually perform much better
than hold-out, which is shown to be more variable.

Nevertheless, the hold-out still enjoys quite good theoretical properties: It
was proved to adapt to the margin condition by Blanchard and Massart (2006),
a property nearly unachievable with usual model selection procedures (see also
Massart, 2007, Section 8.5). This suggests that CV procedures are naturally
adaptive to several unknown properties of data in the statistical learning frame-
work.

The performance of the LOO in binary classification was related to the
stability of the candidate algorithms by Kearns and Ron (1999); they proved
oracle-type inequalities called “sanity-check bounds”, describing the worst-case
performance of LOO (see also Bousquet and Elisseff, 2002).

An experimental comparison of several CV methods and bootstrap-based
CV (in particular .632+ bootstrap) in classification can also be found in papers
by Efron (1986) and Efron and Tibshirani (1997).

7 Cross-validation for identification

Let us now focus on model selection when the goal is to identify the “true model”
Sm0 , as described in Section 2.3. In this framework, asymptotic optimality is
replaced by (model) consistency, that is,

P (m̂(Dn) = m0 ) −−−−→
n→∞

1 .

Classical model selection procedures built for identification, such as BIC, are
described in Section 3.3.

7.1 General conditions towards model consistency

At first sight, it may seem strange to use CV for identification: LOO, which
is the pioneering CV procedure, is actually closely related to the unbiased risk
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estimation principle, which is only efficient when the goal is estimation. Fur-
thermore, estimation and identification are somehow contradictory goals, as
explained in Section 2.4.

This intuition about inconsistency of some CV procedures is confirmed by
several theoretical results. Shao (1993) proved that several CV methods are
inconsistent for variable selection in linear regression: LOO, LPO, and BICV
when lim infn→∞(nt/n) > 0. Even if these CV methods asymptotically select
all the true variables with probability 1, the probability that they select too
much variables does not tend to zero. More generally, Shao (1997) proved that
CV procedures behave asymptotically like GICλn

with λn = 1 + n/nt, which
leads to inconsistency as soon as n/nt = O(1).

In the context of ordered variable selection in linear regression, Zhang (1993)
computed the asymptotic value of the probability of selecting the true model
for several CV procedures. He also numerically compared the values of this
probability for the same CV procedures in a specific example. For LPO with
p/n → λ ∈ (0, 1) as n tends to +∞, P (m̂ = m0 ) increases with λ. The result is
slightly different for VFCV: P (m̂ = m0 ) increases with V (hence, it is maximal
for the LOO, which is the worst case of LPO). The variability induced by the
number V of splits seems to be more important here than the bias of VFCV.
Nevertheless, P (m̂ = m0 ) is almost constant between V = 10 and V = n, so
that taking V > 10 is not advised for computational reasons.

These results suggest that if the training sample size nt is negligible in front
of n, then model consistency could be obtained. This has been confirmed theo-
retically by Shao (1993, 1997) for the variable selection problem in linear regres-
sion: CV is consistent when n ≫ nt → ∞, in particular RLT, BICV (defined in
Section 4.3.2) and LPO with p = pn ∼ n and n − pn → ∞.

Therefore, when the goal is to identify the true model, a larger proportion of
the data should be put in the validation set in order to improve the performance.
This phenomenon is somewhat related to the cross-validation paradox (Yang,
2006).

7.2 Refined analysis for the algorithm selection problem

The behaviour of CV for identification is better understood by considering a
more general framework, where the goal is to select among statistical algorithms
the one with the fastest convergence rate. Yang (2006, 2007) considered this
problem for two candidate algorithms (or more generally any finite number of
algorithms). Let us mention here that Stone (1977) considered a few specific
examples of this problem, and showed that LOO can be inconsistent for choosing
the best among two “good” estimators.

The conclusion of Yang’s papers is that the sufficient condition on nt for
the consistency in selection of CV strongly depends on the convergence rates
(rn,i )i=1,2 of the candidate algorithms. Let us assume that rn,1 and rn,2 differ
at least by a multiplicative constant C > 1. Then, in the regression framework,
if the risk of ŝi is measured by E ‖ŝi − s‖2, Yang (2007) proved that the hold-
out, VFCV, RLT and LPO with voting (CV-v, see Section 4.2.2) are consistent
in selection if

nv, nt → ∞ and
√

nv max
i

rnt,i → ∞ , (14)
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under some conditions on ‖ŝi − s‖p for p = 2, 4,∞. In the classification frame-
work, if the risk of ŝi is measured by P ( ŝi 6= s), Yang (2006) proved the same
consistency result for CV-v under the condition

nv, nt → ∞ and
nv maxi r2

nt,i

snt

→ ∞ , (15)

where sn is the convergence rate of P ( ŝ1(Dn) 6= ŝ2(Dn) ).
Intuitively, consistency holds as soon as the uncertainty of each estimate of

the risk (roughly proportional to n
−1/2
v ) is negligible in front of the risk gap

|rnt,1 − rnt,2| (which is of the same order as maxi rnt,i). This condition holds
either when at least one of the algorithms converges at a non-parametric rate,
or when nt ≪ n, which artificially widens the risk gap.

Empirical results in the same direction were proved by Dietterich (1998)
and by Alpaydin (1999), leading to the advice that V = 2 is the best choice
when VFCV is used for comparing two learning procedures. See also the re-
sults by Nadeau and Bengio (2003) about CV considered as a testing procedure
comparing two candidate algorithms.

The sufficient conditions (14) and (15) can be simplified depending on
maxi rn,i, so that the ability of CV to distinguish between two algorithms de-
pends on their convergence rates. On the one hand, if maxi rn,i ∝ n−1/2, then
(14) or (15) only hold when nv ≫ nt → ∞ (under some conditions on sn in
classification). Therefore, the cross-validation paradox holds for comparing al-
gorithms converging at the parametric rate (model selection when a true model
exists being only a particular case). Note that possibly stronger conditions can
be required in classification where algorithms can converge at fast rates, between
n−1 and n−1/2.

On the other hand, (14) and (15) are milder conditions when maxi rn,i ≫
n−1/2: They are implied by nt/nv = O(1), and they even allow nt ∼ n (under
some conditions on sn in classification). Therefore, non-parametric algorithms
can be compared by more usual CV procedures (nt > n/2), even if LOO is still
excluded by conditions (14) and (15).

Note that according to a simulation experiments, CV with averaging (that
is, CV as usual) and CV with voting are equivalent at first but not at second
order, so that they can differ when n is small (Yang, 2007).

8 Specificities of some frameworks

Originally, the CV principle has been proposed for i.i.d. observations and usual
contrasts such as least-squares and log-likelihood. Therefore, CV procedures
may have to be modified in other specific frameworks, such as estimation in
presence of outliers or with dependent data.

8.1 Density estimation

In the density estimation framework, some specific modifications of CV have
been proposed.

First, Hall et al. (1992) defined the “smoothed CV”, which consists in pre-
smoothing the data before using CV, an idea related to the smoothed bootstrap.
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They proved that smoothed CV yields an excellent asymptotical model selection
performance under various smoothness conditions on the density.

Second, when the goal is to estimate the density at one point (and not
globally), Hall and Schucany (1989) proposed a local version of CV and proved
its asymptotic optimality.

8.2 Robustness to outliers

In presence of outliers in regression, Leung (2005) studied how CV must be
modified to get both asymptotic efficiency and a consistent bandwidth estimator
(see also Leung et al., 1993).

Two changes are possible to achieve robustness: Choosing a “robust” re-
gressor, or choosing a robust loss-function. In presence of outliers, classical CV
with a non-robust loss function has been shown to fail by Härdle (1984).

Leung (2005) described a CV procedure based on robust losses like L1 and
Huber’s (Huber, 1964) ones. The same strategy remains applicable to other
setups like linear models in Ronchetti et al. (1997).

8.3 Time series and dependent observations

As explained in Section 4.1, CV is built upon the heuristics that part of the
sample (the validation set) can play the role of new data with respect to the
rest of the sample (the training set). “New” means that the validation set is
independent from the training set with the same distribution.

Therefore, when data ξ1, . . . , ξn are not independent, CV must be modi-
fied, like other model selection procedures (in non-parametric regression with
dependent data, see the review by Opsomer et al., 2001).

Let us first consider the statistical framework of Section 1 with ξ1, . . . , ξn

identically distributed but not independent. Then, when for instance data are
positively correlated, Hart and Wehrly (1986) proved that CV overfits for choos-
ing the bandwidth of a kernel estimator in regression (see also Chu and Marron,
1991; Opsomer et al., 2001).

The main approach used in the literature for solving this issue is to choose
I(t) and I(v) such that mini∈I(t), j∈I(v) |i − j| > h > 0, where h controls the dis-
tance from which observations i and j are independent. For instance, the LOO
can be changed into: I(v) = {J } where J is uniformly chosen in {1, . . . , n},
and I(t) = {1, . . . , J − h − 1, J + h + 1, . . . , n}, a method called “modified CV”
by Chu and Marron (1991) in the context of bandwidth selection. Then, for
short range dependences, ξi is almost independent from ξj when |i − j| > h is
large enough, so that (ξj )j∈I(t) is almost independent from (ξj )j∈I(v) . Several
asymptotic optimality results have been proved on modified CV, for instance
by Hart and Vieu (1990) for bandwidth choice in kernel density estimation,
when data are α-mixing (hence, with a short range dependence structure) and
h = hn → ∞ “not too fast”. Note that modified CV also enjoys some asymp-
totic optimality results with long-range dependences, as proved by Hall et al.
(1995), even if an alternative block bootstrap method seems more appropriate
in such a framework.

Several alternatives to modified CV have also been proposed. The “h-block
CV” (Burman et al., 1994) is modified CV plus a corrective term, similarly to
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the bias-corrected CV by Burman (1989) (see Section 5.1). Simulation experi-
ments in several (short range) dependent frameworks show that this corrective
term matters when h/n is not small, in particular when n is small.

The “partitioned CV” has been proposed by Chu and Marron (1991) for

bandwidth selection: An integer g > 0 is chosen, a bandwidth λ̂k is chosen by
CV based upon the subsample (ξk+gj )j≥0 for each k = 1, . . . , g, and the selected

bandwidth is a combination of (λ̂k).
When a parametric model is available for the dependency structure, Hart

(1994) proposed the “time series CV”.

An important framework where data often are dependent is time-series anal-
ysis, in particular when the goal is to predict the next observation ξn+1 from
the past ξ1, . . . , ξn. When data are stationary, h-block CV and similar ap-
proaches can be used to deal with (short range) dependences. Nevertheless,
Burman and Nolan (1992) proved in some specific framework that unaltered
CV is asymptotic optimal when ξ1, . . . , ξn is a stationary Markov process.

On the contrary, using CV for non-stationary time-series is a quite difficult
problem. The only reasonable approach in general is the hold-out, that is,
I(t) = {1, . . . , m} and I(v) = {m + 1, . . . , n} for some deterministic m. Each
model is first trained with (ξj )j∈I(t) . Then, it is used for predicting successively

ξm+1 from (ξj )j≤m, ξm+2 from (ξj )j≤m+1, and so on. The model with the

smallest average error for predicting (ξj )j∈I(v) from the past is chosen.

8.4 Large number of models

As mentioned in Section 3, model selection procedures estimating unbiasedly
the risk of each model fail when, in particular, the number of models grows
exponentially with n (Birgé and Massart, 2007). Therefore, CV cannot be used
directly, except maybe with nt ≪ n, provided nt is well chosen (see Section 6
and Celisse, 2008b, Chapter 6).

For least-squares regression with homoscedastic data, Wegkamp (2003) pro-
posed to add to the hold-out estimator of the risk a penalty term depending
on the number of models. This method is proved to satisfy a non-asymptotic
oracle inequality with leading constant C > 1.

Another general approach was proposed by Arlot and Celisse (2009) in the
context of multiple change-point detection. The idea is to perform model se-
lection in two steps: First, gather the models (Sm )m∈Mn

into meta-models

(S̃D)D∈Dn
, where Dn denotes a set of indices such that Card(Dn) grows at

most polynomially with n. Inside each meta-model S̃D =
⋃

m∈Mn(D) Sm, ŝD is
chosen from data by optimizing a given criterion, for instance the empirical con-
trast LPn

( t ), but other criteria can be used. Second, CV is used for choosing
among ( ŝD )D∈Dn

. Simulation experiments show this simple trick automatically
takes into account the cardinality of Mn, even when data are heteroscedastic,
contrary to other model selection procedures built for exponential collection of
models which all assume homoscedasticity of data.
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9 Closed-form formulas and fast computation

Resampling strategies, like CV, are known to be time consuming. The naive im-
plementation of CV has a computational complexity of B times the complexity
of training each algorithm A, which is usually intractable for LPO, even with
p = 1. The computational cost of VFCV or RLT can still be quite costly when
B > 10 in many practical problems. Nevertheless, closed-form formulas for
CV estimators of the risk can be obtained in several frameworks, which greatly
decreases the computational cost of CV.

In density estimation, closed-form formulas have been originally derived by
Rudemo (1982) and by Bowman (1984) for the LOO risk estimator of his-
tograms and kernel estimators. These results have been recently extended by
Celisse and Robin (2008) to the LPO risk estimator with the quadratic loss.
Similar results are more generally available for projection estimators as settled
by Celisse (2008a). Intuitively, such formulas can be obtained provided the
number N of values taken by the B =

(
n
nv

)
hold-out estimators of the risk,

corresponding to different data splittings, is at most polynomial in the sample
size.

For least-squares estimators in linear regression, Zhang (1993) proved a
closed-form formula for the LOO estimator of the risk. Similar results have
been obtained by Wahba (1975, 1977), and by Craven and Wahba (1979) in the
spline smoothing context as well. These papers led in particular to the definition
of GCV (see Section 4.3.3) and related procedures, which are often used instead
of CV (with a naive implementation) because of their small computational cost,
as emphasized by Girard (1998).

Closed-form formulas for the LPO estimator of the risk were also obtained by
Celisse (2008b) in regression for kernel and projection estimators, in particular
for regressograms. An important property of these closed-form formulas is their
additivity: For a regressogram associated to a partition (Iλ)λ∈Λm

of X , the
LPO estimator of the risk can be written as a sum over λ ∈ Λm of terms
which only depend on observations (Xi, Yi) such that Xi ∈ Iλ. Therefore,
dynamic programming (Bellman and Dreyfus, 1962) can be used for minimizing
the LPO estimator of the risk over the set of partitions of X in D pieces. As
an illustration, Arlot and Celisse (2009) successfully applied this strategy in the
change-point detection framework. Note that the same idea can be used with
VFCV or RLT, but for a larger computational cost since no closed-form formulas
are available for these CV methods.

Finally, in frameworks where no closed-form formula can be proved, some

efficient algorithms exist for avoiding to recompute L̂H−O(A; Dn; I
(t)
j ) from

scratch for each data splitting I
(t)
j . These algorithms rely on updating formulas

such as the ones by Ripley (1996) for LOO in linear and quadratic discriminant
analysis; this approach makes LOO as expensive to compute as the empirical
risk.

Very similar formulas are also available for LOO and the k-nearest neigh-
bours estimator in classification (Daudin and Mary-Huard, 2008).
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10 Conclusion: which cross-validation method

for which problem?

This conclusion collects a few guidelines aiming at helping CV users, first in-
terpreting the results of CV, second appropriately using CV in each specific
problem.

10.1 The general picture

Drawing a general conclusion on CV methods is an impossible task because of
the variety of frameworks where CV can be used, which induces a variety of
behaviors of CV. Nevertheless, we can still point out the three main criteria to
take into account for choosing a CV method for a particular model selection
problem:

• Bias: CV roughly estimates the risk of a model with a sample size nt < n
(see Section 5.1). Usually, this implies that CV overestimates the variance
term compared to the bias term in the bias-variance decomposition (2)
with sample size n.
When the goal is estimation and the signal-to-noise ratio (SNR) is large,
the smaller bias usually is the better, which is obtained by taking nt ∼ n.
Otherwise, CV can be asymptotically suboptimal. Nevertheless, when the
goal is estimation and the SNR is small, keeping a small upward bias for
the variance term often improves the performance, which is obtained by
taking nt ∼ κn with κ ∈ (0, 1). See Section 6.
When the goal is identification, a large bias is often needed, which is
obtained by taking nt ≪ n; depending on the framework, larger values of
nt can also lead to model consistency, see Section 7.

• Variability: The variance of the CV estimator of the risk is usually a
decreasing function of the number B of splits, for a fixed training size.
When the number of splits is fixed, the variability of CV also depends
on the training sample size nt. Usually, CV is more variable when nt is
closer to n. However, when B is linked with nt (as for VFCV or LPO),
the variability of CV must be quantified precisely, which has been done in
few frameworks. The only general conclusion on this point is that the CV
method with minimal variability seems strongly framework-dependent, see
Section 5.2 for details.

• Computational complexity: Unless closed-form formulas or analytic ap-
proximations are available (see Section 9), the complexity of CV is roughly
proportional to the number of data splits: 1 for the hold-out, V for VFCV,
B for RLT or MCCV, n for LOO, and

(
n
p

)
for LPO.

The optimal trade-off between these three factors can be different for each prob-
lem, depending for instance on the computational complexity of each estimator,
on specificities of the framework considered, and on the final user’s trade-off
between statistical performance and computational cost. Therefore, no “opti-
mal CV method” can be pointed out before having taken into account the final
user’s preferences.
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Nevertheless, in density estimation, closed-form expressions of the LPO es-
timator have been derived by Celisse and Robin (2008) with histograms and
kernel estimators, and by Celisse (2008a) for projection estimators. These ex-
pressions allow to perform LPO without additional computational cost, which
reduces the aforementioned trade-off to the easier bias-variability trade-off. In
particular, Celisse and Robin (2008) proposed to choose p for LPO by minimiz-
ing a criterion defined as the sum of a squared bias and a variance terms (see
also Politis et al., 1999, Chapter 9).

10.2 How the splits should be chosen?

For hold-out, VFCV, and RLT, an important question is to choose a particular
sequence of data splits.

First, should this step be random and independent from Dn, or take into
account some features of the problem or of the data? It is often recommended
to take into account the structure of data when choosing the splits. If data
are stratified, the proportions of the different strata should (approximately)
be the same in the sample and in each training and validation sample. Be-

sides, the training samples should be chosen so that ŝm(D
(t)
n ) is well defined

for every training set; in the regressogram case, this led Arlot (2008c) and
Arlot and Celisse (2009) to choose carefully the splitting scheme. In supervised
classification, practitioners usually choose the splits so that the proportion of
each class is the same in every validation sample as in the sample. Neverthe-
less, Breiman and Spector (1992) made simulation experiments in regression for
comparing several splitting strategies. No significant improvement was reported
from taking into account the stratification of data for choosing the splits.

Another question related to the choice of (I
(t)
j )1≤j≤B is whether the I

(t)
j

should be independent (like MCCV), slighly dependent (like RLT), or strongly
dependent (like VFCV). It seems intuitive that giving similar roles to all data
points in the B “training and validation tasks” should yield more reliable results
as other methods. This intuition may explain why VFCV is much more used
than RLT or MCCV. Similarly, Shao (1993) proposed a CV method called BICV,
where every point and pair of points appear in the same number of splits, see
Section 4.3.2. Nevertheless, most recent theoretical results on the various CV
procedures are not accurate enough to distinguish which one may be the best
splitting strategy: This remains a widely open theoretical question.

Note finally that the additional variability due to the choice of a sequence of
data splits was quantified empirically by Jonathan et al. (2000) and theoretically
by Celisse and Robin (2008) for VFCV.

10.3 V-fold cross-validation

VFCV is certainly the most popular CV procedure, in particular because of
its mild computational cost. Nevertheless, the question of choosing V remains
widely open, even if indications can be given towards an appropriate choice.

A specific feature of VFCV—as well as exhaustive strategies—is that choos-
ing V uniquely determines the size of the training set nt = n(V − 1)/V and
the number of splits B = V , hence the computational cost. Contradictory
phenomena then occur.
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On the one hand, the bias of VFCV decreases with V since nt = n(1− 1/V )
observations are used in the training set. On the other hand, the variance of
VFCV decreases with V for small values of V , whereas the LOO (V = n) is
known to suffer from a high variance in several frameworks such as classification
or density estimation. Note however that the variance of VFCV is minimal for
V = n in some frameworks like linear regression (see Section 5.2). Furthermore,
estimating the variance of VFCV from data is a difficult problem in general, see
Section 5.2.3.

When the goal of model selection is estimation, it is often reported in the
literature that the optimal V is between 5 and 10, because the statistical perfor-
mance does not increase much for larger values of V , and averaging over 5 or 10
splits remains computationally feasible (Hastie et al., 2001, Section 7.10). Even
if this claim is clearly true for many problems, the conclusion of this survey is
that better statistical performance can sometimes be obtained with other values
of V , for instance depending on the SNR value.

When the SNR is large, the asymptotic comparison of CV procedures re-
called in Section 6.2 can be trusted: LOO performs (nearly) unbiased risk es-
timation hence is asymptotically optimal, whereas VFCV with V = O(1) is
suboptimal. On the contrary, when the SNR is small, overpenalization can
improve the performance. Therefore, VFCV with V < n can yield a smaller
risk than LOO thanks to its bias and despite its variance when V is small (see
simulation experiments by Arlot, 2008c). Furthermore, other CV procedures
like RLT can be interesting alternatives to VFCV, since they allow to choose
the bias (through nt) independently from B, which mainly governs the variance.
Another possible alternative is V -fold penalization, which is related to corrected
VFCV (see Section 4.3.3).

When the goal of model selection is identification, the main drawback of
VFCV is that nt ≪ n is often required for choosing consistently the true model
(see Section 7), whereas VFCV does not allow nt < n/2. Depending on the
frameworks, different (empirical) recommandations for choosing V can be found
in the literature. In ordered variable selection, the largest V seems to be the
better, V = 10 providing results close to the optimal ones (Zhang, 1993). On the
contrary, Dietterich (1998) and Alpaydin (1999) recommend V = 2 for choosing
the best learning procedures among two candidates.

10.4 Future research

Perhaps the most important direction for future research would be to provide,
in each specific framework, precise quantitative measures of the variance of CV
estimators of the risk, depending on nt, the number of splits, and how the
splits are chosen. Up to now, only a few precise results have been obtained
in this direction, for some specific CV methods in linear regression or density
estimation (see Section 5.2). Proving similar results in other frameworks and
for more general CV methods would greatly help to choose a CV method for
any given model selection problem.

More generally, most theoretical results are not precise enough to make any
distinction between the hold-out and CV methods having the same training
sample size nt, because they are equivalent at first order. Second order terms
do matter for realistic values of n, which shows the dramatic need for theory
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that takes into account the variance of CV when comparing CV methods such
as VFCV and RLT with nt = n(V − 1)/V but B 6= V .
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